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Abstract

Hypervisors have played a critical role in cloud security, but
they introduce a large trusted computing base (TCB) and
incur a heavy performance tax. As of late, hypervisor of-
floading has become an emerging trend, where privileged
functions are sunk into specially-designed hardware devices
(e.g., Amazon’s Nitro, AMD’s Pensando) for better security
with closer-to-baremetal performance.

In light of this trend, this project rearchitects a classic se-
curity task that is often relegated to the hypervisor, mem-
ory introspection, while only using widely-available devices.
Remote direct memory introspection (RDMI) couples two
types of commodity programmable devices in a novel defense
platform. It uses RDMA NICs for efficient memory access
and programmable network devices for efficient computa-
tion, both operating at ASIC speeds. RDMI also provides a
declarative language for users to articulate the introspection
task, and its compiler automatically lowers the task to the
hardware substrate for execution. Our evaluation shows that
RDMI can protect baremetal machines without requiring a
hypervisor, introspecting kernel state and detecting rootkits
at high frequency and zero CPU overhead.

1 Introduction

Security and performance are both first-order objectives at
cloud scale, yet today’s hypervisors struggle in both as-
pects. Hypervisor-based virtualization introduces a large TCB
with millions of lines of low-level code, where CVEs (Com-
mon Vulnerabilities and Exposures) are continuously un-
earthed [55, 109]. Meanwhile, they also incur a heavy “virtu-
alization tax,” consuming significant CPU cycles, taking away
resources from revenue-generating VMs, and creating perfor-
mance contention with tenant workloads [82]. To achieve bet-
ter security and performance, cloud providers are increasingly
invested in hypervisor offloading, using tailor-made hardware
devices [4, 8, 14, 19, 37, 39] with closed-source designs.
These emerging devices are particularly important in
baremetal-as-a-service (BMaaS) offerings, where entire in-
stallations are provided to a single tenant without a software
hypervisor. BMaaS not only provides ideal performance and
isolation for the tenant, but also increases the provider’s rev-
enue as 100% of CPU cycles are for sale; it has gained a
foothold in all major clouds [2, 7, 9, 10, 16, 33]. Owing to the

absence of the hypervisor, security tasks are often anchored
in these customized devices—with Amazon’s Nitro [8], In-
tel’s IPU [15], AMD’s Pensando [4], and Microsoft’s Fungi-
ble [14] vying for the market. These devices are attached to
host servers as PCle peripherals, akin to network interface
cards (NICs), but their execution environments are shielded
from host CPUs. They run protection tasks with a higher priv-
ilege than the OS or hypervisor. Since this mode of execution
operates beneath what is traditionally known as Dom0, we
will henceforth call this paradigm “Dom(-1) security.”
Remote direct memory introspection, or RDMI, rethinks a
classic security task in light of the Dom(-1) paradigm. Kernel
memory introspection [61, 64, 65, 89] is an important forensic
technique. It enables the cloud provider to perform security
telemetry and detect signs of malice (e.g., rootkits), while
staying transparent to the tenants by virtue of operating under-
neath their workloads. Traditionally, this is relegated to the
hypervisor, which periodically acquires memory snapshots
from guest VMs for security analysis (e.g., reconstructing
task_struct lists from raw memory). In contrast to this
conventional approach, RDMI sinks memory introspection
tasks into the hardware layer by a whole-stack redesign; more-
over, it only uses COTS (commercial-off-the-shelf) devices
available to everyone instead of closed-source devices. The
key enabler for RDMI is the increasing deployment of com-
modity programmable hardware in the cloud. In particular,
RDMA NICs (RNICs) that enable remote direct memory ac-
cess [50, 58], and P4 programmable switches that can realize
hardware control loops [81, 97], form its Dom(-1) substrate:

* Memory datapaths: RNICs expose host memory to re-
mote clients, providing a telemetry channel to acquire
memory snapshots over a network in a granular man-
ner. The conventional use of RDMA is to accelerate
application-layer cloud workloads [50, 58], whereas we
use it as a vantage point for kernel memory visibility.
RDMA datapaths are simple and fast, and remote ac-
cesses are fully transparent to the introspected host.

* Control loops: Kernel introspection is a complex task
that goes beyond individual memory accesses—e.g., it
might need to fetch the Linux process linked list starting
at init_task, parse its next pointers, and traverse the
entire list of task_structs. This requires a more ex-
pressive programming model than RDMA. We observe



that introspection control loops are an ideal fit for pro-
grammable switches, which serve as a platform for real-
izing new control protocols at hardware speeds [81, 97].

Combined, RDMI executes in Dom(-1) with hardware-
based memory accesses (using RDMA NICs) and inspec-
tion (using programmable switches) at ASIC speeds. This
operating regime also enables RDMI to introspect baremetal
installations without a hypervisor. It can be deployed to a ToR
(Top-of-Rack) switch that serves a set of baremetal servers
equipped with RNICs, offering security protection with novel
properties not found in hypervisor-based introspection:

* Baremetal: It introspects kernel memory in baremetal
installations, without requiring a hypervisor.

* Remote: The introspection engine is disaggregated from
host CPUs and executes over the network.

e Efficient: Both the datapath (memory operations) and the
control path (introspection logic) are realized in ASICs.

e Commodity: It relies on widely available, COTS hard-
ware technologies without any modification.

* Programmable: Introspection tasks can be programmed
in a declarative language with a few lines of code.

On the last point, RDMI abstracts away the complexities of
the ASICs and the intricacies of kernel introspection from the
user. Instead of directly asking the user to program low-level
RDMA and P4 ASICs, which would be burdensome and error-
prone, RDMI exposes a set of functional operators to specify
a variety of introspection tasks. Users program against a uni-
form “kernel graph” abstraction, where vertexes are the kernel
data structures and edges are the pointer relations. Supporting
this abstraction are the RDMI compiler and runtime that facili-
tate its Dom(-1) execution. The RDMI compiler maps a query
via an intermediate representation (IR) that manipulates an
abstract introspection machine for kernel traversal, with its in-
struction set instantiated in RDMA and P4 ASICs. The RDMI
runtime provides auxiliary utilities (e.g., driving the introspec-
tion to different kernel locations and fetching kernel memory
with RDMA operations), also shared across tasks. This design
enables runtime programmability [104, 107]—queries can be
reconfigured in a live manner by the compiler generating
different control plane configurations without downtime.

We have developed a RDMI prototype and conducted a
comprehensive evaluation, with the following findings. The
RDMI defense platform is capable of introspection frequen-
cies that are orders-of-magnitude higher than hypervisor so-
lutions, and it effectively performs memory telemetry and
detects rootkits in baremetal machines. Moreover, security
protection does not require any CPU involvement and incurs
minimal performance disturbance to tenant workloads. We
have released our prototype in open source [34].

2 Rethinking Memory Introspection

Memory introspection is an important security task for the
cloud [57, 64, 76, 90, 91, 110]. An abridged view of the long

body of work can be summarized as follows. Since its incep-
tion two decades back [61], researchers have shown that rich
security insight can be gleaned from memory snapshots. This
works through the hypervisor scanning important kernel data
structures in the VMs to detect signs of malice (e.g., rootk-
its). Operating in Dom0, introspection code executes with
higher privilege than tenant VMs, which reside in DomU.
Thus, it has a full view of VM memory and can inspect any
kernel locations. Sinking security protection from VMs into
the hypervisor also means that introspection can be provided
“as-a-service” transparently to the tenants. The only setup
parameters required by the hypervisor are metadata about
the guest kernels (e.g., kernel versions, ASLR offsets), and
from there on, the introspection code navigates the kernel
state by itself. To conquer the “semantic gap” [65], intro-
spection programs must ingeniously piece together disparate
data from raw memory bytes—e.g., it may enumerate Linux’s
task_struct process descriptors from raw memory.

Our project rethinks memory introspection in light of the
trend of hypervisor offloading to Dom(-1) hardware. Isolat-
ing tenants with hypervisor software has been the de-facto
cloud paradigm, but Dom(-1) technologies are chipping away
at this abstraction. This is not only due to the decline of
Moore’s law necessitating better use of CPU cycles, but also
a desire for stronger security due to leaner hardware TCBs.
Historically, the desire for baremetal execution was felt in
various virtualization hardware features (e.g., DPDK [13],
SPDK [35], VT-x [20], MPK [17, 102]), but the recent rise of
baremetal-as-a-service and Dom(-1) hardware devices are a
more significant milestone. Industry vendors have developed
tailor-made devices [1, 4, 8, 14, 19, 39], where virtualization
functions are not only offloaded to hardware but also gated
from host CPUs via an “airgap” for security. Implementing
security functions in Dom(-1) reduces the TCB, minimizes
interference with the tenants, provides stronger protection
in case of host compromises, and saves operational costs as
more server CPU cycles are made available to tenants. RDMI
rearchitects memory introspection to operate in Dom(-1), but
does so only with COTS devices.

