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Abstract: Most successes in autonomous robotic assembly have been restricted
to single target or category. We propose to investigate general part assembly, the
task of creating novel target assemblies with unseen part shapes. As a fundamental
step to a general part assembly system, we tackle the task of determining the
precise poses of the parts in the target assembly, which we term “rearrangement
planning”. We present General Part Assembly Transformer (GPAT), a transformer-
based model architecture that accurately predicts part poses by inferring how each
part shape corresponds to the target shape. Our experiments on both 3D CAD
models and real-world scans demonstrate GPAT’s generalization abilities to novel
and diverse target and part shapes.

1 Introduction

Novel Target b
The ability to assemble new objects is a hall-
mark of visuo-spatial reasoning. With the men-
tal image of a novel target shape, one can ar-
range possibly unseen parts at hand to create
a resembling assembly, either building an alien
spaceship with lego blocks or a rain shelter with
stones. Building autonomous robotic systems
that exhibit these capabilities may give rise to  Unseen Parts

wide range of robotics applications from au-
& . pp . . Figure 1: General Part Assembly. We seek to build
tonomously assembling new objects in a man- .
autonomous robotic systems that can assemble a novel

ufacturing plant to building shelter in disaster target with previously unseen parts. The visualizations
response scenarios. are actual inputs and prediction of our model.

Despite the interest and progress in part assembly, existing methods tend to focus on specialized part
assembly consisting of fixed targets [1, 2] or seen categories [3, 4]. We propose to instead investigate
the task of general part assembly, which takes in as inputs both a target shape and a variable set of part
shapes to build an assembly resembling the target. Instead of restricting to fixed objects or categories,
we require the robotic system to generalize to novel target shapes without additional annotation or
supervision. Moreover, the available parts are not guaranteed to be carefully manufactured, and the
robotic system has to use parts of slightly differing shapes, the non-exact parts, e.g., building a table
with rectangular blocks given a round table as the target.

The task of general part assembly is an extension of specialized part assembly that focus on fixed
targets or categories. For fixed-target assembly, the target shape information is implicitly provided
to the agent. A general part assembly agent can also solve category-level part assembly by taking
in as input a single instance of the category, while a typical learning method is trained on a large
number of instances from the category [3, 4]. For example, given a single table instance, a general
part assembly agent can assemble tables with either rectangular tabletop or round tabletop.

In this work, we focus on the initial perception and planning module for general part assembly,
which outputs the precise poses of the parts in the target assembly. Our key insight is to formulate
this module as a goal-conditioned shape rearrangement problem, whereby the target can be viewed
as a desired 3D shape layout. Consequently, we term this module “rearrangement planing”, which
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aligns with established definitions previously proposed by the Task and Motion Planning (TAMP)
community [5]. With this insight, the module factorizes into two steps: predict a segmentation
of the target, where each segment corresponds to a part, and infer the pose of each part with pose
estimation. To predict accurate segmentation of the target, a key challenge is to deal with the
ambiguities in the target shape due to geometrically equivalent parts (e.g., legs of a table). To infer
accurate segmentations, we propose General Part Assembly Transformer (GPAT), a transformer-
based model architecture, that processes input shapes in a fine-to-coarse manner, thereby ensuring
consistent segmentation results.

To train and evaluate our model, we build a benchmark based on PartNet [6], a large-scale dataset
of 3D objects with part information. We programmatically generate primitive part shapes as non-
exact parts. We demonstrate that GPAT generalizes well to entirely new target structures at random
orientations and novel parts that are non-exact matches on both synthetic and real-world data.

In summary, our primary contributions are three-fold:

* We propose the task of general part assembly to study the ability of building novel targets with
unseen parts and create a benchmark based on PartNet [6].

* We tackle the planning problem for general part assembly as a goal-conditioned shape rearrange-
ment problem — treating part assembly as an “open-vocabulary” (i.e., vocabulary of parts) target
object segmentation task.

* We introduce General Part Assembly Transformer (GPAT) for assembly planning, which can be
trained to generalize to novel and diverse target and part shapes.

