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Abstract. Graph Neural Networks (GNNs) have shown great ability in
modeling graph-structured data. However, most current models aggre-
gate information from the local neighborhoods of a node. They may fail
to explicitly encode global structure distribution patterns or efficiently
model long-range dependencies in the graphs; while global information
is very helpful for learning better representations. In particular, local
information propagation would become less useful when low-degree nodes
have limited neighborhoods, or unlabeled nodes are far away from labeled
nodes, which cannot propagate label information to them. Therefore, we
propose a new framework GSM-GNN to adaptively combine local and
global information to enhance the performance of GNNs. Concretely, it
automatically learns representative global topology structures from the
graph and stores them in the memory cells, which can be plugged into all
existing GNN models to help propagate global information and augment
representation learning of GNNs. In addition, these topology structures
are expected to contain both feature and graph structure information,
and they can represent important and different characteristics of graphs.
We conduct experiments on 7 real-world datasets, and the results demon-
strate the effectiveness of the proposed framework for node classification.
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1 Introduction

Over the past few years, Graph Neural Networks (GNNs) [9,11,19] have shown
great success in modeling graph data for a wide range of applications such as
social networks [17]. GNNs typically follow the message passing mechanism,
which aggregates the neighborhood representation of a node to enrich the node’s
representation. Hence, the learned representations capture both local topology
information and node attributes, which benefits various tasks [11].
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Despite the success of GNNs in modeling graphs, most of them can only
help nodes aggregate local neighbors’ information. First, long-range or global
information can be used to learn better representations. For example, two struc-
turally similar nodes can offer strong predictive power to each other but might
be very distant from each other [6]. Second, in node classification tasks, we only
have partially labeled nodes on graphs. Nodes are often sparsely labeled as it is
time-consuming, expensive and sometimes requires domain knowledge to label.
In this case, labeled nodes may only propagate their label information to their
local neighbors based on local aggregation, which may result in the misclassi-
fication of nodes distant from labeled nodes [5]. Therefore, it is important to
design GNNs to capture global information and long-range dependencies. Sev-
eral works [1,12] about aggregating node information from a wider range has
been proposed to improve the expressive power of GNNs. However, methods of
aggregating information from a wider range cannot explicitly distinguish relevant
nodes from lots of distant neighborhoods, which will also result in over-smoothing
issues. Thus, how to capture global information needs further investigation.

In real-world graphs, for each class, there are usually some representative
ego-graphs. For each ego-graph, it contains one central node and its neighbors
from the original graph together with their edge relations, which would be helpful
to provide global information about each class in the graph. For example, for
malicious account detection, one representative pattern for malicious accounts is
that they tend to connect to each other and also try to connect to benign accounts
to pretend that they are benign accounts; similarly, benign accounts also have
several representative graph patterns. Therefore, it’s important to extract and
use global representative ego-graphs to improve the performance of GNN models.
Though promising, the work on extracting global patterns to facilitate GNN
representation learning is rather limited [20]. However, MemGCN [20] only learns
global feature information but loses graph structure information.

Therefore, in this paper, we study a novel problem of learning global represen-
tative patterns to improve the performance of GNNs. There are several critical
challenges: (i) how can we efficiently extract both different structures and fea-
tures as global information automatically? (ii) how can we make all nodes or even
nodes with low-degree to find and utilize highly relevant global information? (iii)
how can we use these extracted ego-graphs to improve current GNN models? To
fill this gap, we propose a novel framework Graph Structure Memory Enhanced
Graph Neural Network, GSM-GNN. It utilizes a clustering algorithm to select
representative ego-graphs from the original graph and they are stored in memo-
ries. Then, query vectors are generated by preserving topology and node feature
information, and they can be used to find relevant global information. Finally,
based on query vectors, relevant global information from stored ego-graphs is
obtained, and neighborhood patterns about the representative graph structure
are also used to augment current GNNs. The main contributions are as follows:

— We study a problem with using global patterns in the graph to improve the
performance of GNNs based on local aggregation.

