l‘)

Check for
updates

Improving Code Comprehension Through
Scaffolded Self-explanations

Priti Oli'®™®, Rabin Banjade', Arun Balajiee Lekshmi Narayanan?,
Jeevan Chapagain', Lasang Jimba Tamang', Peter Brusilovsky?,
and Vasile Rus!

L University of Memphis, Memphis, TN 38152, USA
{poli,rbnjadel, jchpgain,ljtamang,vrus}@memphis.edu
2 University of Pittsburgh, Pittsburgh, PA 15260, USA
{arl122,peterb}@pitt.edu

Abstract. Self-explanations could increase student’s comprehension in
complex domains; however, it works most efficiently with a human tutor
who could provide corrections and scaffolding. In this paper, we present
our attempt to scale up the use of self-explanations in learning program-
ming by delegating assessment and scaffolding of explanations to an intel-
ligent tutor. To assess our approach, we performed a randomized control
trial experiment that measured the impact of automatic assessment and
scaffolding of self-explanations on code comprehension and learning. The
study results indicate that low-prior knowledge students in the experi-
mental condition learn more compared to high-prior knowledge in the
same condition but such difference is not observed in a similar grouping
of students based on prior knowledge in the control condition.

Keywords: Program Comprehension - Scaffolding - Computer Science
Education + Java Programming - Intelligent Tutoring System

1 Introduction

Computer programming is a critical skill in today’s world. However, learning
to program is challenging, as shown by high attrition rates (30-40%, or even
higher) in introductory CS courses [1]. The premature focus on writing code
rather than reading code may be part of the reason why learning to program
has historically been challenging [3]. Code comprehension activities such as code
tracing and code reading have been argued to be critical in the early stage of
learning because they allow beginners to develop programming skills with a lower
cognitive load than writing code itself [2].

In this paper, we present an Intelligent Tutoring System (ITS) DeepCodeTu-
tor that helps students master code comprehension skills by providing automatic
assessment and scaffolding for self-explanation of code examples. Self-explanation
has been proven to be an effective strategy for learning computer programming
concepts [6]; however, the presence of a human tutor is usually required to make

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Wang et al. (Eds.): AIED 2023, CCIS 1831, pp. 478-483, 2023.
https://doi.org/10.1007/978-3-031-36336-8_74

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36336-8_74&domain=pdf
https://doi.org/10.1007/978-3-031-36336-8_74

Improving Code Comprehension Through Scaffolded Self-explanations 479

this strategy work. In DeepCode Tutor, students’ self-explanations are automati-
cally assessed, appropriate feedback is provided (positive, neutral, negative), and,
if required, a sequence of scaffolding hints follows. The hints are in the form of
questions that prompt the student to think. We follow constructivist theories of
learning with early hints in the sequence being vague and then more and more
informative if students are still floundering.

In the following sections, we introduce the DeepCodeTutor, explain its app-
roach to assessment and scaffolding of self-explanations, and present a random-
ized controlled study of its effectiveness in helping learners better understand
code and master programming concepts.

2 DeepCodeTutor: Automatic Scaffolding of Code
Explanations

DeepCodeTutor aims to help students comprehend and explain the logical step
and logical step details of a given code example. The system engages students in
a dialog-based approach, prompting students to explain the code of the worked-
out program example and reacting to student explanations. If a student provides
a correct and complete explanation, she will receive positive feedback and a
summary explanation of the code. If the student’s explanation is incomplete or
incorrect, the system uses scaffolding questions to guide their comprehension and
learning and correct misunderstandings. The number of hints provided varies
depending on the student’s individual needs, understanding, and articulation.
The system will show the model explanation if the student fails to explain the
concept correctly, even after scaffolding.

The user interface of DeepCodeTutor consists of the following components.
The goal description for the Java code example is displayed in the top left corner
of the app. It is highlighted in red for immediate attention and easy visibility for
students (Fig.1, A). The interactive code editor (Fig.1, B) displays the target
code example the student should read, comprehend, and articulate. The code
example is divided into logical blocks/chunks separated by empty lines. When a
question is asked about a specific block/line of code, as shown in the figure, the
target block is highlighted in yellow. On the right side of the interface (Fig. 1, C)
is a display box that shows the entire dialogue history displaying the student’s
response in blue on the right, while the tutor’s response is in green on the left.
The student input box is at the bottom right corner of the interface (Fig. 1, D).

The tutor and the student discuss the code block by block. At the start of
each task, the students are asked to explain the program in their own words.
The student’s initial explanation is then automatically assessed using auto-
mated semantic similarity methods, which compare the student’s explanation
to a benchmark, expert-provided explanation (e.g., the expert explanations in
the DeepCode). The semantic similarity is computed by extending word-to-word
semantic similarity measures to sentence and paragraph level [5]. The semantic
similarity is calculated at the sentence and paragraph level by comparing a vari-
ety of features, including an alignment score based on the optimal alignment of

480 P. Oli et al.

the sentences using chunks and a branch-and-bound solution to the quadratic
assignment problem, word embeddings, unigram overlap with synonym check,
bigram overlap and BLEU scores [5]. To be considered complete and correct,
students must effectively convey all the key ideas in experts’ self-explanations. If
a student articulates a major misconception which DeepCodeTutor will detect,
using a bank of major misconceptions, and correct it immediately.