We believe that GPAT is an exciting step for general part assembly — we discuss both its capabilities
and limitations in the report.

2 Related Work

Specialized Part Assembly. A number of learning-based methods have been proposed for part
assembly, but they usually have limited generalization abilities, so we refer to them as special-
ized part assembly. Reinforcement learning (RL) has success in building part assembly for fixed
targets [1, 2, 7, 8] or seen categories [9]. They require costly trial-and-error in real-world or physics-
based environments to extend to novel targets, and often require low-level state information during
training and testing. Another line of work directly works with visual perception and learns shape
correspondences, which has success in tasks like kit assembly [10, 11] and shape mating [12], but
they have not tackled part assembly which involves more complex and diverse targets and parts.
Previously, part assembly with category-level generalization is tackled with models based on graph
neural network (GNN) backbones [3, 4, 13]. Notably, Li et al. [3] and our method shares the same
high-level idea of segmenting the target shape, even though their targets are represented as images.
Additionally, Funk et al. [14] proposed a full robotic system based on GNN and RL to assemble
arbitrary target blueprints with rectangular blocks. In this work, we propose to tackle general part
assembly with novel and semantically grounded target and part shapes.

Part Assembly with Object Models. Physics-based part assembly assumes precise models, and the
goal poses of the parts are explicitly given or implicitly derived. However, these requirements hinder
quick generalization to novel targets and parts. We directly work with visual perception, the 3D point
clouds, to predict the precise poses of the parts. With our prediction, one may apply physics-based
assembly sequence planning [15, 16, 17, 18] and path planning [19, 20, 21, 22] to obtain a complete
assembly plan.

Point cloud Registration. Point cloud registration estimates the transformation matrix between two
point clouds from different views of the same 3D scene. It is traditionally solved by optimization-
based methods and recently by learning-based methods [23]. If we represent target and part shapes
as point clouds, general part assembly is akin to point cloud registration, but it crucially demands
optimizing the part poses concurrently. As demonstrated in Sec. 4, basic alterations to point cloud
registration methods can’t directly address general part assembly.



3 Approach

Given a target point cloud 7~ and part point segmentation prediction assembly prediction
clouds {Pi}l].\i , as inputs, where N denotes the 5 o -
number of input parts and varies for different # , i
shapes, the goal of our task is to predict a 6-

DoF part pose g; € SE(3) for each input part #;, (P

forming a final part assembly, P = N | ¢;(P:),

where ¢; (#;) denotes the transformed part point [ F 1 MTLP 1 1 ) ; M;“P )
cloud. To tackle this problem, we propose to - *
solve part assembly in two steps: target seg- i i i i i i | |
mentation (Sec. 3.1) — which utilizes General ( CrossAttention )
Part Assembly Transformer (SCC. 32) to de- {‘ 1\‘/1uIliSc:alc‘eAuemioLk | [ Mu‘ltiHeadA‘nention Nt

compose the target into disjoint segments, each I I I I I

I I [
representing a transformed part — and pose esti- I I I I I I — *
\ \ \ \ \ |

mation (Sec. 3.3) to obtain the final part poses. [ P | [ ot ]
3.1 Part Assembly by Target Segmentation ,.1 ’i T
target point cloud part point clouds

Given a target point cloud 7 and part point
clouds {#;}Y, as inputs, we want to segment Figure 2: Method Overview.

the target point cloud such that each segment

corresponds to a part. From the segmentation, we can infer the part pose with pose estimation, which
is a transformation from the part to the corresponding segment.

Formally, we want to predict a set of disjoint segments {7{}i’\:’ , such that Ufi 1 Ti=T and7;NT; =0
for i # j. Further {7;, P,-}f.\:l | represents a bipartite matching between the segments and the parts.
Note that 7; = 0 may be empty, suggesting that the part #; is not used in the assembly. The goal of
target segmentation is to maximize the geometric resemblance for each pair with non-empty 7;, as
defined by the following minimization problem,

N
{7{}511 = arg min Z min dist(7;, gi (P;))
TN =i 720

where dist is some distance metric for point clouds (e.g., chamfer distance). This may appear to
be a detour since the goal of the task is the transformation ¢;, which is implicitly optimized over.
Nevertheless, a model can approximate ming, dist(7;,q;(%;)) by learning rotationally invariant
representations of point clouds to avoid optimization over part poses. Finally, we can infer a part
pose g; by minimizing dist (77, q; (P;)).

