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Abstract—Smart homes are interconnected homes in which a wide variety of digital devices with limited resources communicate with
multiple users and among themselves using multiple protocols. The deployment of resource-limited devices and the use of a wide range of
technologies expand the attack surface and position the smart home as a target for many potential security threats. Access control is among
the top security challenges in smart home loT. Several access control models have been developed or adapted for |oT in general, with a few
specifically designed for the smart home loT domain. Most of these models are built on the role-based access control (RBAC) model or the
attribute-based access control (ABAC) model. However, recently some researchers demonstrated that the need arises for a hybrid model
combining ABAC and RBAC, thereby incorporating the benefits of both models to better meet loT access control challenges in general and
smart homes requirements in particular. In this paper, we used two approaches to develop two different hybrid models for smart home IoT.
We followed a role-centric approach and an attribute-centric approach to develop HyBAC z and HyBAC 4, respectively. We formally define
these models and illustrate their features through a use case scenario demonstration. We further provide a proof-of-concept implementation
for each model in Amazon Web Services (AWS) loT platform. Finally, we conduct a theoretical comparison between the two models
proposed in this paper in addition to the EGRBAC model (RBAC model for smart home loT) and HABAC model (ABAC model for smart
home loT), which were previously developed to meet smart homes’ challenges.

Index Terms—IoT, smart homes, access control, ABAC, RBAC

1 INTRODUCTION

URRENTLY, the Internet of Things (IoT) is a key topic in

technology. One of the most popular domains for
deploying smart connected devices is the smart home. The
smart home consists of a network of physical objects (things)
equipped with sensors, software, and other technologies that
enable it to exchange data and information with other devi-
ces, users, and systems over the Internet. Smart homes’ main
purposes are to anticipate and respond to the needs of the
occupants, working to promote their comfort, convenience,
security, and entertainment through the management of
technology within the home and connections to the world
beyond [1]. Several real-world examples have shown the
shortcomings of current access control policy specification
and authentication for home IoT devices, as described in [2],
[3], and [4]. As illustrated in [2], the characteristics that make
IoT distinct from prior computing domains necessitate a
rethinking of access control and authentication. In the litera-
ture, several access control models have been proposed for
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IoT in general, with a few specifically designed to meet smart
homes’ challenges. Most models are based on ABAC or
RBAC. RBAC has been argued to be more suitable for IoT
due to its simplicity in management and review, whereas
ABAC management and review tasks are more complex [3,
26, 27]. Furthermore, RBAC enforcement may also be more
lightweight for constrained home smart devices. Neverthe-
less, there are those who argue that ABAC models are more
scalable and dynamic due to the fact that they can capture
contextual information specific to different devices and envi-
ronmental conditions [5], [6], [7].

Recently, some researchers showed that while RBAC-
based models are simpler in management and review, they
are not capable enough to capture the entire dynamic charac-
teristics of the IoT environment [8], [9], [10], [11], [12], [13]. On
the other hand, in ABAC-based models, it can be very compli-
cated to determine and limit the permissions available for
each user at assignment time. This can make it infeasible to
determine risk exposure for a given user [10], [14]. Hence, as
several authors have suggested [8], [9], [10], [11], [12], [13],
[14], in order to overcome these challenges, a hybrid model
combining ABAC and RBAC characteristics is needed.

In this paper, we introduce two hybrid models, HyBACr¢
and HyBAC 4¢, that cover different authorizations for every
possible user’s, environment’s, operation’s, and device’s
static or dynamic condition while combining the advantages
of ABAC and RBAC based models. We formally define each
model and illustrate it with a use case scenario and proof
of concept implementation. In developing these models, we
started with EGRBAC (a role-based access control model) and
HABAC (an attribute-based access control model). We then
followed two different approaches: a role-centric approach
in developing HyBACr¢ and an attribute-centric approach in
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developing HyBAC 4¢ [14]. The reason for choosing EGR-
BAC and HABAC as base models is that they are both con-
textual aware and fine-grained models explicitly designed to
meet smart home challenges. HyBACps and HyBAC,¢
maintain the criteria for smart home IoT access control mod-
els proposed by [15], and the new perspective of smart home
IoT access control requirements recently identified by [2].
Moreover, we conducted a comprehensive theoretical com-
parison between the two models proposed in this paper, viz.
HyBACprc and HyBAC,¢, and the two earlier models of
EGRBAC and HABAC. The comparison is based on criteria
adapted and developed from [16].

HyBACprc and HyBAC,¢ are proposed for the smart
home IoT environment. However, they can be adjusted and
adapted for other IoT application domains. Our ultimate
goal is to have a family of access control models ranging
from relatively simple to more sophisticated with better fea-
tures and more expressiveness power to provide policy
designers with a range of models to choose from according
to the environment requirements and the business needs.

The structure of this paper is as follows. Section 2 moti-
vates the paper. Section 3 provides an analysis and review
of related work. Section 4 introduces HyBACgc. It provides
a formal definition for HyBACg¢ along with an illustrative
use case scenario. In Section 5, we introduce HyBAC 4¢ fol-
lowed by a formal definition and an illustrative use case. In
Section 6, we demonstrate our models with a proof of con-
cept implementation. In Section 7, we analyze and compare
the two new hybrid models along with the earlier EGRBAC
and HABAC. Moreover, in Section 8, we discuss the paper.
Finally, Section 9 concludes the paper.

2 MOTIVATION

Role-based access control (RBAC) and attribute-based
access control (ABAC) models have been extensively stud-
ied in the literature. However, as discussed earlier, in light
of the fact that, unlike RBAC, ABAC models can capture dif-
ferent devices and environment contextual information,
some researchers believe they are more scalable, fine-
grained, and dynamic. This would suggest that ABAC is
more suitable for IoT access control [5], [6], [7]. Alterna-
tively, other researchers argue that RBAC models are more
suitable for IoT due to their simplicity in management and
review, as well as their lightweight enforcement for con-
strained IoT devices [8], [17], [18]. Hence, as expressed in
[10], [15], [19] it is not completely clear what are the advan-
tages of ABAC over RBAC and vice versa when it comes to
smart home IoT in specific and smart IoT application
domains in general.

Recently Ameer et al. [15] introduced the EGRBAC
model for smart home IoT [15], in which they extended an
RBAC model to propose a dynamic model that can capture
different permissions, devices, and environmental charac-
teristics, thereby solving the RBAC limitation of capturing
devices and environment information. Shortly after, they
proposed the HABAC model for smart home IoT [10], an
ABAC-based model specifically designed to meet smart
home IoT requirements. Moreover, they performed a theo-
retical comparison between the expressiveness power of the

two models, where they concluded that a hybrid model
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combining EGRBAC and HABAC characteristics would bet-
ter capture access control requirements in the smart home
IoT environment. A similar conclusion was also derived for
other IoT application domains by different researchers in
the literature [8], [9], [10], [11], [12], [13]. These researchers
reiterated the need for hybrid models that combine ABAC
and RBAC-based models’ advantages while mitigating their
disadvantages. In this research, we further motivate the
need for hybrid access control models for smart home
IoT that combine the advantages of the EGRBAC model
(which is an extended RBAC-based model for smart
home IoT) and the HABAC model (which is an extended
ABAC-based model for smart home IoT) for the follow-
ing reasons.

1. Role-based Access control models are incapable of handling
dynamic attributes.

In general, to obtain a dynamic access control model, we
have two types of attributes that need to be expressed and
used in authorization policies: static attributes and dynamic
attributes [14]. Static attributes have relatively fixed values
over a long period. Setting and changing the values of static
attributes typically requires administrator intervention, for
instance, the user relationship to the house, user skill set,
the danger level of the device operations, and device owner.
On the other hand, dynamic attributes reflect contextual
properties that can change at any time due to various cir-
cumstances, possibly rapidly and unpredictably, such as
time of the day, user location, and device temperature. Val-
ues of dynamic attributes are automatically determined by
sensors deployed in the smart home under homeowner
control.

RBAC-based models, including EGRBAC, can effectively
capture static user attributes and in some models, static
device attributes and static and dynamic environment attrib-
utes. On the other hand, expressing users’ and devices’
dynamic attributes in RBAC models, including EGRBAC,
creates significant difficulties and can be costly and cumber-
some for two principal reasons. The multiplicity of combina-
tions that need to be considered can lead to role explosion.
Moreover, RBAC-based models, including EGRBAC, lack
mechanisms to dynamically activate and deactivate different
users, sessions, and roles according to varying dynamic char-
acteristics. For example, consider a use case where the home-
owner wants to permit teenagers to use the front door lock
permissions in some exceptional circumstances when they
are granted a token by one of their parents. In RBAC systems,
including EGRBAC, we could construct different user roles
for different token values for each teenager. However, this
may result in having so many users’ roles. Moreover, no
mechanism exists to dynamically activate and deactivate
specific user roles according to the current users’ assigned
tokens. To reduce the role explosion, we could define a single
role for each token value for all teenagers. However, we
would also need a mechanism for the RBAC model to
dynamically activate or deactivate users’ membership in dif-
ferent roles according to their current tokens’ values. A simi-
lar situation arises in EGRBAC when we deal with dynamic
device attributes, where increasing numbers of devices and
dynamic attributes will lead to the explosion of device roles.
See supplemental material for more information, available
online.
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Unlike traditional computing systems, IoT systems have
dynamic nature. The dynamism of communication between
people, connected devices, data, utility, and the changing
nature of the system and environment characteristics in
smart IoT connected systems requires actors’ rights and
access requirements to change accordingly. Hence, it is criti-
cal to have an access control model that captures different
static and dynamic users’, devices’, and environmental
characteristics.

2. Access administration tasks are simpler in RBAC models
than in ABAC models.

In RBAC models, including EGRBAC, determining the
role structure could take much effort, but when completed,
access review is an easy task. It is easy to define who has
what permissions by looking into a user’s roles. On the other
hand, in ABAC-based models, including HABAC, to deter-
mine the permissions available to a particular user, a large
set of rules might need to be executed in exactly the same
order the system applies them. This can make it practically
impossible to determine risk exposure for a given user, as
noted by [14]. Users provisioning is easier in RBAC-based
models (including EGRBAC) than in ABAC-based models
(including HABAC). In RBAC models, users or devices pro-
visioning requires the administrator (the homeowner) to
assign users’ roles or devices’ roles to newly created users or
devices, respectively. Alternatively, in ABAC-based models,
the administrator must configure different attribute values
for newly provisioned users and devices. Moreover, in
RBAC-based models changing the set of permissions avail-
able to any user require changing the set of roles assigned to
that user. However, changing the set of permissions avail-
able to any user in ABAC-based models is a more compli-
cated task. Generally speaking, RBAC-based models trade-
up front role structuring effort for ease of administration and
user permission review, while ABAC-based models make
the reverse trade-off: it is easy to set up, but analyzing or
changing user permissions can be problematic.

3. HABAC cannot prescribe limits on the set of permissions
available for each user

In EGRBAC, we have three types of constraints: (1) Static
Separation of Duty, (2) Dynamic Separation of Duty, and (3)
Permission-role constraint [15]. On the other hand, in
HABAC, we have two constraints: (1) Constraints on user
attributes, equivalent to the static separation of duty, and
(2) Constraints on session attributes, equivalent to the
dynamic separation of duty. However, ABAC-based mod-
els, including HABAC, cannot handle permission-role con-
straints [10].

Permission-role constraints prevent specific users’ roles
from being capable of getting access to specific permissions
at assignment time. This constraint allows system adminis-
trators to prevent future assignments that enable specific
roles to get access to specific permissions. In HABAC, on
the other hand, we cannot create something equivalent to
EGRBAC permission role constraints. The main reason
behind that is that in EGRBAC, the way a user get access to
a specific set of permissions happens through a series of
assignments. The most critical assignment is the role pair
device role assignment (RPDRA), which assigns role pairs
to device roles. Hence, by controlling RPDRA, we can con-
trol which role pairs and hence roles get access to which
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device roles and hence permissions. In HABAC, we do not
have a similar “choke point” that can be controlled to pre-
vent inadvertent or malicious assignments that may lead to
unwanted access rights. This is a significant advantage of
EGRBAC, where we can enforce such constraints at assign-
ment time. See supplemental material for more information,
available online.

