
Proceedings of Machine Learning Research vol 195:1±61, 2023 36th Annual Conference on Learning Theory

Near-optimal fitting of ellipsoids to random points

Aaron Potechin POTECHIN@UCHICAGO.EDU

University of Chicago

Paxton Turner PAXTONTURNER@G.HARVARD.EDU

Harvard University

Prayaag Venkat PVENKAT@G.HARVARD.EDU

Harvard University

Alexander S. Wein ASWEIN@UCDAVIS.EDU

UC Davis

Editors: Gergely Neu and Lorenzo Rosasco

Abstract

Given independent standard Gaussian points v1, . . . , vn in dimension d, for what values of (n, d)
does there exist with high probability an origin-symmetric ellipsoid that simultaneously passes

through all of the points? This basic problem of fitting an ellipsoid to random points has connec-

tions to low-rank matrix decompositions, independent component analysis, and principal compo-

nent analysis. Based on strong numerical evidence, Saunderson, Parrilo, and Willsky (Saunder-

son, 2011; Saunderson et al., 2013) conjectured that the ellipsoid fitting problem transitions from

feasible to infeasible as the number of points n increases, with a sharp threshold at n ∼ d2/4.

We resolve this conjecture up to logarithmic factors by constructing a fitting ellipsoid for some

n = d2/polylog(d). Our proof demonstrates feasibility of the least squares construction of (Saun-

derson, 2011; Saunderson et al., 2013) using a convenient decomposition of a certain non-standard

random matrix and a careful analysis of its Neumann expansion via the theory of graph matrices.

Keywords: High-dimensional probability, semi-definite programming, phase transitions, convex

geometry

1. Introduction

Let v1, . . . , vn ∈ R
d be a collection of points. We say that this collection has the ellipsoid fitting

property if there exists a symmetric matrix X ∈ R
d×d such that X ⪰ 0 and vTi Xvi = 1 for

all i ∈ [n]. That is, the eigenvectors and eigenvalues of the matrix X describe the directions

and reciprocals of the squared-lengths of the principal axes of an origin-symmetric ellipsoid that

passes through all of v1, . . . , vn. From the definition, it is clear that testing whether the ellipsoid

fitting property holds for a given set of points reduces to solving a certain semidefinite program. It is

known that if v1, . . . , vn satisfy the ellipsoid fitting property, then±v1, . . . ,±vn lie on the boundary

of their convex hull1 and that the converse holds when n ≤ d+1 (Corollary 3.6 of Saunderson et al.

(2012)).

In this paper, we study whether random points satisfy the ellipsoid fitting property. Specifically,

let v1, . . . , vn ∼ N (0, Id) be i.i.d. standard Gaussian vectors in R
d. Treating n = n(d) as a function

of d, we ask: what is the largest value of n for which n standard Gaussian vectors have the ellipsoid

1. A point vi lies on the boundary of the convex hull of ±v1, . . . ,±vn if there exists x ∈ R
d such that ⟨x, vi⟩ = 1 and

| ⟨x, vj⟩ | ≤ 1 for all j ̸= i.
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fitting property with high probability2 as d → ∞? Since the probability of the ellipsoid fitting

property is non-increasing as a function of n, it is natural to ask if it exhibits a sharp phase transition

from 1 to 0 asymptotically as n increases.

If n ≤ d+1, then with probability 1, the points ±v1, . . . ,±vn have the aforementioned convex

hull property and hence satisfy the ellipsoid fitting property. However, it turns out that for random

points, the ellipsoid fitting property actually holds for much larger values of n. Intriguing experi-

mental results due to Saunderson et al. Saunderson (2011); Saunderson et al. (2012, 2013) suggest

that the ellipsoid fitting property undergoes a sharp phase transition at the threshold n ∼ d2/4.

Formally, we restate their conjecture:

Conjecture 1 Let ϵ > 0 be a constant and v1, . . . , vn ∼ N (0, Id) be i.i.d. standard Gaussian

vectors in R
d.

1. If n ≤ (1− ϵ)d
2

4 , then v1, . . . , vn have the ellipsoid fitting property with probability 1− o(1).

2. If n ≥ (1 + ϵ)d
2

4 , then v1, . . . , vn have the ellipsoid fitting property with probability o(1).

By genericity of the random linear constraints and the fact that any d × d PSD matrix (in fact,

symmetric matrix) is described by d(d + 1)/2 parameters, it can be verified that the system of

random linear constraints alone (without the PSD constraint) becomes infeasible with probability 1

if and only if n > d(d + 1)/2 (see Lemma 40). Fascinatingly, Conjecture 1 posits the existence of

a range of values n ∈
(

d2

4 ,
d(d+1)

2

)

for which with high probability, there exists a symmetric matrix

satisfying the linear constraints, but no such positive semidefinite matrix exists. Saunderson et

al. Saunderson (2011); Saunderson et al. (2013) made partial progress towards resolving the positive

part of this conjecture: they showed that for any ϵ > 0, when n < d 6/5−ϵ, the ellipsoid fitting

property holds with high probability. A special case of Theorem 1.4 of Ghosh, Jeronimo, Jones,

Potechin, and Rajendran Ghosh et al. (2020), developed in the context of certifying upper bounds

on the Sherrington±Kirkpatrick Hamiltonian, guarantees that for any ϵ > 0, when n < d3/2−ϵ, there

exists with high probability a fitting ellipsoid X whose diagonal entries are all equal to 1/d.

The ellipsoid fitting problem, a basic question in high-dimensional probability and convex ge-

ometry, is further motivated by connections to other problems in machine learning and theoretical

computer science. First, Conjecture 1 was first formulated by Saunderson et al. Saunderson (2011);

Saunderson et al. (2012, 2013) in the context of decomposing an observed n × n data matrix as

the sum of a diagonal matrix and a random rank-r matrix. They proposed a convex-programming

heuristic, called ªMinimum-Trace Factor Analysis (MTFA)º for solving this problem and showed

it succeeds with high probability if the ellipsoid fitting property for n standard Gaussian vectors in

d = n− r dimensions holds with high probability.

Second, Podosinnikova et al. Podosinnikova et al. (2019) identified a close connection between

the ellipsoid fitting problem and the overcomplete independent component analysis (ICA) problem,

in which the goal is to recover a mixing component of the model when the number of latent sources n
exceeds the dimension d of the observations. They show that the ability of an SDP-based algorithm

to recover a mixing component is related to the feasibility of a variant of the ellipsoid fitting problem

in which the norms of the random points fluctuate with higher variance than in our model. They give

experimental evidence that the SDP succeeds when n < d2/4, the same phase transition behavior

described in Conjecture 1, and show rigorously that it succeeds for some n = Ω(d log d).

2. Here and throughout, high probability means probability tending to 1 as d → ∞.
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Third, the ellipsoid fitting property for random points is directly related to the ability of a canon-

ical SDP relaxation to certify lower bounds on the discrepancy of nearly-square random matrices.

The discrepancy of random matrices is a topic of recent interest, with connections to controlled

experiments Turner et al. (2020), the Ising Perceptron model from statistical physics Aubin et al.

(2019), and the negatively-spiked Wishart model Bandeira et al. (2020); Venkat (2022). A result

implicit in the work of Saunderson, Chandrasekaran, Parrilo, and Willsky Saunderson et al. (2012)

states that if the ellipsoid fitting property for n Gaussian points in dimension d holds with high prob-

ability, then the SDP fails to certify a non-trivial lower bound on the discrepancy of a (n − d) × n
matrix with i.i.d. standard Gaussian entries (see Appendix C for further discussion). In addition,

this provides further evidence of the algorithmic phase transition for the detection problem in the

negatively-spiked Wishart model that was previously predicted by the low-degree likelihood ratio

method Bandeira et al. (2020).

Finally, a current active area of research in theoretical computer science aims to give rigorous

evidence for information-computation gaps in average-case problems by characterizing the perfor-

mance of powerful classes of algorithms, such as the Sum-of-Squares (SoS) SDP hierarchy. Often,

the most challenging technical results in this area involve proving lower bounds against these SDP-

based algorithms. Moreover, there are relatively few examples for which predicted phase transition

behavior has been sharply characterized (see e.g. Barak et al. (2019); Ghosh et al. (2020); Hopkins

et al. (2017); Hsieh and Kothari (2022); Jones et al. (2022); Kothari and Manohar (2021); Mohanty

et al. (2020); Schoenebeck (2008)), all proven using the same technique of ªpseudo-calibrationº.

We remark that proving the positive side of Conjecture 1 amounts to proving the feasibility of an

SDP with random linear constraints. This also arises in average-case SoS lower bounds, although

the linear constraints for average-case SoS lower bounds are generally very intricate.

The main contribution of our work is to resolve the positive side of Conjecture 1 up to logarith-

mic factors. (Recall that the negative side of Conjecture 1 has already been resolved up to a factor

of 2.)

Theorem 2 There is a universal constant C > 0 so that if n ≤ d2/ logC(d), then v1, . . . , vn ∼
N (0, Id) have the ellipsoid fitting property with high probability.

As a first corollary of Theorem 2, we conclude that MTFA in this setting succeeds provided

r ≤ n−√n polylog(n), improving on the bound r ≤ n−ω(n2/3) from a combination of the results

of Saunderson et al. Saunderson (2011); Saunderson et al. (2013) and Ghosh et al. Ghosh et al.

(2020). Second, Theorem 2 implies the following ªfinite-sizeº phase transition result: a canonical

SDP cannot distinguish between an m×n matrix with i.i.d. standard Gaussian entries and one with

a planted Boolean vector in its in kernel when m ≤ n − √n polylog(n) (see Appendix C), again

improving on the bound m ≤ n− ω(n2/3) that follows from Ghosh et al. (2020).

Experimental results It is natural to wonder whether our proof of Theorem 2 can be sharpened

to make further progress on Conjecture 1. Our proof is based on a least-squares construction that

was first studied in Saunderson (2011); Saunderson et al. (2013) (see Section 2). Although the

least-squares construction always satisfies the linear constraints, in Section 3 we corroborate ex-

perimental evidence of Saunderson et al. suggesting that it fails to be positive semidefinite strictly

below the conjectured n ∼ d2/4 threshold. We also introduce a new method called the ªidentity-

perturbationº construction that also always satisfies the linear constraints and appears to improve on
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the least-squares construction in experiments, while having similar time complexity. Our simula-

tions in Section 3 provide numerical evidence that the positive semi-definiteness of the least-squares

and identity-perturbation constructions undergo sharp phase transitions at roughly n ≈ d2/17
and n ≈ d2/10, respectively. We did not run eperiments on the pseudo-calibration construction

of Ghosh et al. (2020) because this construction has the drawback that it involves logarithmic de-

gree polnomials of the input and is thus very hard to compute.

These results suggest that a full resolution of Conjecture 1 requires either sharply analyzing the

pseudocalibration construction of Ghosh et al. (2020) (if it achieves the threshold n ≈ d2

4 , which is

unknown), inventing a new construction and analyzing it, or reasoning indirectly about the ellipsoid

fitting property without considering any explicit candidate.

Related work We now discuss two closely related works that study a simpler variant of the ellip-

soid fitting problem. In this variant, the constraints vTi Xvi = 1 in the definition of the ellipsoid fit-

ting property are replaced by ⟨X,Gi⟩ = 1, where G1, . . . , Gn ∈ R
d×d have i.i.d. standard Gaussian

entries. Amelunxen, Lotz, McCoy, and Tropp Amelunxen et al. (2014) give a general framework for

characterizing phase transition behavior of convex programs with random constraints. Interestingly,

their framework shows that the conclusion of Conjecture 1 is true for the simpler variant. More-

over, they explain that the occurrence of the phase transition at n ∼ d2/4 arises from the fact that

d(d + 1)/4 is the ªstatistical dimensionº of the cone of d × d PSD matrices. The known proofs of

these results are either based on conic geometry or Gaussian process techniques that crucially rely

on the fact that the entries of the constraint matrices are i.i.d. and Gaussian. Despite the strikingly

similar phase transition behavior for the two models of random constraints, it appears unlikely that

these techniques can be used to resolve Conjecture 1. In this simpler i.i.d. setting of Amelunxen et

al., Hsieh and Kothari Hsieh and Kothari (2022) show that when n ≤ d2/ polylog(d), the ellipsoid

fitting SDP (which corresponds to the degree-2 SoS SDP) equipped with some additional symmetry

constraints (corresponding to the degree-4 SoS SDP) is still feasible with high probability.

Ghosh et al. Ghosh et al. (2020) consider the original setting in which the constraint matrices

are of the form viv
T
i and also impose the constraint that the diagonal entries of X satisfy Xii = 1/d

for all i ∈ [d]. They show that for any ϵ > 0 this SDP, even when augmented with more constraints

corresponding to higher degree SoS, remains feasible with high probability for some n = Ω(d3/2−ϵ)
and conjecture that this should even hold for some n = Ω(d2−ϵ). The proofs of the results of

Ghosh et al. Ghosh et al. (2020) and Hsieh and Kothari Hsieh and Kothari (2022) are based on

the pseudo-calibration technique. Due to technical complications that arise when analyzing higher

degree SoS pseudocalibration constructions, Ghosh et al. (2020) can only prove feasibility for some

n = Ω(d3/2−ϵ). However, as we detail in Appendix I, these technical complications do not arise

when specialized to the degree-2 case, which gives an alternative proof of Theorem 2.

On a technical level, our proof heavily relies on the recently introduced machinery of graph

matrices Ahn et al. (2016), a powerful tool for obtaining norm bounds of structured random matrices

using a certain graphical calculus (see Section B). Ours is among the first works to apply graph

matrices outside of the Sum-of-Squares lower bound literature, and we expect graph matrices to be

useful for other probabilistic applications beyond average-case complexity theory.