3.2 General Part Assembly Transformer (GPAT)

The input to General Part Assembly transformer is a target point cloud and a set of part point clouds,
and therefore model backbones designed for a single point cloud is insufficient for the task. GPAT uses
PointNet [24] to extract initial features for the point clouds, and then leverages a transformer-based
architecture [25] to jointly optimize over the target shape and the part shapes. To predict accurate
target segmentation, a key challenge is the ambiguities in the target shape (e.g., the four legs of a chair
are interchangeable). As a result, a target shape often admits multiple ground-truth segmentations,
and a fine-grained and consistent segmentation of the target is required for successful assembly. In
light of this, we design the GPAT layer to fully exploit the spatial structure of the target point cloud
from a fine-to-coarse manner, which is inspired by the increasing receptive field of convolutional
neural networks [26] and progress in hierarchical feature learning for point clouds [27, 28].



More formally, let the hidden dimension for features be 4. For a query feature q € R” and a set of k

key features K € R¥*" we denote the dot-product attention operator as
Wi (K) - W,
Attention(q, K) = W, (K) softmax (%)

where W,, Wi, W,, are MLPs.

Given a target 7 and a set of parts {P;}f.\:’ |» GPAT uses Pointnet to extract an initial target point
feature V? for each point X; € 77, and an initial part feature u? for each part #; (with max pooling).
Then the features pass through L GPAT layers. At the (n + 1)-th GPAT layer, we have a target point
feature v{ for each point X; € 7~ and part feature u for each part #;. The features are updated in
three steps. The first step is multi-scale attention which is parameterized by a positive integer k and

denoted by MultiScaleAttentiony in Fig. 2. It updates the target point features as follows:
v = Attention(v/", N (V"))

where Ni(v7) is the features of the k nearest neighbors of the target point X,. GPAT gradually
increases k to let each point receive global information of the point cloud. The second step is the
multi-head attention [25], which updates the part features. In the final step, GPAT applies attention
updates between the target point features and part point cloud features, denoted as CrossAttention in
Fig. 2: o o

vl = Attention(v!", U") ul'.’+l = Attention(ul’, V")
where V" denotes all target point features and U” denotes all part point cloud features. Finally,
GPAT models how likely a point X; is matched with an input part $; as

Wr(vE) - Wp (ub)

N Wr(vE) - Wp (ul)

P[X; € 7] =

where Wr and Wp are MLP projections.

Data Augmentation. In order to generalize to targets at random poses, we augment the dataset by
randomly rotating the target point cloud but keep the order of the points. Thus the ground truth
segmentation label is unchanged, which encourages the model to obtain rotationally invariant feature
representations for the target. We always preprocess the input parts so that their principle axes are
aligned with world axes. Further, to generalize to unseen categories and non-exact parts, the dataset
needs to comprise diverse shapes. We programmatically generate rectangular and spherical primitive
shapes of various sizes. For each data sample with exact parts, we construct a new sample with
each exact part replaced with the primitive of the most similar sizes. GPAT is trained with both data
samples of exact and non-exact parts. Assemblies with non-exact parts can be found in Fig. 3.

Training and Loss. To supervise GPAT, we use the per-point cross entropy loss between the
predicted distribution over all parts and the ground truth label. Denote the ground truth segmentation
by {7i'gt f\i 1> and the loss function is

|71

L=-) logP[X, € T*']

1=1
For part assembly, there are often multiple ground-truth labels due to geometric equivalence be-
tween parts (e.g., legs of a chair). We enumerate all permutations of labels corresponding to the
geometrically equivalent parts and adopt the lowest possible cost.