2.1 Remote direct memory introspection

Introspection datapath: The RDMI memory datapaths are
built upon one-sided RDMA “verbs.” For instance, RDMA
READ operations take memory addresses and sizes as param-
eters, and the requests are encapsulated as Ethernet packets
and sent over the wire. Once the requests arrive at the remote
machine, the Ethernet packets are translated by the NIC hard-
ware into DMA requests over PCle, eliminating remote CPU
involvement from the datapath and achieving ASIC speeds for
memory accesses. In the context of introspection, the RDMI
READs might fetch a task_struct or several of its fields.
RDMA connections are established using queue pairs (QPs)
with unique identifiers (QPNs, or queue pair numbers) at both
the sender and the receiver sides. By default, RDMA uses vir-
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Figure 1: The Dom(-1) substrate of RDMI includes (a) RNICs and (b) P4 programmable switches; (c) the RDMI workflow.

tual memory addresses and thus requires address translation
at the NIC hardware, but it is configurable to use physical
addresses directly as well [88, 101]. This is important for
RDMI as it manipulates kernel objects, most of which are
directly (i.e., linearly) mapped to the physical addresses.
Introspection control. While one-sided RDMA is a promis-
ing start, memory introspection goes far beyond individ-
ual memory operations. Introspection tasks require various
types of kernel traversals (e.g., traversing a linked list of
task_structs), which in turn involve pointer arithmetic,
range checks, and complex control flow. One naive approach
is to implement the control path in software (e.g., on another
server under the same rack). However, many downsides of
driving RDMA operations in software have been noted by
prior work, such as CPU cycle wastage due to polling [46],
and longer latency due to software processing [42]). More
importantly, this offsets our goal of Dom(-1) execution in
hardware ASICs. Our solution is inspired by recent projects
that use P4 programmable switches to implement control
logic that drives RDMA tasks [73, 77, 105]. RDMI executes
the control loop at hardware speeds inside a programmable
switch, driving the memory introspection datapath.

2.2 Overview

Figures 1(a)-(b) depict the Dom(-1) substrate and (c) shows
the key components of RDMI. To the best of our knowledge,
RDMI is the first defense platform that a) exposes a declar-
ative interface for users to articulate introspection tasks; b)
compiles a wide range of such tasks to a reconfigurable set
of hardware engines; c) executes introspection tasks at ASIC
speeds with zero CPU overheads.

Threat model. Our threat model is that of a fully untrusted
kernel (e.g., OS compromises due to kernel-level rootkits),
thus the OS may exhibit arbitrary behaviors and is capable of
removing or tainting any software security agent running on
host CPUs (e.g., kernel modules). However, we assume that
the kernel can boot into a known-good state (e.g., by leverag-
ing trusted boot [38] hardware) and compromises only occur
after that during runtime. This trusted setup also initializes
RDMI—upon boot, we create a number of RDMA connec-
tions between the switch and the introspected machine, and
grant these connections physical access to the host memory.

Operator
kgraph (addr)

Description

Initialize traversal at kernel addr

traverse (ptr_nxt, ptr_end, type) | Traverse ptr_nxt until ptr_end with type

in(ptr) Deference ptr into a different data structure

iterate (array, n, type)
fn)
.., predn)

Iterate an array of type for n steps

values (f1, .., Acquire values from current address

assert (predl, Assertion on acquired values

Table 1: Introspection operators. Highlighted are new opera-
tors or those that take a different meaning from Gremlin [95].

After the setup, we assume that the Dom(-1) substrate, as
well as the introspection programs that it hosts, are trusted.
Notably, at runtime, the trusted computing base excludes soft-
ware hypervisors, which is a sizable reduction.

Non-goals. There are several worthwhile goals that are
nevertheless beyond the scope of RDMI. Although RDMI
enables expressive policies to be developed, our goal is not
to propose new introspection policies that are more adept at
detecting kernel compromise. Similarly, improving detection
accuracy with new analysis algorithms is also not our focus.
Section 8 also describes a few other limitations in detail.

3 Programming Introspection Queries

RDMI exposes a declarative interface for users to specify in-
trospection tasks, so that they are not burdened with low-level
operations with baremetal RDMA and P4 ASICs. We observe
that a custom programming model is possible because RDMI
tasks are highly specialized, essentially treating the kernel
data structures as a graph and traversing the graph follow-
ing pointers. Thus, we propose a domain-specific language
(DSL) drawing inspiration from a widely-used graph query
language, Gremlin [95]. Table | includes the key operators,
and we showcase their expressiveness with concrete tasks.

Q1: Task list traversal [40]. Let us start with a “hello
world” example, where the user wishes to query all active pro-
cesses and their IDs. This functionality is akin to the ‘pslist’
volatility toolkit [40] for memory dump analysis. Linux uses
struct task_struct as the data structure for a process,
organized in a linked list with the global kernel symbol
init_task asthe entry. Each task_struct contains key pro-
cess attributes—e.g., process IDs (int pid) and credentials
(struct cred; used in Q2). We depict the data structures
and key variables.



/* init_task.c */ | init_task

struct task_struct init_task; task_struct |creds| cred
pid=0 uid, gid

/* sched.h */ tasks.next
struct task_struct { i
/* definition in type.h */
struct list_head { /
struct list_head *next; |-
struct list_head *prev;
} tasks;
int pid;
/* definition in cred.h */
Stru;iicciiiduid; tasks.nextl

kgid_t gid; task_struct |creds| cred
} *creds; pid=mal_task 0,0

bi (0, 0) means root priv.

RDMI articulates this traversal in three lines of code below.
A useful mental model for a RDMI query is that of a “cur-
sor” pointing to a specific kernel address, which moves about
across the kernel graph based on the introspection logic:

/* Traverse all tasks and acquire pids */

kgraph (init_task) // traversal source

// traverse init_task.tasks.next until wraparound
.traverse (tasks.next, &init_task.tasks, task_struct)
5 .values(pid) // query pid for each task

N R

A query always starts with a kgraph operator (Line 2),
which initializes the cursor to some predefined address, such
as the global symbol init_task whose address is statically
determined upon boot. Line 4 defines the footprint of the
traversal, performing a sequence of pointer chasing opera-
tions with the ptr_nxt field (see Table | for operator argu-
ments; in this case the argument is the tasks.next field in
task_struct) until it encounters ptr_end (in this case set to
init_task.tasks). In other words, the traversal halts when
it wraps around and revisits init_task. The type is set to
task_struct, so RDMI understands the data structure type
of each traversed element. Finally, Line 5 uses values (pid)
to acquire the process ID field in each visited element. Query
results are forwarded to a logging server for further analysis.

Q2: Privilege escalation analysis [S]. This query traverses
each task_struct as in QI, but it takes an excursion from
the linked list to another data structure st ruct cred, which
stores process credentials (user ID uid, group ID gid). Non-
root processes have uid and gid values larger than 1000; a
rootkit may maliciously modify these values to zero for some
user process (e.g., a Shell) to escalate its privilege to root
access [5]. This query is a four-liner. Line 4 zooms in on
the external data structure struct cred, which hangs off of
the linked list. (Note that cursor movements in Q1 do not re-
quire in, as the visited fields are contained in the current data
structure (i.e., struct task_struct) for traversal.)

I /* Credential telemetry for all processes */

2 kgraph(init_task)

3 .traverse(tasks.next, &init_task.tasks, task_struct)
4 .in(creds)

5 .values(uid, gid)

Q3: Virtual filesystem hook detection [76]. A rootkit may
modify function pointers to divert execution to its malicious
code. Q3 asserts that VFS function hooks must be within

a known-good range. As depicted below, /proc is a virtual
filesystem providing administrative utilities—e.g., user-level
forensic tools such as ps rely on information from /proc.
Its root inode is represented by the proc_root data struc-
ture. Filesystem operations eventually invoke read, llseek, and
other file operations, which are specified as function pointers
in struct file_operations as contained in proc_root.

/* fs/proc/root.c */
/* root node for /proc */

*Is -1 /proc” triggers VFS read

struct proc_dir_entry proc_root!= { dr-xr-xr-x root  mysql
.low_ino = PROC_ROOT_INO, drxrxrx  alice  httpd
.namelen =5,
-proc_fops = ]&proc_root _operations,

.name “/proc”,

malicious code

v ,

static const struct file_operations -

/| Oxffffffffofde0000

}i Oxffffffffofde 10!