From the above, a valid question is: Can we combine
these two models to combine their advantages while elimi-
nating their disadvantages? Developing hybrid models
combining HABAC and EGRBAC features may be the most
suitable for smart home IoT. Moreover, the high dynamism
nature of smart home IoT is common in the majority of IoT
application domains. Hence, hybrid models are likely the
most suitable for IoT systems in general. The authors in [14]
suggested three different approaches to combine RBAC [20]
and ABAC [21] in a brief and high level way. These
approaches are the dynamic roles approach, the attribute-
centric approach, and the role-centric approach. However,
they did not formalize these approaches into formal policy
models nor implement or test them.

Inspired by the role-centric approach and the attribute-
centric approach, in this research, we proposed two
approaches to combine EGRBAC and HABAC: (a) Role-cen-
tric approach to build HyBACgc on top of EGRBAC. (b)
Attribute-centric approach to build HyBAC,c on top of
HABAC. The reasons behind using two different approaches
to develop two models are as follow:

1) If an RBAC-based model is already implemented,
model designers can extend it using the role-centric
approach without replacing the entire model. On the
other hand, if an ABAC-based model is already
implemented, model designers can extend it using
the attribute-centric approach without the need to
replace the entire system.

2) To provide policy model designers with two
approaches for building hybrid models with the
same expressiveness power. Choosing between them
will be a trade-off between considerable front role
structuring effort for ease of administration and
access review in the role-centric model, on the one
hand, and between easy setup effort but more compli-
cated administration and access review tasks in the
attribute-centric model on the other hand.

The basic idea in the approach of the dynamic roles is to
use dynamic attributes by a front-end module to determine
the user’s role, retaining a conventional role structure but
changing role sets dynamically. The reason for avoiding the
dynamic role approach is that the home IoT environment is
rich with attributes. Having many combinations of attrib-
utes’ values may result in large numbers of user roles and
device roles, further complicating the model and implemen-
tation. Such an approach may better fit environments with
few dynamic attributes.

It is true that these models (EGRBAC, HABAC, HyBACpgc,
and HyBAC,¢) are proposed for the smart home IoT use
case. However, they can be adapted and implemented in any
IoT environment. Indeed, there is no restriction in using these
models outside the home IoT use case scope. Hence, having a

family of access control models ranging from relatively
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simple to more sophisticated with better features and more
expressiveness power will provide policy designers with a
range of models to choose from according to the environment
and the business requirements.

The main contributions of this paper are as follows.

e We motivate the need for hybrid models that com-
bine ABAC and RBAC components to better capture
smart home IoT access control requirements in spe-
cific and other IoT application domains in general.

e We propose two hybrid models for smart home
IoT access control. In developing these models, we
followed a role-centric approach to develop HyBACR¢
and an attribute-centric approach to develop
HyBAC 4¢. Each model is formally defined and illus-
trated with a use case.

e To verify the applicability of the HyBACg¢ and the
HyBAC ¢ models using commercially available sys-
tems, we provide proof of concept implementation
for each model.

e We conduct a comprehensive theoretical comparison
between the HyBACr- model, the HyBAC 4¢ model,
the EGRBAC model, and the HABAC model, where
EGRBAC and HABAC are access control models
previously developed to meet smart home IoT
requirements.

2.1 Threat Model

In this paper, our threat model is the insiders with legiti-
mate digital and physical access to the house, such as family
members, guests, and workers. Our goal is to ensure that
legitimate users get access only to what they are authorized
to by the house owner.

3 RELATED WORK

IoT technology has been investigated by many security
researchers to identify its security and privacy vulnerabil-
ities and to investigate design issues in different IoT frame-
works, as in [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31], [32], and [29], [33], [34], [35], [36], [37] respectively.
Access control in IoT is one of the most critical security serv-
ices that mostly all researchers agree upon. Ouaddah et al.
[38] provide an extensive survey on access control in IoT
environments. The authors in [39], [40], [41], [42] also pro-
vided surveys on IoT applications access control models,
challenges, and requirements. The rest of this section ana-
lyzes IoT access control models from the literature. The
models are categorized according to their foundational
model, viz.,, RBAC, ABAC, UCON, and CapBAC.

IoT Access Control Models Based On RBAC

The basic concept of the role-based access control (RBAC)
model [20], [43] is that permissions are associated with roles,
and users are made members of appropriate roles, thereby
acquiring the roles’ permissions. In [44], the authors
extended RBAC by introducing context constraints. How-
ever, they mainly focused on the environment of web serv-
ices. Researchers in [18], [45] proposed two different
solutions, but both of them are focused on Web of Things
[46], [47]. Their models are not adequate for smart homes. In

the first solution, the architecture is completely centralized
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in a central access control decision facility coupled with a
database. Access control decisions are taken outside the
house, requiring a live connection and increasing the attack
surface. On the other hand, the main drawback of the second
solution is the strong attachment to Social Network Services
(SNS). Resource owners and requesters must have an SNS
profile or account to interact with each other, which is
unsuitable in the case of smart homes where we have kids
that may not have a social network account, and we may
have workers with whom one may not want to connect in
social networks, like a plumber who should access the house
for one time. Moreover, this solution introduces the SNS pro-
vider as a trusted third party. The RBAC model for IoT was
also adopted in [48], [49]. However, the authors focus on pro-
viding an authentication protocol, while they only gave a
high level overview of their RBAC model. Many works adapt
the RBAC model to IoT [6], [50]. However, the use of
resource-constrained devices is rarely addressed. Moreover,
as we mentioned in Section 2, RBAC-based models cannot
handle dynamic attributes.

IoT Access Control Models Based on ABAC

Different attribute-based access control (ABAC) models
have been proposed in the literature (e.g., [21], [51]). In
ABAC, access is granted according to attributes associated
with the user and resource. In [52], and [53] the authors pro-
posed sophisticated attribute-based encryption (ABE) mod-
els for smart grids. However, they did not discuss the
ABAC models that they considered. Moreover, the ABE
model may not be appropriate for computationally con-
strained devices as in smart things. In [54], the authors pro-
vided an attribute-based signatures approach to support
anonymous access control. In [55], the authors introduced a
formalized dynamic and fine-grained ABAC model for the
smart car use cases. Bhatt et al. [56] proposed a conceptual
attribute-based access control and communication control
model for IoT. However, their access control model does
not capture environment attributes.

IoT Access Control Models Based on CapBAC

Capability-based access control (CapBAC) utilizes the
concept of capability, first introduced in [57], as a token or
key that gives the possessor permission to access an entity
or object in a computer system. Much work has been done
in the literature using CapBAC in IoT. The major drawback
of the CapBAC model is that it requires all devices to imple-
ment CapBAC, which is unlikely given the heterogeneity of
the home smart things. Moreover, in CapBAC individual
devices or gateways should act as policy decision points,
which can be inconvenient on computationally and power
constrained devices. Authors in [38] give a survey on solu-
tions proposed using the CapBAC model.

IoT Access Control Models Based on UCON

The distinctive properties of usage control (UCON)
beyond traditional ABAC are the continuity of access deci-
sions and the mutability of subject and object attributes [58],
[59], [60]. A few solutions have been proposed in the litera-
ture based on UCON. However, these models cannot be
adopted yet for various reasons. In [61], the model is pro-
posed as a Device to Services (D-S) access control model.
Moreover, no implementation was provided; only two theo-
retical experiments were introduced and assessed. In [62],
the authors mainly focused on providing a distributed Peer-
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to-Peer (P2P) architecture. They did not consider how to use
their system to grant users access to different smart things in
the house. In contrast, in our model, we demonstrated by use
cases study and implementation how to use our model to
control users” access to smart things. Finally, unlike our
model, in [63], the authors did not consider justifying and
illustrating the fitness of their model for smart home IoT
access control challenges.

IoT Access Control Models Based on Blockchains

Some solutions built on blockchain technology have been
proposed (e.g., [64], [65], [66]. However, as [65] described,
blockchain technology has some technical characteristics
that could limit its applicability. First, cryptocurrency fees
are a fundamental part of blockchain-based platforms, and
all transactions include a fee. Second, transactions take time
to get accepted into the blockchain, impacting processing
time.

IoT Access Control Models Based on Other Models

In the literature, several other access control models for
IoT have been proposed. For instance, in [67] the authors
proposed a certificate-based device access control model in
an IoT environment. Researchers in [17], [38], [39], [40], [41]
have conducted surveys on different IoT access control
models in the literature.

Recent research by [2] outlined a new perspective on
home access control policies. According to them, smart
home IoT has unique characteristics that require rethinking
access control. Nevertheless, very few IoT solutions are spe-
cifically designed to meet smart home IoT requirements.
Here are some examples. ABAC access control framework
for smart homes is described in [5]. However, use cases and
performance evaluations are lacking. The authors in [68]
developed GRBAC, which introduced the notion of environ-
ment and device roles to capture environmental conditions
and to enable device categorization, respectively, but did not
give a formal model. Subsequently, they provided a brief but
incomplete formalization without implementation [69]. Fur-
thermore, in [70], an identity-based encryption model was
described to implement a function-based access control
model in smart homes. Authors of [71] presented a protocol
to secure and authenticate smart homes. In addition, some
researchers [72] have created a multi-user, multi-device
access control mechanism for a smart home. The authors in
[73] considered the ABAC model presented in [21] and pro-
vided an enforcement architecture model for smart home
IoT. Based on He et al analysis [2] and Ouddah et al survey
[38], the authors in [15] recently proposed a criteria for home
IoT access control models. Accordingly, they proposed the
EGRBAC model. It is an RBAC-based policy model for smart
home IoT access control that complies with both[2], and [15]
characteristics. Comparing EGRBAC to traditional RBAC, it
incorporates contextual environmental changes and differ-
ent device and permission characteristics. Hence, it rebuts
the argument that RBAC-based models are unsuitable when
handling the environment and device or permissions charac-
teristics. However, their model can not capture dynamic
attributes. Recently, Ameer et al. [19] provided an ABAC-
based access control model for smart home IoT. However, as
mentioned in Section 2 ABAC-based models cannot limit the
permissions available for each user. Moreover, administra-
tion tasks are more complicated in ABAC-based models than
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in RBAC-based models. Few hybrid access control models
that combine ABAC and RBAC features were developed
in the literature [8], [9], [74], [75]. However, non of them
developed explicitly to meet smart home IoT challenges. Fur-
thermore, as [76] described, none of them provided an imple-
mentation for their model. Moreover, except for [74] they
all followed the dynamic role approach. Recently, some
researches suggested the use of activity-centric access control
[771, [78], [79] and the score-based access control [80] in IoT
application domains. However, these ideas are still in their
early preliminary stages and have not yet formed into actual
policy models.