Independent work Shortly after a revised version of this paper was posted on the arXiv, in-

dependent work of Kane and Diakonikolas Kane and Diakonikolas (2022) analyzed the identity-

perturbation construction and showed it improves on the logarithmic factor in Theorem 2. Their

short proof crucially uses the fact that the norms and directions of a standard Gaussian are inde-
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pendent. Our proof is more technically involved but can be adapted to handle non-Gaussian distri-

butions whose coordinates are independent and sufficiently well-concentrated. Our work analyzes

the least-squares construction, and its analysis also carries over easily to the analysis of the identity

perturbation construction, as we demonstrate in Section J.

2. Technical overview

We now give an overview of the proof of Theorem 2. To begin, we introduce some convenient

notation. Define the linear operator A : Rd×d → R
n by A(X) := (vT1 Xv1, . . . , v

T
nXvn)

T and

let A† be its pseudoinverse. The fitting ellipsoid in Theorem 2 is obtained via the least-squares

construction:

XLS = A†(1n), (1)

which is the minimum Frobenius norm solution to the linear constraints. This construction was

first studied by Saunderson et al. Saunderson (2011); Saunderson et al. (2013). Our analysis builds

on their work and also introduces additional probabilistic and linear-algebraic ideas, such as the

application of graph matrices, leading to nearly-sharp bounds for the ellipsoid fitting problem.

To prove Theorem 2, it suffices to verify that A(XLS) = 1n and XLS ⪰ 0 with high probability,

for appropriate values of n and d. The first condition can be easily verified: with probability 1, the

n× n matrix AA∗ is invertible (Lemma 40), so we may write A† = A∗(AA∗)−1 and compute that

indeed A(XLS) = 1n, where the adjoint A∗ : Rn → R
d×d satisfies A∗(c) =

∑n
i=1 civiv

T
i .

The challenging part of the proof is to verify that XLS ⪰ 0 with high probability. We now give

some intuition for why this condition holds. First, observe that if we take X0 = 1
dId, then a simple

application of a tail bound for the χ2 distribution and a union bound over the n constraints yields

∥A(X0)− 1n∥∞ = O(
√

log(n)/d) with high probability. In words, X0 defines an ellipsoid that

approximately fits the points v1, . . . , vn and whose eigenvalues are well-separated from 0.

Second, there is a sense in which XLS is (approximately) a projection of X0 onto the affine

subspace {X ∈ R
d×d : A(X) = 1n}. Recall that XLS can be expressed as the solution of the

following optimization problem:

min
X∈Rd×d,A(X)=1n

∥X∥2F .

In fact, since the above minimization is over X that satisfy A(X) = 1n, XLS is also the solution of

min
X∈Rd×d,A(X)=1n

∥

∥

∥

∥

∥

X − 1

dn

n
∑

i=1

viv
T
i

∥

∥

∥

∥

∥

2

F

.

For n≫ d, it is the case that 1
dn

∑n
i=1 viv

T
i ≈ X0 with high probability. Thus, we interpret XLS as

an (approximate) projection of X0 onto the affine subspace {X ∈ R
d×d : A(X) = 1n}.

We now provide an outline of the proof that XLS ⪰ 0 and describe some of its challenges.

A basic approach is to center around the deterministic matrix M = (d2 + d)In + d1n1
T
n . A

straightforward rearrangement yields

XLS = A∗(AA∗)−11n = A∗(In −M−1∆̃)−1M−11n,
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where ∆̃ = M −AA∗. To invert the matrix In −M−1∆̃, we may expand it as a Neumann series

(In −M−1∆̃)−1 = In +M−1∆̃ +
∞
∑

i=2

(M−1∆̃)i, (2)

that converges if

∥

∥

∥
M−1∆̃

∥

∥

∥

op
< 1. Observe that if the vector

u = (AA∗)−11n = (In −M−1∆̃)−1M−11n

has non-negative coordinates with high probability, then we may immediately conclude that XLS ⪰
0 since A∗(u) =

∑

i uiviv
T
i is automatically PSD.

While it is possible to show that when n ≪ d3/2, the vector u indeed has positive coordinates,

this argument suffers from a significant problem. It turns out that there is a phase transition at

n ≍ d3/2, beyond which the vector u switches from having non-negative coordinates to having both

positive and negative ones. One reason for this is that the approximation M−1∆̃ ≈ In breaks down

at the same n ≍ d3/2 barrier. A previous version of this paper contained an error related to this

non-negativity phenomenon. In Section K, we describe how this error can be fixed. However, we

now present a cleaner approach that avoids this issue altogether.

To handle the positive and negative coordinates of u requires a different approach that more

precisely takes into account its correlations with A∗. We achieve this by first removing a rank-two

component from AA∗ that prevents it from being close to the identity when n≫ d3/2. Define

B = AA∗ − (w1Tn + 1nw
T + d1n1

T
n )

where w ∈ R
n is defined by wi = ∥vi∥2 − d. As we show in Lemma 10, B is close to (d2 + d)In

for all n ≤ d2/ logC(d). For this reason, B is well-behaved and amenable to Neumann expansion

arguments.

Next, since AA∗ is the sum of B and a low rank matrix, we obtain a convenient expression

for (AA∗)−1 using the Woodbury matrix formula Woodbury (1950), which results in the following

useful decomposition of the vector u (see Lemma 4):

u = (AA∗)−11n = ρ ·
(

λ1B
−11n + λ2B

−1w
)

,

where ρ, λ1, λ2 are certain scalar random variables. We show that ρ > 0, λ1 = 1 + 1TnB
−1w ∼ 1,

and λ2 = −1TnB−11n = o(n/d2) ≪ λ1 with high probability. The proof then reduces to showing

that

A∗(B−11n) ⪰ (1− o(1))
n

d2
Id (3)

∥A∗(B−1w)∥op = o(1). (4)

Intuitively, (3) has non-negative coordinates since B is close to a multiple of the identity for the

entire range n ≤ d2/ logC(d) and we have B−11n ≈ 1n. With the same intuition, we expect that

B−1w behaves like a multiple of w, which has i.i.d. centered coordinates. If w were independent

of A∗, significant cancellation would happen among the rank one vectors {vivTi }ni=1 , yielding the

bound (4) (by matrix Bernstein or its variants, see e.g. Tropp (2012)).
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However, making this argument precise to take into account interactions betweenA∗ and B−1w
is a considerable technical challenge. To handle this, we expand B−1 as a Neumann series, similarly

to (2). We then analyze terms of this series using the framework of graph matrices Ahn et al. (2016).

Graph matrices provide a powerful tool for controlling the operator norm of certain matrices whose

entries can be expressed as low-degree polynomials in i.i.d. random variables. Graph matrices serve

to transform the analytic problem of controlling the operator norm of a random matrix X into a

more tractable combinatorial one that involves studying certain weights of graphs associated to X .

This part of the argument forms the bulk of our analysis and is detailed in Section B.

3. Future work

Towards the positive side of Conjecture 1 Towards understanding whether an explicit construc-

tion can be used resolve the positive side of Conjecture 1, we now discuss the following ªidentity

perturbationº construction that is inspired by previous work Saunderson et al. (2013):

XIP =
1

d
Id +A∗(α) =

1

d
Id +

n
∑

i=1

αiviv
T
i ,

where α ∈ R
n is defined to be the unique solution of A(A∗(α)) = 1n − A(1dId).3 By definition

of α, it always holds that A(XIP) = 1n. In words, XIP is obtained from the approximately fitting

ellipsoid 1
dId by adding multiples of the constraint matrices {vivTi }ni=1 so that it exactly satisfies the

linear constraints.

Our experimental results are depicted in Figure 1. For each (n, d) with 1 ≤ d ≤ n ≤ 200,

we generated 10 independent instances of the ellipsoid fitting problem with n points in R
d and

computed the fraction of instances for which each of the three constructions (original SDP, least-

squares, and identity perturbation) was a valid fitting ellipsoid. The color of each cell corresponds

to the fraction of ªsuccessfulº instances, increasing in the following order: black (zero), red, orange,

yellow, white (one). In each plot, the green curve corresponds to a function of the form n(d) = cd2

for some constant c. See Appendix E for further details.

In summary, there appear to be two constants cLS ≈ 1/17 and cIP ≈ 1/10 such that the probabil-

ities of PSD-ness of XLS and XIP undergo phase transitions from 1 to 0 asymptotically at n = cLSd
2

and n = cIPd
2, respectively. We emphasize that cLS < cIP < 1/4, meaning that there actually ap-

pear to be three distinct phase transitions related to the ellipsoid fitting problem. These results

suggest that it is unlikely that the positive side of Conjecture 1 can be resolved by a sharper analysis

of either of these two natural constructions.

In this work, we show that both the least-squares and identity perturbation constructions are

positive semidefinite provided that n ≤ d2/polylog(d). However, we still believe it is an interesting

problem to sharply characterize the behavior of XLS and XIP. Given that XIP appears to outperform

XLS, we now explain how one might approach this problem for XIP. Again the central challenge is

to show that XIP ⪰ 0 with high probability. Observe that α = (AA∗)−1b and so XIP ⪰ 0 is implied

by
∥

∥A∗((AA∗)−1b)
∥

∥

op
≤ 1/d. We immediately recognize that to proceed with the analysis, we

must invertAA∗ as in the analysis of XLS. Applying the Neumann series expansion thus encounters

the same bottlenecks as in the analysis of XLS. We leave the problem of precisely characterizing

3. A similar construction is suggested in Saunderson et al. (2013), although no specific initialization is given.
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the eigenvalues and eigenvectors of the random inner-product matrix AA∗ as a direction for future

research.

Additionally, we remark that computing either of XLS or XIP amounts to applying the inverse

of a certain n× n matrix to a vector. In contrast, testing whether the ellipsoid fitting property holds

for a given set of points involves solving a semidefinite program, which requires a large polynomial

runtime. To the best of our knowledge, it is an open question to find a faster algorithm achieving

the conjectured threshold n ∼ d2/4, even in simulations.

Towards the negative side of Conjecture 1 As noted earlier, a simple dimension-counting argu-

ment (see Lemma 40) shows that when n > d(d + 1)/2, the linear constraints alone are infeasible

with probability 1. Any proof of the failure of the ellipsoid fitting property with high probability for

n > cd2 for a constant c ∈ (1/4, 1/2) would likely yield significant insight into Conjecture 1.

Applications to other random SDPs In Appendix C, we prove a negative result showing that a

certain SDP (which corresponds to the degree-2 SoS SDP relaxation) cannot certify a non-trivial

lower bound on the discrepancy of random Gaussian matrices with m rows and n columns when

m < n − √n polylog(n). As we have mentioned, for simpler variants of the ellipsoid fitting

problem, there are results of this type for SDPs corresponding to higher-degree SoS relaxations

(e.g. Ghosh et al. (2020); Hsieh and Kothari (2022)). Is it true that higher-degree SoS SDPs also fail

to certify non-trivial discrepancy lower bounds in the regime described above?

More generally, can one apply either the least-squares or identity-perturbation constructions to

prove average-case SDP lower bounds for other problems? We expect that these constructions are

tractable to analyze for SDPs with a PSD constraint and ªsimpleº random linear constraints, such as

the degree-2 SoS SDP relaxation of the clique number (see e.g. Section 2.2 of Barak et al. (2019))

and SoS relaxations of random systems of polynomial equations of the type in Hsieh and Kothari

(2022).

Figure 1: In each plot, the green curve corresponds to n(d) = cn2. (Left) Ellipsoid fitting SDP,

c = 1/4, (Middle): Least-squares, c = 1/17, (Right): Identity perturbation, c = 1/10
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4. Proof of Theorem 2

As discussed in Section 2, it suffices to show that X = XLS ⪰ 0. We make the simplification that

n = d2/polylog(d), as recorded in the following remark.

Remark 3 By monotonicity (with respect to n) of the probability of the ellipsoid fitting property

holding, it suffices to fix n = d2/ logC(d) for some sufficiently large constant C > 0 to be deter-

mined. In fact, all of our technical lemmas below hold under the more general assumption that

d ≤ n ≤ d2/ logC(d).

We proceed to showing X ⪰ 0 by first separating out the low-rank and high-rank terms from

AA∗ and then expanding the inverse as a Neumann series. Define the vector w ∈ R
n by wi =

∥vi∥22 − d for every i ∈ [n]. Next, define the rank 2 matrix W = w1Tn + 1nw
T + d1n1

T
n ∈ R

n×n,

the high-rank matrix Γ = AA∗ −W − αIn ∈ R
n×n, where α = d2 + d, and B = Γ+ αIn. Then,

we have the following decomposition:

AA∗ =
(

AA∗ − (w1Tn + 1nw
T + d1n1

T
n )− αIn

)

+ (w1Tn + 1nw
T + d1n1

T
n ) + αIn

= Γ +W + αIn

= B +W.

The following lemma is a consequence of the Woodbury matrix identity Woodbury (1950). We

defer the proof to Appendix G.

Lemma 4 Let B = Γ + αIn. We have

(AA∗)−11n =
1

s2 − ru
·
(

(1 + 1TnB
−1w)B−11n − (1TnB

−11n)B
−1w

)

(5)

where r, s, u are defined as

(

r s
s u

)

:=

(

1TnB
−11n 1 + 1TnB

−1w
1 + 1TnB

−1w −d+ wTB−1w

)

.

By Lemma 4, we have that

X =
1

s2 − ru
A∗
(

(1 + 1TnB
−1w)B−11n − (1TnB

−11n)B
−1w

)

=
1

s2 − ru

(

(1 + 1TnB
−1w)A∗(B−11n)− (1TnB

−11n)A∗(B−1w)
)

.

Clearly, X ⪰ 0 follows if the next two conditions are satisfied:

s2 − ru ≥ 0, (6)

and

(1 + 1TnB
−1w)A∗(B−11n)− (1TnB

−11n)A∗(B−1w) ⪰ 0. (7)

We verify that these two conditions are satisfied with high probability by invoking the following

lemmas.

9
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Lemma 5 There is some constant C > 0 such that if d ≤ n ≤ d2/ logC(d), then 1TnB
−11n =

Θ(n/d2) with high probability.