By modifying the function pointers, a rootkit can manipu-
late the forensic outputs and hide certain processes from
such administrative tools [76]. This RDMI query checks
that the read function pointer must be within a known-
good range (e.g., kernel text from 0xff££££££9£c00000 to
Oxffffffffa08031d1). The assertion in Line 4 evaluates a
predicate and triggers notifications upon failure.

1 kgraph(proc_root)

2 .in(proc_fops)

3 .values (read)

4 .assert (KERN_TXT_BEGIN < read < KERN_TXT_END)

Q4: Network filter hijacking detection [25]. Netfil-
ter [26] is a framework within the network stack, allowing
registered callback functions upon packet events. Rootkits
commonly inject adversarial callbacks to intercept network
traffic. For instance, a rootkit may watch for port-knocking
packet sequences as command-and-control signal for trigger-
ing an attack, and then drop these packets immediately [64].
As shown below, netfilter hooks are retrieved at the init_net
symbol where struct netns_nf is stored. Inside struct
netns_nf, hooks holds a two-dimensional array, and each
array element points to a struct nf_hook_entries. This
query requires a two-dimensional, nested traversal.

™ net

struct net { nf_hook_entries

struct netns_nf'{ N £

struct nf_hook_entries netns_n
% .
Ing; hooks[131(81; nf_hook_entries *
i

}; nf_hook_entries * H+—¢
/* netfilter.h */ -
struct nf_hook_entries { nf_hook_entries

ulé num_hook entries; nf_hook_entries *

struct inf hook ‘entry_hooks[]:} .
b :
struct nf_hook_entry {

nf_hookfn *hook;

void *priv;

i

Lines 2+6 denote the nested traversal, where iterate oper-
ates on array elements instead of linked lists. Line 4 derefer-
ences the value contained at the current array element as a



pointer, resulting in an excursion to a different data structure
struct nf_hook_entries. This struct contains a second ar-
ray of registered hooks, and num_hook_entries is the num-
ber of entries. Iterating through this dynamically-allocated
array, RDMI checks each of the hook functions.

I kgraph(init_net)

2 .iterate(nf.nf_hooks, 13 * 8, ptr_t)

3 //NFPROTO_NUMPROTO=13, NF_MAX_HOOKS=8

.in(this) // deref current value, see appendix
.values (num_hook_entries)

.iterate (hooks, num_hook_entries, nf_hook_entry)
7 .values (hook)

8 .assert (KERN_TXT_BEGIN < hook < KERN_TXT_END)

W

(=)}

Q5-Q11. RDMI is expressive enough to support a range of
introspection queries, summarized in Table 2. The Appendix
contains the detailed queries and descriptions.

4 Abstract Introspection Machine

We now describe how the RDMI compiler decomposes
operator-level introspection logic into hardware-level imple-
mentations through an intermediate language. We draw inspi-
rations from existing projects that compile functional opera-
tors to P4 programmable switches [63, 72, 108]); however, un-
like existing compilers that directly lower the policy onto the
hardware layer, RDMI introduces an indirection layer, which
is an intermediate language that manipulates an abstract in-
trospection machine (AIM). The key benefit provided by the
AIM layer is to support runtime programmability [107]—that
is, the ability to perform live query reprogramming without
taking down the deployment. Existing work [63, 72, 108]
compiles each security task into a different P4 program, so
deploying a new query requires reflashing the switch with
a different program. This incurs downtime and cannot be
performed in a live manner [104], so the switch is fixed to
specific queries and cannot be reprogrammed with a new task
on demand. In RDMI, the AIM layer exposes a minimalistic
set of five instructions, which are instantiated in hardware and
shared across RDMI operators for runtime programmability.

4.1 Designing the AIM

RDMI achieves runtime programmability by designing a
“master” P4 program that provides several introspection en-
gines in hardware, corresponding to five AIM instructions:
LoAD, Mov, PusH, Pop, JMP. Since all instructions are em-
bedded in the master program, query changes do not require
program modifications. Rather, deploying a new query only re-
quires generating a new stream of AIM instructions, which in
turn produces a different set of control plane configurations to
the master program. Configurations are installed and removed
from the switch control plane software without reflashing
the hardware, so introspection tasks can be reprogrammed
on demand. In addition, the AIM layer also enables resource
sharing across introspection primitives—e.g., traverse and
iterate have shared logic for pointer chasing (e.g, Mov) and
memory acquisition (e.g., LoaD), which can be supported by

Policy LoC | Policy LoC
P1. Task list traversal 3 P7. Process memory map check 7
P2. Privilege escal. analysis 4 P8. Keyboard sniffer check 5
P3. VFS hook detection 4 P9. Module list traversal 4
P4. Netfilter hijacking detection 7 P10. Afinfo operation check 6
P5. TTY keylogger check 11 P11. Open file list 11
P6. Syscall check 4 -

Table 2: Example RDMI tasks. Code in Appendix.

the same underlying introspection engines. The five instruc-
tions operate on the AIM (virtual) registers and stack.

AIM registers: Registers store temporary introspection
state (e.g., memory addresses, loop bounds) and enable arith-
metic operations (e.g., pointer arithmetic, bound checking).
We use R; to denote the i-th register allocated by the compiler.
The LoAD(R, ADDR, sz) instruction fetches a chunk of mem-
ory that starts at address ADDR with size sz, and its variant
LoAD(R, $CONST) assigns a compile-time constant to the reg-
ister. Predicates over register values are used to implement
control flow branches—the conditional jump JMP(PRED, L, L")
checks the predicate PRED (e.g.,R < LOOP_MAX) and branches
to the L/L’ labels in the instruction-level program (see §4.2).
We use Rp to denote a special AIM register that holds the
current introspection base address, such as the starting ad-
dress of a task_struct under introspection, and Rg is used
in conjunction with relative offsets within the data structure to
fetch data. The Mov(ADDR) instruction rebases introspection
to a new address by fetching the pointer stored at ADDR (i.e.,
pointer chasing), and its variant MOvV($ADDR) sets the base
to ADDR. All ADDR fields in the LoAD/MoV instructions are
compiled into base addresses and offsets.

AIM stack: The stack is manipulated in last-in-first-out
order for traversal loops, and each stack frame contains
a previously used Rz. For instance, when traversing the
task_struct linked list, the PUSH instruction pushes the cur-
rent task_struct base to the stack top. This may be further
followed by a Mov to rebase introspection to the next element.
The Pop instruction pops the stack top to Rg, restoring the pre-
vious introspection base and resuming work from there (e.g.,
returning from an inner traversal to the outer layer). Every
nested traversal produces exactly one stack frame, so stack
depth can be analyzed statically by the compiler.

4.2 Compiling to the AIM

RDMI compiles introspection operators to the AIM instruc-
tions enabled by the master program. kgraph (addr) initial-
izes the introspection by setting Ry to the specified addr.
in(ptr) is realized by a Mov instruction that rebases to a
different data structure. values (f) is realized by a LOAD
instruction to fetch the value. assert (pred) further per-
forms predicate checking on the LoADed results. traverse
and iterate are the most complex as they involve loops,
and the loop body could further vary based on the query.
RDMI compiles them into AIM instructions that implement a
loop skeleton, but with loop bodies initialized to placehold-



ers; they are later filled by the compiler when processing
the operators within the traversals. We show the skeleton for
traverse (ptr_nxt, ptr_end, type):

1 Mov ($Sptr_nxt) //move base to ptr_nxt addr

2 L: //loop skeleton compiled from traversal

3 Push //record base addr before moving away

4 /%

5 loop body placeholder, to be compiled from

6 subsequent operators, e.g., acquiring values
from the current element or nested traversals.

8 */

9 Pop //back from inner traversal

10 Mov (ptr_nxt) // move base to visit next entity

11 Jup (Rg!= ptr_end, L, Lend) //loop guard

12 Lend: //traversal completes

Lines 1+10 successively move the cursor across a linked list
of elements. To support nested traversals, Lines 3+9 use PUSH
and Pop to maintain base addresses in the stack. Line 11
checks for loop termination conditions. The loop body is left
as a placeholder denoted by Lines 4-8, and it will be generated
by the compiler when processing subsequent introspection
primitives. For instance, the compiler may generate LOAD
instructions if the operator nested in the loop is values (f).
iterate follows a similar compilation strategy with
traverse. The Appendix includes more details for reference.

5 Reconfigurable Introspection Engines

We now describe how the AIM instructions are instantiated in
hardware engines, which can be reconfigured to implement
different AIM instruction streams. At a high level, reconfigu-
ration is achieved by installing control entries generated from
different AIM instructions onto the match/action tables from
the control plane. To explain this design, we first provide
more background information on the Dom(-1) substrate.