4 HYBAC;- MODEL

This section introduces the HyBACrc model. The model is
conceptually depicted in Fig. 1 while formal definitions are
given in Tables 1 and 2. HyBACg( is a hybrid model that is
built on top of EGRBAC. We followed a role-centric approach
in developing HyBACkc. In general, we have two types of
attributes that capture different users, devices, and environ-
ment characteristics. These types are static attributes and
dynamic attributes. Static Attributes tend to remain static
(they evaluate to the same values) over a long period. Setting
and changing the values of static attributes may require
administrator intervention, for example, the user relationship
to the house, the danger level of the device, etc. On the other
hand, dynamic attributes are constantly changing due to vari-
ous circumstances, possibly rapidly and unpredictably, for
instance, user location, device temperature, etc. Values of
dynamic attributes are automatically determined by sensors
deployed in the smart home and under homeowner control.
In this role-centric approach, relatively static attributes (for
users, sessions, and devices) define the user’s and device’s
roles. On the other hand, dynamic attributes define attribute-
based rules within the scope of the relatively static roles. In
this way, we avoid costly designs that might result from
purely using roles or attributes. For example, consider a sys-
tem with ten user attributes, four static and six dynamic. In
the worst case, this could result in 2'° roles in RBAC or 219
rules in ABAC. Establishing a policy structure based on the
four static and six dynamic attributes amounts to a worst-
case of 16 roles and 64 rules while effectively separating the
policy concerns of the relatively static and intrinsically
dynamic attributes. Moreover, using this hybrid design sol-
ves both problems of role explosion and the need for a
dynamic role activation and deactivation mechanism when
trying to capture dynamic attributes in role-based access
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TABLE 1
HyBACRr: Model Formalization Part |: Basic Sets and Dynamic Attributes

Users, Roles and Sessions
—U and R are sets of users and roles respectively (home owner specified)
—UA CU x R, many to many user role assignment relation (home owner specified)
We define the derived function roles(u) : U — 2%, where: roles(ui) = {r; | (ui,r;) € UA}
—S is the set of sessions (each session is created, terminated and controlled by an individual user)
—SU C S x U, many to one relation assigning each session to its single controlling user
We define the derived function user(s) : S — U, where: user(s;) = u; such that (s;,u;) € SU
—SR C S x R, many to many relation that assigns each session to a set of roles that can be changed by the controlling user
We define the derived function roles(s) : S — 2%, where: roles(s;) = {r; | (si,7;) € SR}
It is required that roles(s) C roles(user(s)) at all times
Devices, Operations, Permissions and Device Roles
—D is the set of devices deployed in the smart home (home owner deployed)
—OP and P C D x OP are sets of operations and permissions respectively (device manufacturers specified)
—DR is the set of device roles (home owner specified)
—PDRA C P x DR, many to many permissions to device roles assignment (home owner specified)
We define the derived function droles(p) : P — 2PF, where: droles(p:;) = {dr; | (pi,dr;) € PDRA}
Environment Conditions and Environment Roles
—EC! is the set of boolean environment conditions (determined by sensors deployed in the smart home under home owner control)
At any moment each ec; € EC is either True or False depending on the state of the corresponding sensor
—FER is the set of environment roles (home owner specified)
—EA C 2P€ x ER, many to many environment role activation relation (home owner specified)
At any moment, er € ER is activated iff (3(eci1, eciz, . .., ecin), er) € EA)[eci1 Aecia A ... A ecin = True| at that moment
Role Pairs
—RP C R x 258 many to many role pairings of user role and subsets of environment roles (home owner specified)
For rp = (ri, ER;) € RP, we define rp.r = r; and rp. ER = ER;
We define the derived relation RPRA C RP x R where: RPRA = {(rpm,7n) | rpm € RP ATpm.r =10}
We define the derived relation RPEA C RP x 2F% where: RPEA = {(rpm, ERy) | rpm € RP A ER,, = rpm.ER}
Role Pair Assignment
—RPDRA C RP x DR, many to many RP to DR assignment (home owner specified)
Constraints
—PRConstraints C 2° x 2%, many to many permission-role constraints relation (home owner specified)
For each (P;, R;) € PRConstraints it is required that
(Vpm € P;)(Yry € Rj)(¥(rpp,dry) € RPDRA)[(pm,dry) ¢ PDRAN rpp.r # ry)
—S8SDConstraints C R x 2T, many to many static separation of duty constraints relation (home owner specified)
For each (7, R;) € SSDConstraints it is required that (Yu € U)(Vr € R;)[(u,7) € UA => (u,r;) ¢ UA]
—DSDConstraints C R x 2%, many to many dynamic separation of duty constraints relation (home owner specified)
For each (r;, Rj) € DSDConstraints it is required that (Vs € S)(Vr € R;)[(s,7) € SR = (s,r;) ¢ SR]
Dynamic Attributes
—DUSA and DDA are finite sets of dynamic user and session attribute functions and dynamic device attribute functions respectively,
where DUSA N DDA = () for convenience (determined by sensors deployed in the smart home under home owner control)
—Each session s inherits a subset of the dynamic attribute functions of its unique user creator (controlled by the session creator user(s))
For every inherited attribute function att € DUSA, att(s) = att(user(s)) at all time
For every non-inherited attribute function att € DUSA, att(s) is undefined and its use in any logical formula renders that formula false
—For each att € DUSAU DDA, Range(att) is the attribute range which is a finite set of atomic values
—attType : DUSAU DDA — {set, atomic}.
—Each att € DUSA U DDA correspondingly maps users in U or sessions in .S, or devices in D to atomic or set attribute values. Formally:

att:UorSorD — {R};z:zlgi((ftftz;), if attType(att) = atomic
2rang ,  if attType(att) = set
At any moment, the value of att for a given user or device is automatically determined by sensors deployed in the smart home
Attributes Authorization Function
—Authorization(s : S,op : OP,d : D) is a logic formula defined using the grammar of Table 2 (home owner specified)
It is evaluated for a specific session s;, device d; and operation opy. as specified in Table 2
CheckAccess Predicate
—CheckAccess is evaluated when session s; attempts operation opy on device d; while the environment conditions in £C are True
—CheckAccess(si, opk, dj, E;) evaluates to True or False using the following formula:
Authorization(s;, opi,d;) A
(3(rpm,drn) € RPDRA) [((dj, 0pk),drn) € PDRA A (8i,7pm.r) € SR A
rpm.ER C {er € ER | (3EC] C EC))[(EC],er) € EAJ}]

TABLE 2
HyBAC - Model Formalization Part II: Attributes Authorization Function

Attributes Authorization Function

—Authorization(s : S,0p : OP,d : D) is a propositional logic formula returning true or false specified using the following grammar.

o == term | term A term |term V term | (term) | —~term |3z € set.a |V € set.a
term ::= setsetcompareset | atomic € set | atomic ¢ set | atomicatomiccompareatomic
setcompare :=C | C |
atomiccompare :=< | = | <
set = dusa(s) | dda(d) | roles(s) | droles((op, d)), for attType(dusa) = set and attType(dda) = set
e atomic ::= dusa(s) | dda(d) | value, for attType(dusa) = atomic and attType(dda) = atomic
—For a specific session s;, device d; and operation opy, the authorization function Authorization(s;, opy, d;) is evaluated by substi-
tuting the actual attribute values of dusa(s;),
dda(d;), roles(s;) and droles((opx, d;)) for the corresponding symbolic placeholders and evaluating the resulting logical formula
to be True or False. Any term that references an undefined attribute value is evaluated as False

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 14,2023 at 22:11:32 UTC from IEEE Xplore. Restrictions apply.



4038

control models (including the EGRBAC model), as discussed
in Section 2. The basic components of HyBACp: are dis-
cussed below.

Basic Sets and Assignmnets. Users (U) set refers to humans
interacting with smart home devices as authorized. Roles
(R) are similar to the traditional RBAC user’s roles. In smart
homes, however, the role is a way to express the relation-
ship between the user and the house’s family, including
parents, kids, teenagers, babysitters, etc. The many-to-many
UA relation specifies that one user can have more than one
role. An example of a user with two different roles is a
neighbor who also is a plumber who needs temporary
access to repair an appliance and therefore should have dif-
ferent privileges as a worker. Sessions (S) are created by
users. Each user creates one or more sessions during which
he may activate a subset of his assigned roles. A user might
have multiple sessions active concurrently and asynchro-
nously. Each session is linked to a unique, controlling user
through the many to one SU relation. Each session is
mapped to a set of associated roles through the many to
many SR relation. Smart home devices are represented by
the set of devices (D). The operation (OP) set refers to the
actions allowed to be performed on devices as specified by
device manufacturers. The approval of an operation to be
performed on a device is called permission, which is a
device operations pair. The permissions set (P) is a subset
of D x OP. The set device roles (DR) represents a mean for
categorizing permissions of different devices. For example,
we can categorize the dangerous permissions of various
smart devices by creating a device role called dangerous
devices and assigning dangerous permissions (such as turn-
ing on the oven, turning on the gas stove, and opening and
closing the front door lock) to it. Assigning different permis-
sions to different device roles is captured through the many-
to-many set of assignments PDRA. Environment roles (ER)
represent environmental circumstances, such as daytime/
nighttime. Environment roles are turned on/off (i.e., trig-
gered) by subsets of Environment Conditions (EC) such as
daylight. These environmental conditions must be active
together to trigger a specific environmental role through the
EA relation. The role pairs (RP) set represents different
combinations of roles and environment roles’ subsets. Each
role pair rp has a role part rp.r, the single role associated
with rp, and an environment role part rp.ER, the subset of
the environment roles associated with rp. Since some ER
subsets may not be meaningful, the permissible role pairs
RP are defined as a subset of R x 2%, Each role has one or
more role pairs associated with it through the relationship
RPRA. Each role pair is associated with a subset of ER
through RPEA. RPDRA binds these components together
by assigning device roles to role pairs. Accordingly, for
each role pair rp, the single role associated with it through
RPRA has access to all device roles assigned to it through
RPDRA when the set of environment roles associated
with it through RPEA are active.

Derived Functions. There are three derived functions that
are useful to define. First, the function roles(s) which takes
a session s as an input and returns the set of roles assigned
to s. Second, the function users(s) takes a session s as an
input and returns the unique user who created s (constant
for the session lifetime). Third, the function droles(p) takes
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permission p as an input and returns the set of device roles
to which the permission p is assigned.

In HyBACk¢, at any specific moment and depending
upon the current active roles in a session that belong to a
user u and the current active environment conditions (which
determine the current active environment roles), some role
pairs are active. Hence, the maximum set of permissions that
may currently be available for the user u is equal to the set of
permissions assigned to the device roles which are assigned
to the current active role pairs. However, which permissions
among these maximum permissions are currently available
for this user is further determined by the current values of
the dynamic user and session attributes and the current val-
ues of the dynamic device attributes.

Dynamic Attributes. These components are shown as grey
rectangles in Fig. 1. Attributes are characteristics that are
used in access control decisions. An attribute is a function
that takes an entity, such as a user, and returns a specific
value from its range. A finite set of atomic values gives an
attribute range. An atomic valued attribute will return one
value from the range, while a set valued attribute will return
a subset of the range. As discussed earlier, dynamic attrib-
utes change due to different rapidly changing conditions.
An example of users’ dynamic attributes can be user loca-
tion, user temporal health condition, user waking status,
etc. Similarly, we may be interested in device location, tem-
perature, usage status, etc. Dynamic user and session attri-
bute functions (DUSA) are the set of attributes associated
with both users and sessions. Each session s inherits a sub-
set of its unique user creator’s dynamic attributes. If a ses-
sion s inherits a dynamic user session attribute dusa from
his user creator user(s), then it is required that dusa(s) =
dusa(user(s)). How the inheritance process happens is out-
side the scope of HyBACR¢ operational model and can be
considered as part of an administrative model. The dynamic
device attribute functions set (DDA) is the set of dynamic
attributes associated with devices. In HyBACprc, we do not
consider environment and operations dynamic attributes
for the following reasons. First, regarding the element envi-
ronment roles (ER), the way it is designed and associated
with the role pairs (RP) element enables it to capture both
static and dynamic environment attributes. A role pair will
be active only if the set of associated environment roles are
currently active and triggered by their corresponding envi-
ronment conditions. Second, operations (OP) are basically
defined by the manufacturer and usually have a static
nature, such as dangerous or benign.