Problem
Dialogue History

In this next example, we will focus on concepts related to arrays. We will do that with the help of a program whose goal is to ~

calculate the average of numbers G

Once you are done reading the code, type your explanation of what the code does at the bottom of the Dialogue History box. Please go on and
do your best to explain your understanding of the code and its output in as much detail as you can.

- public class AverageOfNumbers {
- public static void main(String[] args) | e

double[] numAsray
double sum = 0.0:
double average:

6,117}

Please go on and do your best to explain your understanding of the

code and its output in as much detail as you can.
‘The first step of the program declares the variables needed to store a
et of numbers, their sum, and their average.

for (int i = 0: i < numArray.length: i++) {
sum += numArray[iJ;
) Bravo!
e = s T Ay s The first step of the program declares the variables needed to store a
System.out. format("The average is: %.2f", average):; set of numbers,their sum, and their average.
Gan you explain in detail how the goal of the current block of code is
actually implemented (ines 4-6)?
v
Eiteryour snawer
The array variable numAfray is declared to store the
numbers whose average will be computed. The variable
sum is declared to represent the sum of the numbers.
The value of the sum is initialized t0 0. Also, the variable
average of double type is declared to hold the average
value of the numbers. 4
< >

Fig. 1. A screenshot of the DeepCodeTutor Interface: It includes (A) The goal descrip-
tion for each task, (B) an interactive Java code editor that shows the current Java code
example, and (C) a dialogue history of the interaction between the tutor and learners,
and (D) an input box for the learner to type their responses. (Color figure online)

3 Experimental Design

To assess the value of DeepCodeTutor, we conducted a randomized controlled
trial experiment in which participants were randomly assigned to two approxi-
mately equal groups: an experimental or treatment group that interacted with
DeepCodeTutor (scaffolded self-explanations) and a control group in which par-
ticipants were asked to read the expert-annotated code examples worked-out
examples (no self-explanations elicited, no scaffolding offered). Both groups were
presented with identical Java code examples, ensuring equal content exposure.
The main outcome variable we focused on was the effectiveness of the two condi-
tions in inducing learning gain, measured as an improvement in pre-to-post-test
scores. The pre-and post-tests were identical and consisted of five short Java
programs for which the student had to predict the output.

We recruited 90 students from an introductory Java Programming class in
an undergraduate Computer Science program at a large public university in
the United States. The participants were compensated with gift cards and extra
credit for their participation. The study was conducted online by providing clear
instructions about accessing and navigating the system. Students were asked to
share their screens to ensure they followed the instructions correctly. A research

Improving Code Comprehension Through Scaffolded Self-explanations 481

team member was available to assist with any questions during the experiment.
Out of all the participants, 14 identified themselves as non-native English speak-
ers. Out of the 90 participants, 89 completed the task, 47 in the control group
and 42 in the experimental group.

The overall experiment protocol was as follows. First, students were informed
about the experiment, offered a chance to ask questions, and asked to sign a con-
sent form if they agreed to proceed. Then, they completed a background ques-
tionnaire about their primary language of communication, programming experi-
ence, and current major. This was followed by a self-efficacy questionnaire and a
pretest, which assessed students’ prior knowledge of the targeted programming
concepts. After that, the subjects proceeded to the main task, where they inter-
acted with five worked code examples doing either code-reading or scaffolded
self-explanation, depending on the group. After completing the main task, the
students took a posttest targeting the same concepts that were covered in the
pretest and main task. Finally, the students completed an evaluation survey to
provide their perceptions of TutorApp. The system logged all student inputs and
tracked the time associated with each action without recording any identifiable
information.

We used the Normalized Learning Gain (NLG) as the main performance
metric to evaluate Learning Gain. It allows for consistent analysis of diverse
student populations with varying prior knowledge [4]. For the calculation of
NLG, if posttest score >pretest score, NLG = (posttest-pretest)/(5-pretest). If
posttest <pretest, NLG = (posttest-pretest)/pretest. We discard all the cases
where the student’s score is perfect, i.e., 5 in both pretest and posttest. While
the pretest and post-test scores are not perfect but equal, then the NLG =0.

4 Results

For the normalized learning gain analysis, data from 21 participants in the con-
trol group and 11 participants in the experimental group were excluded due to
perfect pretest and posttest scores, and also excluded one participant for scoring
0 on both tests.

Table 1 shows the average pretest, posttest, normalized learning gain, and
learning gain (posttest-pretest) for the experiment and control group. The dis-
tribution of pretest scores indicated a bias in our sample towards high-prior
knowledge students, with more students having a high pretest score. Also, the
self-efficacy scores of the students in the study were found to be generally high,
with a mean of 3.96 (S.D =0.48) for all students, 3.92 (S.D = 0.48) for the experi-
mental group, and 4.01 (S.D = 0.48) for the control group. This suggests that our
data is skewed toward high-prior knowledge and high self-efficacy participants.