P4 programmable switches consist of a sequence of hard-
ware stages in their most popular models (i.e., Intel Tofino).
A P4 program is a pipeline of match/action tables that are
allocated on the stages, which select specific packet headers
using match fields and activate processing actions. The tables
have access to stateful registers, which are persistent memory
that keeps state across packets, as well as ALUs (arithmetic
logical units) that are capable of performing arithmetic op-
erations with registers. A packet can only access each stage
and its resources (e.g., registers, ALUs) once, and each ALU
supports at most two distinct arithmetic operations. The AIM
instructions are instantiated by a set of match/action tables,
and the table entries are generated by the RDMI compiler and
populated by the switch control plane to realize different in-
trospection policies. This is the control path for introspection.
HW stages

Stateful registers Unidirectional data flow
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Figure 2: Reconfigurable introspection engines in RDMI. Red:
AIM instruction engine; green: the runtime system engines.

RDMA NICs transform Ethernet packets received over the
wire into DMA transactions over the PCle bus for memory
access, and vice versa. We depict the RoCEv2 [36] format, a
commonly used RDMA protocol, with select fields:

ubpP RDMA
dPort=4791 Header

------ 1 .
_______ A .

[

A packet carries a queue pair number (QPN) that uniquely
identifies an RDMA connection. Other header fields include
the memory address to read from, the read size, as well as the
read opcode itself. RDMA packets are encapsulated in UDP,
IP, and Ethernet protocols, and they are recognized by the host
and the switch by their distinct destination port number (i.e.,
4791). This is the datapath for memory introspection.

Introspection engines are depicted in Figure 2. The AIM
instruction engine matches on the program counter (PC) car-
ried in the packet header (§5.2), and executes different instruc-
tion streams based on the match/action entries. These entries
map from PCs to their corresponding AIM instructions. The
compiler generates these entries from the AIM instructions,
and the control plane software installs them into the match/ac-
tion tables to realize different programs. RDMI also has a
runtime system, with four engines for endianness conversion,
program counter, RDMA retrieval, and address translation,
respectively. The lifetime of a typical introspection packet
in RDMI is as follows. When the switch receives an RDMA
packet, it first extracts specific headers (e.g., memory content)
from the packet and performs endianness conversion. Next,
the PC engine advances the program execution based on PC
transition rules, which are also compiled from the AIM in-
structions as match/action entries. As needed, the packet also
triggers address translation and page table walk. The AIM
instruction engine then executes a batch of instructions, and
triggers the RDMA retrieval engine for the next step of intro-
spection. Thus, an introspection task requires several rounds
of RDMA requests, each of which triggers an iteration of
switch execution over the next several instructions.




5.1 Reconfigurable AIM instruction engines

We now describe how the introspection engines are instanti-
ated, deferring the runtime system description to §5.2.

Push, Pop, Mov: These instructions operate on the base reg-
ister and the stack: pushing the base register value onto the
stack, popping off the base from the stack, and modifying it,
respectively. The stack is created using an array of stateful
registers in P4, with additional designs to overcome the con-
straints imposed by the sequential hardware stages. As shown
below, PusH transfers data from the base register onto the
stack, and Pop in the other direction, requiring bidirectional
data flow. However, if we allocate the base register at stage n
and the stack at stage n+ 1, backward access will incur heavy

overhead; reversing their layout raises similar problems.
1

Stack  Base

stack_top_idx  base_idx

Base Stack
PUSH

POP

Bidirectional flow, infeasible Unidirectional data flow

Our design addresses this by observing that the stack depth
can be statically analyzed by the compiler. Thus, we integrate
the stack and base into a single register array, as illustrated
above. Two packet metadata variables, stack_top_idx and
base_idx, record the logical stack top and the base register,
although physically they reside in the same register array.
PUSsH increases stack_top_idx by one, subsuming the cur-
rent base without data copy. Pop decrements the stack top
index by one and updates the base to the popped value, again
with unidirectional data flow. Further, the RDMI compiler stat-
ically computes the value for stack_top_idx and base_idx
at each point of the program execution (as denoted by the pro-
gram counter/PC; details in §5.2). It produces match/action
entries that match against the PC values and retrieves the cur-
rent indexes for stack and base register operations; different
policies result in different table entries. Mov only produces
unidirectional data flow, modifying the base register to a new
value. When rebasing introspection to a new address, the
RDMA retrieval engine fetches the data from kernel memory.

Load, Jmp: These instructions operate on the AIM registers.
The compiler allocates a stateful register in P4 hardware for
each AIM (virtual) register, with an optimization that stati-
cally analyzes whether a fetched value via LoAaD will be used
in subsequent instructions. For instance, a LOAD(R1,ADDR,SZ)
instruction in conjunction with a JMp(R;--,L1,L2) will result
in a stateful register allocated for R1. On the other hand, if
a Loaped value is only used in the current round and never
reused again (e.g., if the Loaped data is inspected but does
not trigger additional pointer chasing), the compiler allocates
a P4 metadata variable instead of a stateful register for re-
source savings. (Metadata variables are akin to packet headers,
temporary and discarded after the packet leaves the switch.)
Recall that the LoAD instruction supplies a memory address
and read size; the match/action table modifies the current

packet’s headers to transform them into a proper RDMA read
packet, and emits it from the RDMA retrieval engine. When
the response packet arrives, the P4 switch distinguishes the
response based on the queue pair number, parses its value, and
stores it into the stateful register or metadata variable, and the
LoAD instruction retires. JMP is supported by match/action
tables that use an ALU to check the predicate over the register
value, producing exactly two branches as required by the ALU
constraints. As before, control plane entries are generated by
the compiler to determine the specific checks and branching
locations. If a branch is taken, the PC is modified to reflect
the control flow transfer.

5.2 Reconfigurable introspection runtime

Supporting the instruction engines is the RDMI runtime sys-
tem, with four components depicted in Figure 2.
Endianness conversion. LoAD and Mov instructions fetch
data from host memory. Since host data uses little-endian
encoding, we develop a translation engine to convert the en-
dianness of the RDMA read output. Its match/action tables
are configured with entries that match on the read size (i.e.,
number of bytes) and perform bytewise conversion as actions.
RDMA retrieval. Loap and Mov instructions supply kernel
addresses to the retrieval engine, which handles interactions
with the kernel memory via RDMA. The match/action tables
for the retrieval engine are reconfigurable to edit the packet
header with the RDMA read opcode, address, size, and the
queue pair number before sending it out to the host.
Program counter. To keep track of instruction execution,
we need a program counter that specifies the next AIM in-
struction to be executed. Execution may either fall through
to the next instruction (for non-JMP instructions) or branch
to a different location (for Jmps). The PC value is encoded
as the queue pair number (QPN), which is an RDMA packet
header. The PC transition logic is realized by match/action
tables that match on the current PC value as the key and com-
pute the next PC as the action. Compared to a naive design
that uses a P4 stateful register to record the PC, carrying PC
values in packet headers is a judicious design choice as it
enables better support for concurrent queries. As each RDMA
packet comes in, RDMI locates the execution context (i.e.,
the query it belongs to as well as the instruction executed)
based on its QPN without ambiguity. Consider some example
match/action entries that implement the PC transition for a
batch of AIM instructions: First, notice that the PC is not per-
instruction but counts blocks of AIM instructions; each block
ends with either a Mov or a LoAD instruction. This is because
Mov/LoaD sends the packet out and PC (as a packet header)
will disappear from the switch. Eventually, its response packet
comes back asynchronously, and we need to determine where
to resume the execution. This, in turn, requires us to update
the QPNs of outgoing packets with the next PC values, so that
match/action processing will resume based on the incoming
packets’ QPNs. Moreover, we can see that JMP instructions



PCval. Instr. Match/action table
_ Key: Current PC (QPN field)
Push Action: Compute next PC
1 Jmp 3
L Mov
[ Push 1 Jmp pred true 2
2 4 .
oot 1 Jmp pred false 3
- 2 unconditional 3
Pop
3 4 Jmp10 3 Jmp pred false 4
L Mov 3 Jmp pred true 10
10 ; // Policy end 10

are executed based on a predicate evaluation as part of the
match/action processing (e.g., PC 1 may transition to 2 or
3 depending on the branching condition). Finally, a default
label (e.g., PC 10) represents policy termination.