Attributes Authorization Function (Rules). An attribute
authorization function is a logical formula evaluated for
each access decision. It is defined using the grammar of
Table 2. For a specific session s;, device d; and operation op;.
the authorization function Authorization(s;, opy,d;) is eval-
uated by substituting the actual attribute values of dusa(s;),
dda(d;), roles(s;) and droles((opy, d;)) for the corresponding
symbolic placeholders and evaluating the resulting logical
formula to be True or False. The output of this function
defines whether the requesting session s; is authorized to
perform the requested operation op;, on the requested device
d; at the current instance of time according to the current
dynamic attributes values of s; and the current dynamic
attributes values of d;
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Check Access Predicate. The bottom part of Table 1 formal-
izes the check access predicate of HyBACpc. Consider a ses-
sion s; which attempts to perform operation op;, on device d;
when the subset of environment conditions EC; are active.
The access will be granted if and only if both of the follow-
ing are true:

1) The maximum set of permissions available for the
session s; allows it to perform the operation op; on
the device d; according to the role membership and
role activation requirements. These are specified in
the last two lines of the authorization predicate in
Table 1. The role membership requirements can be
stated in words as follows. There is a role pair rp,
and a device role dr, assigned to each other in
RPDRA such that the following conditions are true:
(i) dr, is assigned to the permission (d;,op;) in
PDRA, (ii) rp,,.r is one of the active roles of s; (as
given in SR), and (iii) each environment role er €
rpm-ER is active because it is activated by a subset of
the currently active environment conditions EC).

2)  The authorization function Authorization(s;, opx, d;)
evaluates to TRUE. This indicates that s; is allowed
to perform op;, on d; according to the current
dynamic attributes values of s; and d;.

Constraints. Constraints are invariants that must never be
violated. In HyBACprc, we have three types of constraints,
as shown in the following.

Permission-Role Constraint. These constraints prevent RPDRA
assignments that would enable specific roles to access specifi-
cally prohibited permissions. Formally, PRConstraints C
2P x 28 constitute a many to many subsets of permissions to
subsets of roles relation. The basic idea in PRConstraint is
that: For every (P;, R;) in the set of PRConstraints, and for
every p, € P and r, € Rj, it is forbidden to assign any
device role dr, that the permission p,, is assigned to, to any
role pair rp, with r, as the role part of it ( formally
(rpm,dry) ¢ RPDRA).

Static Separation of Duty (SSD). It is the familiar SSD in
RBAC. It constrains the assignment of roles to users. Thus, if a
user is authorized to be a member of one role, he or she is not
authorized to be a member of another conflicting role [81].

Dynamic Separation of Duty (DSD). It is the familiar DSD
in RBAC. DSD allows users to be members of roles that do
not present a conflict of interest when acted independently
as part of different sessions but create conflicts when acted
upon simultaneously in the same session [81].

HyBACk( is an operational access control model. Man-
aging and enforcing different types of constraints can be
considered part of an administrative access control model,
which is outside the scope of this manuscript.

4.1 Use Case Demonstration

Here we present one use case scenario to demonstrate how
to configure HyBACgrc components to enforce specific
access control policies. This use case has the following objec-
tives. (a) Authorize teenagers to use dangerous permissions
in kitchen devices (open the oven and turn on the oven)
only when a parent is in the kitchen and the current temper-
ature of the oven is less than or equal to 150°. (b) Authorize

teenagers to unconditionally use nondangerous permissions
Authorized licensed use limited to:
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in kitchen devices (close the oven, turn off the oven, open
and close the fridge). (c) Authorize teenagers to use the front
door lock permissions (lock and unlock) if they are temporar-
ily granted those permissions by one of the parents. (d)
Allow teenagers to use entertainment devices permissions
during weekends evenings and nights if the accessed device
is not in use by someone else. (e) Allow kids to use kids
friendly operations in entertainment devices which are, turn-
ing on and off the device and rated G content only during
weekend evenings and if the accessed device is not in use by
someone else. (f) Finally, allow parents to use any operation
in any device unconditionally. For this use case, HyBACg¢
will be configured as shown in Fig. 2.

First, we configure the maximum permissions available for
each user. We have five users bob, alex, suzanne, john, and
anne respectively assigned to roles parents, kids, kids,
teenagers, and teenagers. The devices include Oven, Fridge,
FrontDoor Lock, PlayStation, and TV. The device Oven has
four operations, turning on the oven Ongyp, turning off the
oven Offp,.,, open the oven Openp,,, and close the oven
Closepyen- The device Fridge has three operations, open the
fridge Openpridge, close the fridge Closepiqq, and check the
fridge temperature Check_temperaturepyiqe. The device
FrontDoorLock has two operations, lock Lock grontDoorLock; and
unlock UnlockgrontDoorLock- The PlayStation device has two
operations, turning on Onpg and turning off Off ps. Finally,
the TV device has four operations, turning on Onyy, turning
off Offy,, rated G content Gpy, rated PG content PGy, and
rated R content Ry We have five device roles. We assign the
oven permissions {Onoen, Openoyrn} to the device role
Dangerous _Kitchen_Permissions. We assign the oven per-
missions {Offpuens Closeoen} and all fridge permissions to
the Non_Dangerous_ Kitchen_Permissions device role. More-
over, we assign all front door lock permissions to the device
role Front_Door_Lock. All the permissions of the 7V and the
PlayStation devices are assigned to Entertainment_Devices
device role, and an appropriate subset of these permissions
are assigned to Kids_Friendly_-Content device role. EC' com-
prises  Parent_Is_In_The_Kitchen, weekends, evenings,
nights, and TRUE, respectively active when a parent is in the
kitchen, on weekends, during the evening, during the night,
and always. The environment role Teenagers_Kitchen_Time
is active when the environment condition Parent_Is_In_
The_Kitchen 1is active. The environment role Kids_
Entertainment_T"ime is active when both environment condi-
tions weekends and evenings are active. Similarly, the environ-
ment role Teenagers. Entertainment_ Time is active when
weekends and evenings or weekends and nights environment
conditions are active. The environment condition Any_Time
is always active.

RPDRA assignments specify the maximum permissions
available for each role according to the device roles assign-
ments and the current active environment roles. The first
assignment indicates that kids can access the permissions
assigned to the device role Kids_Friendly_-Content when
Kids_Entertainment_Time is active. The second assignment
shows that teenagers can access FEntertainment_Devices
device role when the environment conditions Teenagers_
Entertainment_Time is active. The third assignment indi-
cates that teenagers can access the permissions assigned
to Dangerous_Kitchen_ Permissions when Teenagers_
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U = {bob, alex, suzanne, john, anne}, R = {parents, kids, teenagers}

P = Poven U Prridgge U PrrontDoorLock U Ppiaystation U Pry, where

Entertainment_Devices}

ER = {Teenagers_Kitchen_T'in

(kids, { Kids_Entertainment_Time}), (parents, { Any_Time})}

A~~~ o~~~

parents, { Any_Time}), Front_Door_Lock)}

Authorization(s : S,op: OP,d : D) =

(
(teenager € R(s) A Non_Dangerous_K
(teenager € R(s) A Entertainment_Dev
(
(

Fig. 2. HyBACR¢ use case configuration.

Kitchen_ Time environment role is active, whereas the
fourth assignment indicates that teenagers can access Non_
Dangerous_Kitchen_Permissions device role at any time.
Moreover, the fifth assignment shows that teenagers can
access Front_ Door_ Lock device role at any time. Finally, the
last four assignments indicate that parents are authorized
to access FEntertainment_Devices, Dangerous. Kitchen_
Permissions, Non_ Dangerous_Kitchen_Permissions, and
Front_ Door_ Lock device roles at any time.

Next, we configure the dynamic attributes. We introduce
one Boolean dynamic user and session attribute Front_
Door_Lock_Token, which is True when the homeowner has
granted this user a token indicating that this user can access
the front door lock device and False otherwise. The detailed
mechanism by which the homeowner grants a temporal
token for a specific user is outside the scope of the
HyBAC ¢ operational model and can be considered as part
of an administrative model. We also define three dynamic
device attributes: (1) Device_Temperature whose value is
determined by the device’s temperature. (2) UsingStatus to
indicate that a device is in use (True) or not (False). (3)
UsingUser, which maps each device to the user currently
using it (or is undefined if the device is not in use).

Finally, we define the authorization function as a disjunc-
tion of six conjunctive propositional clauses (rules). This
authorization function further constrains the maximum per-
missions available for each user based on the dynamic
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UA = {(bob, parents), (alex, kids), (suzanne, kids), (anne, teenagers),(john, teenagers)}

D = {Oven, Fridge, FrontDoor Lock, PlayStation, TV}, OP = OPoyen U O Pryigge U O Prrontpoor Lock U O Ppiaystation U OPry, where
OPoven = {O0n0ven, Offgrens OPenoven, Closeoven ts OPrridge = {Open pridge, Closerriage, Check_temperaturepriage},
O PrprontDoorLock = { LOCk prontDoor Lock; ULoCk pront Door Lock }» O Ppiaystation = {Onps, Off ps} ;OPpv = {Onpv, Offpy,, Grv, PGy, Rrv}

Poven = {Oven} x OPoyen, Prriage = {Fridge} x OPrriage; PrrontDoorLock = { FrontDoor Lock} x O PrrontDoor Locks
Priaystation = { PlayStation} x {On, Off}, Prv = {TV'} x {Onrv, Offry, Grv, PGrv, Rrv}
Let Py = {Oven} X {Onoyen, Openoyen}, Po = {Oven} x {Offpyen, Closeoyen}, Ps = {TV} x {Ongy, Offpy, Grv },
DR = {Dangerous_Kitchen_Permissions, Non_Dangerous_Kitchen_Permissions, Front_Door_Lock, Kids_Friendly_Content,

PDRA = Py x {Dangerous_IKitchen_Permissions} U (P U Pprigge) X {Non_Dangerous_IKitchen_Permissions} U
PrrontpoorLock X {Front_Door_Lock} U Pry x {Entertainment_Devices} U (P3 U Ppiaysiation) X {Kids_Friendly_Content}

EC = {Parent_Is_In_The_Kitchen, Weekends, Evenings, Nights, TRUE}
>, Kids_Entertainment_Time, Teenagers_Entertainment_Time, Any_Time}
EA = {({Parent_Is_In_The_Kitchen}, Teenagers_Kitchen_Time), ({weekends, evenings}, Kids_Entertainment_Time),
({weekends, evenings}, Teenagers_Entertainment_Time), ({weekends, nights}, Teenagers_Entertainment_Time), (TRUE, Any_Time)}

RP = {(teenager, {Teenagers_Kitchen_Time}), (teenager, {Teenagers_Entertainment_Time}), (teenagers, { Any_Time}),

RPDRA = {((kids, { Kids_Entertainment_Time}), Kids_Friendly_Contents),

(teenager, {Teenagers_Entertainment_Time}), Entertainment_Devices),

(teenager, {Teenagers_Kitchen_Time}), Dangerous_Kitchen_Permissions),

(teenagers, { Any_Time}), Non_Dangerous_Kitchen_Permissions),

(teenagers, { Any_Time}), Front_Door_Lock), ((parents, { Any_Time}), Entertainment_Devices),

(parents, {Any_Time}), Non_Dangerous_Kitchen_Permissions), ((parents, { Any_Time}), Dangerous_Kitchen_Permissions),
(

PRConstraints = {{(Oven, Onoven), (Oven, Off p,en ), (Fridge, Openpriage), (Fridge, Closeryiage) }, {kids})}

DUSA = {Front_Door_Lock_Token}, DDA = {Device_Temperature, UsingStatus, UsingU ser}
Front_Door_Lock_Token : w: U — {True, False}, Front_Door_Lock_Token : s : S — {True, False}
Device_Temperature : d : D — {x|x is an oven temperature}, UsingStatus : d : D — {True, False}, UsingUser :d : D — U

parents € R(s)) V (teenager € R(s) A Dangerous_Kitchen_Permissions € drole((op,d)) A Device_Temperature(d) < 150°) V
Citchen_Permissions € drole((op,d))) V
(s es € drole((op,d)) A (=UsingStatus(d) V UsingUser(d) = user(s)) V
teenager € R(s) A Front_Door_Lock € drole((op,d)) A Front_Door_Lock_Token(s) = True) V
kids € R(s) A Kids_Friendly_Contents € drole((op,d)) A (—UsingStatus(d) V UsingUser(d) = user(s))

attribute values. The first clause gives unconditional access to
parents. The following two clauses define teenagers” authori-
zation rules concerning dangerous and non-dangerous
kitchen permissions. The second clause authorizes teenagers
to access permissions belonging to the Dangerous_Kitchen_
Permissions device role if the permission device has a tem-
perature < 150°. The third authorization rule gives teenagers
access to Non_ Dangerous_Kitchen_Permissions uncondi-
tionally. The fourth authorization rule specifies that teenagers
can access Entertainment_Devices device role permissions
only if another user does not use the requested device. The
fifth authorization rule specifies that teenagers can access
Front_ Door_ Lock device role permissions only if they have
the front door lock token indicating that they were allowed to
access the front door lock permissions by one of the parents.
Finally, the last clause specifies that kids can access the per-
missions assigned to the Kids_Friendly_Content device role if
the requested permission’s device is not used by someone
else.

