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Abstract

We determine the sixth moment of the determinant of an asymmetric n x n random
matrix where the entries are drawn independently from an arbitrary distribution 2 over
R with mean 0. Furthermore, we derive the asymptotic behavior of the sixth moment
of the determinant as the size of the matrix tends to infinity.

1 Introduction

The behavior of the determinant of a random matrix has been extensively studied. One line
of work analyzed the kth moment of a random determinant, i.e., the expected value of the
kth power of the determinant of a random matrix. Turan observed that the second moment
of the determinant of an n X n matrix (where the entries have mean 0 and variance 1) is
n!. The fourth moment of the determinant was determined by Nyquist, Rice, and Riordan

[14]. For the special case when the entries of the random matrix are Gaussian, several works

k_ .
[7, 14] showed that the kth moment of the determinant is Hf:ol (”(;r;]!)! for even k.
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Several variations of this question have also been analyzed. Dembo [4] generalized these
results for p x n matrices (where we consider E[det(MM T )z] rather than E[det(M)*]). Very
recently, Beck [5] determined the fourth moment of the determinant of an n x n random
matrix with independent entries from an arbitrary distribution (which may not have mean
0). For symmetric random matrices, the second moment of the determinant was analyzed
by Zhurbenko [20].

A second line of work analyzed the distribution of the determinant of a random matrix.
Girko [9, 8] showed that under some assumptions on the entries of the random matrix, the
logarithm of the determinant obeys a central limit theorem, but his proofs are quite difficult.
Nguyen and Vu [13] gave a simpler proof of a stronger version of this central limit theorem.

A third line of work analyzed the probability that a random n x n matrix with £1
entries is singular. Komlés [11, 12] was the first to prove that this probability is o(1).
Kahn, Komlés, and Szemerédi [10] proved that this probability is at most .999", which was
the first exponential upper bound. A series of works [16, 17, 2] improved this upper bound
culminating in the work of Tikhomirov [18] who proved an upper bound of (1 +o0(1))", which
is tight. For the symmetric case, Costello, Tao, and Vu [3] showed that the probability that a
random symmetric matrix with £1 entries is singular is o(1) and further work has improved
this bound.

For a recent survey of results on random matrices, see [19]. In this paper, we extend the
first line of work by analyzing the sixth moment of the determinant of a random matrix.

1.1 The fourth moment of random determinants

Before stating our main result, we describe the results of Nyquist, Rice, and Riordan [14] on
the fourth moment of the determinant of a random matrix.

Definition 1. Given a distribution 2 over R, we define M,,.,,(£2) to be the distribution of
n X n matrices where each entry is drawn independently from 2.

Definition 2. Given a distribution 2 over R, we define m;, to be the kth moment of €2, i.e.,
_ k

Definition 3. We define fi(n) = Enrop, .. (o)[det(M)*] to be the expected value of the k-th
power of the determinant of a random n X n matrix. Similarly, we define pg(n) to be the
expected value of the k-th power of the permanent of a random n X n matrix.

Remark 4. Both fi(n) and px(n) depend on the moments of 2, but we write fi(n) and pg(n)
rather than fj o(n) and pyq(n) for brevity.

Nyquist, Rice, and Riordan [14] showed that fy(n) = n!y, where y,, obeys the recurrence
relation

Yn = (TL +my — 1)yn71 + (3 - m4)(n - 1)yn72-



where yo = 1 and y; = my4. They further observed that if we take the generating function
Y(t) = 3070 &2 then Y (t) = (1 — ¢)~%e™=9". From this generating function, they found
the equation

()P~ (n—k+1)(n—Fk+2)
2 k!

k=0

fa(n) = nly, = (ma — 3)F.

To prove their results, Nyquist, Rice, and Riordan [14] counted 4 x n tables with certain
properties. As we describe in Section 2, we use the same general approach though our
analysis is considerably more intricate.

1.2  Our results
Our main results are as follows.
Theorem 5. For any distribution Q over R such that m; = mg =0 and my = 1, the formal

generating function Fg(t) = > 07 2f6( ) for fe(n) is

etlme=1omat30)  Z (1 4 §)(2 +4) (4 + i) £

Fy(t) = :
o(t) A8(1+ 3t — mat)® = (1 + 3t — myt)®

Performing Taylor expansion on this generating function, we get a formula for computing
the sixth moment of random determinants, namely:

Corollary 6. For any distribution €2 over R such that m; = m3 = 0 and my = 1, we have
that fe(n) equals

(1+2)(2+4)(4+0)! (14 + 5 + 24 _ s
nl? —15 30)" 7 (my—3) 7.
;;;; 48(n — j)! ( j—i >m“ at30)" (ma =3)

Remark 7. If ms # 1 then we can scale the distribution €2 by \/;mﬁ (which changes the

determinant of matrices in M,,»,(§2) by a factor of and then apply the result in

(=)
Corollary 6.

Remark 8. If Q = N(0,1) then my = 3 and mg = 15 so fs(n) = P, = % which is

E_ .
a special case of the result that f(n) = 3-2:01 (”(;FJ.Q)]!)! when ©Q = N(0,1) and k is even.

Another generalization is when mg # 0.

Theorem 9. For any distm’bution Q over R such that my = 0 and my = 1, the formal
generating function Fg(t) = > 07 2f6( ) for fe(n) is

tmwmwawmw>w<1+n@+ﬂu+wwi

Fs(t) = (1 +m3t)°
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Corollary 10. For any distribution 2 over R such that my =0 and my =1,

i (144)(2448) (4+1)! (10N /1447 + 20\ 0in 5
_ 2 n—j j—i k
DR 9 3) wltea e e O

— 1
7=0 =0 k=0 J

where gs = mg — 10m3 — 15my + 30, g4 = my — 3, and g3 = m3.

Below, we show the values of fi(n) and py(n) when Q = {—1,1} for small values of k and
n. When Q = {—1, 1}, we note that fy(n) is the integer sequence A052127 in the On-Line
Encyclopedia of Integer Sequences [15, A052127]. In the entry for this integer sequence, it

is noted that fy(n) ~ (n! )2WJ(F2+;F10) as n — 0o.

n | fo(n), A000142 | fy(n), A052127 | fe(n), A357571 | pa(n) | pa(n) | ps(n)
1)1 1 1 1 1 1

2|2 8 32 2 8 32

316 96 1536 6 96 2976

4 | 24 2112 282624 24 2112 | 513024

5 | 120 68160 66846720 120 68160 | 157854720

Table 1: Values of fi(n) and pg(n) for Q = {—1,1}, £ <6, and n < 5.