3.3 Predicting Part Assembly with Segmentation

Given a set of parts {P,-}f.\:’ , and a segmentation of the target {ﬁ}f\i |» we can find the 6-DoF part
pose ¢g; € SE(3) for each part with pose estimation. Since the parts in our task are not necessarily
exact, we use oriented-bounding boxes to estimate part poses which is simple and robust. For each
non-empty 7;, we use principle component analysis to find the oriented bounding boxes of #; and 7;
to solve for ¢;. In practice, we improve the bounding box predictions by filtering the outliers (points

that are at least one standard deviation away from the center) in 7;.



Unseen Instance Unseen Category
Canonical Pose Random Pose Canonical Pose Random Pose
Precise Part Imprecise Part Precise Part Imprecise Part Precise Part Imprecise Part Precise Part Imprecise Part
CD PA SR|CD PA SR|CD PA SR|CD PA SR|CD PA SR|CD PA SR|CD PA SR|CD PA SR

Opt 79 183 24100 160 09 |63 229 37|77 210 28|51 231 57|54 213 47|41 313 67|50 284 42
Go-ICP |729 42 0.1 679 39 0.0 (723 44 0.1 (662 39 00 (494 2.0 00 426 2.6 0.0 |457 22 0.0(393 26 0.0
GeoTF |54.3 145 4.1 |63.4 95 1.6 |53.7 149 42 (626 10.1 19573 28 0.1 538 23 0.0 (574 29 0.1 539 29 02
NSM 89.8 1.3 0.0 863 09 00 (871 1.4 00 (8.1 09 00580 0.7 00520 1.1 0.0 564 1.1 0.0 (49.7 1.4 00

DGL 21.5 454 109|18.0 51.6 14.4(86.7 1.1 0.0 (755 1.6 02272 13.7 1.1 |22.1 182 0.7 [489 1.6 0.0 450 1.9 0.0
DGL-aug|53.4 6.7 0.6 |443 81 05523 7.0 0.6 (440 87 02313 73 0.1 264 93 0.3 |284 85 0.2|239 1.1 03
Reg 336 3.1 03335 32 05256 50 02257 58 051|345 19 00314 33 02190 54 0.1 187 50 02
TF 11.4 479 168|11.5 454 14.4]9.1 57.8 21.5] 9.7 54.7 18.8|13.5 31.8 5.1 |12.3 333 49 |14.1 28.0 42 |122 299 3.7

Ours | 7.6 616 23.2| 7.2 64.8 26.0| 7.8 60.8 21.7| 7.8 64.3 26.0| 7.1 53.4 20.1| 6.6 563 21.7| 7.6 522 18.8] 69 55.6 19.8

Table 1: Quantitative Results and Comparisons. We adopt three metrics: chamfer distance (CD) measured
in %o, part accuracy (PA) measured in %, and success rate (SR) measured in Y.

4 Evaluation

Tasks. For both training and quantitative evaluation, we use PartNet [6], a large-scale dataset of 3D
objects with fine-grained and instance-level 3D part information. We use chairs, lamps, and faucets
for training and hold out tables and displays as novel categories. We deal with the most fine-grained
level of PartNet segmentation, and adopt the default train/test split of the PartNet, which contains
2463 instances of chairs, 1553 instances of lamps, and 510 instances of faucets. We categorize
generalization scenarios across three dimensions.

* Novel target instances or categories: We evaluate on the unseen instances of chairs, lamps, and
faucets, and two novel categories: tables and displays.

* Random target poses: We evaluate on targets at either canonical orientation (as defined in the
dataset) or a random orientation uniformly sampled from SO(3).

* Non-exact parts: Besides exact parts from the dataset, we programatically generated rectangular
and spherical blocks as non-exact parts. Sample instances can be found in Fig. 3.

Metrics. For all the tasks, we measure the quality of the predicted assembly with three metrics:
chamfer distance, part accuracy, and assembly success rate.