— We develop a novel framework that extends current GNNs with global infor-
mation. The adoption of memories learns and propagates both global feature
and structure information to enrich the representation of nodes.
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— Experimental results on seven real-world datasets demonstrate the effective-
ness of the proposed approach.

2 Related Works

Graph Neural Networks. Graph Neural Networks have shown great success
for various applications such as social networks [11,17]. Generally, existing GNNs
can be categorized into two categories, i.e., spectral-based [3,11] and spatial-
based [1,9,19]. Spectral-based approaches are defined according to graph signal
processing [3]. A first-order approximation is utilized to simplify the graph con-
volution via GCN [11]. Spatial-based GNN models aggregate information of the
neighbor nodes [9]. Despite differences between spectral-based and spatial-based
approaches, most GNN variants can be summarized with the message-passing
framework [7]. The high-level idea of the message passing mechanism is to prop-
agate the information of nodes through the graph based on pattern extraction
and interaction modeling within each layer. However, most of these works only
utilize local neighbors’ information. Thus, many works about utilizing global
information or high-order neighbors for GNNs [1,12] were proposed. There is
still little work on using global ego-graph patterns for node classification tasks.

Memory Augmented Neural Networks. Memory Augmented Neural Net-
works use the memory mechanism with differentiable reading operations to store
past experiences and show advantages in many applications [20]. Their imple-
mentations of memory on different tasks are inspired by key-value memory [16]
and array-structured memory [8]. Also, there have been several works on GNNs
that utilized memory-based design for different tasks recently [4,20]. For node
classification, memory nodes are introduced in [20] to store global characteristics
of nodes, which can learn high-order neighbors’ information in the message pass-
ing process. In summary, their memory mechanisms try to store important node
feature information to improve models’ performance. However, there are also
important global graph structure patterns like ego-graphs with node feature and
their edge relationships. Unlike the aforementioned approaches, our proposed
GSM-GNN can learn global ego-graph patterns.

3 Problem Formulation

We use G = (V,&,X) to denote an attributed graph, where V = {vq,...,on}
is the set of N nodes, £ is the set of edges and X is the attribute matrix for
nodes in G. The i-th row of X, i.e., x; € R'*% is the dy dimensional features of
node v;. A € RV*N i5 the adjacency matrix. A;j = 1 if node v; and node v; are
connected; otherwise A;; = 0. We denote a k-hop ego-graph centered at node v;
as gi(Vg,, Ag,), where V,, include v; and the set of nodes within k-hop distance
with v;, Ag, is the corresponding adjacency matrix of the ego-graph.

In real-world graphs, for each class, there are usually some representative
ego-graphs, which would represent global information of the graph. Thus, in
this paper, we utilize memory mechanisms to learn and store representative ego-
graphs and then propagate this information through the whole graph. Memory
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Fig. 1. An illustration of the proposed GSM-GNN.

can be seen as an array of objects, where each object in our paper represents a
ego-graph. Each ego-graph ¢'(Vp,, A, ) is centered at node v, With its k-hop
neighbors drawn from the original graph G, where V,,, = {v}ni, e ,vﬁé} and
each node in this set is from V with their edges in the adjacency matrix A,,,
B! is the number of nodes in memory i and A,,, € [0,1]%*5i to represent the
adjacency matrix for ego-graph g¢;. Note that memories are updated during the
training process. Our memory module in the last epoch is defined as My =
{3t Vimas Amy)s 392 Vi s Amy )}, where B is the number of memories, T
is the number of training epochs. In semi-supervised node classification, only
a subset of nodes are labeled. We denote the labeled set as V; € V with Yy,
being the corresponding label set of the labeled nodes. The remaining nodes

Vy = V\Vy, are the unlabeled set. The problem is formally defined as:

Given an attributed graph G = (V,A,X) and the partial labels Vi, we aim
to learn a node classifier Qg via plugging our proposed memories into current
GNNs. Qg should model edges together with node features accordingly via learning
global ego-graphs during the label prediction process Qg(V, A, X) — ).