Remark 11. Note that for all n € N, pa(n) = fo(n) and ps(n) = fi(n). However, for n > 3,
pe(n) > fe(n).

We can describe the asymptotic behavior of fz using the following asymptotic expansion.

Theorem 12. For all R € NU {0},

foln) = %(ch(n +6— k)!)iO((n! 2(n+6—R—1)),

k=0

where the coefficients ¢y, are the Taylor expansion coefficients of the function C(t) = Zkzzo cxt”,
C(t) — e(qG 3Q4)t+q3t2(1 + q3t>10 (1 . 2(3q4 _I_ 4)t + 3(5qz + 8(]4 + 4)t2

— A(¢(5qs + 6))F° + ¢} (15q4 + 8)t' — 64317 + qitﬁ) .

Remark 13. For the first terms in the expansion, we have
3mg4—9

48

(&

fo(n) ~

1
n!? <n6 + (mg — 3mj — 3my + 34)n° + 5 (mg — 10m3 + 9mj

+20m} — 183mj — 126my — 6mimes — 6mamg + 56me + 905) n* + - - - ) .



Remark 14. Note that when Q = {—1,1}, as n — oo,

(n)? [ ¢ . . 5861n®  17944n%  44036n
~ 29 335
fe(n) 1506\ +29n° + 335n" + 3 + 3 + 3

n 167536 210176
45 63n )’

2 Preliminaries

To prove Theorem 5, we need a few definitions and a key lemma. For this section and the
next section, we assume that m; = ms = 0.

Definition 15. Given natural numbers k& and n where k is even, we define an even k x n
table to be a k X n table where each row is a permutation of [n] and each column contains
each number that appears in the column an even number of times. We define 7}, to be the
set of all even k x n tables.

Definition 16. Given an even table ¢ of size k x n, we define its sign sgn(¢) to be the product
of the signs of its rows, which are permutations of [n].

Definition 17. Given a column ¢ where each element is in [n], we define its weight w(c) to
be

n

U}(C) = | | M of times j appears in column c-
Jj=1

For even 6 x n tables, we say that a column is a 6-column if it contains some number 6
times, a 4-column if it contains one number four times and another number two times, and

a 2-column if it contains three different numbers two times. Observe that the weight of a

6-column is mg, the weight of a 4-column is m4mo, and the weight of a 2-column is m%.

Definition 18. Given an even k x n table ¢, we define its weight w(t) to be the product of
the weights of its columns.

We can use the following proposition to reduce the problem of finding the sixth moment
of a random determinant to a combinatorial problem.

Proposition 19. For all even k € N, fi(n) =, .0 sgn(t)w(t) and pr(n) =3 e w(t).
Proof. We observe that
k n k
fr(n) = By @) [ > ( Sgn(m)> 11 (H Ap,wq(m)]
M1,y TEESR =1 p=1 q=1

and

P(1) = B Mocn @) [ > I (H Amqoo))] :

1,72, TR €S =1 \g=1
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For each p € [n], we have that Ea ... [H];:l Apx.m] = w(p) (ie., the weight of column

p), so fr(n) = ZteTk’" sgn(t)w(t) and pr(n) = ZteTm w(t), as needed.
[

Thus, computing the k&th moment of a random determinant is equivalent to summing the
signed weights of all even tables of size k x n.

Corollary 20. If §) is the uniform Bernoulli distribution (i.e., the uniform distribution on
{—1,1}) then fi(n) = ZteTk,n sgn(t) and pr(n) = [Tl

Corollary 21. If k=2, k=4, orn < 2 then px(n) = fr(n). If n >3, k > 6, and k is even
then pr(n) > fi(n).

To analyze fg(n), it is useful to consider tables together with pairings of identical elements
in each column.

Definition 22. Given an even k£ x n table t, we define a pairing P on t to be a set of
matchings {M; : i € [n]}, one for each column, where each matching M, pairs up identical
elements of column i. We define P(t) to be the set of all pairings on t.

Example 23. The table on the left below is an even 6 x 4 table with 27 possible pairings.
The table on the right shows one of the 27 possible pairings.

1121413 1121413
1121413 2 4| 3
1131412 113142
1131412 1|3 4 2
214113 214|113
214113 214113

Proposition 24. For each even 6 X n table t,

[P(t)|= 15# of 6-columns in tg# of 4—columns in ¢
Definition 25. We define P, = >, .7, sgn(t)[P(t)].
It turns out that P, can be easily computed and this is crucial for our results.
Lemma 26. For alln € N, P, =n(n+ 2)(n +4)P,—1 where Py = 1.

This lemma follows from the fact that when Q = N(0, 1) and k is even, the kth moment

of the determinant is H?;[)l (”(;f){“. We give a direct proof of this lemma in Appendix A.
Note that Pn — ZteTk,n sgn(t)l’c')# of 6-columns in t3# of 4-columns in t while

fo(n) = ZteTIm sgn(t)mg# of G-eolumns intyy 7 of d-columnsint £ O — N(0,1) (or we at least

have that m; = mg =0, my = 1, my = 3, and mg = 15) then fg(n) = P,.
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In the next section, we show how to handle other distributions 2 using inclusion /exclusion.

We finish our preliminaries section with the following generation function result on de-
rangements:

Lemma 27. Let S, be the set of all permutations of order n on [n] = {1,2,3,...,n} and
let D,, be the set of all derangements of the same order on [n], i.e., the permutations in S,

which have no fixed points. If we let C(w) denote the number of cycles in a permutation 7
and take Cy,(u) =3 cp u®™, then

Co(u) = (n = 1)(Cpa(u) +uCps(u))

and

n —uxr

8

Z !Cn(u) = Ao

n=0

S

Proof. See the chapter on Bivariate generating functions in the textbook “Analytic Combi-
natorics” by Flajolet and Sedgewick [6]. For completeness, we present our own derivation.
We proceed recursively based on the position of the node n. We can create a derangement
m € D,, by either:

1. Adding the node n to one of the cycles of a derangement n’ € D, _;. That is, if
i — m(i), then we insert n as i — n — m(i). Since there are n —1 nodes in 7', there are
n — 1 different 7 € D,, we can create. In this case, the number of cycles is unchanged,

ie., C(m) =C(n).

2. Adding a cycle (n,n — 1) of length two to 7" € D,,_,. We can then replace n — 1 by

any i € 7. This gives n — 1 new derangements © € D,, created from 7", all of them
having C(7) = C(n") + 1.

We can obtain all derangements D,, in this way. These two possibilities are shown in the
figures below.

) Figure 2: D, o — D,,.
Figure 1: D, 1 — D,,.