5 HYBAC,- MODEL

This section introduces the HyBAC 4 model. Fig. 3 concep-
tually depicts the model components. The model formal
definition is given in Tables 3 and 4. HyBAC ¢ model is a
hybrid access control model that is built on top of HABAC.

We followed an attribute-centric aéyEproaCh in developing
Xplore. Restrictions apply.
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Authorization

Permission-role
Constraints

Association
Creator
Inheritance

Constraints on
Session attributes

Constraints on User | ‘_
attributes H f

ENVIRONMENT
STATE
{current}

Constraints

Fig. 3. Smart home loT HyBAC s¢ model.

HyBAC ¢, where the user role is just one of many user
attributes. In Section 2, we mentioned that one of the
HABAC limitations is that it cannot limit the set of permis-
sions available for each user as in EGRBAC. To solve this
limitation in HyBAC 4¢, we introduced the concept of Roles
(R) (aka anti-roles), as we will explain in the following. The
basic components of HyBAC 4¢ are discussed below.
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Basic Sets and Functions. Users (U) are humans interacting
directly with smart things. Users create sessions (S) to per-
form some actions in the system. The session can only be
terminated by the user who created it. The function users(s)
is used to associate each session s with its unique user crea-
tor. Environment States set, ES = {current}, is a singleton
set that only includes the state “current”. The current state
is the picture of the environment in the present time instant.
The component might be extended to include other instants
of time, such as last week and last year, for example, ES =
{current, lastweek, lastyear}. Devices (D) are smart home
devices (smart things), such as smart door locks. Operation
(OP) refers to the actions performed on devices following
manufacturer specifications. Every device d is mapped to
the set of valid operations on d by the function ops(d).

Attributes are characteristics of users/sessions, devices,
operations, and environment states which are used in access
control decisions. Attributes are functions that take an
entity, such as a user, and determine a specific value from
its range. For each attribute function att;, there is a range of

TABLE 3
HyBAC 4 Model Formalization Part |: Basic Sets and Components

Basic Sets and Functions
—U is a finite sets of users (home owner specified)

—S is the set of sessions (each session is created, terminated and controlled by an individual user)
—The function user(s) : S — U maps each session to its unique creator and controlling user

—D is the set of devices deployed in the smart home (home owner deployed)
—OP is the set of possible operations on devices (device manufacturers specified)

—The function ops : D — 297 specifies the valid operations for each device (device manufacturers specified)
—ES = {current} is a singleton set where current denotes the environment at the current time instance

Attribute Functions and Values

—USA, DA, OPA and ESA are user/session, device, operation and environment-state attribute functions respectively,

where for convenience we require USA, DA, OPA and E'S A to be mutually exclusive

—Each session s inherits a subset of the attribute functions in USA from its unique user creator (controlled by the session
creator user(s)). For every inherited attribute function att € USA, att(s) = att(user(s)) at all time
Unless otherwise specified use of a non-inherited session attribute in a logical formula renders that formula false

—For each attribute att in USAU DAUOPAU ESA, Range(att) is the attribute range, a finite set of atomic values

—attType : USAUDAUOPAUESA — {set, atomic}.

—Each att € USAU DAUOPAU ESA correspondingly maps users in U/sessions in S, devices in D, operations in OP or

the environment state current to atomic or set attribute values. Formally:

att : U or S or D or OP or {current} — {

Range(att),
2Han,ge(af,t) ,

if attType(att) = atomic
if attType(att) = set

—Every att € USAU DAUOPAUESA, att is designated to be either a static or dynamic attribute where
dynamic attributes must have corresponding sensors deployed in the smart home (under home owner control)
—Static attribute ranges and values are set and changed by administrator actions (by home owner or device manufacturers)
—Dynamic attribute ranges and values automatically determined by sensors deployed in the smart home (under home owner control) or

set and changed by home owner.
Constraints

—UAConstraint C UAP x 2UAP is the user attribute constraints relation (home owner specified) where
UAP = {(usa,v) | usa € USA A v € Range(usa))}

Each uac = ((usax,vy), UAP;) € UAConstraint specifies the following invariant:

(Vur € U)(V(usam,vn) € UAP;)[usaz(w) = vy = usam(w) # vnl,
(Vuy € U)(Y(usam,vn) € UAP;) vy € usaz(ur) = vn ¢ usan(w)],

if attType(usa,) = attType(usan) = atomic
if attType(usas) = attType(usam) = set

—SAConstraint C UAP x 2U4F is the session attribute constraints relation (home owner specified)

Each sac = ((usax,vy), UAP;) € SAConstraint specifies the following invariant:

Vs € S)(Y(usam,vn) € UAP;)[s; inherits usaq, A usaz(user(s;)) = vy A usam (user(s;)) = v, = s; does not inherit usa,],
J Yy

if attType(usas) = attType(usam) = atomic

(Vs1 € S)(Y(usam,vn) € UAP;)[s; inherits usas A vy € usas(user(s;)) Avn € usam(user(s;)) = s; does not inherit usanm,],

Attributes Authorization Function

if attType(usas) = attType(usam) = set

—Authorization(s : S,op : OP,d : D, current : ES) is a logic formula defined using the grammar of Table 4 (home owner specified)
It is evaluated for a specific session s;, operation opy, device d; and environment state current as specified in Table 4

Roles (aka Anti-Roles)
— R is a finite set of roles (aka anti-roles) (home owner specified)

—The function roles : U — 2% maps each user to a subset of roles (home owner specified)

—PRConstraints C 27 x 2%, many to many permission-role constraints relation (home owner specified)

where P C D x OP is a derived relation such that (d, op) € P < op € ops(d)

CheckAccess Predicate

—CheckAccess is evaluated when session s; attempts operation opy, on device d; in context of environment state current
—CheckAccess(si, opk, dj, current) evaluates to True or False using the following formula:

opr € ops(d;) N Authorization(si,opk,d;, current)) A
(V(P:, Ry) € PRConstraints)[((opk,d;) ¢ Px) V (roles(user(si))) N Ry = ¢]
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TABLE 4
HyBAC 4 Model Formalization Part Il: Attributes Authorization Function

Attributes Authorization Function

—Authorization(s : S,op : OP,d : D, current : ES) is a propositional logic formula returning true or false specified using the following grammar.

setcompare ::=C|C|Z

.
.
.
o atomiccompare :=<|=|<
.
.

« = term | term A term | term V term | (term) | —term | Jx € set.a | Vo € set.«
term ::= set setcompare set | atomic € set | atomic ¢ set | atomic atomiccompare atomic

set ::= usa(s) | opa(op) |7esa(current) | da(d), where attType(usa) = attType(opa) = attType(esa) = attType(da) = set
atomic ::= usa(s) | opa(op) | esa(current) | da(d) | value, where attType(usa) = attType(opa) = attType(esa) = attType(da) = atomic

—For a specific session s;, device d; and operation opy, the authorization function Authorization(si,opk,d;, current) is
evaluated by substituting the actual attribute values of usa(s;), da(d;), opa(opy) and esa(current) for the corresponding
symbolic placeholders and evaluating the resulting logical formula to be True or False

Any term that references an undefined attribute value is evaluated as False

possible values Range(att;) that att; can be evaluated to. An
atomic valued attribute will return one value from its range,
while a set valued attribute will return a subset of its range.
Different attributes, whether atomic or set valued attributes,
can be categorized into two types: static and dynamic. User/
Session attribute functions set (USA) is the set of attributes
associated with both users and sessions. Sessions inherit a
subset of the attributes of their unique creator. If a session s
inherited a user session attribute usa from his creator user
user(s), then it is required that usa(s) = usa(user(s)). How
the inheritance process happens is outside the scope of
HyBAC 4¢ operational model and can be considered as part
of an administrative model. DA is a set of attribute functions
related to smart devices, such as “kitchen devices”,
“ventilation devices”, and “Bob’s devices”. OPA is the set of
attributes associated with operations. For instance, we may
want to characterize dangerous kitchen operations, so we
create an operation attribute entitled “Dangerous Kitchen
Operations” and associate it with those operations. Different
environment characteristics such as “time” and “weather”
are captured through the environment state attribute func-
tions set (ESA). User/session attribute functions and envi-
ronment state attribute functions are total functions, while
operation attribute functions and device attribute functions,
on the other hand, are partial functions (since we may have
some devices or operations that are not assigned to some
attributes).

Roles(R). R is a finite set of roles (aka anti-roles) specified
by the homeowner. The homeowner assigns different roles
to different users. The function roles(u) maps each user u €
U to a subset of roles (which are assigned to u by the home-
owner). The name anti-roles came from the idea that these
roles are defined to prevent unwanted access in permission-
role constraints, as explained in the following.

Constraints. These are invariants that must never be vio-
lated. In HyBAC 4¢ and similar to HyBACR¢, we have three
types of constraints as described below.

Permission-Role Constraints. HyBAC4¢ incorporates con-
straints that prevent specific users from accessing specific
operations on specific devices. By assigning different users
to different roles, permission-role constraints are then
defined as a many to many permissions to role constraints
relation. These constraints enable HyBAC 4¢ to limit the set
of permissions available for each user. For example, having
a permission role constraint prc; € PRConstraints, where
pre; = ({(dy, opr) }, {rm}) implies that a session s; created by
a user uj, where 7, € roles(u;), cannot access the operation
op; on the device dj.. Permission-role constraints are checked

during execution time as part of the check access predicate.
This is unlike the case in EGRBAC and HyBACRrc where
the permission-role constraints are enforced at assignment
time to prevent prohibited assignments. As we discussed in
Section 2, HABAC is not capable of limiting the set of per-
missions available for different users; hence it cannot sup-
port this type of constraint.

Constraints on User Attributes. User’s attributes’ con-
straints represent the static separation of duty concept. It
imposes restrictions on user attributes. If a specific attribute
value is assigned to a user, the user is prohibited from being
assigned to another attribute value. In defining this type of
constraint, we use the user attribute pairs set UAP as shown
in Table 3. UAP is a set of pairs. Each pair is a pair of a user
attribute function and a user attribute function’s value. For
each pair (usa,v) in a UAP set. usa is an attribute function
in the user/session attribute functions set, while v is a value
in the usa attribute function range of values. This is formally
defined as following: UAP = {(usa,v)|usa € USA A v €
Range(usa))}. For example, consider the following user
attribute constraint

UAConstraint = {uac;}
uac; = ((Relationship, kid),
{(Adult, True), (Front Door LockToken, True)})

This constraint implies that for any user u, with an attribute
value pair (Relationship, kid) (in other words for any user
u, with Relationship(u,) = kid), that user u, cannot have
the following set of attribute functions values pairs {(Adult,
True),(Front Door LockToken, True)}. In other words, u, can-
not be assigned to: (1) the attribute Adult with the value
True and (2) the attribute FrontDoorLockToken with the
value True.