4 Methodology

In this section, we introduce the details of the proposed GSM-GNN, which stores
representative ego-graph structures and propagates their information to enhance
the representation learning of GNNs. An overview is shown in Fig. 1. Our model
can be split into two parts: Global Topology Structure Extraction, and Graph
Structure Memory Augmented Representation Learning. Firstly, we store global
topology structure information in memories by nodes with their neighborhoods
as ego-graphs from the center of clusters, which are obtained via the clustering
algorithm on both original and learnt nodes features. Then, we use the query
vectors based on feature and structure information to obtain relevant global
information from memories, which can enhance the expressive power of GNNs
based on local aggregation. The details of them will be introduced below.

4.1 Global Topology Structure Extraction

To mitigate limits of GNNs based on local aggregation, we propose to extract
global information from the original graph to enhance GNN models. For graph
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data, it doesn’t only contain node features but also edge relations between nodes.
Thus, our model is to extract representative ego-graphs, which preserve both
global topology structure together with node feature information, and store them
into memories. Then, these ego-graphs are used to enhance the representation
learning of GNNs which is introduced in the next section. To extract these ego-
graphs, we do k-Medoids clustering on nodes based on their original features X.
We then select B central nodes of clusters. Firstly, nodes in different clusters
have different information about the graph so a set of clusters are related to
different global patterns, and central nodes represent important characteristics
of clusters. Furthermore, information in one single node is limited, and neighbors
of central nodes and their relationship patterns are also important. Thus, these
central nodes with their k-hop neighbors, which form ego-graphs, are treated as
global topology graph structure information and stored in a memory set My.

However, knowledge of extracting representative ego-graphs only on the orig-
inal feature is limited so it is necessary to update stored ego-graph based on
more informative representation vectors during the training process. Therefore,
we use k-Medoids clustering algorithms on the hidden representation Z which
is the output representation of GNN models. Also, central nodes may represent
the characteristics of some global patterns in the whole graph. Central nodes
and their one-hop or two-hop neighbors as ego-graphs are stored in M; at the
training epoch t. In our experiment, memories are updated every 100 epochs. An
update of memories is utilized to automatically extract representative ego-graph
patterns on the whole graph. Then, ego-graphs stored in the memory are used
to enhance the representation learning of GNNs.

4.2 Graph Structure Memory Augmented Representation Learning

By extracting and storing representative ego-graphs, we propose to propagate
their global information to enhance representation learning of GNNs. The high
level idea is to use stored ego-graphs in the memory to improve the expressive
power of GNNs. To achieve this purpose, we need to query and aggregate relevant
global information from memories and use it to augment representation learning
of GNNs. And it can be split into three parts: (1) Query Vector Learning,
which learns the query vector of each node, and it will be used to obtain relevant
global information; (2) Global Ego-graphs Aggregation, which encodes ego-
graphs and aggregate their information by the similarity between query vectors
and encoded feature vectors of ego-graphs in memories; and (3) Neighbor-
hoods Augmentation, which utilizes the neighborhood patterns to augment
the representation, and can add long-range interactions for distant nodes through
this way. Specifically, we firstly obtain representation vectors z,, for node v; via
one-layer GNN with local aggregation by:

Zy, = GNNy, (X, A),,, (1)

where GNN can be flexible to different GNNs like GCN, GraphSage and GAT.
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Query Vector Learning. The purpose of our model is to use ego-graphs stored
in memories to enhance the representation learning of GNNs. But for a node
v;, not all memory elements are relevant to v;. Thus, we first need to learn
query vectors of nodes to get relevant information in memories. To guarantee
that nodes can query relevant memories, query vector learning should preserve
nodes’ features and structural information. Firstly, local neighborhood patterns
are represented as a vector z,, with the message passing process of GNNs and
can be immediately treated as the query vector for node v;. However, nodes in
the graph only have a small number of neighbors and their local neighborhood
patterns may contain bias. Thus, we further augment the query vector with
feature information, which can help low-degree nodes be more representative
[10]. Concretely, a KNN graph is constructed based on the cosine similarity. For a

XX

E R N Py
We choose k € {20, 30} nearest neighbors via cosine similarity for each node and
get a KNN graph. The adjacency matrix of the KNN graph is denoted as A.