Lemma 6 There is some constant C > 0 such that if d ≤ n ≤ d2/ logC(d), then wTB−1w =
Õ(n/d) with high probability.

Lemma 7 There is some constant C > 0 such that if d ≤ n ≤ d2/ logC(d), then |1TnB−1w| = o(1)
with high probability.

Lemma 8 There is some constant C > 0 such that if d ≤ n ≤ d2/ logC(d), then A∗(B−11n) ⪰
(1− o(1)) n

d2
Id with high probability.

Lemma 9 There is some constant C > 0 such that if d ≤ n ≤ d2/ logC(d), then
∥

∥A∗(B−1w)
∥

∥

op
=

o(1) with high probability.

The proofs of Lemmas 5, 6, and 8 are contained in the next section. The proofs of Lemmas 7

and 9 are postponed to Section A.

For Condition (6), if n ≤ d2/ logC(d) for a sufficiently large constant C, we have that with high

probability

s2 − ru ≥ −ru = 1TnB
−11n(d− wTB−1w) = Θ(n/d2)(d− Õ(n/d)) = Θ(n/d) ≥ 0, (8)

for sufficiently large n, d, by Lemmas 5 and 6. For Condition (7), if n ≤ d2/ logC(d) for a suffi-

ciently large constant C, we have that with high probability

(1 + 1TnB
−1w)A∗(B−11n)− (1TnB

−11n)A∗(B−1w)

⪰ (1− o(1))A∗(B−11n)−Θ
( n

d2

)

∥

∥A∗(B−1w)
∥

∥

op
Id

⪰
(

(1− o(1))(1− o(1))
n

d2
−Θ

( n

d2

)

∥

∥A∗(B−1w)
∥

∥

op

)

Id

=
(

(1− o(1))(1− o(1))
n

d2
− o

( n

d2

))

Id ⪰ 0,

for sufficiently large n, d, by Lemmas 7, 5, 8, and 9.

5. Proofs of technical lemmas

The proofs of the remaining technical lemmas all make use of the following result, whose proof is

postponed to Section B.2.

Lemma 10 There is some constant C > 0 such that if d ≤ n ≤ d2/ logC(d), then with high

probability, ∥B − αIn∥op = Õ(d
√
n).

We now show that Lemmas 5 and 6 follow from Lemma 10.

Proof [Proof of Lemma 5] By assumption on n and Lemma 10, with high probability, it holds that

0 ⪯ (α− Õ(d
√
n))In ⪯ B ⪯ (α+ Õ(d

√
n))In.

This implies that

(α+ Õ(d
√
n))−1In ⪯ B−1 ⪯ (α− Õ(d

√
n))−1In.

10
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The proof is complete by combining the previous line with the following fact:

λmin(B
−1)∥1n∥2 ≤ 1TnB

−11n ≤ λmax(B
−1)∥1n∥2.

Proof [Proof of Lemma 6] As in the proof of Lemma 5, by assumption on n and Lemma 10, it holds

with high probability that:

wTB−1w = Θ

(

1

d2

)

· ∥w∥22 . (9)

To complete the proof, it suffices to show that ∥w∥22 =
∑n

i=1(∥vi∥22 − d)2 = Õ(nd) with high

probability.

Note that for fixed i, we have conservatively that

|∥vi∥22 − d| ≤ C(log n)
√
d (10)

with probability n−C·Ω(1) by Bernstein’s inequality Vershynin (2018). Now for a large enough

constant C > 0, using the union bound we have that (10) holds for all 1 ≤ i ≤ n. Immediately we

have ∥w∥22 = Õ(nd), proving Lemma 6 after combining with (9).

5.1. Proof of Lemma 8

Define the matrix ∆ = −Γ = αIn − B ∈ R
n×n. By Lemma 10, we have that ∥∆∥op =

Õ(max(n, d
√
n)) with high probability. By our assumption that n = O(d2/ polylog(d)), we have

∥

∥α−1∆
∥

∥

op
< 1 (for d large enough). We may then conduct the following (convergent) Neumann

series expansion:

B−1 = (αIn −∆)−1

= α−1(In − α−1∆)−1

= α−1
∞
∑

k=0

(α−1∆)k.

Thus, we have that

λmin(A∗(B−11n)) ≥ α−1λmin(A∗(1n))−
∞
∑

k=1

α−(k+1)
∥

∥

∥
A∗(∆k1n)

∥

∥

∥

op
.

It is a standard fact from random matrix theory (see e.g. Theorem 4.7.1 of Vershynin (2018)) that

when n = ω(d), then with high probability:

λmin(A∗(1n)) = λmin

(

n
∑

i=1

viv
T
i

)

= (1− o(1))n.

11
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To complete the proof, it suffices to show that with high probability:

∞
∑

k=1

α−(k+1)
∥

∥

∥
A∗(∆k1n)

∥

∥

∥

op
= o

( n

d2

)

.

To this end, introduce a truncation parameter T ∈ N and write:

∞
∑

k=1

α−(k+1)
∥

∥

∥
A∗(∆k1n)

∥

∥

∥

op
=

T−1
∑

k=1

α−(k+1)
∥

∥

∥
A∗(∆k1n)

∥

∥

∥

op
+

∞
∑

k=T

α−(k+1)
∥

∥

∥
A∗(∆k1n)

∥

∥

∥

op
.

Now, take T = 2 and recall n ≤ d2/ polylog(d). The proof is complete by invoking Lemma 12

below with k = 1 to control the first summation and Lemma 11 below with T = 2 to control the

second summation.

Although Lemma 11 below is only required with T = 2 in order to prove Lemma 8, its general

form with T ≥ 2 is crucial to the proofs of Lemmas 7 and 9.

Lemma 11 Suppose T ≥ 1. There is some constant C > 0 such that if d ≤ n ≤ d2/ logC(d) then

with high probability, it holds that

∞
∑

k=T

α−(k+1)
∥

∥

∥A∗(∆k1n)
∥

∥

∥

op
= Õ

(√
n

d

)T+1

.

Proof Note that
∥

∥

∥A∗(∆k1n)
∥

∥

∥

op
≤ ∥A∗∥2→op ∥∆∥kop ∥1n∥2 .

By Lemma 10, α−1 ∥∆∥op = Õ(
√
n/d) with high probability by assumption on n. Combining

these with the fact that ∥A∗∥2→op = O(d) with high probability when n = o(d2) (see Lemma 3 of

Saunderson (2011)), we may conclude by the geometric decay of the terms in the series that

∞
∑

k=T

α−(k+1)
∥

∥

∥A∗(∆k1n)
∥

∥

∥

op
= (α−T ∥∆∥Top) · Õ(α−1d

√
n) = Õ

(√
n

d

)T+1

.

Lemma 12 Let k ∈ Z≥1 be fixed. Then with probability 1− n−Ω(1), it holds that

∥

∥

∥
A∗(∆k1n)

∥

∥

∥

op
≤ (log n)O(k) ·

√
dn3/4 ·O(

√
nd)k.

The proof of this lemma is deferred to Section B.

As mentioned previously, the remaining proofs of Lemmas 7 and 9 are postponed to Section A.
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Appendix A. Proofs of remaining technical lemmas

A.1. Proof of Lemma 9

Let T ∈ N be a truncation parameter. Using the same power series expansion as in the proof of

Lemma 8 and the triangle inequality, we have that

∥

∥A∗(B−1w)
∥

∥

op
≤

T−1
∑

k=0

α−(k+1)
∥

∥

∥
A∗(∆kw)

∥

∥

∥

op
+

∞
∑

k=T

α−(k+1)
∥

∥

∥
A∗(∆kw)

∥

∥

∥

op
.

Now, let C > 0 be an absolute constant whose value we determine in the following, let T =
C log(d) be an integer and let n = d2/ logC(d). Our choice of C > 0 depends on Lemmas 13

and 14 that are stated below. There exists a sufficiently large choice of absolute constant C > 0
such that invoking Lemma 13 with T = C log(d) ensures the second summation above is o(1) with

high probability. There also exists a sufficiently large choice of absolute constant C > 0 such that

a union bound and invocation of Lemma 14, for all k ∈ {0, . . . , T − 1} ensures the first summation

above is o(1) with high probability. Setting C to be the maximum of these two choices completes

the proof.

Lemma 13 Suppose T ≥ 1. There is some constant C > 0 such that if d ≤ n ≤ d2/ logC(d) then

with high probability, it holds that

∞
∑

k=T

α−(k+1)
∥

∥

∥A∗(∆kw)
∥

∥

∥

op
=
√
d · Õ

(√
n

d

)T

.

Proof Note that
∥

∥

∥
A∗(∆kw)

∥

∥

∥

op
≤ ∥A∗∥2→op ∥∆∥kop ∥w∥2 .
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By Lemma 10 and assumption on n, α−1 ∥∆∥op = Õ(
√
n/d) with high probability. A standard cal-

culation (see the proof of Lemma 6) reveals that ∥w∥2 = Õ(
√
nd) with high probability. Combining

these with the fact that ∥A∗∥2→op = O(d) with high probability when n = o(d2) (see Lemma 3 of

Saunderson (2011)), we may conclude that

∞
∑

k=T

α−(k+1)
∥

∥

∥
A∗(∆kw)

∥

∥

∥

op
= (α−T ∥∆∥Top) · Õ(α−1d3/2

√
n) =

√
d · Õ

(√
n

d

)T

.

Lemma 14 Let k ∈ Z≥0. Then with probability 1− n−Ω(1), it holds that
∥

∥

∥
A∗(∆kw)

∥

∥

∥

op
≤ (log n)O(k) · d√n ·O( 4

√
nd3/2)k.

The proof of this lemma is deferred to Section B.

A.2. Proof of Lemma 7

Let T ∈ N be a truncation parameter. Using the same power series expansion as in the proof of

Lemma 8 and the triangle inequality, we have that

|1TnB−1w| ≤
T−1
∑

k=0

α−(k+1)|1Tn∆kw|+
∞
∑

k=T

α−(k+1)|1Tn∆kw|.

The argument requires Lemmas 15 and 16 stated below. Now, let C > 0 be some constant whose

value we determine in the following, let T = C log(d) and let n = d2/ logC(d). There exists a suf-

ficiently large choice of C such that invoking Lemma 15 with T = C log(d) an integer ensures the

second summation above is o(1) with high probability. There also exists a sufficiently large choice

of C such that invoking Lemma 16 for all k ∈ {0, . . . , T − 1} with ϵ = o(1/T ) = o(1/ log(d))
ensures the first summation above is o(1) with high probability. Setting C to be the maximum of

these two choices completes the proof.

Lemma 15 Suppose T ≥ 1. There is some constant C > 0 such that if d ≤ n ≤ d2/ logC(d) then

with high probability, it holds that

∞
∑

k=T

α−(k+1)|1Tn∆kw| =
√
d · Õ

(√
n

d

)T

.

Proof Note that

|1Tn∆kw| ≤ ∥1n∥2 ∥∆∥kop ∥w∥2 .
By Lemma 10 and assumption on n, we have α−1 ∥∆∥op = Õ(

√
n/d) with high probability when

n = o(d2). A standard calculation (see the proof of Lemma 6) reveals that ∥w∥2 = Õ(
√
nd) with

high probability. Combining these, we may conclude that

∞
∑

k=T

α−(k+1)|1Tn∆kw| = (α−T ∥∆∥Top) · Õ(α−1n
√
d) =

√
d · Õ

(√
n

d

)T

.
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Lemma 16 Let k ∈ Z≥0. Then with probability 1− n−Ω(1), it holds that

|1Tn∆kw| ≤
∥

∥

∥A∗(∆kw)
∥

∥

∥

op
≤ (log n)O(k) · d√n ·O( 4

√
nd3/2)k.

The proof of this lemma is nearly identical to that of Lemma 9 and is deferred to Section B.

Appendix B. Graph matrices

B.1. Background

We use the theory of graph matrices to derive operator norm bounds on various random matrices

that arise in our analysis. Graph matrices provide a natural basis for decomposing matrices whose

entries depend on random inputs, where this dependence has lots of symmetry but may be nonlinear.

For our setting, we can define graph matrices as follows. These definitions are a special case of the

definitions in Ahn et al. (2016) and are equivalent to the definitions in Ghosh et al. (2020) except

that instead of summing over ribbons, we sum over injective maps. This gives a constant factor

difference (see Remark 2.17 of Ahn et al. (2016)) in the final norm bounds.

In our analysis, many of the matrices we study, such as ∆k, are n× n and have entries that are

sums of terms of the form

Mi1,ir =
∑

i2,...,ir−1
k1,...,ks

∏

(x,y)∈E
fx,y(vix,ky) (11)

where E ⊂ [r]× [s], vix,ky is the ky coordinate of vix , {fx,y} are low-degree Hermite polynomials,

and the indices of summation obey certain restrictions, including that i2, . . . , ir−1 are distinct as

well as k1, . . . , ks.

The framework of graph matrices provides a convenient way of encoding these restrictions and

attaining good norm bounds. Concretely, each matrix as in term (11) can be represented by a ‘shape’

consisting of a graph with r circle vertices, s square vertices, and integer edge labels. For a term

like (11) which is an n × n matrix, there are two distinguished circle vertices that represent i1 and

ir. The edges in the shape are specified by E ⊂ [r]× [s], and the vertices specify (distinct) indices

of summation. The remaining circle vertices each represent an index of summation over 1 ≤ i ≤ n
(i.e., one of i2, . . . , ir−1) and a square vertex is used to represent an index of summation over

1 ≤ k ≤ d (i.e., one of k1, . . . , ks, each of which indexes the dimension). The integer edge labels of

the shape denote the degree of the Hermite polynomial that is applied to the random variable vix,ky .

We make this precise with the following definitions.