Constraints on Session Attributes. These constraints enforce
restrictions on session attributes. Here, an individual user
may be assigned to different attributes simultaneously, and
there is no conflict of interest when these attribute values
are inherited independently by different sessions of the
same user. However, there is a conflict of interest when
inherited by the same session. In defining this type of con-
straint, we use the user attribute pairs set UAP similarly to
how we use them in users’ attributes’ constraints as shown
in Table 3. The difference is that users’ attributes’ con-
straints are enforced on the set of attributes available for
each user. In contrast, sessions’ attributes’ constraints are
enforced on the set of attributes that can be inherited by one
session.
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FamilyRole : U — {parent, kid, teenager}

D = {Oven, Fridge, Front Door Lock, TV, PlayStation}
OP = OFopyen U OPprigge U OPrrontpoorLock Y O Ppiaystation U O Pry, where:

DA = {DangerouseKitchenDer
DangerouseKitchenDevices : D — {True, False}

FrontDoor LockDevice : D — {True, False}

Entertainment De D — {True, False}
Entertainment De

DeviceTemperature : D — {z|x is an oven temperature}

UsingStatus : D — {True, False}

UsingUser : D — U

OPA = {KidsFriendlyContent, Dangerouse KitchenOperation}
KidsFriendlyContent : OP — {True, False}

KidsFri

KidsFriendlyContent(Offpg) = True

DangerouseKitchenOperation : OP — {True, False}
Dangerouse chenOperation(Onoyen) = Dangerouse
DangerouseKitchenOperation(Offp,e,) = Dangerous

ParentInKitchen : ES — {True, False}

Authorization(s : S,op : OP,d : D, current : ES) =
(parent € FamilyRole(s)) V

(teenager € FamilyRole(s) A ~DangerouseKitchenOperation(op)) V

Fig. 4. HyBAC 4 use case configuration.

HyBAC ¢ is an operational access control model. Man-
aging and enforcing different types of constraints can be
considered part of an administrative access control model,
which is outside the scope of this manuscript.

Attributes Authorization Function. An attribute authoriza-
tion function is a boolean function that is evaluated for each
access decision. It is defined using the grammar of Table 4.
For a specific session s;, operation opy, and device d; the
authorization function Authorization(s;,opy,d;, current) is
evaluated by substituting the actual attribute values of
usa(s;), opa(opy), da(d;), and esa(current) for the correspond-
ing symbolic placeholders and evaluating the resulting logi-
cal formula to be True or False. Any term that references an
undefined attribute value is evaluated as False. Term refers
to any atomic logical declarative sentence. An atomic sen-
tence is a type of declarative sentence that is either true or
false and cannot be broken down into other sentences [82].

Check Access Predicate. This predicate is evaluated for
each access request. When a session s; attempts operation
opi, on device d; in context of environment state current the
CheckAccess(s;, opy, d;, current) predicate evaluates to True
or False. The check access predicate performs three checks,
as shown in the following:

1)  opir € ops(d;) Check if the requested operation is
actually allowed on the target device.

U = {alex, bob, anne, suzanne, john}, USA = {FamilyRole, Front Door LockToken}

FamilyRole(alex) = FamilyRole(suzanne) = kid, FamilyRole(anne) = FamilyRole(john) = teenager, FamilyRole(bob) = parent
FrontDoor LockToken : U — {True, False}. This attribute is a dynamic attribute that is dynamically set by home owner.

OPouen = {Onguen: Offysens OPeNuens CLOSCosen}s O Prridge = {0peN fridger Close frigge, CheckTemperature rigy.}.

OPrrontDoor Lock = {LOPkF7~antUnorLock, UﬂZOC/‘Tan:UOOTLack}, ()Pjvaysmmn = {0711’5- Oﬁp,g}, OPry = {OnTV« Oﬁ:[\x'»GTVs PGy, RTV}

ops(Oven) = OPopyen, ops(Fridge) = OPpriage, ops(FrontDoor Lock) = O PrrontDoor Lock, 0pS(PlayStation) = O Ppiaysiation, ops(TV') = OPpy

s, Front Door Lock Device, Entertainment Devices, DeviceT emperature, UsingStatus, UsingUser }
DangerouseKitchenDevices(Oven) = True, DangerouseKitchenDevices(Fridge) = False. All other values are undefined and evaluated to False
FrontDoor Lock Device(Front Door Lock) = True. All other values are undefined

s(TV) = Entertainment Devices(PlayStation) = True. All other values are undefined and evaluated to False
DeviceTemperature(Oven) is dynamically set by sensors. All other values are undefined

UstmgSmt'zw(TV) and UsingStatus(PlayStation) are dynamically set by sensors. All other values are undefined

UsingUser(TV) and UsingU ser(PlayStation) are s dynamically set by sensors. All other values are undefined

ndlyContent(Gry) = KidsFriendlyContent(Onry) = KidsFriendlyContent(Offyy,) = KidsFriendlyContent(Onps) =

KidsFriendlyContent(PGry) = KidsFriendlyContent(Rry) = False. All other values are undefined

henOperation(Openoyen) = True

henOperation(Closeoyen) = Dangerouse KitchenOperation(Openpriage) =
DangerouseKitchenOperation(Closepriage) = DangerouseKitchenOperation(CheckTemperaturepyiag.) = False. All other values are undefined

ES = {current}, ESA = {day, time, ParentInKitchen}, day : ES — {S, M, T,W,Th, F, Sa}, time : ES — {z|x is an hour of a day},

R = {kid}, roles(alex) = roles(suzanne) = {kid}, roles(anne) = roles(john) = roles(bob) = 0
PRConstraints = {({(Oven, Onoyen), (Oven, Offpyep ), (Fridge, Openpyidge), (Fridge, Closepyiage) }, {kid})}

(teenager € FamilyRole(s) A ParentInKitchen(current) A DangerouseKitchenDevices(d) A DangerouseKitchenOperation(op) A

Device_Temperature(d) < 150°) V

(teenager € FamilyRole(s) A FrontDoor Lock Device(d) A Front Door LockToken(s)) V
(teenager € FamilyRole(s) A day(current) € {Sa, S} A 17:00 < time(current) < 23:59) A Entertainment Devices(d) A

(=UsingStatus(d) V UsingUser(d) = user(s)) V

(kid € FamilyRole(s) A day(current) € {Sa, S} A 17:00 < time(current) < 19:00) A Entertainment Devices(d) A

KidsFriendlyContent(op) A (-UsingStatus(d) vV UsingUser(d) = user(s))

2)  Authorization(s;, opy, d;, current)) Check if the autho-
rization function evaluates to True. This indicates that
the user is allowed to perform the requested opera-
tion on the target device according to the predefined
configured policies.

3) (Y(P.,R,) € PRConstraints)[((opy,d;) ¢ Py) V
(roles(user(s;))) N Ry = ¢] Check whether the user who cre-
ated the requesting session is prohibited from accessing the
requested permission by one of the permission role con-
straints. This statement basically ensures that for each per-
mission role constraint (P, R,) in the set of PRConstraint
one or both of the following conditions are satisfied:

a) The requested permission (opy,d;) is not in the
set of permission FP,.

b) The intersection between the set of assigned roles
to the user who created the requesting session
user(s;) and the set of roles R, is equal to ¢.

5.1 Use Case Demonstration

This section illustrates how to configure HyBAC ¢ to
achieve the same goals of the use case presented in Sec-
tion 4.1. For this purpose, HyBAC ¢ will be configured as
shown in Fig. 4. We have five users bob, alex, suzanne, john,
and anne. We have two user/session attribute functions,
FamilyRole and FrontDoorLockToken, respectively specify
the user relationship to the house’s family and whether the
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user is authorized to use the front door lock or not. We have
five devices Oven, Fridge, Front Door Lock, PlayStation and
TV. Each device has a set of operations allowed to be per-
formed on it. We have six device attribute functions. The
device attribute function DangerouseKitchenDevices
specifies whether the device is a dangerous kitchen device
or not. The function FrontDoorLockDevice determines if
the device is a front door lock device or not. The device
attribute function EntertainmentDevices specifies if the
device is considered an entertainment device or not. The
attribute function DeviceTemperature captures the temper-
ature of the device. The device attribute function
UsingStatus determines whether the device is currently in
use or not. Finally, the device attribute function UsingUser
specifies who is currently using the device. Different devi-
ces are assigned to different device attribute values. We have
two operation attributes. The operation attribute function
KidsFriendlyContent specifies whether the operation is a
kid friendly operation or not. Moreover, the operation
attribute function DangerouseKitchenOperation specifies
whether the operation is considered a dangerous kitchen
operation or not. Different operations are assigned to differ-
ent operation attribute values. The authorization function set
Authorization(s : S,op : OP,d : D, current : ES) is a disjunc-
tion of six propositional statements. The first statement gives
parents access to anything unconditionally. The second
statement authorizes teenagers to use dangerous kitchen
operations on dangerous kitchen devices only when one of
the parents is in the kitchen, and the device temperature is
below 150°. The third statement gives teenagers access to
nondangerous kitchen operations unconditionally. The
fourth statement allows a teenager to use the front door lock
device only if the parent grants him/her the front door lock
token. The fifth statement gives teenagers access to entertain-
ment devices during a specific time and if another user does
not use the requested device. Finally, the sixth statement per-
mits kids to use kids friendly operations on entertainment
devices during a specific time and if they are currently not in
use by another user.

6 IMPLEMENTATION

In this section, we provide a proof of concept implementa-
tion of HyBACpc and HyBAC 4¢ models. The purpose is to
validate the applicability of these models using commer-
cially available systems. We enforced the use cases pre-
sented in Sections 4.1 and 5.1 respectively using AWS
(Amazon Web Services) IoT service [84]. We implemented
the smart home IoT architecture shown in Fig. 5, which was
first introduced by Geneiatakis et al. [83]. According to this
architecture, the IoT devices are connected to a central hub
and cannot be accessed by users or other devices directly.
Simulations have been used to reflect real smart home devi-
ces. AWS Greengrass [85] was utilized to act as a smart hub
and policy engine. Access is generally divided into two
types: (a) By using the hub’s connectivity services, users can
interact with IoT devices locally, or (b) through cloud serv-
ices that communicate with the smart hub to provide remote
access to IoT devices via the Internet. We configured Green-
grass’s lambda function to receive the request, analyze it
accordin% to the configured logic and saved files, and
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Fig. 5. Enforcement architecture (adapted from [83]).

trigger the desired actions on the corresponding device. In
our enforcement, we only handled local communication.

We first created an AWS account, then configured and
deployed Greengrass [85], which serves as a smart hub and
a policy engine. The Greengrass SDK (Software Develop-
ment Kit) extends cloud capabilities to the edge (in our case,
the edge is the smart home). It enables devices to process
data closer to the source of information and communicate
securely on local networks. We deployed Greengrass on a
dedicated virtual machine with one virtual CPU and 2 GB
of RAM running ubuntu server 18.04.5 LTS. Then, we used
AWS IoT device SDK for Python [86] provided by AWS on
different virtual machines to simulate the users (devices
used by users to access the smart things) and the smart devi-
ces (smart things that users want to perform different opera-
tions on them). Finally, we created a virtual object (digital
shadow) for each physical device (users’ devices or smart
thing devices). Digital shadows are virtual counterparts of
real physical IoT devices in the cloud. Shadows maintain
the identity and last known state of the associated IoT
device [87]. Each physical device and its corresponding
shadow are cryptographically linked via digital certificates.
MQTT protocol [88] is used by the devices and users to com-
municate to the AWS IoT service with TLS security [89].
MQTT standard is a machine-to-machine (M2M) light-
weight publish/subscribe messaging protocol specially
designed for constrained devices. Each shadow has a set of
predefined MQTT topics/channels to interact with other
IoT devices and applications.

HyBACpc Enforcement. We created and configured three
JSON files in the smart hub: (a) UsersRolesAssignment.
jason. This defines the assignments of users to different
roles. (b) ModelComponentConfiguration.json. This file
defines and configures the rest of HyBACrc components to
express our use case. (c) UsersDevicesDynamicAttributes.
json to capture different users” and devices” dynamic attrib-
utes. The process of updating the values of dynamic attrib-
utes in this JSON file is beyond the scope of this research.

HyBAC 4¢ Enforcement. Here, we created and configured
four JSON files in the smart hub as follows, UsersAttributes.
json, DevicesAttributes.json, OperationAttributes.json, and
EnvironmnetAttributes.json, to capture different users
attributes, devices attributes, operations attributes, and envi-
ronment attributes, respectively. The process of updating the
values of different attributes in these JSON files is beyond
the scope of this research.
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Fig. 6. The sequence of events in local communication.