Then, node similarity information is aggregated via GNN on KNN graph as:

given node pair (v;, v;), their cosine similarity is calculated as O

2y, = GNNgxwn (X, A),,, (2)

where 0fVN is the learnable parameter for learning KNN graph information,
which is denoted as Z,,. To learn query vectors from feature similarity and
structural information from z,, and z,,, these two vectors are concatenated
together and used as an input for an MLP layer to obtain the query vector as:

qi = (2o, ||2vi]wq + by (3)

where W, € R24xd and b, € R¢ are learnable parameters, d is the dimension
of vectors z,,,Z,,. Then, q; will be used to query relevant global information.

Global Ego-Graphs Aggregation. Furthermore, to query relevant ego-
graphs in memories via q;, we also need to encode the ego-graph information into
vectors. To achieve this goal, we utilize one-layer GCN to obtain representation
vectors for all ego-graphs in memories:

m; = F¢<meAmi)’ (4)

where Fy () represents one-layer GCN with graph pooling to get the represen-
tation vectors of ego-graphs in memories, m; € R'*?. X, is the representation
matrix for nodes in memory i, where X,,.[j,:] € R'*% is the representation
vectors of node v, which is obtained from the original feature matrix X. Note

that the pooling method here is the mean pooling method. Then we calculate
the similarity between q; and M, in the layer [ of the training epoch ¢ as:

s; = Softmaz(q;(M)"), (5)

where M € RBi*d is the representation matrix for B} memories. The similarity
scores measure the importance of each global pattern in the memory. Any pattern
with a higher attention score is more similar to the local structural patterns
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of nodes. The representation vector of global information for node v; is then
constructed from the weighted sum of all global patterns in the memory M, as

B
a,, = ijlsm-mj, (6)

where a,, represents global ego-graph information of node v;. s; ; is the similarity
score between node i and memory j.

Neighborhoods Augmentation. Each memory module contains one repre-
sentative central node with its one or two-hop neighbors and their edge relations.
Even though the central node of each memory node has aggregated information
from its neighbors, we will also lose some information about their neighbors.
Thus, it’s important to explore neighborhood distributions from relevant ego-
graphs, which can further capture ego-graphs’ information. However, it will be
time-consuming and introduce more noisy neighbors’ information if we add all
neighbors’ of nodes in memories to one node’s augmented neighbors. Thus, we
select the most relevant memory modules as r; = arg max; s; j, where 7; is the
index of the most relevant memory module. Then, we obtain the most relevant
ego-graph g;*(Vp, ,Am, ) of the training epoch ¢ based on the similarity of
structural information between local ego-graph patterns and global ego-graph
patterns. Central nodes have aggregated their neighbors’ information and are
treated as representation vectors in memories which are added as global infor-
mation in Eq. (6). Instead of aggregating central nodes’ information again, neigh-
borhood nodes of them in Vi, are treated as the augmented neighbors for the
node ¢ and their information is aggregated for node v;. Enhanced neighbors
may contain noisy information so an attention mechanism is utilized to assign
different weights to augmented neighbors:

B exp (LeakyReLU (uT [XU,-WmHij Wm] ))
Vi = Zkevmr_ exp (LeakyReLU (u” [x,, W, ||x0, W]))’

(7)

where W,,, € R%*? ig the learnable parameters, u € R'*2? is the learnable

weight vector, 7;; represents the weight for nodes j in Vim,, when node i aggre-
gates information from node j. To mitigate noise from augmented neighbors,
we aggregate these neighbors via the weight «;;. The aggregation process of
augmented neighbors is:

ivi = Z YijXo; Wi, (8)

1€V, \Vhn,

where v;, ~is the central node of the ego-graph in the memory 7;.