Address translation. Linear kernel addresses (e.g., direct
mapping area of kernel text) are translated by applying a
fixed offset to obtain the physical address. Non-linear ad-
dresses (e.g., kernel modules) require a page table walk. Thus,
the RDMI address translation engine is configured with two
parameters—a) the translation offset, which remains fixed for
a single boot, for linear address translation, and b) the global
kernel symbol address for init_top_pgt, which resides in
the linear address space and holds the entry to the kernel page
table. Linear address translation works by extracting the vir-
tual page number from an address and then applying an offset
in the ALU. Non-linear translation requires several steps:

. , PGD  PUD | PMD, PTE , PFN
63 3938 | 3029

PGD PUD PMD PTE PFN

The figure above depicts a typical four-level page table, where
a memory address is segmented into several components: a)
bits [47..39] as the index to the first-level PGD (page global
directory) table, as located by the global kernel symbol, b) bits
[38..30] for the second-level PUD (page upper directory), c)
bits [29..21] for the third-level PMD (page middle directory),
and d) bits [20..12] for the PTE (page table entry directory).
Successive RDMA packets are sent to fetch the respective
translation entries to compute the physical frame number
(PEN). The page offset (i.e., bits [11..0]) is then concatenated
with the PFN to form the actual physical address.

5.3 Reconfiguring queries at runtime

Each of the introspection engines is reconfigurable from the
switch control plane. Thus, adding, removing, or colocating
queries is a seamless operation without downtime. To sup-
port co-existing queries, RDMI simply needs to configure the
execution context (i.e., PC values and their QPNs) and PC-to-
instruction mappings for each of the queries individually.

6 Security analysis

Trusted boot. RDMI relies on a trusted boot process, where
the RDMA NIC is initialized and appropriate QPNs (which
denote the various PCs) are assigned to RDMI so that it can
perform subsequent introspection. This is a practical assump-
tion, as the boot process can be protected by initializing the
system with a known image and relying on hardware support
available in modern CPUs [38].

Runtime TCB reduction. Hypervisor-based introspection
has a large TCB—the virtualization layer often exceeds sev-
eral million lines of C code [109]. In RDMI, after the trusted
boot, the software TCB includes the P4 master program and
its control plane entries generated by the compiler, totally
less than 3K lines. Even the RDMI compiler itself can be
excluded from the software TCB, as eventually only its out-
puts are deployed to the switch. If desired, one could even
formally verify the correctness of P4 programs [59, 80] as
a further step for assurance in RDMI. For hypervisor-based
solutions, this is much harder to achieve. Dom(-1) hardware
encloses vendor-provided firmware, which RDMI relies on
for correct execution. The size of device firmware varies, and
an example NIC (Netronome Agilio [29]) contains 52K lines
of code in its firmware.

Runtime tampering. We now consider adversaries that
specifically attempt to tamper with RDMI operations. Since
RDMA bypasses kernel and CPU software, this already pro-
vides a degree of stealth by virtue of executing in Dom(-
1). Nevertheless, a powerful attacker may attempt to guess
RDMA configurations (e.g., queue pair and sequence num-
bers) and launch attacks in the following scenarios.

The adversary can launch (1) a disconnection attack where
she forcibly shuts down RDMI’s queue pairs—or even the en-
tire RNIC hardware itself—so that operations on these queue
pairs will fail. RDMI detects such attacks by constantly mon-
itoring the packet-level behavior for each of its queue pairs,
and by raising alarms when certain queue pairs are unrespon-
sive despite read requests. In addition, the adversary can also
launch (2) an injection attack without shutting down queue
pairs, where she attempts to guess the correct RDMA se-
quence number used for introspection, and inject spoofed data
(e.g., incorrect task_struct addresses) to confound RDMI.
Our defense relies on the fact that the RNIC hardware will
execute RDMI requests and produce responses with identical
sequence numbers as the adversary’s injected packets. (Other-
wise, if the adversary injects packets with incorrect sequence
numbers, they will be rejected.) Therefore, RDMI keeps track
of the correct sequence numbers and raises alarms when it
detects duplicate packets, which is a sign of a spoofing attack.
We have developed both defenses as part of the P4 master
program, and Figure 3 shows the results for two introspection
experiments, where around t=2s and t=3s, respectively, an ad-
versary launches the disconnection and spoof attacks. In both
cases, the P4 switch is able to detect the malicious behaviors
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Figure 3: RDMI successfully detects disconnection and spoof
attacks and raises alarms upon detection.

Policies | LoC (vs.libVMI) | #instr. | #entries
P1 3(225) 8 109
P2 4 (217) 10 135
P3 4 (145) 8 161
P4 7(167) 16 135
P5 11 (200) 20 234
P6 4 (135) 8 91
P7 7 (252) 18 195
P8 5(151) 8 123
P9 4 (104) 8 119
P10 6 (138) 9 173
P11 11 (231) 20 226

Table 3: RDMI is expressive for a range of introspection poli-
cies and is much more concise than LibVMI implementations.

and raise alarms to the operator. The throughput drop also
shows that the effect of disrupting the RNIC operations is
noticeably different from the normal RDMI operations.

7 Evaluation

We present a comprehensive evaluation to answer three re-
search questions: a) how well can RDMI support diverse
introspection policies? b) how effective is RDMI in detecting
rootkits? ¢) what are the introspection overheads of RDMI?

7.1 Prototype and setup

We have implemented RDMI in 5200 lines of code. The
RDMI compiler (2700 lines of code in C++) ingests an intro-
spection policy in our domain-specific language, and emits
control plane configurations for the master program. The mas-
ter program implements the introspection engines in a P4
program with 2500 lines of code. We deploy RDMI to an
Intel Tofino Wedge 100BF-32X P4 programmable hardware
switch, with 32x100Gbps ports connected to a set of servers.
All servers come with six Intel Xeon E5-2643 Quad-core 3.40
GHz CPUs (24 cores), 128 GB RAM, and run Ubuntu 18.04
as the OS. Each server also has a Mellanox CX-4 RDMA
NIC operating at 25Gbps.
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Figure 4: The RDMI compiler works efficiently.

Our primary baseline defense is LibVMI [22], a state-of-
the-art hypervisor-based introspection engine that obtains and
analyzes guest memory snapshots in software. We use the
KVM/QEMU (v4.2.1) hypervisor, and have manually imple-
mented policies P1-P11 using LibVMI (v0.13.0). A LibVMI
program runs inside the hypervisor and establishes a KVMI
(KVM introspection) socket with a guest VM on the same
physical server, and issues acquisition requests via this chan-
nel. Since LibVMI cannot support remote or baremetal intro-
spection, we have created another defense system by stripping
RDMI of its hardware control loop in the P4 switch. The in-
trospection program runs in a dedicated server to implement
the control loop in software, and the introspected machine is
connected via the same P4 switch that only runs a basic for-
warding program; the memory datapath is still implemented
using RDMA NICs. We call this baseline “Software RDMI,”
as it can be viewed as an intermediate step toward full RDMI
assuming that the top-of-rack switch is not P4 programmable.
We have implemented policies P1-P11 in software, and further
integrated them with RDMA for remote memory acquisition.

7.2 RDMI language and compiler

We start by evaluating the domain-specific language and com-
piler in expressiveness, TCB size, compilation speeds, com-
piled configurations, and switch resource utilization.
Expressiveness. Table 3 shows the lines of code for each of
the 11 policies in RDMI and in LibVMI implementations.
RDMI supports the policies in at most 11 lines of code, where
LibVMI implementations are one or two orders of magnitude
larger—with 104-252 lines of code across policies. Further,
LibVMI programs are developed inside the hypervisor, re-
quiring low-level programming skills from the developer. We
also show the number of AIM instructions compiled from the
functional operators, as well as the control plane entry counts
for each policy, which range from 91 to 234. Thus, the RDMI
compiler successfully hides the task complexity and shifts a
substantial amount of work inside itself, while automatically
configuring different introspection tasks.

TCB reduction. The P4 master program has 2500 lines of
code, and the control plane entries generated by the compiler
are less than 210 lines across all policies. Thus, the runtime



Resource ALU (%) | Hashunit (%) | SRAM (%) | TCAM (%)
Endian conversion 0 1.68 0.21 0
Program counter 2.08 3.61 2.6 0
Address translation 8.33 6.61 4.69 3.47
AIM instructions 4.17 4.81 3.12 6.94
RDMA retrieval 4.17 4.09 2.81 1.39
Overall 22.92 26.68 16.15 11.8

Table 4: Switch resource utilization with 11 policies
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Figure 5: RDMI reprograms queries seamlessly.

TCB is smaller than 3K lines of code and configurations, a
significant reduction compared to the size of a hypervisor.
Compilation speed. Next, we measure the turnaround time
for the RDMI compiler to generate the control plane con-
figurations for each policy. Figure 4 shows the turnaround
time: across all policies, RDMI spends 10-38 milliseconds to
produce the compiled configurations, which is very efficient.
Also, the turnaround time is correlated with the number of
AIM instructions and control plane configuration entries that
the compiler needs to generate—more complex configura-
tions tend to have higher compilation time (e.g., P11 > P10
> P9). RDMI supports policy composition naturally, as each
policy results in its set of entries that are installed to the same
set of introspection engines in the master program. Compil-
ing multiple policies is equivalent to compiling each of them
one by one, and then installing all the resulting entries to the
switch (not shown, but see Figure 5 for concurrent queries).
Switch resources. Table 4 measures the switch resource uti-
lization of the RDMI master program—installed with all 11
policies—and decomposes the usage across several compo-
nents. In RDMI, header operations are performed in ALUs
and hash units, stateful registers are supported in SRAM, and
match/action entries are in SRAM and TCAM. Across all
resource types, the switch has 11.8%-26.68% utilization, leav-
ing plenty of room for other types of switch programs.