¢ Chamfer distance (CD): Given two point clouds A, B, the chamfer distance between A and B
is
CD(A,B) = in []x — y||3 + in ||[x — y||3
(A.B) );{;rggllx i3 ;jmlg Il = 5113
We use CD(7,%) as a metric, abbreviated as CD, where 7 is the target point cloud, and
P = Uf\il q:(P;) where g; is the predicted pose for the i-th part.!

e Part accuracy (PA): Adopted from the previous work [4], part accuracy is defined as,
RN GT
v 21 1| CD(qf" (Po).qi(PD) <
i

where inT is the ground truth pose of the i-th part, 7, = 0.01. This metric indicates the
percentage of the predicted parts that match the GT part up a certain threshold measured in
chamfer distance. Due to possible geometric equivalence between parts (e.g., the legs of a chair),
we enumerate all possible labels of geometrically equivalent parts to obtain different GT poses
and take the highest accuracy value.

* Assembly Success Rate (SR): A predicted assembly is considered successful if its part accuracy
(PA) is equal to 1. We report the percentage of successful predictions out of all data samples as
the assembly success rate (SR).

Algorithm comparisons. Since general part assembly is a novel task, there are no previous methods
specifically solving the task. We adapt methods for point cloud registration and specialized part
assembly and compare with variants of our method for ablation studies.

INote that in the previous work [4], ‘shape chamfer distance’ is defined differently with 7~ = Uf,\:/ | ql.GT(SDi).

In our tasks, the target is not a union of the given parts, so the values according to our metric are usually larger.



e Opt: Covariant matrix adaptation evolution strategy (CMA-ES) [29] is used to optimize the
poses of each part by minimizing the chamfer distance CD as defined above.

* Go-ICP: We greedily match each part point cloud to the target point cloud using Go-ICP [30].

¢ GeoTF: Geometric Transformer (GeoTF) [31] is one of the SOoTA methods for point cloud
registration. We modify the algorithm to simultaneously optimize for all part poses.

e NSM: Neural Shape Mating (NSM) [12] uses a transformer-based model to solve pairwise 3D
geometric shape mating such as reconstruct two broken pieces of an object. We modify their
algorithm to match each part to the target and simultaneously optimize for all part poses.

* DGL: Dynamic Graph Learning (DGL) [4] tackles category-level part assembly by leveraging
an iterative graph neural network backbone to regress part poses. Designed for category-level
generalization, DGL does not take in the target shape as an input. To adapt to our task, we include
the target encoding as a node into the graph neural network framework. DGL is trained only with
targets at canonical poses following the previous work. DGL-aug uses the same training dataset
as our model, with augmentation of targets at random poses.

* Reg: Instead of predicting a segmentation of the target for the subsequent pose estimation, we
replace the final dot-product segmentation layer of our model with MLPs to directly regress a
6DoF pose for each part. We trained the modified model with the supervision of GT poses.

e TF: As an ablation, we replace each GPAT layer with a vanilla transformer layer [25].
5 Experimental Results

Tab. 1 and Fig. 3 summarizes the main quantitative and qualitative results, and the following sections
provide detailed discussions. Please refer to the supplementary materials for more results.

Part assembly by target segmentation is more generalizable. The optimization baseline (Opt)
achieves the lowest chamfer distance (CD) in some scenarios, but its part accuracy (PA) and success
rate (SR) are significantly lower. Directly optimizing the part poses often result in predictions at local
minima where the predicted assembly matches the contour of the target, but the assembly makes no
semantic sense. (Please refer to supplementary materials for an example.)

As a classical optimization-based algorithm, Go-ICP tries to match individual part to the entire target
which fails with no surprises. As a learning-based method, GeoTF achieves better performances
for seen categories, but fails nonetheless for unseen categories. Since the parts are non-exact, it is
challenging for point cloud registration methods to find suitable correspondences either in spacial
coordinates or a learned feature space.

GPAT also outperforms regression-based models (DGL, DGL-aug, NSM, Reg) across all the tasks,
especially at scenarios that requires more generalization (Tab. 1 and Fig. 3). For the most challeng-
ing scenario, regression-based models achieve less than 1% success rate, while GPAT has 19.8%
success rate which is attained for all the test scenarios. To directly regress poses, a model needs to
learn rotationally equivariant features for the target shape. However, given non-exact parts, unseen
categories, and targets at random poses, we show that the regression-based models fail to capture
the distribution of poses. They either overfit certain canonical poses and assembly structures or fail
to learn. In contrast, GPAT, a segmentation-based model, is trained to learn rotationally invariant
representations of the shapes, and thus it experiences minor performance drops facing generaliza-
tion scenarios. Further, training with diverse shapes makes the representations generalizable and
applicable to new categories.