Finall};7 we get the local representation z,,, global representation a,, and
augmented neighbors representation z,,. Different nodes might rely on different
information. For example, low degree nodes may need more global information;
while high degree nodes with enough similar neighborhoods information may
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only need more local information. Thus, we propose to assign different weights
to get the final node representation. Specifically, the weight is calculated as:

B; = Softmax(W,[Z,,||a,,||z,] + b,), 9)

where W, and b, are learnable parameters, 3; € R? is the weight for different
representation vectors. Then, different representation vectors are added together
based on their weights to get h,, as:

hy, = Bi 02, + Bijav, + Bi,22,. (10)

With the above operation, GNN models can help nodes aggregate both local
neighborhood information and global information adaptively from memories.
Therefore, our memory modules can store representative global information and
help propagate this information on the whole graph. Note that our memory
module can be also added in more layers, to reduce the computational cost, we
only use it to augment the representation of one layer.

4.3 Objective Function of GSM-GNN

With the representation H capturing both local and global information, we add
another GNN layer together with Softmax function to predict the class proba-
bility vector of each node v; as:

Yo, = Softmax(GNNg,(H, A),,) (11)

where ¥, is the predicted label’s probability by passing the output from the final
GNN layer to a softmax function. 6, represents the parameters of our model’s
final prediction layer. The cross-entropy loss function for node classification is:

C
Hlo}nl:c(e) = Z Zy”i IOgyvu (12)

v; €V c=1

where C' is the number of classes, y,, is the one hot encoding of v;’s label and
¥y, is the c-th element of y,,. 0 denotes the set of parameters.

5 Experiments

In this section, we conduct experiments on real-world datasets to demonstrate
the effectiveness of GSM-GNN. In particular, we aim to answer the following
research questions: (RQ1) Can the proposed memory mechanism improve node
classification performance? (RQ2) Is the designed approach flexible to be applied
in various GNN variants? (RQ3) What are the contributions of the proposed
module in this paper for GSM-GNN?
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Table 1. Node classification performance (Accuracy (%) £ Std.) on all graphs.

Method Cora Citeseer Computer Photo Physics Chameleon Squirrel
MLP 45.44 £1.55 52.61 £0.80 67.35 £0.71 79.10 £0.74 92.11 £0.11 48.00 £1.5 34.02 £2.13
GCN 74.65 £1.91 | 65.20 £0.74 | 80.80 £0.29 | 87.90 £0.58 | 94.24 £0.10 | 63.50 £1.93 | 47.48 +2.00
GraphSage 75.43 £2.08 65.63 £0.35 73.47 £0.34 86.31 £0.15 94.56 £0.08 48.36 £+2.08 35.88 +1.20
GAT 71.30 £0.92 | 64.55 £2.32 | 76.47 £1.49 | 85.74 £1.32 | 94.21 £0.07 | 64.12 £1.82 | 48.18 +4.14
Mixhop 70.40 £2.83 62.44 +1.14 75.88 £1.00 87.92 +0.53 94.41 4+0.23 60.71 £1.55 44.11 £1.10
ADA-UGNN | 74.29 £1.95 | 65.30 £1.28 | 79.88 +£0.92 | 88.08 £0.78 | 94.70 +0.11 52.19 £1.85 | 34.84 £1.36
H2GCN 72.45 £0.46 66.10 £0.48 78.22 £0.75 86.94 +0.47 94.59 4+0.09 59.13 £2.00 36.91 £1.10
FAGCN 69.53 £0.12 | 61.07 £0.32 | 81.09 £0.14 | 85.33 £0.12 | 94.67 £0.07 | 65.57 £4.80 | 48.73 +2.50
Simp-GCN 74.24 £1.32 | 66.24 £1.05 | 74.23 £0.12 | 82.41 £1.36 | 94.43 £0.07 | 64.71 £2.30 | 42.81 +1.20
GCN-MMP | 7223 £2.19 | 64.95 £1.69 | 79.55 £1.48 | 87.56 £1.03 | 94.42 £0.12 | 66.17 £1.68 | 50.93 £1.45
GSM-GCN | 75.93 + 0.65 |66.33 + 0.49 | 81.32 + 0.34 | 88.87 + 0.35 94.72 + 0.07 | 67.20 + 1.85 |54.14 + 1.60