Definition 17 (Normalized Hermite polynomials, see e.g. O’Donnell (2014), Chapter 11.2) De-

fine the sequence of normalized Hermite polynomials h0, h1, h2, . . . by

hj(z) =
1√
j!
·Hj(z),

where Hj are defined uniquely by the following formal power series in z:

exp(tz − 1

2
t2) =

∞
∑

j=0

1

j!
Hj(z)t

j .
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The first few Hermite polynomials are

h0(z) = 1, h1(z) = z, h2(z) =
1√
2
(z2 − 1), h3(z) =

1√
6
(z3 − 3z), . . . .

Recall EZ∼N(0,1)[hj(Z)hk(Z)] = δjk, where δjk denotes the Kronecker function.

Definition 18 A shape α is a graph that consists of the following:

1. A set of vertices V(α). Each vertex is either a square or circle. We take V◦(α) to be the set of

circle vertices in V(α) and we take V□(α) to be the set of square vertices in V(α).

2. Distinguished tuples of vertices Uα, Vα (which may intersect), which we call the left and right

vertices of α, respectively. We also define the set of middle vertices as Wα = V(α) \ (Uα ∪
Vα)

4. We take Uα,◦ to be the circle vertices of Uα (in the same order) and we take Uα,□

to be the square vertices of Uα (in the same order). Similarly, we take Vα,◦ to be the circle

vertices of Vα (in the same order) and we take Vα,□ to be the square vertices of Vα (in the

same order). We always take Uα = (Uα,◦, Uα,□) and Vα = (Vα,◦, Vα,□) so that circle vertices

preceed square vertices in order.

3. A set E(α) of edges, where each edge is between a circle vertex and a square vertex. For

each edge e ∈ E(α), we have a label le ∈ Z≥1. We define |E(α)| := ∑

e∈E(α) le. If a

shape contains a multi-edge (i.e., two or more edges with the same endpoints), we call it

improper (and proper otherwise). In a multi-edge, each copy of the edge has its own label.

We represent an edge with endpoints u and v and label l by the notation {u, v}l; we use the

simpler notation {u, v} when l = 1.

Definition 19 Given a shape α, we define Mα to be the n!d!
(n−|Uα,◦|)!(d−|Uα,□|)! × n!d!

(n−|Vα,◦|)!(d−|Vα,□|)!
matrix with entries

Mα(A,B) =
∑

π◦:V◦(α)→[n],π
□
:V

□
(α)→[d]:

π◦,π□ are injective

π◦(Uα,◦)=A◦,π□(Uα,□)=A
□
,

π◦(Vα,◦)=B◦,π□(Vα,□)=B
□





∏

e={u,v}∈E(α):u∈V◦(α),v∈V□(α)

hle(vπ◦(u),π□(v))



 (12)

where A = (A◦, A□) is an ordered tuple such that A◦ is an ordered tuple of |Uα,◦| elements from

[n] and A□ is an ordered tuple of |Uα,□| elements from [d], and B = (B◦, B□) is an ordered tuple

such that B◦ is an ordered tuple of |Vα,◦| elements from [n] and B□ is an ordered tuple of |Vα,□|
elements from [d].

In the next section, we illustrate this definition by deriving the graph matrix representations of

various matrices arising in our analysis. The proofs of Lemmas 8 and 9 boil down to obtaining

norm bounds on A∗(∆kz) for z ∈ {1n, w}. Such a matrix is d × d and can be expressed as a sum

of terms that are similar to (11):

Mk1,ks =
∑

i1,i2,...,ir−1,ir
k2,...,ks−1

∏

(x,y)∈E
fx,y(vix,ky) (13)

4. We abuse notation slightly by identifying tuples with the set composed of the union of their elements.
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where again this is a graph matrix, and restrictions on the indices are encoded by an associated

shape as described in Definition 19. The difference between this and (11) is that the distinguished

vertices are now both squares instead of circles. Also, note that the restrictions imply that i1, . . . , ir
are distinct, as well as k2, . . . , ks−1.

B.2. Graph matrix representations

In this section, we derive the graph matrix representations of various matrices that arise in our

analysis. For the purposes of computing AA∗, we can view A as an n × d2 matrix A with rows

indexed by i ∈ [n] and columns indexed by an ordered pair of indices in (j, k) ∈ [d] × [d], with

entry Ai,(j,k) = (vi)j(vi)k. Given this entry-wise expression, the correctness of the graph matrix

representation of A below can be directly verified by inspecting Equation (12) for the shapes below.

We decompose A as A = MαA1 + MαA2 and A∗ = MT
αA1

+ MT
αA2

for the following shapes

αA1 and αA2 where we make the dimensions of MαA1 and MαA2 match by filling in the missing

columns with zeros. These shapes are illustrated in Figures 2 and 3. Note that αA2 is improper. For

each shape α considered below, its vertices V(α) are given by Uα ∪ Vα ∪Wα:

• UαA1 = (u) where u is a circle vertex, VαA1 = (x1, x2) where x1, x2 are square vertices,

WαA1 = {} and E(αA1) = {{u, x1}, {u, x2}}. The matrix MαA1with zeros filled in for the

columns of MαA2 has dimensions n×d2. Its (i, (j, k)) entry, for i ∈ [n] and (j, k) ∈ [d]× [d]
with j ̸= k, is given by:

MαA1(i, (j, k)) = h1((vi)j)h1((vi)k) = (vi)j(vi)k.

Its (i, (j, j)) entry, for i ∈ [n] and j ∈ [d], is zero.

• UαA2 = (u) where u is a circle vertex, VαA2 = (x, x) where x is a square vertex, WαA2 = {}
and E(αA2) = {{u, x}, {u, x}}. The matrix MαA2with zeros filled in for the columns of

MαA1 has dimensions n× d2. Its (i, (j, j)) entry, for i ∈ [n] and j ∈ [d], is given by:

MαA1(i, (j, j)) = h1((vi)j)h1((vi)j) = (vi)
2
j .

Its (i, (j, k)) entry, for i ∈ [n] and j, k ∈ [d] with j ̸= k, is zero.

Multiplying A and A∗, we see that AA∗ = AA∗ ∈ R
n×n has (i, j) entry (AA∗)ij = ⟨vi, vj⟩2.

We then obtain the following graph matrix representation:

AA∗ = Mα1 +Mα2 +Mα3 +Mα4′

where α1, α2, α3, and α4′ are the following shapes (note that α2, α3, and α4′ are improper):

• Uα1 = (u) and Vα1 = (v) where u, v are circle vertices, Wα1 = {x1, x2} where x1, x2 are

square vertices, and E(α1) = {{u, x1}, {u, x2}, {x1, v}, {x2, v}}; see Figure 7. The matrix

Mα1 has dimensions n× n. Its (i, j) entry, for i, j ∈ [n] with i ̸= j is given by:

Mα1(i, j) =
∑

k,l∈[d],k ̸=l

h1((vi)k)h1((vj)k)h1((vi)l)h1((vj)l) =
∑

k,l∈[d],k ̸=l

(vi)k(vj)k(vi)l(vj)l.

If i = j, then note that Mα1(i, j) = 0.
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u

x1

x2

VαA1

UαA1

Figure 2: Shape αA1.

u x

UαA2

VαA2

Figure 3: Shape αA2. Here, we depict the shape αA2 by drawing the two identical copies of the

square vertex x as two overlapping squares sharing the label x. Note that the edge {u, x}
is a multi-edge, so the shape is improper.
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• Uα2 = (u) and Vα2 = (v) where u, v are circle vertices, Wα2 = {x} where x is a square

vertex, and E(α2) = {{u, x}, {u, x}, {x, v}, {x, v}}; see Figure 4. The matrix Mα2 has

dimensions n× n. Its (i, j) entry, for i, j ∈ [n] with i ̸= j is given by:

Mα2(i, j) =
∑

k∈[d]
h1((vi)k)

2h1((vj)k)
2 =

∑

k∈[d]
(vi)

2
k(vj)

2
k.

If i = j, then note that Mα2(i, j) = 0.

• Uα3 = Vα3 = (u) where u is a circle vertex, Wα3 = {x1, x2} where x1, x2 are square

vertices, and E(α3) = {{u, x1}, {u, x1}, {u, x2}, {u, x2}}; see Figure 5.

• Uα4′
= Vα4′

= (u) where u is a circle vertex, Wα4′
= {x} where x is a square vertex, and

E(α4′) = {{u, x}, {u, x}, {u, x}, {u, x}}; see Figure 6.

u vx

Uα2
Vα2

Figure 4: Shape α2, one of the improper shapes appearing in AA∗.

u

x1

x2Uα3
= Vα3

Figure 5: Shape α3, one of the improper shapes appearing in AA∗.

Finally, we express the vectors w, 1n ∈ R
n as n× 1 graph matrices. Recall that wi = ∥vi∥22− d

and that h2(z) =
1√
2
(z2 − 1). So, w is represented by the shape αw with leading coefficient

√
2,

and 1n is represented by the shape α1n with leading coefficient 1:
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u x

Uα
4′
= Vα

4′

Figure 6: Shape α4′ , one of the improper shapes appearing in AA∗.

• Uαw = (u) where u is a circle vertex, Vαw = ∅, Wαw = {x} where x is a square vertex, and

E(αw) = {{u, x}2}.

• Uα1n
= (u) where u is a circle vertex, Vα1n

= ∅, and E(α1n) = ∅.

B.2.1. RESOLVING MULTI-EDGES

As we demonstrate later, it is important for the purposes of our analysis that all shapes we work

with are proper. To shift from improper shapes (i.e. ones with multi-edges) to proper shapes (i.e.

ones without multi-edges), we record the following proposition.

Proposition 20 Let α be a shape which contains two or more copies of an edge e. Consider two

such copies of e that have labels i, j ∈ Z≥1, respectively. Then, we have

Mα =

∞
∑

k=0

ckMαk
,

where αk is the shape that is identical to α, except that the two labeled copies of e are replaced by

a single copy of e with label k, and {ck : k ∈ Z≥0} are coefficients that satisfy:

hi(x)hj(x) =
∞
∑

k=0

ckhk(x).

That is, the coefficients are obtained by writing the polynomial hi · hj in the Hermite basis. In

particular, it holds that ck = 0 unless i+ j+ k is even and k ≤ i+ j. In other words, for each term

we obtain, the parity of k is the same as the parity of i + j. We regard any edge with label 0 as a

non-edge and say that such an edge vanishes.

Note that we may convert two or more parallel labeled edges into a single labeled edges by repeated

application of Proposition 20. The proof of this result follows from Definition 19. The parity

result follows from elementary calculations involving the Hermite polynomials, which we defer to

Section H.
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Given Proposition 20, we replace the improper shapes from the previous section with proper

shapes to obtain the following graph matrix representation:

AA∗ = Mα1 + 2Mα2a +
√
2Mα2b

+
√
2Mα2c + dMα2d

+ 2Mα3a + 2
√
2(d− 1)Mα3b

+ (d2 − d)Mα3c

+
√
24Mα4 + 6

√
2Mα3b

+ 3dMα3c

where α1, α2a, α2b, α2c, α2d, α3a, α3b, α3c, and α4 are the following proper shapes that we define

below. First, α1 is the same as above since it is already proper.

Second, observe that α2 has two sets of double edges. Using the following identities (see also

Section H):

h1(x)
2 =
√
2h2(x) + 1

h1(x)
2h1(y)

2 = 2h2(x)h2(y) +
√
2h2(x) +

√
2h2(y) + 1,

we can replace each of these double edges by a linear combination of an edge with label 2 and a

non-edge. We then write Mα2 = 2Mα2a +
√
2Mα2b

+
√
2Mα2c + d ·Mα2d

as a linear combination

of 2× 2 = 4 graph matrices associated with the shapes α2a, α2b, α2c, α2d defined as follows:

• Uα2a = (u) and Vα2a = (v) where u, v are circle vertices, Wα2a = {x} where x is a square

vertex, and E(α2a) = {{u, x}2, {x, v}2}. The matrix Mα2a has dimensions n× n. Its (i, j)
entry, for i, j ∈ [n] with i ̸= j is given by:

Mα2a(i, j) =
∑

k∈[d]
h2((vi)k)h2((vj)k).

If i = j, then note that Mα2a(i, j) = 0.

• Uα2b
= (u) and Vα2b

= (v) where u, v are circle vertices, Wα2b
= {x} where x is a square

vertex, and E(α2b) = {{u, x}2}.

• Uα2c = (u) and Vα2c = (v) where u, v are circle vertices, Wα2c = {x} where x is a square

vertex, and E(α2c) = {{x, v}2}.

• Uα2d
= (u) and Vα2d

= (v) where u, v are circle vertices, Wα2d
= {}, and E(α2d) = {}.

Note that we have made the following simplification in describing α2d, which arises when we

replace each of the double edges in α2 by non-edges. This will leave α2d with an isolated

middle square vertex x. However, observe that from Equation (12), we may equivalently

delete the isolated vertex x and multiply the resulting graph matrix by a d factor. In summary,

we work with the definition of α2d which does not contain a middle square vertex, but which

has an associated scalar coefficient of d.

Third, using the same approach as in re-expressing α2, we write Mα3 = 2Mα3a + 2
√
2(d −

1)Mα3b
+ d(d − 1)Mα3c as a linear combination of 3 graph matrices associated with the shapes

α3a, α3b, α3c defined as follows:

• Uα3a = Vα3a = (u) where u is a circle vertex, Wα3a = {x1, x2} where x1, x2 are square

vertices, and E(α3a) = {{u, x1}2, {u, x2}2}.
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• Uα3b
= Vα3b

= (u) where u is a circle vertex, Wα3b
= {x} where x is a square vertex, and

E(α3b) = {{u, x}2}.

• Uα3c = Vα3c = (u) where u is a circle vertex, Wα3c = {}, and E(α3c) = {}.

Fourth, for α4′ , we use the following identity to replace its quadruple edge by a linear combina-

tion of an edge with label 4, an edge with label 2, and a non-edge (see also Section H):

h1(x)
4 = (x4 − 6x2 + 3) + 6(x2 − 1) + 3 =

√
24h4(x) + 6

√
2h2(x) + 3.