In terms of C,,(u), we get the desired recurrence relation

Culu) = 3w =(n=1) 3w (1) Yo u

TEDy, 7' €Dy, 7' €Dy _2

= (n = 1)(Cpa(u) +uCys(u)),

from which one can deduce its generating function easily. O]

3 Proof of Theorem 5

Before preceding to the proof of Theorem 5, we first prove the following result on the sixth
moment of random determinants.

Lemma 28. For any distribution 2 over R such that my = ms =0 and my =1,

B> (?) (‘7) (mg — 15)*(m — 3)9"9 Dy

7=0 a=0
where

1. We have that P, = n(n+2)(n+4)P,_1 where Py = 1. Equivalently, P, = W.

2. We take C,, = (n — 1)(C,,_1 + 15C,,_5) where Cy = 1 and C; = 0.
3. We take Hyjap =) ﬂ(jfl) [T:20(3(n —a —b) —y).

z=1 g! \z—1 y=0

4. We take D, 4p = (H?ig_l (n— j)) (Z?:o (i’) C’ianb_i’mb) Py oy

Proof. The idea behind the proof is as follows. We consider the tables where we know that
some set A C [n] of elements appear six times in a 6-column and another set B C [n] \ A
of elements appear four times in a 4-column and two times in a different column. We do
not know whether the elements in [n] \ (A U B) appear six times in a 6-column, appear
four times in a 4-column and two times in a different column, or appear two times in three
different columns. We consider these tables together with pairings for the columns which are
unaccounted for by A and B (i.e., the columns which don’t contain six of the same element
in A or four of the same element in B), which we call the center columns.

To obtain fs(n), we compute the contribution from each A and B and then take an
appropriate linear combination of these contributions so that the contribution from each
individual table t is sgn(t)w(t).

Definition 29. Given A C [n] and B C [n] \ A, we define D, 4 p to be the set of tables
in 7§, such that the elements in A appear six times in a 6-column and the elements in B
appear four times in a 4-column and two times in a different column.



Definition 30. Given ¢t € Tg,,, A C [n], and B C [n] \ A such that ¢t € D, 4 5, we define
the center columns of t to be the columns which do not contain six of the same element of
A and which do not contain four of the same element of B. We define Peepter(t) to be the
set of pairings on the center columns of .

Example 31. The following table is a 6 x 9 table t € Dy (7} 156,89} together with a pairing
P € Peenter(t) on the center columns.

7TI8(5F21413|6|1]|9
7T19|5F214(3|6]1|8
7181315142619
78|35 412|619
7191512163 |1]4|8
71815121631 1]4/|9

By symmetry, the contribution from each D,, 4 g only depends on |A| and |B|.
Definition 32. Given n,a,b € NU {0} such that a + b < n, we define D,, o to be

Dyap = Z Sgn(t)lpcenter<t)|

tGDn,A’B

where A C [n], B C [n]\ A, |A|= a, and |B|=b.
Lemma 33. For alln € NU {0},

3 (%) (2 om = 15001 07D,

7=0 a=0

Proof. Observe that

55 (5) (D)o 197290,
CZ ST > me =15 — 3) P sgn(t) [ Peonier ()]

Cn]\AteDn A,B

n

Given a table t € Tg,, let A" be the set of elements in [n] which appear six times in a
6-column of ¢ and let B’ be the set of elements which appear four times in a 4-column of .
Now consider the contribution from ¢ in

Z Z Z (mg — 15) 4 |(m - 3)' sgn(t)|Peenter (t)]-

AC[n] BC[n]\A teDy, AB



We have that whenever A C A" and B C B, t € D, ap and |Peenter(t)|= 15/A"\AI3B"\B|
Thus, the contribution from ¢ is

D (mg — 15)(my — 3)1PI15ANAIBIE NS san (1)

ACA’ BCB'

= mglmyP'lsgn(t) = sgn(t)w(t).

This implies that

5 () () 19~ 95D~ 3 st = ),
()C)

=0 a=0 =

as needed. O

We now compute D, 4.

Lemma 34. For alln,a,b € NU{0} such that a+b <n,

a+b—1 b b
Dn7a1b = ( H (TL - j)) (Z (2) OiHn,b—i,a,b> Pn—a—b

j=0 =0

where C,, is given by the recurrence relation C, = (n — 1)(Cy,—1 + 15C,,5), Co =1, C; =0

and '
-1\ T
Hosor= - 5 (1) TTG0—a=0) -,

=1 y=0

Proof. To prove this lemma, we group the tables in D,, 4 p based on the structure of the
4-columns containing four of the same element of B.

Definition 35. Given a table t € D,, 4 5, we define the directed graph G(t) to be the graph
with vertices V(G(t)) = B U {Ucenter } and the following edges. For each j € B,

1. If there is a j' € B\ {b} such that there are two j in the 4-column containing four j’
then we add an edge from j to j'.

2. If there is no such j’ then we add an edge from j t0 Vcenter-

For each vertex v € V(G(t)), we define the outdegree deg™ (v) of v to be the number of edges
going from v to another vertex and we define the indegree deg™ (v) of v to be the number of
edges going from another vertex to v.

Proposition 36. For allt € D, a5, G(t) has the following properties.
1. Forall j € B, deg®(j) =1 and deg (j) < 1.
2. deg+(vcenter) = 0.
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Corollary 37. For allt € D, ap, G(t) consists of directed cycles and paths which end at
Ucenter, Gl of which are disjoint except for their common endpoint.

Example 38. The figure on the left below shows a table ¢ together with a pairing P €
Peenter () on the center columns of ¢. The figure on the right shows the resulting graph G(t).

7T18|5F2/413 (6|19

71015020 43618 (8) (1)

783 5|4]2[6[1]9 (6)

718354 2/6]19

719512163148

7185121613814/ 9 e e
Figure 3: A 6 x 9 table t € Do (7}.(1.5.65.0}- Figure 4: The associated G(t).

Note that as the cycles and paths are disjoint, we can split any table ¢ € D,, 4 p into
6-columns corresponding to A, 4-columns corresponding to Beyces, 4-columns corresponding
to Bpaths, and center columns, respectively.

Example 39. The figures below show the split of table ¢ € Dy (7} {15689) from Example 31.

O | | =

NN N N3
== DD
DD O O N | D
W WIN| DN W[

1
1
1
1
4
4

ool ©| 00| 00| ©O| o
O 00| ©|©| 00|
Ot O] | W| O Ot

6

Figure 5: A. Figure 6: Beycles- Figure 7: Bpaths- Figure 8: center.

We now consider how many ways there are to start with a table tcenter € T6,n—a—s together
with a pairing P € P(fcenter) and construct a table t € D,, 4 p (we will automatically have
that sgn(t) = sgn(teenter) aNd Peenter(t) = P). Before giving the entire analysis, we describe
the parts of the analysis corresponding to the cycles and paths of G(t) as these are the
trickiest parts of the analysis.