5.1 Datasets

We conduct experiments on seven publicly available benchmark datasets. Cora
and Citeseer [11] are two datasets for citation networks Computers and
Photo [18] are two datasets for the Amazon co-purchase graph [14]. Physics [18]
is a larger co-authorship graph. Chameleon and Squirrel [15] are two datasets
for the web pages in Wikipedia. They are used for heterophilous graphs. For
Chameleon and Squirrel, we follow the 10 standard splits from [21]. For other
datasets, we randomly split the dataset into train/val/test as 2.5%/2.5%/95%.
The random split is conducted 5 times and average performance will be reported.

5.2 Experimental Setup

Baselines. We compare GSM-GNN with representative methods for node clas-
sification, which includes MLP, GCN [11], GraphSage [9], GAT [19], Mixhop [1],
ADA-UGNN [13]. We also compare GSM-GNN with the following representa-
tive and state-of-the-arts GNN models on heterophilous graphs, which includes
H2GCN [21], FAGCN [2], Simp-GCN [10] and GCN-MMP [4].

Configurations. All experiments are conducted on a 64-bit machine with
Nvidia GPU (Tesla V100, 1246 MHz, 16 GB memory). For a fair comparison,
we utilize a two-layer neural network for all methods, and the hidden dimen-
sion is set as 64. The learning rate is initialized to 0.001. Besides, all models
are trained until converging, with the maximum training epoch being 1000. The
implementations of all baselines are based on Pytorch Geometric or their original
code. For our method, the update epoch of memories is fixed at 100 and B is set
by grid search from 5 to 30 for all datasets. The hyperparameters of all methods
are tuned on the validation set. We adopt accuracy (ACC) as the metric.

5.3 Performance on Node Classification

In this subsection, we compare the performance of the proposed method with
baselines for node classification on the heterophilous and homophilous graphs
introduced in Sect. 5.1, which aims to answer RQ1. For Cora, Citeseer, Comput-
ers, Photo and Physics, each experiment is conducted 5 times and for Chameleon
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Table 2. Node classification accuracy with different GNNs.

Cora Citeseer Chameleon | Squirrel

GCN 74.65+1.91 | 65.20£0.74 | 64.80 +1.93 | 47.48 £ 0.20
GSM-GCN | 75.93 £ 0.65 | 66.33 £ 0.49 | 67.20 = 1.85 | 54.14 £ 1.60
GraphSage | 75.43 £ 2.08 | 65.63 + 0.35 | 48.36 = 2.08 | 35.88 4+ 1.20
GSM-Sage | 76.77 £0.62 | 67.01 £ 0.29 | 50.59 + 2.81 | 37.86 £ 1.47
GAT 71.30 £0.92 | 64.55 +2.32 | 64.12 +1.82 | 48.18 +4.14
GSM-GAT | 73.38 £1.82 | 65.55 £ 1.20 | 64.67 = 1.62 | 53.51 +2.78

and Squirrel, each experiment is conducted 10 times. The average results with
standard deviation are reported in Table 1. Note that GSM-GCN uses the GCN
as the backbone of our proposed memory modules. From the table, we make the
following observations: (1) Compared with GCN and other GNN models, GSM-
GCN can consistently improve the performance of GCN on all datasets, which
demonstrates the effectiveness of the proposed memory module. Furthermore,
GSM-GCN outperforms all baselines on all datasets, especially for the Squirrel
dataset. This is because the proposed memory module can capture represen-
tative ego-graphs to facilitate GNNs to capture global information. (2) Both
Simp-GNN and GSM-GCN utilize the information of node features’ similarity.
GSM-GCN significantly outperforms Simp-GNN on all datasets. This is because
GSM-GCN adopts similarity information as a query vector to query global infor-
mation, which shows the effectiveness of our query mechanism based on feature
similarity. (3) GCN-MMP also designs a memory mechanism on nodes to improve
GNNs’ performance. The proposed GSM-GCN consistently outperforms GCN-
MMP on all datasets. This is because GCN-MMP only stores feature vectors in
memories while our method utilizes both feature and structure information.