We write Mα4′
=
√
24Mα4 + 6

√
2Mα3b

+ 3dMα3c as a linear combination of 3 graph matrices

associated with the shapes α4, α3b, α3c, where α4 is defined as follows:

• Uα4 = Vα4 = (u) where u is a circle vertex, Wα4 = {x} where x is a square vertex, and

E(α4) = {{u, x}4}.

We may further simplify by observing that Mα2d
= 1n1

T
n − In and Mα3c = In, which leads to

following graph matrix representation involving only proper shapes:

AA∗ = (d2+d)In+d1n1
T
n+Mα1+2Mα2a+

√
2Mα2b

+
√
2Mα2c+2Mα3a+(2

√
2d+4

√
2)Mα3b

+
√
24Mα4 .

In order to decompose B = AA∗ −W in terms of graph matrices, we first decompose W as

follows:

W = w1Tn + 1nw
T + d1n1

T
n =
√
2Mα2b

+
√
2Mα2c + 2

√
2Mα3b

+ d1n1
T
n .

Combining these decompositions, we have:

B = AA∗ −W = (d2 + d)In +Mα1 + 2Mα2a + 2Mα3a + (2
√
2d+ 2

√
2)Mα3b

+
√
24Mα4 ,

(14)

∆ = −Mα1 − 2Mα2a − 2Mα3a − (2
√
2d+ 2

√
2)Mα3b

−
√
24Mα4 . (15)

Define the index set I = {1, 2a, 3a, 3b, 4}, which collects the indices of non-identity shapes ap-

pearing in B; see Figures 7, 8, 9, 10, 11. For a given index i ∈ I, we define λi to be the scalar

coefficient appearing in front of Mαi in the expression for B above.

u v

Uα1
Vα1

x1

x2

Figure 7: Shape α1
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u vx

Uα2a
Vα2a

2 2

Figure 8: Shape α2a

u

x1

x2Uα3a
= Vα3a

2

2

Figure 9: Shape α3a

u x2

Uα3b
= Vα3b

Figure 10: Shape α3b
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u x
4

Uα4
= Vα4

Figure 11: Shape α4

B.3. Graph matrix norm bounds

As mentioned earlier, graph matrices admit norm bounds that only depend on certain combinatorial

parameters associated with the graph, as expressed by the following theorem that follows from Ahn

et al. (2016). We defer its proof to Appendix F. To complete the proofs of Lemmas 10, 12, 14, and

16, we will derive graph matrix representations of the relevant matrices, estimate their associated

combinatorial parameters, and then invoke the theorem below. To state the theorem, we borrow

some notions from Ahn et al. (2016).

Given a shape α and a vertex a ∈ V(α), we define

φ(a) =

{

1 if a is a circle,

logn(d) if a is a square.

For a (potentially empty) subset of vertices S ⊂ V(α), define φ(S) =
∑

s∈S φ(s).

Definition 21 Define the min-vertex separator Smin of α to be a (potentially empty) subset of ver-

tices of α with the smallest value of φ(S) such that all paths from Uα to Vα intersect S. Here, we

allow for paths of length 0, so any separator between Uα and Vα must contain Uα ∩ Vα. We also

define Iso(α) to consist of all isolated vertices lying in V(α)\(Uα ∪ Vα).

Theorem 22 Given DV , DE ∈ N such that DE ≥ DV ≥ 2 and ϵ > 0, with probability at least

1− ϵ, for all shapes α on square and circle vertices such that |V(α)| ≤ DV , |Eα| ≤ DE , |Uα| ≤ 1,

and |Vα| ≤ 1,

∥Mα∥op ≤
(

(2DE + 2) ln(DV ) + ln(11n) + ln

(

1

ϵ

))|V(α)|+|E(α)|
n

φ(V(α))−φ(Smin)+φ(Iso(α))

2

where Smin is a min-vertex separator of α.

In our applications of this result, we invoke it with ϵ = 1/ poly(n) on shapes α for which

|V(α)|, |Eα| ≤ polylog(n), so that the norm bounds take the form:

∥Mα∥op = (log n)O(|V(α)|+|E(α)|) · n
φ(V(α))−φ(Smin)+φ(Iso(α))

2 .
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With Theorem 22 and the graph matrix representations from Section B.2 in hand, we can imme-

diately prove Lemma 10. The proof also demonstrates how the usage of graph matrices allows us

to reduce the challenging problem of bounding the norm of a ªcomplicatedº random matrix to a

significantly simpler combinatorial problem.

Proof [Proof of Lemma 10] Recall from Equation (14) that we have

∥B − αIn∥op ≤ ∥Mα1∥op+2 ∥Mα2a∥op+2 ∥Mα3a∥op+(2
√
2d+2

√
2) ∥Mα3b

∥op+
√
24 ∥Mα4∥op .

To complete the proof, we will invoke Theorem 22 to upper bound the norm of each of the 5 graph

matrices above. In the following, for each of the 5 shapes, we identify the min-vertex separator and

then estimate the combinatorial parameters appearing in the bound in Theorem 22.

Recall that for a ∈ V(α), we have φ(a) = logn(n) = 1 if a is a circle and φ(a) = logn(d) ≈
1/2 if a is a square (since we consider the regime n ≤ d2/ polylog(d)) and that Iso(α) is the set of

isolated vertices that do not lie in Uα or Vα.

• Term Mα1: Consider the following vertex separators: {u}, {v}, {x1, x2}. By inspection, any

other vertex separator contains one of these three. The weights of {u} and {v} are both 1.

The weight of {x1, x2} is 2 logn(d) > 1. Thus we may choose u as a min-vertex separator

without loss of generality. Thus for α1, we have

φ(V(α))− φ(Smin) + φ(Iso(α))

2
=

(2 logn(d) + 2)− 1 + 0

2
=

2 logn(d) + 1

2
,

leading to a norm bound ∥Mα1∥op = Õ(d
√
n) with high probability by Theorem 22.

• Term Mα2a: Every vertex is a separator of Uα2a and Vα2a . Since x has weight logn(d) < 1
and u, v have weight 1 in α2, the minimum weight vertex separator is x. Thus for α2a, we

have

φ(V(α))− φ(Smin) + φ(Iso(α))

2
=

(2 + logn(d))− logn(d) + 0

2
= 1,

leading to a high probability norm bound ∥Mα2a∥op = Õ(n) by Theorem 22.

The remaining shapes represent matrices that are diagonal; thus u is the min-vertex separator.

• Term Mα3a: By similar arguments to the above, Theorem 22 yields ∥Mα3a∥ = Õ(d).

• Term Mα3b
: We obtain a norm bound Õ(n(1+logn d−1+0)/2 = Õ(d1/2), so its contribution to

∆ has operator norm at most Õ(d3/2) (see (15)).

• Term Mα4: Similarly, we obtain the norm bound Õ(d1/2).

Assembling these bounds completes the proof.
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B.4. Tools for dealing with products of shapes

As mentioned earlier, our analysis involves large powers the matrix ∆. In the following, we will

derive a graph matrix representation for ∆. Unfortunately, explicitly writing down such a repre-

sentation for ∆k for arbitrary k ∈ N is complicated. To overcome this issue, we now introduce

some definitions and technical results that allow us to express in a systematic way the graph matrix

representation of a product of matrices in terms of the representations of the individual matrices.

The following result follows directly from the formula in Definition 19.

Proposition 23 (Multiplication rule) Given shapes α and β such that Vα and Uβ match (i.e. Vα

and Uβ have the same number of circle and square vertices), the product MαMβ is a linear combi-

nation of graph matrices Mγ of shapes γ of the following form:

1. Glue α and β together by setting Vα = Uβ; these vertices now become middle vertices of γ5.

We set Uγ = Uα to be the left side of γ and we set Vγ = Vβ to be the right side of γ.

2. The possible realizations of γ are obtained by considering all possible ways in which the

vertices in V(β)\Uβ may intersect with the vertices in V(α)\Vα. For a possible intersection

of V(β) \ Uβ and V(α) \ Vα to give rise to γ, it must satisfy the following constraints:

(a) For a given intersection of V(β) \ Uβ and V(α) \ Vα and a vertex v which is in this in-

tersection, we say that the occurrence of v in V(β)\Uβ is identified with the occurrence

of v in V(α) \ Vα. Circle vertices can only be identified with other circle vertices and

square vertices can only be identified with other square vertices.

(b) The vertices in V(α) \ Vα must remain distinct as well as the vertices in V(β) \ Uβ .

In other words, each vertex can only be identified with at most one other vertex (which

must be in the other shape).

We illustrate Proposition 23 in Figure 12 by multiplying two shapes that arise in the multiplication

∆w.

B.4.1. ACTION OF A∗
AS A GRAPH MATRIX

In this section, we record for later use how to express the action of the linear operator A∗ in terms

of graph matrices. Taking the transpose of the shapes αA1, αA2 from Section B.2 and applying

Proposition 20 to resolve multi-edges, we define the following shapes αA∗,1, αA∗,2, and αA∗,3; see

also Figures 13, 14, 15.

1. UαA∗,1
= (u) and VαA∗,1

= (v) where u, v are square vertices, WαA∗,1
= {x} where x is a

circle vertex, and E(αA∗,1) = {{u, x}, {x, v}}. This shape has an associated coeffcient of 1.

2. UαA∗,2
= VαA∗,2

= (u) where u is a square vertex, WαA∗,2
= {x} where x is a circle vertex,

and E(αA∗,2) = ∅. This shape has an associated coeffcient of 1.

3. UαA∗,3
= VαA∗,3

= (u) where u is a square vertex, WαA∗,3
= {x} where x is a circle vertex,

and E(αA∗,3) = {{u, x}2}. This shape has an associated coeffcient of
√
2.
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u vx

Uα2a
Vα2a

2 2 × 2u x

Uαw

=

+

2 2 2

2
2

2

u

u

v

v

x1

x1

x2

U

U

Figure 12: Multiplication of Mα2a and Mαw . Since Vαw = ∅, it is not depicted above; as result,

the shapes in the resulting product also have V = ∅. Also, note that the second shape of

the resulting product has a multi-edge. Using Proposition 20 as before, we can express

this multi-edge as a linear combination of 3 labeled edges, with labels 0, 2, and 4,

respectively.

u vx

UαA∗,1
VαA∗,1

Figure 13: Shape αA∗,1

u x

UαA∗,2
= VαA∗,2

Figure 14: Shape αA∗,2
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u x2

UαA∗,3
= VαA∗,3

Figure 15: Shape αA∗,3

Let x ∈ R
n be a (n× 1) graph matrix represented by the shape β. The d× d matrix A∗(x) can

be represented as a linear combination of graph matrices in the following way.

1. First, ªre-shapeº each of the αA∗,j for j = 1, 2, 3 into shapes that represent d2 × n matrices

by redefining UαA∗,j
← UαA∗,j

∪ VαA∗,j
and VαA∗,j

← {x}.

2. Invoke Proposition 23 to multiply each of these shapes by x.

3. Reshape the resulting shapes, which represent d2×1 matrices, into shapes representing d×d
matrices by defining the left vertex set to contain only u and the right vertex set to contain

only v (for αA∗,1) or the left vertex set and right vertex set to contain only u (for αA∗,2, αA∗,3)

and defining all other vertices to be middle vertices.

See Figures 16 and 17 for an example of such a multiplication arising in the product A∗(∆w).

B.5. Norm bound strategy using graph matrices

We need to bound norms of matrices of the following forms:

1. {A∗(∆kw) : k ∈ N}

2. {A∗(∆k1n) : k ∈ N}

3. {1Tn∆kw : k ∈ N}. (Here, we regard the scalars as 1× 1 matrices.)

For a fixed k, consider one of the matrices in 1±3 above. In Section B.2, we expressed A∗ and

∆ as a linear combination of shapes. Thus, for fixed k, any matrix in 1±3 above can be written as

linear combination of terms, where each term is a product of shapes, say

Mβ0 ·Mβ1 · · ·Mβk
·Mβk+1

, (16)

where each βi is a (proper) shape from Section B.2. For each term as in (16), we further decompose

it into a linear combination of several sub-terms represented by new (proper) shapes using Proposi-

tion 20. Let αP denote a shape that arises as a subterm. We also define an scalar cP associated with

αP that is used to form the its coefficient in the aforementioned linear combination. The shape αP

and scalar cP are constructed by the following procedure:

5. Note that if, say, Vα has repeated vertices, then Uβ must have the same number and type of repeated vertices.

Otherwise, the dimensions of the two matrices are not compatible for multiplication.
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1. We start with β0. If β0 is αA∗,1, αA∗,2, or αA∗,3, we call the circle vertex x to be the (initial)

loose end. If β0 = α1Tn
, we call the single vertex in this shape, which is a circle, the (initial)

loose end. In all cases, we set UαP = Uβ0 and VαP = Vβ0 . Note that UαP = VαP = ∅ if

β0 = α1Tn
.

2. We now do the following for each j ∈ [k]

(a) Append the shape βj by identifying Uβj
= (u) with the current loose end and making

Vβj
= (v) the new loose end.

(b) For each vertex in V(βj) \Uβj
, either leave it alone or identify it with an existing vertex

of the same type (circle or square) which is not u and has not yet been identified with a

vertex in V(βj) \ Uβj
.

(c) If this creates two parallel edges with integer labels N and M , we either (i) remove

these parallel edges if N +M is even or (ii) replace those parallel edges with a single

labeled edge that has the same parity as N +M and lies in [N +M ].

In either case (i) or (ii), assign the edge (or empty edge) a coefficient according to the

rule in Proposition 20.

3. Finally, apply the same procedure as described in 2(a±c) to βk+1. Concretely, if the last term

in the product is 1n (so βk+1 = α1n), we stop here. If the last term in the product is w (so

βk+1 = αw), we append αw to the existing shape by identifying the current loose end with

Uαw = (u). Then, for each set of resulting parallel edges, we remove or replace them as

described in 2(c) and assign them coefficients.