To handle the cycles of G(t), we observe that the columns of ¢ corresponding to these
cycles are independent from the rest of t. This means that once the locations and elements
of these columns are chosen, it is sufficient to count the number of possible tables for these
columns. This can be done as follows.

Definition 40. Define C,, to be the number of tables tcyces € Dy, such that G(teyees)
consists of directed cycles and for each i € [n], column i contains four 4.

11



Lemma 41. For alln > 2, C, = (n — 1)(Cy—1 + 15C,,_5) where Cy =1 and Cy =0 and as

a consequence,

X n —1590

“nl (1 =)t
n=

Proof. Notice that G(tcyces) is a derangement of order n. On the other hand, given a
derangement 7 € D,,, we determine the number of tables tcycies € D, 0,1, With the property
that G(fcyees) = 7 and for each ¢ € [n], column ¢ contains four i. Note that for each 7 and j
in a given cycle of 7, the four rows of column ¢ which contain ¢ are the same as the four rows
of column j which contain j. Thus, for each cycle C, to determine the entries of the part of
teyeles corresponding to C it is sufficient to take an arbitrary ¢ in C' and choose Which four
rows of column 7 contain 7. There are (i) = 15 choices for this, so there are 15 distinct
tables fcycles Which we can construct from 7. Thus,

=) 1597 = C,(15).

wEDy,
By Lemma 27, we get the recurrence relation and the generating function. O]

Example 42. The figures below show a table t.yces and the corresponding derangement

G(teycles)-
co L)

Figure 10: The associated G(tcycles)-

NN NN
| s QO QO |
O O | | O Ot

Q| W] O O W W

[N NG I I e

Figure 9: A 6 x 5 table tcyces € D5 [5)-

To handle the paths of G(t), we observe that if we want to construct ¢ so that G(t) has
a path by — by — -+ = b} = Ugenter, We can do this as follows:

1. We start with a table tcepier for the center columns and a pairing P € P (tcenter)-
2. For each j € [l], we add a column containing six b;.

3. We choose a pair of entries of feenter Which are paired together by P. Let z € [n] be
the element in these entries and let r; and r, be the two rows of these entries.

4. For each j € {0,1,...,1 — 1}, we swap this pair of z with the two b,_; in rows r; and
ro and then move on to the next j. When we are done,

1. The column which started with six b; now has two z in rows r; and rs.

12



2. For each j € [l — 1], the column which started with six b;;; now has two b; in
rows r; and rq.

3. The original pair of z are replaced by a pair of b;.
Example 43. The figures below show how to extend a table f..ner and a pairing P €

P (teenter) based on a path to veenter and an endpoint for this path in teepger (i-€., a pair of
entries in teenter Which are paired up by P).

9877
s 5l6]t]4] (o) 98 |7 302 5]|6]|1]4
314126 5 @ 5(9(8[3[4]2] 6 @
4 2 1 a 9817 4 2] 1
3|1 (5[2[6]4 @ 98] 713]1|5[2]6]4
3[1]2 6|5 5/9[8[3]1]2 6 |

Figure 11: A table tcenter Figure 12: A path to Figure 13: A 6 x 9 table ¢ where G(t)
with a pairing P. Veentor - has the given path to veenter-

Following this logic, we can handle the paths in G(t) as follows:
1. Choose the paths in G(t).

2. For each path in G(t), choose a pair of entries in feenter Which are paired up by P to
act as an endpoint for the path. Note that no two paths can have the same pair of
entries as an endpoint.

Remark 44. This argument for analyzing the paths of G(t) is the reason why it is important
to consider the table teenter for the center columns together with a pairing P € P (tcenter)-

To count the number of ways to choose the paths in G(#') and their endpoints, we use the
following lemma which counts the number of possible graphs Gpaths With a given number of
paths to vVeenter and no cycles.

Lemma 45. Let B’ C [n] and take j = |B'|. For all x € [j], there are L(171) possible graphs
Gpatns on the vertices B' U {vcenter } which consist of x disjoint paths to Ucenter aNd no cycles.

Proof. We can specify each such graph as follows:

1. Choose an ordering for the elements of B’. There are j! possibilities for this ordering.

2. Choose the = paths by putting z — 1 dividing lines among the elements of B’. Between
each neighbouring elements of B’, there must be at most one dividing line, since each
path must have at least one vertex in B’. Hence, there are (; j) possibilities for this.

However, if we do this, each graph Gpams is counted z! times, one for each possible ordering
of the x paths. Thus, the number of possible graphs Gpaths on the vertices B’ U {Vcenter }
which consist of x disjoint paths to vVeenter and no cycles is 2 ( ) as needed. O

13



Proposition 46. Letting x be the number of paths in Gpams, there are Hz;é (3(n—a—"b)—y)
ways to choose the endpoints for these paths.

We now give the entire analysis for D,, .. Given A C [n] and B C [n] \ A such that
|A|=a and |B|= b, we can compute our Dy qp = > ,cp . Sg0(t)|Peenter(t)| as follows.

1. For each ¢ € A, we choose which column contains six copies of 7. Similarly, for each
j € B, we choose which column contains four j. The number of choices for this is

[T (n—J).

2. After choosing these columns, we choose a table tcenter € T6n—q—p and a pairing P €
P (teenter) to fill in the remaining columns. The number of choices for this is P,_,_p.

3. We split into cases based on the number of vertices i in G(t) which are contained in
cycles. For each i, we choose which (i’) of the elements in B are contained in cycles.
By Lemma 41, once these elements are chosen there are C; possibilities for the columns
containing these elements.

4. There are now j = b — i elements of B which are contained in paths. We further split
into cases based on the number z of paths in G(t). By Lemma 45, there are ;—:(ii)
possibilities for what these paths are in G(t).

As discussed above, for each of the x paths, we need to choose a different pair of entries
which are paired up by P to be an endpoint for the path and the number of choices
for these pairs is Hz;é (3(n —a —b) —y). Summing all of these possibilities up gives

a factor of ‘
-1\ T
Hn,j,a,b = Z ; <(L’ . 1) H(B(n —a-— b) - y)

=1 y=0

Putting everything together, we have that

a+b—1 b b
Dnap = ( H (n— ])) (Z (z) OiHn,b—i,a,b) Pra-sb,

j=0 =0

as needed.
Since this argument is intricate and is a central argument for our results, we make this
argument formal with the following bijection.