GPAT is robust against targets with ambiguities. Compared to the alternative segmentation-based
model using vanilla transformer, GPAT achieves better results for all test scenarios, especially for
unseen target categories (Tab. 1 and Fig. 3). We compare the segmentation accuracy and show
the results in Tab. 2 and visualize a typical failure case of TF in Fig. 5. When facing inputs with
multi-model ground truths (e.g., a chair with identical legs), TF is unable to produce consistent
segmentation, which hinders successful assembly prediction. With GPAT layers, we fully leverage
the point cloud structure and process the point cloud in a fine-to-coarse manner, thereby achieving
local consistency of the segmentation predictions.



Unseen Instance Unseen Category
Canonical Pose Random Pose Canonical Pose Random Pose
Exact Non-Exact Exact Non-Exact Exact Non-Exact Exact Non-Exact

— -

Target

GT

Opt

Go-ICP

GeoTF

NSM

DGL

DGL-aug

Reg

TF

Ours

Figure 3: Assembly Results and Comparisons. For targets at random poses, targets and predictions are
transformed to be visualized at canonical poses for better understanding. Please see Fig. 4 for more results of
randomly oriented targets. The optimization-based approach (Opt and Go-ICP) tends to stuck at local minima.
The learning-based alternatives (GeolF, NSM, DGL, Reg) overfit the training scenarios and fail to learn
rotationally equivariant features for target shapes that are necessary for accurate pose inference. The alternative
segmentation-based model that uses the vanilla transformer (TF) fails to produce consistent segmentations for
targets with geometrically equivalent parts (see Fig. 5 for a detailed example). With the multi-scale attention
layer, GPAT fully leverages the spatial structure of the target point clouds to produce consistent segmentations
and accurate assemblies.



Figure 4: Assembly Results for Targets at Random Orientations. We show more results for the same targets
in Fig. 3 but at random orientations. GPAT is robust against the orientation of the target shape. More results
can be found in the supplementary materials.

GPAT solves generalizes well to real-world data. We use the real-world scans from redwood
dataset [32] as targets and part point clouds from PartNet. As seen in Fig 6, our method produces
diverse assemblies that resemble the target. This result also illustrates how GPAT can be used to
assemble different sets of parts given a single target shape from the category.

GT Ours Real-world Scan Assembly Prediction

Target
uonejuawseg

Parts
Alquiassy

Figure 5: GPAT is robust against ambiguities.

Unseen Instance Unseen Category
Canonical Pose Random Pose | Canonical Pose Random Pose

Prc Imp Prc  Imp | Prc Imp Prc  Imp

70.0 622 765 692 ‘6347 624 629 609 Lt g l

767 709 766 71.1 |69.5 693 69.6 69.5

TF
Ours

Table 2: Segmentation Accuracy (%) Figure 6: Results on Real-world Data

Failure mode analysis. GPAT is not without limitations, and Fig. 7 shows some typical failure
cases. First, GPAT tends to give incorrect segmentation predictions if some parts are hidden inside a
larger part (e.g., the light bulbs in a lamp) or the parts are less separable (e.g., overlapping parts of a
microwave). To solve with these issues, it is possible to introduce additional information like colors
and normals of the point clouds as inputs. Additionally, oriented bounding box can be insufficient as
a pose estimation method for some parts. To tackle this problem, a learning-based pose estimation
module can potentially replace the bounding box procedure.

6 COHC]llSlOIl Segmentation Assembly
L L GT

Prediction Prediction
- ® @

In this work, we formulate the task of gen-
eral part assembly, which focuses on building
novel target assemblies with diverse and un-
seen parts. To plan for a general part assembly
task, we propose General Part Assembly Trans-
former (GPAT) and factorizes the task into target
segmentation and pose estimation. Our exper-
iments show that GPAT performs well under
all the generalization scenarios. By integrating
with an assembly sequence and path planning
algorithm, we believe that GPAT has great po-
tential in building vision-based general robotic
assembly systems.