4.1 How Effective is Automated Scaffolded Self-explanation for
Code Comprehension and Learning?

We first examined the differences in learning between the experimental and con-
trol group using a t-test, which showed no significant difference in the normal-

482 P. Oli et al.

Table 1. Mean and standard deviation of pretest, posttest, and normalized learning
gain (NLG) and learning gain (posttest-pretest).

Group n | Pretest Posttest NLG Learning Gain
mean | SD | mean | SD |mean|SD |mean |SD
Experimental Group | 30 | 3.0 1.4113.56 |1.19]/0.26 |0.40 0.56 |1.08
Control Group 26(3.19 |1.23]3.53 |1.20]/0.22 [0.54 0.34 |1.14

ized learning gain (t=0.33, p=0.36) or the post-test score (t =0.08, p=0.465)
between the two groups. To better understand the effect size of DeepCodeTutor,
we calculated Cohen’s d for the learning gain, which was found to be a small
effect size of 0.19 in favor of scaffolded self-explanation. While we hypothesized
that using DeepCodeTutor would lead to better learning, the study has not
confirmed this hypothesis. The lack of significant differences could result from
several factors, for e.g., our sample was biased toward high-prior knowledge and
high self-efficacy students. Furthermore, we conducted the experiment at the end
of the semester, which means students had many chances to master the concepts.

4.2 Does the Use DeepCodeTutor Result in Different Learning
Outcomes for Students with High and Low Prior Knowledge?

To examine the impact of DeepCodeTutor on students with different levels of
prior knowledge, we split students in each experimental condition into two sub-
groups based on their prior knowledge (Med = 3.5 for the experimental group
and Med = 3 for the control group). We conducted a t-test on the pretest
score between low-prior knowledge (N =15, M=1.93, S.D =1.27) and high-prior
knowledge students (N=15, M =4.06, S.D=0.25) in the experimental condi-
tion. The results show a significant difference in prior knowledge between the
two groups (t=6.32, p<0.05), which validates our split using the median.

Table 2. Independent sample t-test for learning gain of low-prior and high-prior knowl-
edge student in experimental and control group

Group Prior Knowledge | N | mean | SD | t-val | Sig

Experimental | Low 15]0.46 |0.33/2.91 |0.003
High 15/0.07 0.39

Control Low 1410.22 1 0.52/0.02 1 0.49
High 12/0.22 |0.58

As we can see in Table 2, there is a significant difference in the normalized
learning gain between low and high prior knowledge students in the experimental
group, whereas the average learning gain is the same for the control group.
This suggests that the scaffolded self-explanation may be particularly helpful
for students with lower levels of prior knowledge.

Improving Code Comprehension Through Scaffolded Self-explanations 483

5 Conclusion and Future Work

In this paper, we presented a novel approach to engaging students in studying
program examples and reported the results of its experimental evaluation. The
key idea of our approach is to support student self-explanation of code fragments
with automatic assessment and scaffolding. The results of the experiment show
a statistically significant learning gain in low-prior-knowledge students in the
experimental condition compared to high-prior-knowledge. In future work, we
plan to investigate further the effectiveness of our technology.

Acknowledgements. This work has been supported by the following grants awarded
to Dr. Vasile Rus: the Learner Data Institute (NSF award 1934745); CSEdPad: Investi-
gating and Scaffolding Students’ Mental Models during Computer Programming Tasks
to Improve Learning, Engagement, and Retention (NSF award 1822816), and Depart-
ment of Education, Institute for Education Sciences (IES award R305A220385). The
opinions, findings, and results are solely those of the authors and do not reflect those
of NSF or TES.

References

1. Beaubouef, T., Mason, J.: Why the high attrition rate for computer science students:
some thoughts and observations. ACM SIGCSE Bull. 37(2), 103-106 (2005)

2. Lopez, M., Whalley, J., Robbins, P., Lister, R.: Relationships between reading, trac-
ing and writing skills in introductory programming. In: Proceedings of the Fourth
International Workshop on Computing Education Research. ACM (2008)

3. McCracken, M., et al.: A multi-national, multi-institutional study of assessment
of programming skills of first-year CS students. In: Working Group Reports from
ITiCSE on Innovation and Technology in Computer Science Education, pp. 125-180
(2001)

4. Nissen, J.M., Talbot, R.M., Thompson, A.N., Van Dusen, B.: Comparison of nor-
malized gain and Cohen’s d for analyzing gains on concept inventories. Phys. Rev.
Phys. Educ. Res. 14(1), 010115 (2018)

5. Rus, V., D’Mello, S., Hu, X., Graesser, A.: Recent advances in conversational intel-
ligent tutoring systems. AI Mag. 34(3), 42-54 (2013)

6. Tamang, L.J., Alshaikh, Z., Khayi, N.A., Oli, P., Rus, V.: A comparative study of
free self-explanations and Socratic tutoring explanations for source code comprehen-
sion. In: Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education, pp. 219-225 (2021)