7.3 Detecting rootkits, remotely

We now evaluate the effectiveness of RDMI to detect rootkits
in baremetal installations over the network remotely. We
collected four rootkits [23, 24, 27, 28] that are commonly
used in kernel security evaluation, and added two more by

implementing attack mechanisms in existing projects [25, 64,
87]. RDMI is configured with all 11 policies in the switch.
Adore-ng [23] is a rootkit that has been evaluated in sev-
eral existing detectors [64, 67, 76, 91, 94]. It hooks itself to
function pointers in the kernel virtual file system, such as
the inode lookup and file iterate operations. After hooks are
installed, the rootkit will collect parameters passed from the
inode lookup function and match them against predefined se-
crets for triggering privilege escalation of a requested process.
Further, this rootkit covers its tracks by hiding information
from administrative tools—the file iterate function hides
data about malicious files, and its hook on tcp_seq_afinfo
pointers hides network connections from netstat. RDMI
successfully detected this rootkit from three policies. P2 de-
tected a userland process whose privilege has been escalated;
P3 and P10 detected function pointer values in the virtual file
system and TCP stack that are outside the regular kernel text.
sutekh [28] is a rootkit that hooks into the execve and umask
functions in the system call table (i.e., sys_call_table,
which is an array of syscall pointers) [69]. Invoking hooked
syscalls will result in modification to the credential data struc-
tures for specified userland processes. RDMI detected this
rootkit using P2 (which detects escalation) and P6 (which
detects system call table tampering).

Diamorphine [24] is a rootkit that also targets system call
hooks, and it manipulates k111, getdent and getdent 64 [67,
74, 84, 92]. For instance, the ki1l syscall is repurposed as a
communication mechanism between the rootkit and a user-
land process—e.g., kill -sig -para sends signals from the
userland to the rootkit, and the signal numbers further trig-
ger information hiding or privilege escalation capabilities of
the rootkit. on behalf of certain userland processes. RDMI
detected this rootkit with policies P2 and P6.

Spy [27] is a keyboard logging rootkit, which manipulates
register_keyboard_notifier in the kernel to add itself to
a set of consoles (i.e., keyboard_notifier_blocks) that re-
ceive notifications upon keystrokes [92]. The rootkit then con-
verts the keystrokes into a buffer maintained by the debugfs
virtual filesystem. Our system detected this rootkit using pol-
icy P8, which checks keyboard logging functions.

TTY rootkit is a rootkit that we have implemented using the
techniques proposed in a related project [87]. It targets Linux
tty units and manipulates the receive_buf function, which is
a function called by tty_driver for sending characters to the
tty line discipline. By doing this, it can hijack and eavesdrop
on any data typed in a terminal. RDMI detected this rootkit
with policy P5, which monitors the TTY activities.

Netfilter rootkit implements techniques utilized by two
projects [25, 64] that target Linux Netfilter. It registers a Net-
filter handler nf_register_net_hook, specifically at the lo-
cation NF_IP_LOCAL_IN. It thus obtains control when receiv-
ing network packets, and can take arbitrary actions including
monitoring port-knocking traffic [32] for activation and then
dropping such traffic to avoid suspicion. RDMI detected this
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Figure 6: Introspection turnaround times of varying security policies with RDMI, Software RDMI and LibVMI. We normalize
all systems based on the RDMI speed, and also include the RDMI turnaround times on top of the RDMI bars.

rootkit with policy P4 that checks the Netfilter system.
Dynamic, concurrent queries. To demonstrate RDMTI’s flex-
ibility to deploy new queries at runtime, we start with the
master program with an empty configuration, and the grad-
ually add five policies to detect the above rootkits that are
installed inside a server. Figure 5 shows the throughput of an
iperf client during the reconfiguration, and labels the respec-
tive policies and the detected rootkits. We can see that query
reprogramming does not disrupt the network transfer or im-
pact service availability. In all cases, the added policies were
able to detect the respective rootkits effectively. Without this
capability, deploying new policies would require reflashing
the switch and taking down the cluster for reconfiguration.

7.4 Benefits of baremetal security

Next, we showcase the benefits of baremetal security, as en-
abled by RDMI. As discussed, LibVMI only supports virtu-
alized environments, and “Software RDMI” is an approxi-
mation of RDMI that relegates introspection logic to remote
server software (but still uses RDMA to fetch kernel memory).
Introspection time. Figure 6 shows the time it takes to
complete an introspection policy across the three defenses—
RDMI executes 9-58 times faster than the state-of-the-art
LibVMI solution. “Software RDMI,” as an approximation,
is also much faster than LibVMI but it still falls behind the
full RDMI, which outperforms the former by roughly two
times. This is not only because “Software RDMI” still in-
volves remote CPU overheads, but also that the introspec-
tion and introspected machines are necessarily located farther
away from each other, connected by an intermediate switch.
RDMLI, on the other hand, is a switch-resident defense and has
an immediate reach to all servers under the same rack. The
introspection time also varies across policies—e.g., P3 is the
fastest (15.5us) and P7 is the slowest (150.1ms) for RDMI.
We further measure the capture rates across the three de-
fenses by introducing a “cat-and-mouse” game, where a ker-
nel rootkit rapidly modifies the credential data structures of
specific processes and then modifies them back. By setting
the attacker to different modification frequencies, we com-
pare how well the defenses can capture the modifications by
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Figure 8: CPU overheads for security policies with software
RDMI under the same introspection throughput as LibVMI.

measuring their capture rates. Figure 7 shows the results for
up to 500 modifications per second, with RDMI consistently
achieving the highest capture rates. When the attack goes
beyond 50 modifications per second, LibVMI drops to about
20% capture rate; when it increases to 200 modifications per
second, even Software RDMI drops to 57%—but at both fre-
quencies RDMI stays at 100% and it only drops for much
faster attacks.

Introspection CPU overheads. As motivated before, hy-
pervisor offloading aims to reduce software CPU overheads
from the servers. RDMI achieves introspection entirely in
programmable hardware, without CPU software overheads.
Thus, we measure the CPU overhead for the other defenses
to understand the cost for security. We configure LibVMI to
introspect varying numbers of VMs with each of the policies,
and measure the number of CPU cores that are required for
the introspection tasks. Each KVMI introspection socket is
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Figure 10: Throughput reduction of local Redis and Nginx with LibVMI and RDMI, normalized to their respective baselines.

attached to a single introspection program, which is dedicated
to a policy and executes it repeatedly. As shown in Figure 9,
for 32 VMs, LibVMI requires 10-14 CPU cores (out of 24
cores) just for the introspection tasks. This is a significant cost,
as the resulting CPU overheads take away valuable cycles that
are no longer provisioned for the tenants. Next, we configure
Software RDMI to execute at the same query speeds that are
achievable by LibVMI with 32 VMs, and measure the CPU
costs of the introspection machine. As Figure 8 shows, the
CPU cost is significantly lower—roughly on par with what
would be needed to introspect 4-8 VMs with the LibVMI
solution. Nevertheless, Software RDMI still requires 1.3-6.2
CPU cores to drive the introspection task, whereas RDMI
removes the CPU overhead entirely by executing in Dom(-1).
Summary. Concretely, the performance gain of RDMI comes
from two factors. First, RDMI executes entirely in pro-
grammable ASICs at hardware speeds both for memory re-

trieval and for introspection computation, whereas the hy-
pervisor solutions execute on CPU software with high CPU
overhead. Moreover, LibVMI requires the presence of a hy-
pervisor, and as shown in §7.5, this by itself incurs a large
footprint and takes away resources from any colocated tasks.
In contrast, RDMI executes in a baremetal setting off the host,
so introspection tasks and tenant workloads cause minimal
interference to each other. In addition, our “cat-and-mouse’
experiment shows that this performance gain translates to
concrete security benefits in capture rates.

s

7.5 Introspection interference

We have seen that introspection is a heavyweight task with
high CPU overheads. Next, we quantify the introspection
interference to tenant workloads. For LibVMI, we use the 32-
VM setting where one of the VMs is executing tenant services,
and measure the performance overhead to these workloads