Figure 7: Typical Failure Cases.
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8 Appendix

8.1 Additional Results and Analysis

Additional Visualization. Fig. 13 and Fig. 14 show additional results on simulated and real-world
data, respectively.

Quantitative Results for Categories. Table 3 shows detailed quantitative evaluation for unseen
instances for seen categories (Chair, Lamp, Faucet) and unseen categories (Table, Display).

Table 3: Quantitative results of our algorithm on different categories.

Canonical Pose Random Pose
Precise Part | Imprecise Part | Precise Part | Imprecise Part
CD PA SR |CD PA SR |CD PA SR |CD PA SR

Chair |7.7 57.7 193|7.3 644 25.1|7.6 584 19.3|8.3 63.0 24.0
Lamp |7.6 669 29.1|59 72.1 40.9|8.1 64.2 26.2|6.0 74.4 45.5
Faucet | 7.3 65.6 24.4|6.5 63.1 20.7|7.4 63.6 20.6|6.5 623 224

Table |7.5 52.0 20.6|7.0 55.1 21.5|8.1 50.8 17.8|6.9 55.7 22.2
Display | 4.2 59.2 23.2|4.7 59.3 20.2|4.4 60.8 23.8/4.9 58.5 16.9

GPAT builds creative assemblies. To fully test the generalization abilities of GPAT, we provide
unseen part shapes like a banana, hammers, and forks as parts to create novel targets such as a
plane. Our model predicts creative assemblies given target shapes from unseen categories and non-
exact parts, as seen in Fig. 8. The shapes are taken from PartNet [6], ModelNet40 [33], and YCB
dataset [34].

Target Parts Segmentation Assembly

Figure 8: Creative Assemblies. Our model predicts creative assemblies given target shapes from unseen
categories and non-exact parts. 1st row: a chair assembled with lamps as chair legs. 2nd row: a table assembled
with a plate and spoons. 3rd row: a plane assembled with a banana and hammers.

Oriented bounding boxes offer a sufficient pose estimator. Once we obtain the target segments
with GPAT, we compare with alternative methods to obtain the final poses and present the quantitative
results in Tab. 4. The alternative methods include Go-ICP [30], DCP [35] (we take the released model
pretrained on Modelnet40 [33]). Additionally, we adapt the previous work [3] by Li et al. to our
task. Li ei al. consider targets represented as images, and train a model to produce 2D part segments
and another GNN-based model to regress part poses. We produce 3D segments using our pretrained
GPAT and train the GNN-based backbone proposed in DGL [4], an improved model compared to
that used in [3]. We find the heuristics based on oriented bounding boxes to produce comparative or
better results compared to more sophisticated alternative methods. Furthermore, we provide further
analysis in the Appendix to show that the main bottleneck of the problem is segmentation as opposed
to pose estimation.
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Unseen Instance Unseen Category

Canonical Pose Random Pose Canonical Pose Random Pose
Precise Part | Imprecise Part| Precise Part | Imprecise Part| Precise Part |Imprecise Part| Precise Part | Imprecise Part
CD PA SR|CD PA SR |CD PA SR‘CD PA SR|CD PA SR|CD PA SR‘CD PA SR|CD PA SR
GPAT-GoICP | 6.7 63.9 23.7| 7.8 63.5 20.0| 6.8 64.9 24.6| 8.0 62.5 19.7| 5.9 53.9 19.7| 6.5 55.7 18.6] 5.3 55.8 20.4| 5.9 58.6 22.1
GPAT-DCP  |18.2 37.3 6.2 |18.6 32.1 2.1 |18.7 36.0 5.5 |18.4 32.0 2.8 [15.4 33.1 3.4 |16.7 30.1 1.0|15.3 33.4 4.4 169 30.5 2.3
GPAT-DGL  |12.1 52.1 13.0|10.8 58.4 17.2]12.2 51.1 11.5/10.5 55.8 16.2]13.1 38.4 6.9 |10.5 44.8 9.6 [11.5 42.3 10.3|10.4 48.5 13.6

GPAT-BB (Ours)| 7.6 61.6 23.2| 7.2 64.8 26.0| 7.8 60.8 21.7| 7.8 64.3 26.0| 7.1 53.4 20.1| 6.6 56.3 21.7 7.6 52.2 18.8/ 6.9 55.6 19.8

Table 4: Evaluation of the Pose Estimation Module. We find the efficient heuristics based on oriented
bounding boxes to produce comparative or better results compared to more sophisticated alternative methods.