Lemma 47. Given A = {iy,...,i,} C[n] and B ={j1,...,Js} C [n]\ A, there is a bijection
between the following sets of data:

1. A tablet € D, 4 p together with a pairing P € Peenter(t) on the center columns.

2. A tuple (CA, CB; tcentery P7 i, chclem tcycles; xz, Gpathsa E) where
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(a) The indices C4 specify the locations of the 6-columns corresponding to the elements
in A. More precisely, Cy = (¢iy,Ciy, - .-, ¢i,) where for each k € [a], column ¢;,
contains Six iy.

(b) The indices Cg specify the locations of the 4-columns corresponding to the elements
in B. More precisely, Cg = (¢j,,Cjy, . - ., ¢;,) where for each k € [b], column c;,
contains four jy.

(c) We let teenter € Ton—1a|— 8| and P € P(tcenter) denote a table for the center columns
and a pairing on this table.

(d) We let i € [0,|B]|] denote the number of elements of B which are contained in
cycles in G(t).

(e) We let Beyaes € B denote the i elements of B which are contained in cycles in

G(t).
(f) We let teyres € Dig i) denote a table such that G(teyees) contains only cycles.
(g) We let x € [0,|B|—i| denote the number of paths in G(t).

(h) Letting Bpaths = B\ Beycles; We let Gpaths denote a graph on the vertices Bpatns U
Ucenter Which consists of x disjoint paths to Veenter-

(i) We let E = (p1,...,p:) denote the pairs in P which are the endpoints for the x
paths in Gpaghs-

Proof. Given a table t € D,, 4 p together with a pairing P € Peenter(t) on the center columns,
it is easy to find C4, Cp, %, Beycles; T, and Gpaths. We obtain feenter; teoycles, and £ as follows.

1. We obtain Zcyces from the entries of the columns containing the elements in Beyces-
More precisely, let ¢}, ..., c; be the columns containing the elements of Byes and let
J;. be the element which appears four times in column ¢ (note that ji,...,j! are not
necessarily in increasing order). If the entry in row r and column ¢, is j; then we take
the entry in row 7 and column k of tcyces to be y.

2. In order to obtain teener and E, we first modify ¢ as follows. We order the paths in
Gpaths based on the order of their starting vertices. Let ji1 — Jk2 — -+ = Jki, — Vcenter
be the kth path in Gpains. Let 741 and 742 be the rows of column c;,, which contain an
element z; ¢ AU B rather than ji;. Finally, let ¢f be the center column containing
two jgi,. We now make the following modifications to ¢.

1. We replace the two zj in rows 141 and 742 of column ¢;,, with jg;.

2. For all i € [l;, — 1], the two j; in column Cjuirry MUSt be in rows ry; and rge. We
replace these two jr; with jii1).

3. The two jj, in column ¢; must be in rows r;; and 7. We replace these ji;, with
2. We take pp to be this pair of elements.

15



Let ¢ be the table we obtain after making these modifications for each of the k paths.
The center columns of ¢ only contain elements in [n]\ (AU B), so we can obtain tcenter
from t'. More precisely, letting cf,...,c._,_, be the center columns of ¢’ and letting
i1, -0, 4y be the elements of [n] \ (AU B), if ¢ has an element 4; in row 7 and
column ¢} for some r € [6] and j,y € [n — a — b] then we put the element y in row
r and column j of teenter- We translate P € Peenter(t') and E = (py, ..., py) from the

center columns of ¢ t0 teenter accordingly.

Conversely, given a tuple (Cy4, Cg, teenters P %, Beycles, teycless T, Gpaths; £2), We construct ¢ €
D, 4.p as follows.

1. For each i, € A, We start by putting six 45 in column ¢;,. Similarly, for each j;, € B,
we start by putting six ji in column c;, .

2. We use feenter to fill in the center columns. More precisely, letting ¢}, ..., ¢! ., be the
center columns and letting 4/,...,7,_, , be the elements of [n] \ (AU B), if tcenter has

an element y € [n — a — b] in row r and column j then we put the element iy, in row 7
and column ¢ of ¢.

We translate the pairing P € P(tcenter) and the endpoints £ = (p1,...,p;) to the
center columns accordingly.

3. We use feyces to replace the columns of ¢ containing the ¢ elements of Bgycles. More
precisely, if ¢f, ..., ¢/ are the columns containing the elements of Beyces and j;, is the
element in column ¢} (note that ji,..., ! are not necessarily in increasing order) then
if Zcyices has an element y € [¢i] in row r and column k then we put the element j; in
row r and column ¢}.

We let ¢’ be the table which we obtain after this replacement.

4. We order the paths in Gpa.tns based on their starting vertex. For each k € [z], let
Jk1 = Jk2 = * = Jki,, — Ucenter D€ the kth path in Gpams. After translating E to the
center columns, pj, is a pair of elements z; in rows ry; and 742 of column ¢}, for some
zk € [n]\ (AUB), c; €{d],...,c .}, and rr1, 762 € [6]. We obtain ¢ by performing

the following modifications to ¢’ for each of the k paths.

1. We replace the two zj in rows ry; and 7 of column ¢ with jg, .

2. For all ¢ € [l — 1], we replace the two jy(41) in rows 73 and rj2 of column Cirtirn)

3. We replace the two jj; in rows ry; and e of column ¢j,, with z.

Example 48. The figures below illustrate the bijection when A = {7}, B = {1,5,6,8,9},
Cs=(1),Cp=(8,4,7,2,9) (as these are the 4-columns for 1,5,6,8,9 respectively), i = 2,
Beyeles = {8,9}, = 2, and teenter teycless Gpaths, and E are as shown below.
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Figure 14: tcenter and
Leycles- Figure 15: G(t). Figure 16: The resulting table ¢.
It is not hard to check that these maps are inverses of each other. O]

]

This completes the proof of Lemma 34. Combining Lemmas 33 and 34 completes the
proof of Lemma, 28. [

We now simplify the terms in Lemma 28.

Proposition 49.
B(n—a—>b)+j5—1)!
(B(n—a—25)—1)!

Hn7.j7a7b -

Proof. Originally,

7 . . z—1
Jgi—-1
Hosor= X5 (120 ) TG0 a0 -
1

y=0

Let z = 3(n — a — b). For the inner product, we can write

z—1
z!
H(3(n_a’_b) _y) = (Z—.'I?)"
y=0
SO 4 ,
j . . j . .
jlfj—1 2! , J—1\ /(=% L (z+5—1
Hyjap = - = J! =J! ; :
b ;x!(x—l)(z—x)! j;(a:—l z) =7 J
The last equality is a special case of the Chu-Vandermonde Identity. O

With these simplifications, we can derive an expression for the generating function

Fot) =3~ fo(m).