LibVMI =====3  RDMI LibvMI RDMI LibVMI =====3  RDMI

80 80 80
:\0\ 70 :\o\ 70 S :\0\ 70
= 60 g 60 = 60
250 t N 250 | 2 50
3 40 3 40 3 40
S N ° [ N 9 N
& 30 | & 30 | & 30
5 5 5 NN
'2_ 20 |S‘ 20 ,9‘ 20

10 | 10 | 10 |

0 7§@L& 2 “ > % 2 g % 2

& 2% e 2 o) 2
S S '9?9 . %, 5% @0/ S S «9,{9 . %, % &, 3 S S $?9 . %, % \%/

(a) Simple introspection task (P3; Redis)

(b) Medium introspection task (P1; Redis)

(c) Complex introspection task (P11; Redis)

LibVMI === RDMI LibVMI RDMI| LibVMI === RDMI|
N
~ 50 = 50 | ~ 50
& B — &
S 40 N g 40 + g 40 N
= = N =1
S 30 S 30 | % S 30
3 3 N 3 N N
T 20| N T 20 § T 20 -
3 3 N 3
210} 1 1 =10 | § E10r
o LN
U, My VY T U % M W M % 9 % Y% % U
Yo BB B B Y BB B B Yo N A S

(d) Simple introspection task (P3; Nginx)
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Figure 11: Throughput reduction of remote Redis and Nginx with LibVMI and RDMI.

with hypervisor introspection. For RDMI, we measure the
same workloads on a baremetal machine and quantify the per-
formance downgrade of the introspected machine. We omit
Software RDMI from this measurement, as its overhead on
the introspected machine is the same with RDMI—the down-
side of Software RDMI comes from overheads of the remote
introspection machine, which is dedicated to introspection
tasks and does not run tenant workloads. We use two common
workloads—key/value operations (Redis) and web transfers
(Nginx)—and test them both locally and via the network.

Redis key/value workloads (local). Figure 10 shows the
throughput reduction of key/value workloads, with the Re-
dis client and server colocated on the same machine, and
using varying key/value operations common for Redis bench-
marking (i.e., Set, Get, Range-100, Push, mSet). For fairness
of comparison, we normalize the LibVMI-enabled through-
put against the Redis throughput without LibVMI (both in
VMs), and RDMI-enabled throughput against the case with-
out RDMI (both in baremetal servers). Further, we choose
three representative introspection policies based on their com-
plexity in the LibVMI implementations (simple: P3, medium:
P1, complex: P11). We can see that RDMI incurs 0.1%-4%
throughput overhead across all key/value workloads, whereas
LibVMI is 11-486 times higher with reductions ranging from
22%-56%. This is because LibVMI introspection incurs high
CPU overheads, and creates severe contention. RDMI, on the
other hand, does not involve the remote CPUs. Its overhead
comes from the RDMA reads that are converted to memory
accesses, which incur a small amount of memory contention.
Web server workloads (local). Using a similar methodology,
we have measured the introspection interference of LibVMI
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Figure 12: Bandwidth consumption for RDMI.

and RDMI with Apache web server workloads. In this ex-
periment, we generate HTTP requests to download files of
varying sizes from the web server, and measure the through-
put of requests served per second. As Figure 10 shows, RDMI
only introduces 0.4%-5.1% throughput overheads across all
workloads, whereas LibVMI incurs an overhead ranging from
25%-51%, which is 7-711 times higher.

Remote workloads. Next, we measure the same workloads
when the requests are coming through the network. Whereas
the local experiments are designed to measure CPU and mem-
ory overheads due to introspection interference, this setup
additionally accounts for the impact of network traffic as gen-
erated by RDMI. LibVMI only performs local operations,
so it does not incur any network I0O. Figure 11 measures the
Redis and Nginx throughputs over the network, respectively.
Even accounting for network overheads, RDMI only incurs a
throughput degradation between 0.1%-5.6%. In comparison,
when LibVMI is handling remote client requests, the degra-
dation ranges from 20%-60% across the workloads, which is



5-864 times higher. Therefore, these results show that, with
requests coming through the network, RDMI is still able to
perform security tasks with minimal performance interfer-
ence, unlike state-of-the-art hypervisor solutions.

Figure 12 further shows the amount of network bandwidth
overhead under different introspection policies. We set RDMI
to introspect the baremetal machine at the same speed (in
terms of queries per second) as what LibVMI can achieve at
its peak throughput with 32 VMs locally. Across all queries,
the network bandwidths due to remote introspection range
from 0.3-1.91Gbps; over a 100Gbps link, this translates to
0.3%-1.91% network overheads.

8 Discussions

Cost of deploying RDMI. Since RDMA NICs and pro-
grammable switches have been in use at major cloud
providers [44, 47, 60, 78], we believe that the barrier to de-
ploying RDMI is reasonably low. Nevertheless, for a cloud
provider that does not already use RDMA NICs and pro-
grammable switches, there will be an extra cost for upgrad-
ing these devices. We provide some data points for under-
standing the CapEx and OpEx cost based on available prices.
Our programmable switch costs $10,060 [41], and a non-
programmable switch operating at the same port speeds
(32x100Gbps) costs $9,399 [11]. Our RDMA NIC costs
$488 [30], and a non-RDMA NIC at the same speed costs
$355 [18]. The extra cost for upgrading a single switch and a
single RDMA NIC is therefore $794. As we have shown in
§7.4, hypervisor-based introspection requires 11.2—14 CPU
cores on average with 32 VMs across policies P1-P11. These
core counts are similar to what is provisioned in Amazon’s
m5zn.3xlarge EC2 instances, sold at $0.991/hour [3, 6]; hence,
RDMI would be more cost-effective after 33.4 days of oper-
ation. Although device and VM costs change over time and
across vendors, we believe that this back-of-the-envelope cal-
culation paints a representative picture. Also, we note again
that cloud providers that already invest in these devices would
not incur additional capital cost.

Attacks to RDMA and P4 systems. RDMI NICs and P4
programmable switches are part of our TCB, and they are
assumed to be trustworthy. However, existing work has iden-
tified security issues with both types of devices [71, 96]. As
some examples, adversaries could launch side channel [100],
exfiltration, injection, and denial-of-service attacks [96] to
RDMA deployments. P4 programmable devices may also
exhibit corner-case behaviors under carefully crafted traffic
patterns by the attacker [71]. However, these generic attacks
are not specific to RDMI, and known defenses exist [105].
Cache coherence, consistency, registers. RDMI performs
introspection in an out-of-band (OOB) manner, and OOB in-
trospection [90] has several limitations shared with RDMI.
(i) Cache coherence: RDMA memory accesses are not cache
coherent with host CPUs unless more advanced interconnects
(e.g., CXL [12]) become available. Thus, when RDMI ac-

quires a data structure from the main memory, it is not guar-
anteed to be the latest version as modified data may exist
in the CPU cache. (ii) Consistency: Kernel state is in con-
stant flux, and this leads to another degree of asynchrony
between RDMI’s view and the true system state. For instance,
while RDMI traverses the task_struct linked list, processes
could be added to or removed from the data structure and
these changes may not be reflected in RDMI’s view. In fact,
even for hypervisor-based solutions, inconsistent views could
arise unless guest VMs are paused during introspection, but
this would lead to significant overheads. (iii) Registers: OOB
solutions cannot introspect CPU state such as register val-
ues [76, 90, 98]. Previous work [66] has shown that advanced
attackers could manipulate the CR3 register so that the actual
page tables used by the OS are different from those seen by
OOB introspection. Despite these limitations, OOB solutions
have been shown to be effective in existing work [90], and
RDMI corroborates these findings. Importantly, in baremetal
settings, the host machine does not have a hypervisor to per-
form in-band introspection, so OOB solutions like RDMI are
necessary in order to protect baremetal kernels.
Introspection capability. Our current RDMI experiments
disable the IOMMU, but when it is enabled, DMA requests
from PCle devices may be further translated by the IOMMU.
In this case, an attacker could create incorrect IOMMU map-
pings to confound security mechanisms like RDMI [45, 98].
As a potential mitigation, PCle devices that implement the
ATS (Address Translation Service) feature can tag DMA re-
quests so that they are not further translated by the IOMMU,
thus ensuring trusted memory acquisition [45]. Recent RNICs
have been built with ATS features [31]. In terms of intro-
spection tasks, RDMI supports tasks that traverse the kernel
graph in a well-defined footprint to detect attacks. However,
not all memory forensic tasks fall into this category—e.g.,
performing a cryptographic hash over kernel text to ensure
integrity [90, 91], or regular expression matches over memory
content [51, 56, 99], would go beyond RDMI’s current DSL
and hardware capabilities. With an imperative language (e.g.,
C programs that use LibVMI), one could also write introspec-
tion tasks that walk kernel pointers in arbitrary patterns; such
tasks also create challenges for the current DSL. Nevertheless,
we have demonstrated that RDMI is sufficiently expressive
for a range of tasks and can detect real-world rootkits.