4. Form the scalar cP by multiplying together all coefficients of the labeled edges (including

non-edges) that are output by the conversion procedure in Steps 2(c) and 3.

As we described, the matrices A∗(∆kw), A∗(∆k1n), and 1Tn∆
kw are linear combinations of

terms of the form αP . We now describe the coefficients associated to a particular term αP in this

linear combination. To do so, we introduce the following definitions.

Definition 24 For each shape βj for j ∈ [k], we define its coefficient c(βj) to be its coefficient in

the graph matrix decomposition of ∆.

Definition 25 Let shapes β0, β1, . . . , βk, βk+1 be as described above.

1. An identification pattern P on β0, β1, . . . , βk, βk+1 specifies which vertices are identified

with each other (according to Proposition 23) and which labelled edge is chosen when we

convert parallel labeled edges into a single labeled edge (according to Proposition 20) as in

step 2(c) above.

2. We definePβ0,β1,...,βk,βk+1
to be the set of all identification patterns on the shapes β0, β1, . . . , βk, βk+1.

3. Given an identification pattern P , we define αP to be the shape resulting from P and we

define cP to be the coefficient, so that the resulting term is cP ·
∏k

j=1 c(βj) ·MαP .
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In other words, cP captures the part of the coefficient of MαP which comes from converting parallel

labeled edges into a single labeled edge (or non-edge). Note that the (constant) coefficients coming

from β0 and βk+1 are also absorbed into cP . In our argument it is particularly important to keep

track of any non-edges that result from resolving two or more parallel labeled edges into a single

labeled edge, which we make precise in the definition below.

Definition 26 (Vanishing edges) Consider an identification pattern P on β0, β1, . . . , βk+1. The

vanishing edges are the edges with label 0 (i.e., non-edges) that result from resolving parallel

edges according to Proposition 20, as in step 2(c) above. Moreover, we say that a non-edge in αP

vanishes if it is in the set of vanishing edges.

Next, we define a method for concisely summarizing certain information about a given identifi-

cation pattern. Given j ̸= j′, an identification pattern P , and a vertex y ∈ βj , we say below that y
appears in βj′ if P identifies y with a vertex y′ ∈ βj′ .

Definition 27 For a given identification pattern P , we define a decoration τ : ∪k+1
j=0V(βj) →

{∅, L,R, LR} to summarize information about P in the following way. For each j and each vertex

y ∈ βj , define:

τ(y) =























L if y appears in βj′ for j′ < j and does not appear in any βj′′ for j′′ > j,

R if y appears in βj′ for j′ > j and does not appear in any βj′′ for j′′ < j,

LR if y appears in βj′ for j′ < j and also appears in some βj′′ for j′′ > j,

∅ otherwise.

In particular, note that:

• For any j ≥ 1 and y ∈ Uβj
, y automatically appears in βj−1, so τ(y) ∈ {L,LR}.

• For any j < k + 1 and y ∈ Vβj
, y automatically appears in βj+1, so τ(y) ∈ {R,LR}.

• For any y ∈ V(β0), τ(y) ∈ {∅, R}.

• For any y ∈ V(βk+1), τ(y) ∈ {∅, L}.

See Figures 16 and 17 for an example of an identification pattern and the associated decoration

that can arise when multiplying shapes from the product A∗(∆w). With these definitions and for a

fixed k, each of A∗(∆k1n), A∗(∆kw), and 1Tn (∆
k)w can each be expressed as a summation of the

following form:

∑

β1,...,βk∈{αi:i∈I}

∑

P∈Pβ0,β1,...,βk,βk+1

(

cP ·
k
∏

j=1

c(βj)

)

MαP . (17)

To bound the norm of this expression, we apply the triangle inequality and bound separately ∥MαP ∥op
for each identification pattern P .
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u vx

Uα2a Vα2a

2 2 × 2u x

Uαw

×

u

v

x

UαA∗,1

VαA∗,1

∅

∅

R L R R L L

Figure 16: Example of an identification pattern for multiplying MαA∗,1
, Mα2a , and Mαw . The

violet arrows denote which vertices are identified with each other. As in Figure 12, if

these vertices are identified with each other, the red and green edges become a multi-

edge which gets converted to a linear combination of labeled edges using Proposition 20.

The identification pattern that is consistent with the violet vertex identifications and

which also picks edge label 0 to replace the multi-edge results in a shape that is depicted

in Figure 17. The decorations of each vertex are written in the bottom left corner of each

square or circle. The red edge is a right-critical edge and the green edge is a left-critical

edge.

2

U

V

Figure 17: Resulting shape from the identification pattern in Figure 16. Observe that the minimum

weight vertex separator can be taken to be one of the square vertices in U or V .
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B.5.1. UPPER BOUNDING ∥MαP ∥op VIA WEIGHTS

In order to upper bound ∥MαP ∥op, we will consider the contribution to ∥MαP ∥op from each of

the shapes β0, β1, . . . , βk, βk+1. In order to invoke the bound in Theorem 22, we must be able

to calculate the min-vertex separator of αP and status (i.e. square vs. circle and isolated vs. non-

isolated) of each of the vertices of αP . Specifically, define the following short-hand notation for the

dominant term in the norm bound of Theorem 22:

B(αP ) = n
φ(V (αP ))−φ(Smin)+φ(Iso(αP ))

2

where Smin is a min-vertex separator of αP .

To compute the combinatorial quantities that define B(P ), we will design an ideal weight func-

tion wideal,P and an actual weight function wactual,P , each of which assigns a weight to each of the

shapes β0, β1, . . . , βk, βk+1. Intuitively, the ideal weight function allows us to accurately estimate

the right-hand side of the norm bound in Theorem 22. However, as we explain later, determining

this ideal weight function exactly is intractable. Instead, we show that the actual weight function is a

faithful ªrelaxationº of the ideal weight function, tractable to calculate and still leads to sufficiently

good norm bounds.

More precisely, the following properties must be satisfied:

1. B(αP ) =
∏k+1

j=0 wideal,P (βj) where β0 = β0 and βk+1 = βk+1. This ensures that the product

of the ideal weights over the shapes βj faithfully estimates the dominant term of the norm

bound in Theorem 22.

2.
∏k+1

j=0 wactual,P (βj) ≥
∏k+1

j=0 wideal,P (βj). In fact, for almost all shapes βj we will have that

wactual,P (βj) ≥ wideal,P (βj). This ensures that the actual weight function gives a norm bound

that is valid (i.e. no smaller than the ªtrueº norm bound given by the ideal weight function).

3. For all j ∈ [k], |wactual,P (βj)c(βj)| ≤ d
3
2 4
√
n. This ensures that the norm bound given by the

actual weight function is sufficiently small to complete the proofs of our technical lemmas.

We note that the number of possibilities for β1, . . . , βk, the number of possible identification pat-

terns on β0, β1, . . . , βk, βk+1, the maximum coefficient cP for any identification pattern P , and

the ratio
∥MαP ∥op
B(αP ) (assuming the probabilistic norm bound in Theorem 22 holds) are all at most

(log n)O(k). This follows from the observation that we have k + 2 shapes β0, β1, . . . , βk, βk+1,

each consisting of O(1) vertices and edges, and a simple combinatorial fact which we defer to the

appendix (Proposition 42).
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Thus, if we can specify weight functions satisfying the above properies, then we may bound the

expression in Equation 17 as follows:

∑

β1,...,βk∈{αi:i∈I}

∑

P∈Pβ0,β1,...,βk,βk+1

|cP |





k
∏

j=1

|c(βj)|



 ∥MαP ∥op

=
∑

β1,...,βk

∑

P∈Pβ0,β1,...,βk,βk+1

|cP |





k
∏

j=1

|c(βj)|









k+1
∏

j=0

wideal,P (βj)





∥MαP ∥op
B(αP )

≤ (log n)O(k)
∑

β1,...,βk

∑

P∈Pβ0,β1,...,βk,βk+1

|cP |





k
∏

j=1

|c(βj)|









k+1
∏

j=0

wideal,P (βj)





≤ (log n)O(k)
∑

β1,...,βk

∑

P∈Pβ0,β1,...,βk,βk+1

|cP |





k
∏

j=1

|c(βj)|









k+1
∏

j=0

wactual,P (βj)





≤ (log n)O(k)
(

d
3
2 4
√
n
)k

max
P
{wactual,P (β0)wactual,P (βk+1)}. (18)

B.5.2. MIN-VERTEX SEPARATOR OF αP

Before specifying the weight functions, we recall that:

B(αP ) = d
|V

□
(αP )|+|Iso(αP )∩V

□
(αP )|−|Smin∩V

□
(αP )|

2 × n
|V◦(αP )|+|Iso(αP )∩V◦(αP )|−|Smin∩V◦(αP )|

2

where Smin is a min-vertex separator of αP . We now determine the min-vertex separator for αP so

that we can apply the bound in Theorem 22. When β0 = α1Tn
, UαP = VαP = ∅ so Smin = ∅. As we

now show, when β0 is αA∗,1, αA∗,2, or αA∗,3, the min-vertex separator of αP consists of a single

square. See Figure 17 for an example.

Lemma 28 If β0 is αA∗,1, αA∗,2, or αA∗,3 then the min-vertex separator of αP consists of a single

square.

Proof Since UαP consists of a single square and is a vertex separator, the minimum weight vertex

separator is either a single square or no vertices at all. To show that the minimum weight vertex

separator has at least one vertex, we prove that UαP must be connected to VαP .

To prove this, it is sufficient to prove the following lemma. Here by ‘degree’ of a vertex a in a

shape, we mean the sum of all edge labels of edges incident to a.

Lemma 29 If β0 is αA∗,1, αA∗,2, or αA∗,3 then either UαP = VαP = (u) where u is a square

vertex, or UαP = (u), VαP = (v) where u and v are distinct square vertices and u and v are the

only vertices with odd degree.

With this lemma, the result follows easily. If UαP = VαP = (u) then the result is trivial. If

UαP = (u) and VαP = (v) where u and v are distinct square vertices and are the only vertices with

odd degree then u and v must be in the same connected component of αP due to the following fact.

Proposition 30 For any undirected graph G with integer edge-labels, for any connected compo-

nent C of G,
∑

v∈C deg(v) is even.
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Proof This is the handshaking lemma and can be proved by observing that
∑

v∈C deg(v) =
2|E(C)| which is even.

To be concrete, suppose that for the sake of contradiction u and v lie in distinct connected com-

ponents Cu and Cv of αP . Then the sum of degrees in Cu is odd by Lemma 29, which contradicts

Proposition 30.

We proceed to prove Lemma 29.

Proof [Proof of Lemma 29] Let UαP = (u) and VαP = (v). We make the following observations

about the process for building the shape αP

1. In β0, either u = v (in which case u has even degree) or u and v are distinct square vertices

which have odd degree. The circle vertex in β0 always has even degree.

2. For all of the shapes β1, . . . , βk, βk+1, all of the vertices have even degree.

3. Whenever two vertices are identified, the parity of the degree of the resulting vertex is equal

to the parity of the sum of the degrees of the original vertices.

4. No other operation affects the parities of the degrees of the vertices.

Together, these observations imply that either u = v or u and v are the only vertices with odd

degree.

The proof of Lemma 28 is now complete.

Corollary 31 If β0 is αA∗,1, αA∗,2, or αA∗,3 then

B(αP ) = d
|V

□
(αP )|+|Iso(αP )∩V

□
(αP )|−1

2 · n
|V◦(αP )|+|Iso(αP )∩V◦(αP )|

2 .

If β0 is α1Tn
then

B(αP ) = d
|V

□
(αP )|+|Iso(αP )∩V

□
(αP )|

2 · n
|V◦(αP )|+|Iso(αP )∩V◦(αP )|

2 .

We remark that the factor of 1√
d

appearing in the first expression turns out to be crucial to obtaining

satisfactory norm bounds.

B.5.3. THE IDEAL WEIGHT FUNCTION

Given that we have identified the min-vertex separator of the shape αP , we now specify an ideal

weight function wideal,P such that B(αP ) =
∏k+1

j=0 wideal,P (βj). First we introduce and formalize

some intuitive terminology. We say that v ∈ V(αP ) appears in a shape βj (or that βj contains v) if

v is the result of identifying one or more vertices according to the identification pattern P , at least

one of which lies in βj . We order the indices j1 < . . . < jr (which we refer to as discrete times) of

the shapes in βj1 , . . . , βjr where v appears. We refer to j1 as the first time v appears and jr as the

last time v appears.
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Each vertex v ∈ V(αP ) has an associated value coming from the expression in Corollary 31.

This value, which we call wideal,P (v), is as follows:

wideal,P (v) =























√
d if v is a square and not isolated,

d if v is a square and isolated6,√
n if v is a circle and not isolated,

n if v is a circle and isolated.

We ªsplitº this value among (at most) 2 shapes that contain v by assigning the square root of

the value of v to each of βj and βj′ , where j is the smallest index for which v appears in βj and j′

is the largest index for which v appears in βj′ . If v only appears once, then we assign the full value

of v to the shape in which it appears. Formally, we define this procedure in the following way. For

j ∈ [k + 1], we let wideal,P (βj) be the total weight which is assigned to βj . This weight is

wideal,P (βj) =
∏

v∈V(βj)

wideal,P (v)
1− 1

2
1{τ(v)∈{L,LR}}− 1

2
1{τ(v)∈{R,LR}}.

For β0, we adjust this to take the minimum weight vertex separator into account. In particular, if

β0 = α1Tn
then:

wideal,P (β0) =
∏

v∈V(β0)

wideal,P (v)
1− 1

2
1{τ(v)=R},

while if β0 is αA∗,1, αA∗,2, or αA∗,3 then

wideal,P (β0) =
1√
d

∏

v∈V(β0)

wideal,P (v)
1− 1

2
1{τ(v)=R}.