— (n!)?
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By Lemma 28,

0= 5 ()00

0<a<j<n

Summing with respect to b = j — a instead of a and observing that

a+b—1 b b
Dn,a,b = ( H (’I’L - k)) (Z (Z) CiHn,b—i,a,b) Pn—a—b

k=0 i=0
b
n! b
= — < E <Z) CiHn,b—i,j—b,b) Pn—j

— Nl
b

b n—j+2) (n—j+4)!
=nl (Z (Z> CiHn,b—i,j—bvb) ) >4é§ e ’
1=0

we have that

-5 5C)() (-

0<i<b<j<n
(n—j+2)(n—j+4)
18

By Proposition 49, H,, p—; j—pp = (3n—3j+b—i—1)! /(3n—3j—1)!. Using the reparametriza-
tion b=1i+s,j =b+r,n= 7+ q, where s,r,q goes from 0 to oo, we get

Hyp—ij—uCi.

P L pitstrtg

Aty = 325252 i ns =167 (om0

q=0 r=0 s=0 i=
(g+ 2! (g+ ) (Bg+s— 1)!0.
48 (3¢ —1)! "

Grouping the terms to separate the dependence on r, s, and i, we have that Fg(t) equals

17 (g +2)! (g +4)! =t (mg — 15)"
(Bt (2]

q=0 r=0
t° (3¢ +s—1)! =t .
——(my — 3)° —(my —3)'C; | .
Summing all the inner sums (the rightmost using Lemma 41),
00 +a 92)! A) 1 —15¢(ma—3)
Fﬁ(t) _ Z ~ (q + ) (q + ) et(m6—15) - € —.
il 48 (1 —t(mg —3))3 (1 —t(my — 3))

18



4 Generalization for an arbitrary third moment

Restating Proposition 19, we can write

where 7§, is the set of all permutation tables of length n with six rows whose columns fall
in one of the following categories:

e G-columns: six copies of a single number (weight mg)
e 4-columns: four copies of one number and two copies of a distinct number (weight m,)
e 2-columns: three pairs of distinct numbers (weight 1)

The weight w(t) of a table ¢ is simply the product of the weights of its columns.
When m3 # 0, we can have the following type of column in addition to 2-columns,
4-columns, and 6-columns:

e 3-columns: three copies of one number and three copies of a distinct number (weight
2
m3)

To handle this, we make the following definitions.

Definition 50. We define fi(n) = Eyom,,,.)det(M)®] to be the expected value of the
sixth power of the determinant of a matrix M ~ M, 4, () (i.e., an n X n random matrix
with entries drawn from §2) where 2 is a distribution such that m; = 0.

We define the formal generating function Fy(t) for f&(n) to be FE(t) = 7, #fg(n)

Remark 51. We write f¢i(n) instead of fg(n) to distinguish this case from the case we previ-
ously analyzed where m; = ms = 0.

Definition 52. We define 7§, to be the set of all 6 x n tables whose rows are permutations
of [n] and whose columns are 2-columns, 3-columns, 4-columns, or 6-columns.

Similar to before, we can write f¢(n) as the sum over tables in ¢, of the contribution
from each table.

Proposition 53. For alln € N, fi(n) = ZteT; sgn(t)w(t).
We can evaluate f§(n) using our expression for fg(n).

Definition 54. We define fs(n) = >_,cp, sgn(t)w(t) = Enrp, @) [det(M)°] where Q' is
the distribution where we first sample z from Q and then randomly choose z or —z (so
and €' have the same even moments but the odd moments of ' are 0).
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Lemma 55. For alln € N,

fe(n) = (’;) foln— ) (1) 3 (~10)°.

j=0 ﬂ'EDj

Proof. We first break each table t € 7§, into tables s and ', where s contains all of the
3-columns of t. The signs of these tables are related as

sgn(t) = sgn(s) sgn(t’).

Definition 56. Given J C [n], letting j = |J|, we define Ts ; to be the set of all 6 x |J|
tables whose rows are permutations of J and whose columns are all 2-columns, 4-columns,
or 6-columns. We define Qs to be the set of all 6 x |J| tables whose rows are permutations
of J and whose columns are all 3-columns.

Since the selection of the subset J C [n] does not depend on the positions of the columns
containing the elements of J in table ¢, we can write our sum as

fo(n) = Z <n) Z sgn(t)w(t) Z sgn(s)w(s).

JC|[n] J t'€Ts, (n)/ g s€Qs,

No matter which numbers J are selected, as long as we select the same amount of them, the
contribution is the same. Hence,

B =31 T sm@u) X sl

jZO tIETG’n_j SEQGJ'

where Qg ; = Qg,[;)- The first inner sum is simply fs(n — j). For the second inner sum, by
symmetry, we can fix the first permutation in s to be the identity. Since w(s) = m?f , we get

Z w(s)sgn(s) = j1m3’ Z sgn(s).
$€Q6, 5€Q6,
s1=id
Similarly as before, we construct a graph G(s) from the numbers in table s and then show
G(s) is a derangement. Let ¢ be a number in the first row of a given column of table s. Since
it is a 3-column, we denote the other number in the column as ¢’. We construct a graph
G(s) for a given table s whose edges are all of these pairs ¢ — (.

Example 57. Example showing the correspondence between a table s where s; = id and
the corresponding derangement G(s).
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Figure 18: The associated G(s).
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Figure 17: A 6 x 9 table s € Qg .

For the signs, letting m = G(s), we have

sgn(s) = sgn(m) = (1)),

Note that since ¢ and ¢’ are always different, the set of all G/(s) corresponds to the set D;

of all derangements. Since there are (g) = 10 possibilities how to arrange the leftover 5

numbers ¢ and ¢ in each of the 3-columns corresponding to a given cycle of 7, we get

> w(s)sgn(s) = jlm3 (1) Y (=1)9™ 10,

SEQ(}J 7I'€D]'

Putting everything together, we obtain that

=3 (j) foln— )1 m2 (1) 3 (~10)°.

=0 reD;
O
Corollary 58.
2
Fi () = (14 m2t) 2103t iy )
Proof. In terms of generating functions,
B0 =2 plhitn =2 0 G pph(n =05 2 (1007
n=0 n=0 j=0 J): J: neD;
o (—m3t) . o—10m3t
= F5(t) Y~ D (10097 = Folt) .
= g! 57, (1+m3t)
The final equality is a special case of Lemma 27. Theorem 9 follows. O

5 Asymptotics

The proof relies directly on the calculus developed by Borinsky [1], enabling us to extract
the asymptotic behaviour of coefficients from their factorially divergent generating function.
We use the following result from Borinsky [1]:
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Definition 59. We say a formal power series f(t) = ano fnt™ is factorially divergent of

type («, 8), if f, ~ Z;I::o cra"PF0(n 4+ B — k) as n — oo for any fixed R integer. We also
define an operator Aj acting of f(t) such that (A§f)(t) = 3,0 cxt”. If moreover f(t) is
analytic at 0, then (A§f)(t) = 0.