5.4 Flexibility of GSM-GNN for Various GNNs

To answer RQ2, we conduct experiments with different architectures of GSM-
GNN by inserting our memory module into different GNN variants. Specifically,
we test our memory modules on GCN, GraphSage, and GAT layers. For GCN,
GraphSage, and GAT, we utilize a two-layer graph network with 64 hidden
dimensions. For a fair comparison, all models use the same settings. For all
the methods, hyperparameters are tuned via the performance of the validation
set. Each experiment is conducted 5 times on Cora and Citeseer datasets, and
10 times on Chameleon and Squirrel. The average performance with standard
deviation is reported in Table2. From the table, we have the following obser-
vations: (i) GSM-GNN can consistently improve the performance on these four
datasets with all backbones which indicates that our proposed memory mecha-
nism is effective when incorporated into other GNN variants and demonstrates
the flexibility and advantage of the proposed method; and (ii) in particular, the
proposed memory module can significantly improve the GCN, GraphSage and
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Table 3. Compared with different information from memory modules.

Method Cora, Citeseer Computer Photo Physics Chameleon Squirrel

GCN 74.65 £ 1.91 | 65.20 £ 0.74 | 80.80 £ 0.29 | 87.90 £ 0.58 | 94.24 £ 0.10 | 63.50 & 1.93 | 47.48 & 2.00
Without a,, | 75.27 +1.26 65.82 £ 0.70 80.93+£0.21 | 86.67+0.29 | 94.63+0.07 | 67.09 + 1.63 | 54.04 £+ 1.20
Without z,, | 73.63 & 1.59 66.01 £ 0.49 80.87£0.17 | 88.04 £0.34 | 94.47+ 0.40 64.56 £+ 2.16 53.87 £0.87
GSM-GCN | 75.93 + 0.65|66.33 + 0.49 | 81.32 + 0.34 | 88.87+ 0.35|94.72 + 0.07 |67.20 + 1.85 54.14 + 1.60

GAT on the heterophilous graphs. This shows that our memory module can use
global information to improve current GNNs.

5.5 Ablation Study

To answer RQ3, in this section, we conduct an ablation study to evaluate the
influence of each queried information from memories including a,, and z,, in
GSM-GNN. First, to investigate how the global ego-graph information (a,,)
influences the performance of node classification, we only encode ego-graph infor-
mation and add it with local information via the attention mechanism. Then, we
also query augmented neighbors and aggregate this information as global infor-
mation z,,. We use GCN as the backbone for ablation studies. The experiments
are conducted on all graphs. The average performance in terms of Accuracy is
shown in Table3. From the table, we observe that: (i) Comparing GCN with
“Without a,,”, augmented neighbors from ego-graphs in memories can lead to
a little improvement on almost all graphs. It means that augmented neighbors
from memories can provide more similar nodes information during the aggrega-
tion process; (ii) “Without Z,,” only utilizes ego-graph information in memories
and it also performs better than the original GCN. It is because global pat-
terns based on ego-graph may contain important label information which can
be used to improve the performance of the original GCN; (iii) Finally, our pro-
posed GSM-GCN has the best performance on all datasets because GSM-GCN
can aggregate local information, global information from ego-graphs, and aug-
mented neighbors adaptively. This ablation study further proves the effectiveness
of our proposed method to capture global information from the whole graph.

6 Conclusion

In this paper, we study a novel problem of learning global patterns and propagat-
ing global information to improve the performance of GNNs. We propose a novel
framework Graph Structure Memory Enhanced Graph Neural Network (GSM-
GNN) which stores representative global patterns with nodes and graph struc-
ture, and can be used to augment the representation learning of GNNs. Through
extensive experiments, we validate the advantage of the proposed GSM-GNN,
which can utilize a memory network to store and propagate global information.
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