9 Related work

Memory introspection. The art of introspecting memory
snapshots to detect malice dates back to two decades ago [61].
Since then, many techniques have been developed to im-
prove the accuracy of kernel memory analysis [21, 48, 49,
52, 54, 57, 79, 91, 93, 98, 103] and narrow the semantic
gap [43, 53, 62, 86]. Hypervisor-based systems, such as
ImEE [110] and livewire [61], use software solutions to intro-
spect guest VMs. Our project is, in particular, related to out-of-
band (OOB) introspection techniques that leverage hardware



assistance. In this space, KI-Mon [76] and Vigilare [85] add
a special security module that snoops the memory bus and
detects kernel object modifications. Copilot [90] contributes
a system prototype for an Intel StrongARM EBSA-285 evalu-
ation board that can acquire memory over PCle. In contrast
to existing OOB platforms, RDMI a) only uses COTS de-
vices for baremetal introspection; b) it contributes a domain-
specific language, compiler, and runtime for introspection
tasks, which c) can be executed efficiently in programmable
hardware without CPU involvement.

P4 and RDMA. P4 and RDMA programmable devices have
been used for performance acceleration in cloud systems—
separately [68, 70] and in conjunction [73, 75]. The secu-
rity community has developed a line of work using P4 pro-
grammable switches for network protection [83, 106], includ-
ing for RDMA vulnerabilities [105]. RDMI demonstrates
their use in a novel setting for kernel security.

10 Conclusion

Hypervisor offloading has gained popularity in datacenters.
We rearchitect a classic security task that is usually rele-
gated to the hypervisor—memory introspection—to enable
introspection of baremetal servers entirely in programmable
ASICs. RDMI leverages recent hardware advances in RDMA
NICs and P4 programmable switches, and designs a domain-
specific language, compiler, and runtime system. RDMI in-
curs no CPU overheads in introspection tasks, outperforming
state-of-the-art hypervisor-based solutions, and detects a vari-
ety of rootkits even in baremetal installations.
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11 Appendix

11.1 Compiling the iterate operator

We include the AIM instructions and placeholders that are
compiled from an iterate operator:

1 Load(Ry, $n) // initialize loop bound w/ counter.
2 Mov ($array_addr) //move base to first elem.
3 L:

4 Push //for potential nested loops

5 /*

6 Loop body placeholder, compiled from

7 inner operators, same as in 'traverse'

8 */

9 Pop //returning from inner loop

10 Mov ($nxt_entry) //Move to next array element
11 Jmp (Ry--, L, Lend) // loop guard

12 Lend: //Iterate completes

11.2 RDMI policies

In the main paper, we have already presented four RDMI tasks
in detail. Here, we include the RDMI code for the remaining
seven policies and describe their introspection goals.

P5: TTY keylogger checks [87]. Keyloggers are a class
of malware that secretly records user keystrokes, usually by
hooking themselves onto the input handlers of tty devices.
The Linux kernel maintains a struct tty_driver linked
list, each of which represents a specific device driver. Further,
each struct tty_driver can be attached with a set of de-
vices, so an array of pointers at struct tty_struct *ttys
maintains this information. When a device is opened, a new
struct tty_struct * element will be added in this array.
For each attached device, its struct tty_struct contains a
pointer to the external “line discipline” 1disc data structure,
which serves as the glue between device drivers and high-
level interface calls (e.g., read, write). It further contains a
receive_buffer function pointer, which is a common hook
point for keyloggers [87]. The type annotation ‘@’ is used for
handling generic list_head structs where they can be embed-
ded in a range of kernel data structures—following existing
work that proposed similar annotation methods [91]. The key-
word ‘this’ refers to the current introspection address.

I kgraph (tty_drivers)

2 // type annotation @ for 'in' to handle list_head
3  .in(next, @struct tty_driver, @tty_drivers)

4 .traverse(tty_drivers.next, &tty_drivers.next,

5 tty_driver)
6 .values (num)
7  .in(ttys)

8 // iterate tty_struct pointer array

9 .iterate(this, num, ptr_t)

10 .in(this).in(ldisc).in(ops) .values (receive_buf)

11 .assert (KERN_TXT_BEGIN < receive_buf < KERN_TXT_END)

P6: System call checks. This policy starts with the global
kernel symbol sys_call_table and iterates through all ex-
ported system calls, where SYSCALL_NR denotes the num-
ber of entries. Further, it asserts that these system call pointers



must lie within a well-defined range. The keyword this is
implicitly filled in by the compiler using the current introspec-
tion address at that point of the traversal.

1 kgraph(sys_call_table)

2 .iterate(this, SYSCALL_NR, ptr_t)

3 .values(this)

.assert (KERN_TXT_BEGIN < this < KERN_TXT_END)

N

P7: Process memory map check. This query checks the vir-
tual memory area information of each process. It performs
a nested traversal over two linked lists at Lines 2+8. Simi-
lar to P1 and P2, this query begins with an outer traversal
that visits the linked list located at init_task. For each
task_struct, the policy zooms in on the mm and mmap data
structures that hang off of the main linked list. It then further
performs an inner linked list traversal which goes through
each vim_area_struct, where further details such as VMA
addresses and access permissions are stored.

1 kgraph(init_task)

2  .traverse(tasks.next, &init_task.tasks, task_struct)
3  .values(pid)

.in (mm)

.in (mmap)

// Traverse the VMA linked list utill a NULL pointer
7 .traverse (vm_next, NULL, vm_area_struct)

.values (vm_start, vm_end, vm_page_prot)

W B

=)}

%)

P8: Keyboard sniffer checks [87]. Keyboard sniffers
eavesdrop on keystrokes from user keyboards, similar to
P6 but hooked into the system at different locations.
This query examines the notifier block registered for
keyboard_notifier_list linked list. It traverses the linked
list until the next pointer is null. For each element in the traver-
sal, RDMI checks if the notifier_call pointer is within
a known-good range to detect malicious sniffing behaviors.

1 kgraph (keyboard_notifier_ list)

2 .in(head)

3 .traverse(next, NULL, notifier_block)

4 .values (notifier_call)

5 .assert (KERN_TXT_BEGIN < notifier_call < KERN_TXT_END)

P9: Module list traversal. This query starts with the global
kernel symbol modules and further traverses the module list
and analyzes the loaded kernel modules. Similar to global
symbol tty_drivers in P6, modules is a 1ist_head data
structure requiring type annotation. Then, by following the
next pointer inside each struct module, the module list can
be traversed until the starting point has been reached again.

1 kgraph (modules)

2 .in(next, @struct module, @list)

3  .traverse(list.next, &modules.next, module)
4 .values (name)

P10: Afinfo operation checks. tcp_seq_afinfo operations
are important for administrative utilities such as netstats that

list socket activities. By hijacking such operations, rootk-
its can hide open ports and connections from malicious
processes. This query first checks the seq_ops inside the
tcpd_seq_afinfo for integrity validation. Then, it zooms
in on the file_operations data structure and checks the
open operation contained within this data structure.

1 kgraph(tcp4_seq_afinfo)

2 .values (seq_ops.show)

3 .assert (KERN_TEXT_BEGIN < show < KERN_TEXT_END)
4 .in(seq_fops)

5 .values (open)

6 .assert (KERN_TEXT_BEGIN < open < KERN_TEXT_END)

P11: Open file list. This query aims to check all files opened
by each process. Similar to previous process related introspec-
tion tasks, this query starts with a task_struct traversal in
the outer loop. It then zooms in by several layers eventually
reaching the file descriptor table (struct fdtable) related
data structure, where it fetches the number of entries inside
dynamically allocated £d array and iterates each entry inside
the array. Each entry is a pointer that points toa struct file
data structure. Line 10 further fetches the f_path.dentry
pointer and Line 11 acquires the file names.

I kgraph(init_task)

2 .traverse(tasks.next, &init_task.tasks, task_struct)
3 .values(pid)

4 .in(files)
5

.in(fdt)
6  .values (max_fds)
7 .in(fd)

8 .iterate(this, max_fds, ptr_t)
9 .in(this)

10 .in(f_path.dentry)

11 .values (d_iname)

Kernel variables to offsets. To parse kernel variables (e.g.,
int pid) into their offsets from the starting address of their
containing data structure (e.g., struct task_struct), we
rely on an automated translation process inside the compiler
that is integrated with . json database that RDMI has curated
for a kernel version. This curating process is hidden within
the RDMI compiler as well, shielded from RDMI users. Our
current database supports the kernel variables in Linux v4.15,
and adding support for more kernel versions is a mechanical
process and is easily achievable with more engineering efforts.
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