Lemma 60. Let f(t) and g(t) be two factorially divergent power series of type («, B), then
(A5(f9)(@) = (A5/)()g(t) + f(t)(A5g)(?), and

(507 0 (1) = LoD (A5)0) + () 247 (A5 ) (o0,

where the second equality holds when g(t) = 1+t + O(t?).

Recall Theorem 9, which states that

t(me—10mZ—15m4+30) (1 + Z)(2 + ’L)(4 + ’L)'tl

Fo(t) = (1 +m2t)° < :
o(t) = (1 mit) 48(1+ 36 — mat)® &= (1+ 3L — mat)?

Hence, we can write Fy(t) = h(t)f(g(t)), where

(e 9]

f(t) = 2(1 +i)(24 )4+ i)t

1=0
t
(1 + 3t — m4t)3’

510 et(m6—10m§—15m4+30)
h(t) = (1 t
() = (L mst) e 3 — )5

g(t) =

are factorially divergent of type (1,7) since
(1+3)2+9)(4+4)!=T0+7)—8(¢+6)+12I'(i + 5)

and ¢(t) and h(t) are analytic. Thus, by Lemma 60,

o+ \

(AR (1) = h(t) () o3 (L) a(0)

= 1(0) () et (1 = 8g(0) + 126%(1)),

Apart from a factor (n!)2e3™+=3) /48 this is our function C(t) from the original statement
of Theorem 12.
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For Q = {—1, 1}, the asymptotic expression

(n!)* (6 5 4
€

5861n3 i 17944n? N 44036n
3 3 )

n 167536 210176
45 63n

gives an excellent approximation to fs(n) for n > 10. The following figure shows the ratio
of this asymptotic expression to the actual value of fg(n) for n up to 20.

T T T T T T T T T T T T T T T T

1.2} {

1.1} ]

0.92\1 .

1 L L L L 1 L L L L 1 L L L L 1

5 10 15 20

Figure 19: The ratio between the asymptotic expression and fg(n) for Q = {—1,1}.
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A Direct proof of Lemma 26

Lemma. (Restatement of Lemma 26). For alln € N, P, = n(n + 2)(n + 4)P,_1 where
Py=1.

Proof. We recursively compute P, = ZteTkm sgn(t)|P(t)| based on where the six n are
located in t.

We can count the cases where all of the n are in a 6-column as follows. Given a table
t € Tyn—1 and a pairing P € P(t), we can obtain a table ¢’ € T}, and a pairing P’ € P(t)
by choosing a location for the 6-column, choosing a pairing for this column, and using ¢ and
P to fill in the remainder of ¢’ and P’. There are n possible places for the 6-column, it has
15 possible pairings, and sgn(t') = sgn(t), so this gives a contribution of 15nP,_;.
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We can count the cases where four of the n are in a 4-column and two of the n appear
in a different column as follows. Given a table ¢t € T}, and a pairing P € P(t), we can
obtain a table ¢ € T}, and a pairing P’ € P(t) with the following steps:

1. Choose which column will be the 4-column containing four of the n. We initially put
all six n in this column.

2. Fill in the remaining columns using ¢ and P.
3. Choose one of the 3(n — 1) pairs in P and swap two of the n with this pair.
4. Choose a pairing for the remaining four n.

There are n possible places for the 4-column containing four of the n, there are 3(n—1) pairs
in P which can be swapped with two of the n, there are 3 different pairings for the remaining
four n, and sgn(t') = sgn(t), so this gives a contribution of 3(3)n(n—1)P,—1 = In(n—1)P,_;.

The trickiest case to analyze is the case when the six n are split into three different
columns. The idea for this case is that there is a correspondence between sets of two columns
containing pairs of the elements a, b, c,d, e, f and sets of three columns containing pairs of
the elements a, b, ¢, d, e, f where each column also contains a pair of n. This correspondence
is highly non-trivial and relies on the signs of the permutations.

Definition 61. Let S, S5, S3, 54, S5, S¢ be six sets such that each set S; contains two of the
elements {a,b,c,d, e, f} and each element in {a,b,c,d, e, f} is contained in two of the sets
S, Ss, 55,54, S5, Se.

We define T5(S1, So, S5, S4, S5, .56) to be the set of 6 x 2 tables t such that the ith row
contains the elements in S; and each element appears an even number of times in each
column. Similarly, we define T5(S1, Sa, S3, S4, S5, .56) to be the set of 6 x 3 tables ¢ such that
the ith row contains the elements in .S; U {n} and each element appears an even number of
times in each column.

For each t € T5(S1, S, Ss, Sy, S5,56), we define sgn(t) to be the product of the signs of
the rows of ¢ where row 7 of ¢ has sign 1 if the elements of S; appear in order and sign —1
if the elements of S; appear out of order. Similarly, for each ¢ € T5(.Sy, S, S3, 54, S5, S6), we
define sgn(t) to be the product of the signs of the rows of ¢ where row ¢ of ¢ has sign 1 if
it takes an even number of swaps to transform it into S; U {n} and —1 if it takes an odd
number of swaps to transform it into S; U {n}.

Lemma 62. For all possible S, S2,S5,54, S5, S6,

Z sgn(t) =6 Z sgn(t).

t€T5(51,52,53,54,55,56) t€T>(51,52,53,54,55,56)

Corollary 63. For alln € N,

> sgn(t)|P(t)| = n(n — 1)(n — 2) P,_y.

teTs,n:n appears in 3 different columns
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Proof. Recall that
> sen()[P(t)] = Pa-r.

tETG,nfl

We now apply Lemma 62 to the first two columns of the pairs (¢, P) where t € Tg,_1
and P € P(t). To do this, we use P to relabel the elements in the first two columns as
a,b,c,d,e, f. One way to do this is as follows. We go through the rows one by one and
assign the next unused label(s) to the element(s) which whose pair has not yet appeared. If
there are two such elements, we assign the first unused label to the lower element and the
next unused label to the higher element. If both elements are the same, we assign the first
unused label to the column where the pair of this element appears first. If there is still a tie,
we assign the same label to both elements and skip the next label. Lemma 62 still holds in
this case as having S; = S; = {a,a} instead of S; = S; = {a, b} divides both sides by 2.