The local communication sequence of actions is illus-
trated in Fig. 6. The sequence of events illustrated in red
and tagged as sequence 1 depicts a denied request. On the
other hand, The sequence of events illustrated in green and
tagged as sequence 2 depicts an authorized request. For
example, when the user tries to send permission requests to
unlock the front door lock through his mobile phone while
inside the house. First, a request is sent via MQTT protocol
to the virtual object (or local shadow) corresponding to the
user phone in Greengrass through the publish/subscribe
relation between the user’s phone and the local shadow.
The local shadow gets notified of the request and sends it to
the lambda function through MQTT publish/subscribe pro-
tocol. The lambda function analyzes the request according
to the model implemented. In the case of HyBACp(, it ana-
lyzes the request according to the UsersRolesAssignment.
json, ModelComponentConfiguration.json, and UsersDevi-
cesDynamicAttributes.json files and decides whether to
authorize the user to unlock the front door or not. On the
other hand, in the case of HyBAC 4¢, it analyzes the request
according to the content of UsersAttributes.json, DevicesAt-
tributes.json, OperationAttributes.json, and Environmne-
tAttributes.json files and makes the decision. If the request
is denied, the lambda function publishes to the user’s
shadow update topic, and the local shadow gets notified
and updates the user’s phone that the permission was
denied. In this case, the front door lock does not get an indi-
cation that a user attempted to access it. If the request is
granted, the front door lock local shadow is notified through
its update topic and updates the front door lock with the
unlock command. After the front door lock is unlocked, it
notifies its shadow by publishing to the shadow update
topic. The front door lock local shadow then notifies the
lambda function, which notifies the user phone’s local
shadow. Finally, the user phone’s local shadow updates the
user’s phone that the TV was turned on successfully.

TABLE 5
One User Sending Requests to Multiple Devices
Users Devices HyBACprc LP.T HyBACsc LP.T N.R
1 1 1.8343 ms 1.2661 ms 10
1 3 1.7408 ms 1.3118 ms 30
1 5 1.76588 ms 1.3503 ms 50

4045
TABLE 6
Multiple Concurrent Instances of One User Sending
Request to One Device
Users Devices HyBACgrcLP.T HyBACscLP.T N.R
1 1 1.8343 ms 1.2661 ms 10
3 3 1.8385 ms 1.3803 ms 30
5 5 2.01128 ms 1.3247 ms 50

6.1 Performance Results

We executed multiple test scenarios to check the policy
machine’s response in each case. Furthermore, we analyzed
the performance of our implementation. In particular, we
measured the average lambda function processing time
under different conditions. We implemented the configura-
tion of the same use case given in Section 4.1, and Section 5.1
for HyBACprc and HyBAC 4¢ models respectively. We ana-
lyzed three different cases with three different loads of
requests, each unique load of requests was executed ten
times to measure the average lambda processing time as fol-
lows. (a) When one user is sending requests to multiple
devices at the same time. Table 5 shows the measured aver-
age lambda function processing time in this test case for
HyBACpRrc and HyBAC,c implementation. The first row
shows the average time when the parent, Bob, requests to
lock the front door lock. The second row shows the average
time when Bob requests to lock the front door lock, turn on
the TV, and turn on the PlayStation simultaneously. The
third row shows the average time when Bob requests to
lock the front door lock, open the fridge, and turn on the
oven, the TV, and the PlayStation simultaneously. All the
requests were approved as they were supposed to accord-
ing to our configured policies. (b) When multiple users are
sending requests to multiple devices simultaneously (one
user per device). Table 6 describes the measured average
lambda function processing time in this test case for
HyBACprc and HyBAC,¢ implementation. The first, sec-
ond, and third rows show the average time when the parent
Bob requests to lock the front door lock, the average time
when Bob requests to lock the front door lock, the kid Suz-
zane requests to turn on the oven, and the teenager John
requests to open the fridge at the same time, the average
time when the three access requests tested in the second
row are carried again in addition to, the kid Alex requests
to turn on the TV, and the teenager Anne requests to open
the oven while one of the parents is in the kitchen and the
oven temperature is 100°. The two systems responded cor-
rectly where all the requests were granted except for when
the kid Suzzane was trying to turn on the oven since,
according to our configuration, she is not allowed to, and
when Alex was trying to turn on the TV since the testing
was performed during a weekday, and according to our
configuration kids are not allowed to access TV during
weekdays. (c)Finally, Table 7 illustrates the average lambda
function processing time when multiple users are sending
requests to one device at the same time in HyBACpr¢ and
HyBAC, ¢ implementation. The first row illustrates the
average time when Bob requested to unlock the front door
lock. The second row shows the average time when Bob,
Suzzane, and Alex simultaneously requested to unlock the
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TABLE 7
Multiple Users Sending Requests to One Device
Users Devices HyBACgrcLP.T HyBAC4cLP.T N.R
1 1 1.8343 ms 1.2661 ms 10
3 1 1.73177 ms 1.2818 ms 30
5 1 1.8771 ms 1.2654 ms 50

L.P.T = Lambda function processing time in milliseconds.
N.R = Total number of requests (10 per unique request)

front door lock. Finally, the last row shows the average
lambda processing time when Bob, Suzzane, Alex, John,
and Anne all requested to unlock the front door lock at the
same time. The two systems responded correctly, where all
the requests were denied except when Bob requested to
lock the front door lock.

6.1.1 Results Analysis

a. Average Processing Time

From the tables, we can notice that the two models are
functional and applicable using commercially available
technology. Furthermore, there is no specific pattern in the
average lambda processing time when the number of
requests increases in Tables 5, 6, and 7. In general, the proc-
essing time is short. The main reason behind that is that in
our enforcement, we deployed the Greengrass, which serves
as a smart hub on a dedicated virtual machine with one vir-
tual CPU and 2 GB of RAM. This specification enables it to
handle this number of requests without decreasing perfor-
mance. However, this may not be the case if the number of
requests increases drastically, which is not typical in a smart
home IoT environment where we have a limited number of
devices and users, unlike the case in other IoT domains.

b. HyBAC s Average Processing Time is Always Less than
HyBACRc Average Processing Time

From the results, we can notice that the lambda average
processing time in HyBACp( is consistently higher than that
in HyBAC 4¢. The main reason is that the HyBACrc Check-
Access predicate checking process is more complicated than
the HyBAC 4¢ CheckAccess predicate checking process.

In HyBACg(, if a session s; attempts to perform an oper-
ation op;, on a device d; when the subset of environment
conditions EC; are active, the CheckAccess predicate checks
the following;:

1)  The requirements of role membership and role acti-
vation specified by the underlying role-based model
are satisfied. In other words, ensure that the request-
ing user currently active roles enable him to access at
least one of the device roles that the requested per-
mission is assigned to under the current active envi-
ronment roles. This check will evaluate to true if and
only if there is a role pair rp,, and a device role dr;,
assigned to each other through the relation RPDRA
such that the following conditions are true:

a) The device role dr, is assigned to the permission
(dj, opy) through the relationship PDRA.

b) Therole part of the role pair rp,,, which is rp,,.r is
one of the currently active roles of the session s;.

¢) Each environment role in the set of environment
roles part of the role pair 7p,,, which we refer to
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by rpm.ER is active because it is activated by a
subset of the currently active environment condi-
tions EC;.

2) The authorization function, which checks the user’s
and device’s dynamic attributes, is satisfied. In other
words, the user’s current dynamic attributes enable
him to access the requested device with the current
dynamic device attribute.

On the other hand, in HyBAC 4¢ the CheckAccess predi-

cate only checks the following;:

1)  The authorization function ensures that the request-
ing user is allowed to access the requested opera-
tions on the requested device according to the
current attribute values.

2)  The set of permission role constraints PRConstraints,
to ensure that the requested user is not prohibited
from accessing the requested permission by one of
the permission role constraints.

7 THEORETICAL COMPARISON

It is crucial to select an access control model appropriate to
an organization’s structure, requirements, and specifica-
tions to achieve optimal results and minimize access risks
and threats. This section compares four access control mod-
els designed to meet smart home IoT challenges. We com-
pare the hybrid models this paper developed, HyBACxc,
and HyBAC, ¢ with EGRBAC and HABAC. We evaluate
these models against access control criteria adapted from
[16] toward this goal. These criteria are grouped into two
categories: (a) basic criteria and (b) quality criteria.

7.1 Basic Criteria
This type of criteria consists of six elements. Here we dis-
cuss each criterion.

a. Least Privilege Principle. All four models support this
principle. Users who belong to a variety of roles (in EGR-
BAC, or HyBACp() or have different attributes correspond-
ing to their roles in the house (in HABAC, and HyBAC )
can utilize any subset of them that will allow tasks to be
accomplished.

b. Attributed Based Specifications. We have two types of
attributes, as explained in Section 2, static and dynamic.
The four models support environment attributes. Moreover,
they all support static users, devices, and operations attrib-
utes (conditions). Furthermore, while HABAC, HyBACxc,
and HyBAC 4¢ models all support dynamic attributes, EGR-
BAC does not.

c. Constraints. These are invariants that must be main-
tained. We have three types of constraints, static separation
of duty, dynamic separation of duty, and permission-role
constraints, as explained in Sections 4 and 5. From Table 8,
we notice that all four models support the three types of
constraints except for HABAC, which does not support per-
mission-role constraints [10].

d. Authentication. All four models support positive (close)
authentication. The closed policy permits access when there
is a positive authorization for such access and denies it
otherwise.
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e. Access Administration. Here, we compare the four mod-
els based on two administrative tasks. Users and devices
provisioning and configuration effort. In general, the user
or device provisioning is easier in RBAC-based models
(including EGRBAC and HyBACk¢) than in ABAC-based
models (including HABAC and HyBAC 4¢). In RBAC mod-
els, users’ and devices’ provisioning simply requires the
administrator (the homeowner) to assign different roles to
the newly created users or devices. On the other hand, in
ABAC-based models, the administrator needs to configure
different attribute values for newly provisioned users or
devices. Regarding configuration effort, from Table 8, we
can notice that HyBACgc requires more configuration effort
than the other three models.

f. Access Review. In RBAC based model (including EGR-
BAC), to determine the set of permissions available for each
user, we just look into the set of roles assigned to it. Simi-
larly, in HyBACrc, by looking into the set of roles assigned
to each user, we can determine the maximum set of permis-
sions available for each user. However, defining the set of
permissions available for each user could be more compli-
cated in ABAC-based models (such as HABAC and
HyBACc) [14].

g. Administrative Policies. To determine how administra-
tive privileges are organized in any model, an access control
administration model is required. However, in the four
models, it is assumed that the house owner is the one who
is responsible for granting or revoking permissions. Hence,
we can say that they all support centralized administrative
policies.