From these definitions, we may immediately conclude that B(αP ) =
∏k+1

j=0 wideal,P (βj) (i.e. Prop-

erty 1 is satisfied). See the first row of Table 3 for an example of how wideal is computed for a

particular shape and identification pattern arising in A∗(∆w).

B.5.4. THE LOCAL WEIGHT FUNCTION

While the ideal weight function yields the correct norm bound, it cannot be computed separately for

each shape βj because in order to determine if a vertex in βj is isolated or not, we need to consider

the entire identification pattern P . To handle this, we introduce a different weight function wlocal,P

which can be computed separately for each shape βj by considering only the ªlocal dataº consisting

of the decorations on vertices in V(βj). To define wlocal,P (v), for each j and each v ∈ V(βj), we

upper bound wideal,P (v) based on the local data of βj . In particular, if a vertex is incident to an edge

which cannot vanish based on the local data at βj , then we know it cannot be isolated and wideal,P (v)
is
√
d or
√
n. For j = 0, we also know wideal,P (v) =

√
d for the vertices v ∈ UαP ∪ VαP since

we never consider vertices in UαP ∪ VαP to be isolated. For other vertices, we conservatively upper

bound wideal,P (v) by d or n. We introduce the following definitions in order to formally define

wlocal,P .

6. Note that vertices in UαP
∪ VαP

do not count as isolated.
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Definition 32 We say that an edge e = {u, v}l is safe for shape βj if both of the following hold:

1. Either τ(u) ∈ {∅, R} or τ(v) ∈ {∅, R}.

2. Either τ(u) ∈ {∅, L} or τ(v) ∈ {∅, L}.

Observe that a safe edge cannot vanish (i.e. it appears in αP with a positive edge label). For every

j and v ∈ V (βj), we define the ªfullº local weight as:

bj(v) =































√
d if v is a square and incident to a safe edge for βj ,√
d j = 0 and v ∈ UαP ∪ VαP ,

d if v is any other square,√
n if v is a circle and incident to a safe edge for βj ,

n if v is any other circle.

As before, if a vertex is identified with other vertices, then we ªsplitº the full weight between

the first and last times it appears. So we define, for every j and v ∈ V (βj), the ªsplitº local weight

as:

bj(v) = bj(v)
1− 1

2
1{τ(v)∈{L,LR})− 1

2
1(τ(v)∈{R,LR}}. (19)

Recall that for 1 ≤ j ≤ k , wlocal,P (βj) is the product of the bj(y)’s, see (20). Using these

definitions, we define the weight function wlocal,P as:

wlocal,P (βj) =

(

1√
d

)I(βj)

·
∏

v∈V(βj)

bj(v), (20)

where

I(βj) = 1

{

j = 0 and β0 ∈ {αA∗,1, αA∗,2, αA∗,3}
}

.

In other words, we divide by
√
d for j = 0 if β0 is αA∗,1, αA∗,2, or αA∗,3. We may immediately

conclude from these definitions that property 2 is satisfied; in the next section we verify Property 3.

We record for future use a simple upper bound on the weights of vertices.

Proposition 33 Let j ∈ {0, . . . , k + 1}. If v ∈ V◦(βj), then the contribution of v to wlocal,P (βj)
is at most

√
n. If v ∈ V□(βj), then the contribution of v to wlocal,P (βj) is at most

√
d. The same

results also apply to wideal,P .

Proof Consider the case v ∈ V◦(βj). If v is not identified with any other vertex, then it cannot be

isolated. Hence, it contributes no more than
√
n to wlocal,P (βj). On the other hand, if v is identified

with some other vertex, then the maximum possible weight of n is split between v and some other

vertex. Thus, it contributes no more than
√
n to wlocal,P (βj).

See the second row of Table 3 for an example of how wlocal is computed for a particular shape

and identification pattern arising in A∗(∆w).
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B.6. Proof of Lemma 12

In this section, we show that the local weight function wlocal,P from the previous section is sufficient

to complete the proof of Lemma 12. As mentioned earlier, by definition of wlocal,P , it satisfies

Property 2. It remains to verify the following:

1. If β0 is any of αA∗,1, αA∗,2, αA∗,3 and βk+1 = α1n , then wlocal,P (β0)wlocal,P (βk+1) ≤
max(

√
dn3/4, n).

2. For all j ∈ [k], |wlocal,P (βj)c(βj)| ≤ d
3
2 4
√
n (corresponding to Property 3).

Given these and Equation (18), we have the following bound with probability 1− n−Ω(1):

∥

∥

∥
A∗(∆k1n)

∥

∥

∥

op
≤ (log n)O(k) ·

(

d
3
2 4
√
n
)k
· max
P∈Pβ0,β1,...,βk,βk+1

|cP | · wlocal,P (β0) · wlocal,P (βk+1)

≤ (log n)O(k) ·
(

d
3
2 4
√
n
)k
·max(

√
dn3/4, n),

which completes the proof of Lemma 12.

We now verify the two conditions on the local weight function. For the first condition, note

that wlocal,P (βk+1) = wlocal,P (α1n) =
√
n. To handle the contribution from β0, we enumerate the

following cases:

• Case β0 = αA∗,1: We know that the two squares u, v are not in Iso(αP ), so b0(u) = b0(v) =√
d. Suppose at least one of the two edges in αA∗,1 are safe. Then, b0(x) =

√
n and

wlocal,P (αA∗,1) ≤ 1√
d
b0(u)b0(v)b0(x)

1/2 =
√
dn1/4. Otherwise, τ(u) = τ(v) = R, so

wlocal,P (αA∗,1) =
1√
d
b0(u)

1/2b0(v)
1/2b0(x)

1/2 ≤ √n.

• Case β0 = αA∗,2 or αA∗,3: Again, we know b0(u) =
√
d. So, wlocal,P (αA∗,2) =

1√
d
b0(u)b0(x)

1/2 ≤√
n.

This completes the proof that wlocal,P (β0)wlocal,P (βk+1) ≤ max(
√
dn3/4, n).

For the second condition, we fix j ∈ [k]. Below, for each shape αi for i ∈ I, we consider all

possibilities of the decorations of the vertices of αi, reducing the number of cases when possible by

symmetry. The tables below handle the essential cases. In the tables below, we use the term ‘Any’ to

denote that a vertex may have any of the decorations described above. We now analyze the possible

cases for βj , repeatedly making use of Proposition 33 when appropriate:

• Case βj = α1: A priori, there are a total of 2·4·4·2 = 64 cases since τ(u) ∈ {L,LR}, τ(x1), τ(x2) ∈
{∅, L,R, LR}, and τ(v) ∈ {R,LR}. By symmetry, each case reduces to one considered in

Table 1. Note that the first row of Table 1 stands for 32 different cases. For this row, we

slightly abuse notation and use b̄j(y) to specify an upper bound on the split local weight of

y ∈ {u, x1, x2, v} ⊂ V (α1) for all of these 32 cases.

By inspection of Table 1 and using that n = d2/ polylog(d) (see Remark 3), we conclude

that

wlocal,P (βj) = wlocal,P (α1) ≤ d
√
n. (21)

Also note that c(βj) = c(α1) = O(1).
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• Case βj = α2a: A priori, there are a total of 2·4·2 = 16 cases since τ(u) ∈ {L,LR}, τ(x) ∈
{∅, L,R, LR}, and τ(v) ∈ {R,LR}. By symmetry, each case reduces to one considered in

Table 2. Note that the first row of Table 2 stands for 4 different cases. For this row, we

slightly abuse notation and use b̄j(y) to specify an upper bound on the split local weight of

y ∈ {u, x, v} ⊂ V (α2a) for all of these 4 cases.

By inspection of Table 2 and using that n = d2/ polylog(d) (see Remark 3), we conclude

that

wlocal,P (βj) = wlocal,P (α2a) ≤ n. (22)

Also note that c(βj) = c(α2a) = O(1).

• Case βj = α3a: First, note that wlocal,P (βj) = bj(u)
0b̄j(x1)b̄j(x2) = b̄j(x1)b̄j(x2) because

u is identified with vertices to the left and right of βj . It is straightforward to enumerate the

possible decorations of x1, x2 and verify that b̄j(x1)b̄j(x2) ≤ d. Thus, wlocal,P (α3a) ≤ d.

Also, recall that |c(βj)| = |c(α3a)| = O(1).

• Case βj = α3b: Recall that α3b has Uα3b
= Vα3b

= (u). By the rules for graph matrix

multiplication (see Section B.4), u ∈ α3b is identified with a circle vertex in βj−1 and βj+1.

Hence τ(u) = LR. By (19), we have bj(u) = 1. Moreover, bj(x) ≤
√
d. Therefore,

wlocal,P (βj) = wlocal,P (α3b) ≤
√
d. (23)

Also recall that |c(βj)| = |c(α3b)| = O(d).

• Case βj = α4: The proof is very similar to the one for α3b. Since Uα4 = Vα4 = (u), we see

that τ(u) = LR, so bj(u) = 1. And automatically, bj(x) ≤
√
d. Hence

wlocal,P (βj) = wlocal,P (α4) ≤
√
d. (24)

Also recall that |c(βj)| = |c(α4)| = O(1).

τ(u) τ(x1) τ(x2) τ(v) bj(u) bj(x1) bj(x2) bj(v) Product

LR Any Any Any 1 d1/2 d1/2 n1/2 n1/2d

L ∅ ∅ R n1/4 d1/2 d1/2 n1/4 n1/2d

L ∅ L R n1/4 d1/2 d1/4 n1/4 n1/2d3/4

L ∅ LR R n1/4 d1/2 1 n1/4 n1/2d1/2

L L L R n1/2 d1/4 d1/4 n1/4 n3/4d1/2

L L R R n1/4 d1/4 d1/4 n1/4 n1/2d1/2

L L LR R n1/2 d1/4 1 n1/4 n3/4d1/4

L LR LR R n1/2 1 1 n1/2 n

Table 1: Case work for α1.
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τ(u) τ(x) τ(v) bj(u) bj(x) bj(v) Product

LR Any LR 1
√
d 1

√
d

LR R R 1 d1/2 n1/2 n1/2d1/2

LR ∅ R 1 d1/2 n1/4 n1/4d1/2

LR L R 1 d1/4 n1/4 n1/4d1/4

L ∅ R n1/4 d1/2 n1/4 n1/2d1/2

L L R n1/2 d1/4 n1/4 n3/4d1/4

L LR R n1/2 1 n1/2 n

Table 2: Case work for α2a.

B.7. Modifying the local weighting scheme

Unfortunately, while the local weight function is sufficient for proving Lemma 12, the bound it

gives is too loose for terms arising in A∗(∆kw) (for Lemma 14) and 1T∆kw (for Lemma 16).

Specifically, it is too conservative when assigning weight to the vertices in αw in the case that its

single edge vanishes with respect to an identification pattern P (see Definition 26). To handle this

bad case, we define a modified weight function wactual,P , for any given identification pattern P , by

decreasing the weight on the square vertex of αw when its edge vanishes. While this guarantees

that wactual(βk+1) is small (making it possible to satisfy 3), previous arguments do not immediately

imply that 2 holds in the case that the edge {u, x1}2 of αw vanishes. We will show this is compen-

sated for by an increase in the weight on squares in other shapes in a way that ensures 2 and 3 are

satisfied simultaneously. To carry out this strategy, we introduce the notion of critical edges; see

also Figure 16 for an example.

Definition 34 We define the following two types of edges to be right-critical edges:

1. If the square vertex x1 in αw satisfies τ(x1) = L then the edge in αw is a right-critical edge.

2. If βj = α2a, the circle vertex u in Uβj
satisfies τ(u) = L, the circle vertex v in Vβj

satisfies

τ(v) = R, and the square vertex x satisfies τ(x) = LR, then the edge {u, x}2 in βj = α2a is

a right-critical edge.

Definition 35 We define a left-critical edge of βj to be an edge e = {u, v} such that one of the

following two cases holds:

1. le = 2, τ(u) ∈ {R,LR}, and τ(v) ∈ {R,LR}.

2. le = 1, τ(u) = τ(v) = LR.

With these definitions in hand, our high-level strategy is as follows. If the right-critical edge in

βk+1 = αw does not vanish, then the proof strategy of Lemma 12 that employs the local weight

scheme wlocal,P of Section B.5.4 suffices to directly yield the bounds of Lemmas 14 and 16. If

instead the right-critical edge e in βk+1 = αw vanishes, we use Lemma 36 to pair βj with a shape

βj′ that contains a left-critical edge. We adjust the weights of βj′ and αw directly according to

the actual weight scheme defined in Section B.8 in order to satisfy 2 and 3. On the remaining

shapes βj where j ∈ [k]\{j′}, we employ the local weight scheme of Section B.5.4 (i.e. the actual

weights correspond with the local weights on these remaining shapes). Multiplying together the

actual weights for all shapes then yields the bounds of Lemmas 14 and 16.
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Lemma 36 Given an identification pattern P on β0, β1, . . . , βk, βk+1, if there is a j ∈ [k+1] such

that βj has a vanishing right-critical edge e then there is a j′ < j such that βj′ has no vanishing

right-critical edge and has a left-critical edge e′ whose square endpoint is identified with the square

endpoint of e.

Proof We prove this lemma by induction on j. Assume the result is true for j = m and assume

that βj has a vanishing right-critical edge where j = m + 1. Recall that we say a vertex v of αP

appears in βl if it is the result of identifying several vertices according to P , one of which lies in βl.
We say that an edge e of αP appears in a shape βl if both of its endpoints appear in βl. Suppose that

βj contains a right-critical edge e. We claim that e does not appear in βj′ for j′ > j. If βj = αw,

this claim follows immediately because then j = k + 1. Now suppose that e is the second type of

right-critical edge in Definition 34, in which case we have βj = α2a. Since τ(u) = L, it also holds

in this case that e does not appear in j′ > j.