After doing this relabeling, for each i € [6], we take S; to be the first two elements in row
7. Applying Lemma 62, we obtain tables ' and pairings P’ by taking P’ to be the unique
pairing for each column and inverting the labeling of the elements in the first two columns
of t by {a,b,c,d, e, f}. This implies that whenever n > 3,

> sen()[P()] =6 3" sen([P(0)] = 6P, .

t€Ts,n:n appears in the first three columns teTe,n—1
“1)n—2 ey eqe) . .
There are () = % possibilities for which three columns contain n so we have that

> sen()|P(t)] = n(n— 1)(n — 2) P, 1,

teTs,n:n appears in 3 different columns

as needed. O

Summing these three cases up, we have

P,=15nP, 1+ 9(n—1)P,_1 +n(n—1)(n —2)P,4
=(n*+6n*+8n)P,_1 =n(n+2)(n+4)P,_,

We now prove Lemma 62.

Proof of Lemma 62. Up to permutations of the rows and {a,b, ¢, d, e, f}, we have the follow-
ing four cases for Si, Ss, S3, S4, S5, S¢:

1. Sl = SQ = {CL, b}, Sg = 84 = {C, d}, and 85 = 56 = {e,f}.
2. Sl SQ = {(I b} 53 {C d} S4 {C 6} 55 {d f} and Sﬁ = {6 f}
3. S1 ={a,b}, S ={a,c}, S3={b,d}, Sy ={d, e}, S5 = {c, f}, and S = {e, f}.
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4. S; ={a,b}, Sy ={a,c}, S3={b,c}, Sy ={d, e}, S5 ={d, f}, and Sg = {e, f}.

We can see that these are the only possibilities as follows. If we construct a multi-graph
where the vertices are {a,b,c,d, e, f} and the edges are {Si, S5, S3, S4, S5, 56} then in this
multi-graph, every vertex will have degree 2.

1.

If there is a cycle of length 2 then for the remaining 4 vertices, we will either have two
more cycles of length 2 or a cycle of length 4. This gives cases 1 and 2.

. If there is a cycle of length 3 then there must be another cycle of length 3 on the

remaining vertices. This gives case 4.

If there are no cycles of length 2 or 3 then we must have a cycle of length 6. This gives
case 3.

For the first three cases, we notice that T5(S1, Sa, S3, S4, S5, S¢) is nonempty as shown by
the examples below. For the fourth case, we notice that T5(Si, S, S, Sy, S5, S6) is empty.

( 3 ( 3 ( 3

O /AU QU T
D 6 o 0 o

O O 0 0 2

s AL L9 Q2

R LR o
N O O 2 2

\ / \ J \ /

For all four cases, T3(S1, 52, S3,S4, S5, S6) is nonempty as shown by the examples below.

r \ ( \ ( b 3\ 4 \

a b n a b n a n a b n
a b n a b n a ¢ n a n c
c n d cn d n b d n b c
<c n d>’ cn ef’len d(’)d e n
n e f n f d n c f d n f
n e f) \n f e) \len f) (n e [

We now show that for each of the four cases,

1.

Z sgn(t) =6 Z sgn(t).

t€T5(51,52,53,54,55,56) t€T>(51,52,53,54,55,56)

For the first case, |T5(Sh,S2, 53,54, S5, 56)|= 8 as we can choose the order of {a,b}
in row 1, the order of {¢,d} in row 3, and the order of {e, f} in row 5. All ¢t €
T5(S1, So, S3, Sy, S5, S¢) have positive sign as rows 2, 4, and 6 must be the same as
rows 1, 3, and 5. Thus, 37,1 s, s, 55.5,.55.5,) S8n(t) = 8.

To analyze T5(S1, S, Sz, S4, S5, S6), observe that there are 6 choices for the positions of
the n in rows 1, 3, and 5 and we can again choose the order of {a, b} in row 1, the order
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of {¢,d} in row 3, and the order of {e, f} in row 5. Thus, |T5(S1, Sa, S3,S4, S5, Sg)|= 48.
All t € T3(5, 59, S5, Sy, S5, Sg) have positive sign as rows 2, 4, and 6 must be the same
as rows 1, 3, and 5. Thus, ZteTg(SI’SQ753754’S5756) sgn(t) = 48.

. For the second case, |T5(S1, S, S5, S4, S5, S6)|= 4 as we can choose the order of {a, b}
in row 1 and the order of {c¢,d} in row 3 and this uniquely determines the rest of the
table. It can be checked that all ¢ € T5(S4, S, Ss, Sy, S5, S6) have positive sign. Hence,
we have that > _,cr, s, 5, 555,555 Se0(t) = 4.

To analyze T3(S1, S2, 53,54, S5, 56), observe that there are 6 choices for the order of
{a,b,n} in row 1. Once this order is chosen, there are two choices for the position of
the n in row 3 and two choices for the order of {¢,d} in row 3. It can be checked that
this uniquely determines the rest of the table and all t € T5(S1, Se, S5, S4, Ss, Sg) have
positive sign so we have that ztGTs(Sl,Sz,Sg,S4,S5,86) sgn(t) = 24.

. For the third case, |T5(S1, S2, Ss, Sy, S5, S6)|= 2 as we can choose the order of {a, b} in
row 1 and this uniquely determines the rest of the table. Both ¢t € T5(S1, Sa, S3, S4, S5, S6)
have negative sign so we have that >, .7, s, s, s, 5,.55.50) S80(t) = —2.

For T3(S1, S, Ss, Sy, S5, S6), there are 6 choices for the order of {a, b, n} in row 1. When
row 1 is a, b, n, we have the following four tables:

(a b n) (a b n) (a b n) (a b n)
a ¢ n a n c a n c a n c
n b d d b n n b d n b d
en df’Yd n e[’ ’)Ye n df{’|n e d
n c f n f c n f c fn c
eon g} b re) Le s ) (e,

Of these tables, the first, second, and fourth table have negative sign while the third
table has positive sign so the net contribution is —2. Multiplying this by 6, we have

that
Z sgn(t) = —12.
t€T3(51,52,53,54,55,56)

. For the fourth case, T5(S1, S, 53,54, 55, 56) is empty because each column can only
contain one of {a, b, c} and one of {b, ¢, d}.

To analyze T3(S1, Se, S3, S4, S5,.56), observe that we can choose the order of {a,b,n}
in row 1 and the order of {d,e,n} in row 4 and this uniquely determines the rest of
the table. The sign of each table will be the product of the sign for row 1 and the sign
for row 4, so we have the same number of tables with positive and negative sign and

thus Zt€T2(51,52753,S4,S5,S(;) Sgn(t) = ZtET3(Sl,SQ,Sg,S4,S5,SG) Sgn(t) = 0

]
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