7.2 Quality Criteria
As explained in the following, we have three crucial factors.
a. Expressiveness and Meaningfulness. Three features are
required for an AC model to be expressive. First, a formal
definition is needed to specify the intended behavior in
detail. The second requirement is that it must be sufficiently
meaningful and comprehensive enough to support a variety
of constraints. Lastly, the model should include both static
and dynamic attributes. All four models that we are com-
paring are formally defined. Furthermore, they all support
different constraints except HABAC since it does not sup-
port permission-role constraints. All four models capture
different types of attributes except for EGRBAC, which
does not capture the user’s and device’s dynamic attributes.
b. Flexibility To consider a specific AC model as a flexible
model, several factors need to be assessed. Here we identify
three of them. First, the model should be flexible enough to
meet smart home IoT requirements. Second, the model
should support delegation, which means the capability of a
user to delegate his privileges to any other user partially or
totally. Lastly, the flexibility of provisioning new compo-
nents. Regarding the first factor and using the criteria pro-
posed in [15], for an access control model to address smart
home IoT requirements, it should be dynamic, fine-grained,
and suitable for constrained smart home devices. In addi-
tion, the model should be developed specifically for smart
home IoT or interpreted in light of appropriate smart home
use cases. The model should be implemented to be credible
using commercially available technology. Finally, the model
should be formalized so that its intended behavior can be
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specified precisely. As discussed in [15] EGRBAC meet this
criteria. However, as we discussed earlier, EGRBAC does
not support dynamic attributes. On the other hand, HABAC,
HyBACprc, and HyBAC,c are dynamic, fine-grained,
suitable for the constrained home environment, designed
specifically for smart home IoT, illustrated with a use case
demonstration, have proof of concept implementation, and
they are formally defined. Hence, they meet the criteria pro-
posed in [15]. Regarding delegation support, this cannot be
entirely determined without an access control administra-
tion model. But generally speaking, it has been shown before
that RBAC and ABAC based models can perform delegation.
All four models are capable of provisioning new users and
devices. However, as we explained in Section 7.1, it is easier
to provision new users and devices in EGRBAC and
HyBACpc than in HABAC and HyBAC 4¢.

c. Efficiency Level and Scalability An access control model is
required to answer two main questions on efficiency and
scalability. Is the model can easily be expanded? If not, it
will be unreliable in the real world. Moreover, is the model
expansion affect its efficiency negatively? The answers to
these questions can only be obtained through a more
detailed study. However, generally speaking, we are deal-
ing with a relatively small number of users and devices in
smart home IoT. Moreover, ABAC and RBAC based models
have proved their scalability since they have been widely
adopted in different organizations of enormous sizes.

8 DISCUSSION

As discussed in Section 2 and as many researchers recently
described [9], [10], [11], [12], [13], [14], the need arises for
hybrid models that combine ABAC and RBAC based mod-
els advantages while eliminating their disadvantages to
meet access control requirements in smart IoT systems.

In this paper, we proposed HyBACgc. It is a role-centric
hybrid model that governs users to devices access control. It
is developed based on the EGRBAC model [15], which is a
role-based access control model developed for smart home
IoT environment. As in HABAC and unlike EGRBAC,
HyBACkc can handle dynamic attributes. As discussed in
Section 2, handling dynamic users” or devices’ attributes in
EGRBAC may result in role explosion. For example, con-
sider a use case where the homeowner wants to grant teen-
agers use of dangerous permissions in kitchen devices
(oven and gas stove), such as opening the oven, turning on
the oven, and turning on the gas stove but only when the
device temperature is below a threshold, say 150°. This use
case can easily be handled in ABAC models such as
HABAC [10] by defining a dynamic device attribute
device_temperature, which measures the device tempera-
ture, and then configuring an access policy that authorizes
teenagers to access dangerous permissions in kitchen devi-
ces only if the attribute device_temperature is below 150°. In
EGRBAC, on the other hand, the component responsible for
categorizing permissions of different devices based on dif-
ferent characteristics is the device roles (DR). Different users
get access to different permissions by assigning the users’
roles to the device roles of those permissions. Hence, we
could try to capture this use case in EGRBAC by defining
two device roles: (a) High_Temperature_Permissions and
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TABLE 8
Evaluating Smart Home loT Access Control Models Against Basic Criteria
| Criteria EGRBAC HABAC HyBACrc HyBAC.ac
a. Least privilege principle  Yes yes yes yes
b. Attributed based specifications
a. Static Yes Yes yes Yes
b. Dynamic No yes yes yes
c. Constraints
a. Static separation of duty Yes Yes yes Yes
b. Dynamic separation of  Yes yes yes yes
duty
c. P-R constraints Yes No yes yes
d. Authentication Positive(Close) Positive(Close) Positive(Close) Positive(Close)
e. Access administration
a. Users and Devices provi-  Easy Complicated Easy Complicated

sioning

c. Configuration effort

1- Define and set initial
users, devices, and opera-
tions static characteristics (
user roles, and device roles)

2- Define environment con-
ditions, environment roles,
and environment activations
3- Setting up initial role
structure and assignments

1- Define and set initial
users, devices, and oper-
ations static and dynamic
characteristics ( user roles,
and device roles)

2-  Define environment
states, and environment
state attributes

3- Specify access policies

1- Define and set initial
users, devices, and oper-
ations static and dynamic
characteristics ( attributes)

2- Define environment con-
ditions, environment roles,
and environment activations
3- Setting up initial role
structure and assignments
4- Specify access policies

1- Define and set initial
users, devices, and oper-
ations static and dynamic
characteristics ( attributes)

2-  Define
states, and
state attributes
3- Specify access policies

environment
environment

f. Access review

Easy

Complicated

Easy

Complicated

¢. Administrative policies

Centralized

Centralized

Centralized

Centralized

assigning to it the permissions that can be performed when
the device temperature is high (which are: close the oven,
turn off the oven, and turn off the gas stove only). (b)
Low_Temperature_Permissions and assign to it the permis-
sions that can be performed when the device temperature is
low (which is basically all oven and gas stove permissions).
However, when permissions are assigned to a specific
device role, they remain associated with that role until an
administration change is made. Without administrative
action, it is impossible to activate and deactivate permis-
sions assignments to different device roles dynamically.
Suppose that the gas stove temperature is less than 150°
while the oven temperature is more than 150°. In this case,
teenagers should get access to all gas stove permissions
assigned to the device role Low_Temperature_Permissions
while allowed to access only those permissions assigned to
High_Temperature_Permissions in the oven while pre-
vented from accessing oven permissions assigned to the
device role Low_Temperature_Permissions. However, there
is no mechanism to deactivate the assignment of the oven per-
missions to the device role Low_Temperature _Permissions
when the oven temperature is above 150° and activate it other-
wise. Without such a mechanism, teenagers will access all
oven permissions regardless of the oven’s temperature.
Another way to solve this problem is by creating two
device roles for each device, one for high temperature
permissions and another for low temperature permis-
sions. In our use case, this would require a total of four
device roles (GasStove. Low_ Temperature_ Permissions,
GasStove. High_ Temperature- Permissions, Oven_ Low-
Temperature_ Permissions, and Oven_ High_ Temperature_
Permissions). Still, there is no mechanism to activate and
deactivate different device roles dynamically according to
the different values of the device temperature. Suppose the
gas stove temperature is low while the oven temperature is

high. The model has no mechanism to activate the device
roles GasStove_ Low_ Temperature_ Permissions and Quven_
High_ Temperature_. Permissions while deactivating the
device roles GasStove_ High_Temperature_ Permissions and
Oven_ Low_ Temperature _Permissions. Without such a
mechanism, teenagers will access all gas stove and oven per-
missions regardless of gas stove and oven temperatures.
Moreover, increasing numbers of devices and dynamic
attributes will lead to role explosion. The problem is further
aggravated in other use cases, which may involve more devi-
ces and different dynamic device attributes with different
values. For instance, we may want to grant access to different
permissions based on devices’ different temperature values,
not only on whether the device temperature is above or
below a specific value. In that case, the role explosion prob-
lem will worsen since we may need at least one device role
for each device temperature value. See supplemental mate-
rial for more information, available online.

On the other hand, HyBACgc encapsulates relatively
static attributes of access decisions in user roles and device
roles while utilizing the concept of user’s and device’s
dynamic attributes to capture rapidly changing attributes to
constrain the permissions available for each user further.
Therefore, the users” and devices’ role sets determine the
maximum set of available permissions, supporting the prin-
ciple of least privilege and allowing easy review of user per-
missions. On the other hand, the users’ and devices’
dynamic attributes determine a flexible set of permissions
for each user within the scope of his/her assigned roles. Fur-
thermore, HyBACp¢ can capture the environment contex-
tual information through the component environment roles.
It retains advantages of EGRBAC (such as ease of user provi-
sioning, least privilege principle, and the ability to quickly
determine and control the maximum permissions available
to each user) while capturing different authorizations for

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 14,2023 at 22:11:32 UTC from IEEE Xplore. Restrictions apply.



AMEER ET AL.: HYBRID APPROACHES (ABAC AND RBAC) TOWARD SECURE ACCESS CONTROL IN SMART HOME 10T

every possible user, environment, operation, and device
dynamic conditions without risking role explosion.

Moreover, in this paper, we introduced HyBAC 4¢. It is
an attribute-centric hybrid model that governs user to
device access control. It is developed based on the HABAC
model [10], which is an attribute-based access control model
developed for smart home IoT environment. HyBAC 4¢ cap-
tures different users’, environment’s, operations’, and
devices’ static and dynamic characteristics. Unlike HABAC,
HyBAC,¢ supports the permission-role constraints by
introducing the notion of roles (aka anti-roles). However, it
enforces this type of constraint during execution time. On
the other hand, EGRBAC and HyBACp: enforce permis-
sion-role constraints during configuration time. HyBACy¢
and HyBAC,c have similar expressiveness power; they
both capture static and dynamic attributes. Moreover, both
can express static separation of duty, dynamic separation of
duty, and permission-role constraints. Both models are for-
mally defined and illustrated through use case scenarios.

In Section 6, we provide a proof of concept implementa-
tion of HyBACRrc and HyBAC 4¢ models. The purpose was
to verify the applicability of these models using commer-
cially available systems. Overall, both models are func-
tional and applicable. However, as discussed in the same
section, while the average lambda processing time in both
models is generally law, the lambda average processing
time in HyBACpgc is consistently higher than that in
HyBAC 4¢. The main reason is that the HyBACyc Check-
Access predicate checking process is more complicated
than that in HyBAC 4¢.

Finally, in Section 7, we compare the two hybrid models
developed in this paper, HyBACpc and HyBAC,¢ with
EGRBAC (an RBAC model specifically designed to meet
smart home IoT challenges) and HABAC (an ABAC model
specifically designed to meet smart home IoT challenges).
From our comparison, we can notice that HyBACyc and
HyBAC 4¢ are more expressive than EGRBAC and HABAC.
Furthermore, we can notice that while HyBAC 4¢ requires
less configuration effort than HyBACgc, however, provi-
sioning new users and devices and access review tasks are
more straightforward in HyBACxc.

We acknowledge that practical smart homes will have
different and more complex scenarios, and a detailed per-
formance evaluation is ultimately necessary for simulating
a large number of smart things. Nevertheless, our proof of
concept implementation on AWS demonstrates the practical
utility and use of fine-grained security policies within the
context of smart homes IoT without the need to capture a
large set of scenarios from the real world since a scaled set-
ting will not affect the evaluation of security policies. How-
ever, we are considering extending this work to include a
more detailed performance analysis. Since smart home resi-
dents are usually constrained and not willing to deal with
complicated systems, one of the important aspects that need
to be considered in smart home access control models is
usability. A user or homeowners’ related study needs to be
performed to define a common preferable default setting
policies. Additionally, a simple, usable, and expressive user
interface need to be developed to mediate users’ interaction
with the access control system. These are future directions
to consider.
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9 CONCLUSION

In this paper, we proposed two hybrid models that govern
users to devices access control in smart home IoT HyBACr¢
and HyBAC 4¢. HyBACpgc is a role-centric hybrid model that
is built on top of the EGRBAC model (an RBAC model devel-
oped specifically to meet smart home IoT requirements). It
encapsulates relatively static attributes of access decisions in
user roles and device roles. It utilizes the concept of user’s
and device’s dynamic attributes to capture rapidly changing
attributes to constrain the permissions available for each
user further. HyBAC ¢ is an attribute-centric model based
on the HABAC model (an ABAC model developed specifi-
cally to meet smart home IoT requirements). Each model is
formally defined and illustrated with a use case scenario.
Moreover, each model is demonstrated with a proof of con-
cept implementation in Amazon web services (AWS).
Finally, we conducted a theoretical comparison between
HyBACgc, HyBAC ¢, EGRBAC, and HABAC. We showed
that HyBACrc and HyBAC 4 meet smart home IoT access
control requirements and have similar expressive power.
However, choosing between them will be a trade-off
between considerable front role structuring effort for ease of
administration and access review in the HyBACk¢, on the
one hand, and between easy setup effort but more compli-
cated administration and access review tasks in the
HyBAC 4¢ model on the other hand.
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