Segmentation Accuracy is the Main Bottleneck. In Fig. 9, we plotted the mean success rate /
part accuracy conditioned on the minimum segmentation accuracy. We find that when segmentation
accuracy approaches perfect, average success rate and part accuracy approaches 90%, while the
current overall numbers are around 20% and 60%, respectively. This shows that segmentation
accuracy is still the main bottleneck of our method.

1.0

—— success rate
part accuracy
0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Minimum Segmentation Accuracy

Figure 9: Segmentation Accuracy is the Main Bottleneck. Each point on the plot reads as “for all the data
samples with minimum accuracy of X, the average success rate / part accuracy is y”.

Optimization is prone to local minima. The optimization baseline (Opt) achieves the lowest
chamfer distance (CD) in some scenarios, but its part accuracy (PA) and success rate (SR) are
significantly lower. As seen in Fig. 10, directly optimizing the part poses to match the target often
result in predictions at local minima where the predicted assembly matches the contour of the target,
but the assembly makes no semantic sense.

GPAT is applicable to part discovery. GPAT is directly applicable to the task of part discovery,
i.e., predict a part segmentation given a target [36], if we do not provide input parts. We show
some qualitative results in Fig 11 to test GPAT’s part discovery abilities. Given non-exact parts,
PAT predicts accurate segmentations as usual. If we input identical blocks, which specifies the
number of parts but provides little information about the part shapes, then GPAT predicts reasonable
segmentations with the specified number of segments. Finally, we omit the input parts, and GPAT
successfully discovers parts in the target shape.

GPAT is aware of part scales. Part assembly often involves parts that have the same geometry
but different scales, so it is necessary for a model to discriminate parts of different scales to create
correct assemblies. As an qualitative illustration in Fig. 12, we adjust the scale of the parts that have
same geometry (the legs of chair/table), and the model correctly associates parts of different scales
to the target to build the desired assemblies.
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Figure 10: Optimization is prone to local minima.
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Figure 11: Application to Part Discovery. Given non-exact matching parts (Non-Exact), identical blocks
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(Identical), and no part point clouds input, GPAT predicts reasonable part segmentations of the target.
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Figure 12: Sensitivity to Scale. The legs of the chair/table are manually scaled, and the model correctly

associate parts of the same shape but different sizes.
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8.2 Data and Training Details

We use Furthest Point Sampling (FPS) to sample 1,000 points for each part point cloud and 5,000
points for each target point cloud. Following the previous work [37], we also zero-center all the
point clouds, and align the principle axes of the part point clouds with the world axes using Principle
Component Analysis (PCA). Additionally, we similarly use axis-aligned bounding boxes to obtain
3-dimensional sizes of the part, and two parts are considered geometrically equivalent if they have
the same part type as labeled by the PartNet dataset [38] and same sizes up to a small threshold.

In our training, we down-sample the target point features by a factor of 10, so for each sample, we
obtain 500 target point features. We use a feature dimension of 256 and we use 8 GPAT layers, with
k values of 16, 16,32, 32, 64, 64,500,500. We use Adam [39] with a learning rate of 0.00004, a
batch size of 36. We train for 2000 epochs in total.
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Canonical Pose Random Pose
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Figure 13: Qualitative Results. Chairs, lamps, and faucets are seen during the training. Tables and displays
are unseen categories. The first row of each category displays targets in black, and the second row shows our
predictions.
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Real-world Scans Predictions

Figure 14: Results on Real-world Data. Non-exact parts from the same category as the target point cloud,
which are teal-world scans taken from Redwood dataset [32].
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