Let j′ denote the largest index such that j′ < j and e appears in βj′ (such an edge must exist as

otherwise e cannot vanish). We claim that e must be a left-critical edge in βj′ . To see this, observe

that e appears in βj where j > j′. If le = 2, then e is automatically a left-critical edge. If le = 1,

then e must also appear in βj′′ for some j′′ < j′ as otherwise e cannot vanish (two parallel edges

with labels 1 and 2 give rise to a term with label 1 and a term with label 3, so they do not vanish).

Thus, e is a left-critical edge in this case as well.

If βj′ does not have a vanishing right-critical edge, then we are done. If βj′ does have a vanishing

right critical edge (in which case it must be α2a) then by the inductive hypothesis there is a j′′ < j′

which has a left-critical edge but does not have a vanishing right-critical edge, as needed.

B.8. Formal definition of wactual

We now give a formal definition of wactual. Let uw, xextra denote the vertices corresponding to u, x,

respectively, in αw. If βk+1 = αw, then define the per-vertex actual weights for βk+1 as follows:

1. If the edge {uw, xextra}2 in αw does not vanish, then set wactual(uw) = 4
√
n and wactual(xextra) =√

d. Furthermore, set wactual equal to wlocal for all other vertices and shapes.

2. If the edge {uw, xextra}2 in αw vanishes, then set wactual,P (uw) =
√
n and wactual,P (xextra) =√

d
4√n

. For the remaining shapes, define wactual as below.

In the second case above, we modify wlocal further to define wactual. Let j < k + 1 be such that

βj has a left-critical edge and no vanishing right-critical edge (whose existence is guaranteed by

Lemma 36). Note that βj must be one of αA∗,3, α1, α2a, α3a, α3b or α4 by definition of left- and

right-critical edges. We set wactual to be equal to wlocal on all shapes βl for l ̸= k + 1, j. To

compensate for the reduction in weight on the shape βk+1 in the case that its edge vanishes, we

define wactual(βj) in the following way.

For l ∈ {j, k + 1} we set

wactual,P (βl) =
∏

v∈βl

wactual,P (v) (25)
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where wactual,P (v) are per-vertex actual weights. If l = k + 1, the per-vertex actual weights are

defined in 1 and 2 above. Note that this ensures wactual,P (βk+1) ≤
√
d 4
√
n and that wactual,P (uw) ≥

wideal,P (uw). If l = j, the per-vertex actual weights are defined below according to the cases of βj .

• Case βj = β0 = αA∗,3: Define wactual,P (u) = 4
√

n
d · wideal,P (u) = 4

√
n. Here, wideal,P (u) =

4
√
d follows from the fact that u ∈ Uβ0 = Vβ0 , so it is not a middle vertex and thus cannot be

in Iso(αP ).

• Case βj = α1: By symmetry, it suffices to consider the case where the edge {uw, xextra}2 of

αw is identified with the edge {u, x1} of α1. We now define wactual,P (u) = 1, wactual,P (x1) =
4
√
n, wactual,P (x2) =

√
d, wactual,P (v) =

√
n.

• Case βj = α2a: We divide the definition for this case into two sub-cases, based on whether

or not the edge {u, x}2 in α2a vanishes.

± Sub-case {u, x}2 does not vanish: We define wactual,P (u) = n1/4, wactual,P (x) = n1/4,

wactual,P (v) = n1/2.

± Sub-case {u, x}2 vanishes: We define wactual,P (u) = 1, wactual,P (x) = d, wactual,P (v) =√
n.

• Case βj = α3a: We define wactual,P (x1) =
√
d 4
√
n and wactual,P (x2) =

√
d 4
√
n.

• Case βj = α3b or α4: We define wactual,P (x) =
√
d 4
√
n.

See Table 3 for an example of how wactual is computed for a particular shape and identification

pattern arising in A∗(∆w). This example also demonstrates a shape and identification pattern for

which wlocal is too conservative and overestimates wideal (which corresponds to the ªcorrectº norm

bound), yet wactual corrects this issue.

Shapes

αA∗,1 α2a αw

u v x u x v u x

Ideal
√
d
√
d 4
√
n 4
√
n 4
√
d
√
n
√
n 4

√
d

Local
√
d
√
d 4
√
n 4
√
n 4
√
d
√
n
√
n

√
d

Actual
√
d
√
d 4
√
n 4
√
n 4
√
n
√
n
√
n
√
d/ 4
√
n

Table 3: Comparison of the three different weighting schemes applied to the shape and identifica-

tion pattern from Figures 16 and 17. Each column indicates the weight contributions of

a vertex to the total weight of the shape that contains it, for each of the three weighting

schemes. So, the first row corresponds to weights under wideal, but which are ªsplitº if

a vertex is identified with other vertices. The second row corresponds to the values bj(·)
from 19. The third row is the same as the second, but adjusted according to the definition

of wactual in Section B.8. The red entry indicates that wlocal assigns more weight than the

ªtrueº weight as in wideal; this leads to an over-estimate of the true norm bound by a
4
√
d

factor. The green entries indicate the weights that are modified so that wactual gives the

correct norm bound.
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B.9. Paying for the extra square: completing the proofs of Lemmas 14 and 16

To prove Lemmas 14 and 16, we follow the proof of Lemma 12, but use wactual in place of wlocal

and the following crucial lemma:

Lemma 37 Suppose that the right-critical edge e in αw vanishes. Let 0 ≤ j < k + 1 be such

that βj has no vanishing right-critical edge and has a left-critical edge e′ whose square endpoint is

identified with the square endpoint of e (whose existence is guaranteed by Lemma 36). Then,

wactual,P (βj)wactual,P (βk+1) ≥ wideal,P (βj)wideal,P (βk+1). (26)

Moreover, it holds that c(βj)wactual,P (βj) ≤ O(d3/2 4
√
n) if j > 0, and c(βj)wactual,P (βj) ≤

O(n3/4/
√
d) if j = 0.

Let j < k + 1 be the special index as in Lemma 37. Then, as in the proof of Lemma 12, the proof

of Lemma 14 will be complete provided we can show the following:

1. If β0 is any of αA∗,1, αA∗,2, αA∗,3 and βk+1 = αw, then wactual,P (β0)wactual,P (βk+1) ≤
max(

√
dn3/4, n).

2. For all l ∈ [k] \ {j}, |wactual,P (βl)c(βl)| ≤ d
√
n.

The second condition above follows in exactly the same way as in the proof of Lemma 12, since

wactual,P (βl) = wlocal,P (βl) for l ∈ [k] \ {j}. To verify the first condition, we enumerate two cases:

• Case j ̸= 0: If j ̸= 0, then wactual,P (β0) = wlocal,P (β0) ≤
√
n (from the proof of Lemma 12)

and wactual,P (βk+1) ≤
√
d 4
√
n by definition. So, we immediately have wactual,P (β0)wactual,P (βk+1) ≤√

dn3/4.

• Case j = 0: If j = 0, then wactual,P (β0)wactual,P (βk+1) ≤ (n3/4/
√
d) ·
√
d 4
√
n = n, by

Lemma 37 and definition of wactual,P (βk+1) = wactual,P (αw).

Given Lemma 37, the proof of Lemma 16 follows in a similar manner, but taking β0 = α1Tn
instead and noting that wactual,P (β0) = wactual,P (α1Tn

) ≤ √n. Also, note that if the edge

{uw, xextra}2 of αw does not vanish, we use the local weight scheme of Lemma 12 to directly

obtain a bound of (log n)O(k)(d
√
n)k+1 for Lemma 14 and (log n)O(k)

√
dn3/4(d

√
n)k for Lemma

16.

Thus we complete the proofs of Lemmas 14 and 16 by proving Lemma 37 below.

Proof [Proof of Lemma 37] We enumerate the possible cases for the shape βj . Because βj contains a

left-critical edge and no vanishing right-critical edge, we have that βj ∈ {αA∗,3, α1, α2a, α3a, α3b, α4}.
In each case, we refer to the definition of wactual,P (βj) in Section B.8 to verify that (26) holds. Note

that because wactual(uw) ≥ wideal(uw) by definition of wactual, it suffices to show

wactual,P (βj)wactual,P (xextra) ≥ wideal,P (βj)wideal,P (xextra)

in order to conclude that

wactual,P (βj)wactual,P (βk+1) ≥ wideal,P (βj)wideal,P (βk+1).
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• Case βj = β0 = αA∗,3: wideal,P (β0) = 1√
d

4
√
d
√
n =

√
n/ 4
√
d and wideal,P (xextra) = 4

√
d

since we know the square in β0 is not isolated. On the other hand, wactual,P (xextra) =
√
d 4
√
n

and wactual,P (βj) = n3/4/
√
d. We immediately observe that

wactual,P (βj)wactual,P (xextra) ≥
√
n = wideal,P (βj)wideal,P (xextra).

• Case βj = α1: By symmetry, it suffices to consider the case where the edge {uw, xextra}2 of

αw is identified with the edge {u, x1} of α1. Note that this means τ(u) = LR , τ(x1) = LR
and τ(xextra) = L, so wideal,P (u) = wideal,P (x1) = 1, wideal,P (x2) ≤

√
d, wideal,P (v) ≤

√
n

and wideal,P (xextra) ≤
√
d. Assembling this information, we see:

wactual,P (βj)wactual,P (xextra) ≥ n3/4
√
d · (
√
d/ 4
√
n) = d

√
n ≥ wideal,P (βj)wideal,P (xextra),

and c(βj)wactual,P (βj) = O(n3/4
√
d).

• Case βj = α2a: We divide the argument for this case into two sub-cases, based on whether

or not the edge {u, x}2 in α2a vanishes.

± Sub-case {u, x}2 does not vanish: Note that τ(u) ∈ {L,LR}, τ(x) ∈ {R,LR},
τ(v) ∈ {R,LR}, τ(xextra) = L and u, x, xextra are not isolated, so wideal,P (u) ≤
n1/4, wideal,P (x) ≤ d1/4, wideal,P (v) ≤ n1/2 and wideal,P (xextra) ≤ d1/4. Assembling

this information, we see:

wactual,P (βj)wactual,P (xextra) ≥ n3/4
√
d ≥ wideal,P (βj)wideal,P (xextra)

and c(βj)wactual,P (βj) = O(n).

± Sub-case {u, x}2 vanishes: If {u, x}2 vanishes, it cannot be right-critical, so either

τ(u) = LR or τ(v) = LR. By symmetry, it suffices to consider the case that τ(u) =
LR. Note that τ(x) ∈ {R,LR}, τ(v) ∈ {R,LR}, and τ(xextra) = L, so wideal,P (u) =
1, wideal,P (x) =

√
d, wideal,P (v) ≤

√
n and wideal,P (xextra) ≤

√
d. Assembling this

information, we see:

wactual,P (βj)wactual,P (xextra) ≥ d3/2n1/4 ≥ d
√
n ≥ wideal,P (βj)wideal,P (xextra)

and c(βj)wactual,P (βj) = O(d
√
n).

• Case βj = α3a: Note that wideal,P (βj) ≤ d. We may immediately conclude

wactual,P (βj)wactual,P (xextra) ≥ d
√
n · (
√
d/ 4
√
n) ≥ d3/2 ≥ wideal,P (βj)wideal,P (xextra)

and c(βj)wactual,P (βj) = O(d
√
n).

• Case βj = α3b or α4: Note that wideal,P (βj) ≤
√
d. So, we have

wactual,P (βj)wactual,P (xextra) ≥ d ≥ wideal,P (βj)wideal,P (xextra)

and c(βj)wactual,P (βj) ≤ O(d3/2 4
√
n).
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Appendix C. Connection to an average-case discrepancy problem

Recently, Aubin, Perkins, and ZdeborovÂa Aubin et al. (2019) and Turner, Meka and Rigollet Turner

et al. (2020) studied the discrepancy of random matrices. Formally, they showed that if A is an m×n
matrix with i.i.d. standard Gaussian entries and m = Θ(n), then disc(A) = Θ(

√
n) with high

probability, where the discrepancy of A is defined to be disc(A) = minσ∈{±1}n ∥Aσ∥∞. Since the

proof of the lower bound in this result is via a union bound over σ ∈ {±1}n, we pose the following

question: is there a computationally efficient algorithm for certifying a lower bound on disc(A) for

random A? By certification algorithm, we mean an algorithm that on input A always outputs a value

that lower bounds disc(A), but for random A, the value is close to the true value Θ(
√
n) with high

probability. This question is inspired by a long line of work on certifying unsatisfiability of random

constraint satisfaction problems (see e.g. Raghavendra et al. (2017) and references therein), but also

has an application to the detection problem in the negatively-spiked Wishart model defined below.

Consider the problem of distinguishing which of the following two distributions a matrix A ∈
R
m×n is generated from:

• Null: Aij ∼ N (0, 1), for all i ∈ [m], j ∈ [n] independently.

• Planted: The rows Ai are independently sampled from N (0, In − 1
nvv

T ), where v ∼
UNIF{±1}n.

As mentioned, under the null model, disc(A) = Θ(
√
n) with high probability Turner et al. (2020).

On the other hand, it is straightforward to verify that disc(A) = 0 under the planted model. Hence,

any algorithm that can certify non-trivial lower bounds on the discrepancy of a Gaussian matrix A
can also solve the above detection problem. Bandeira, Kunisky, and Wein Bandeira et al. (2020)

show that in the regime m = αn, for α > 0 a constant, distinguishing the above two distributions

is hard for the class of low-degree polynomial distinguishers when α < 1 and easy when α > 1.

While the class of low-degree polynomial algorithms is conjectured to match the performance of all

polynomial-time algorithms for a wide variety of average-case problems Hopkins (2018); Kunisky

et al. (2022), the above result does not have any formal implication for the powerful class of SDP-

based algorithms.

Define the following SDP relaxation (also known as vector discrepancy Nikolov (2013)) of

discrepancy:

SDP(A) := min
X∈Rn×n

max
i∈[m]

AT
i XAi

s.t. X ⪰ 0

diag(X) = 1n.

It can be verified that for all A, it holds that SDP(A) ≤ disc(A)2. We now state a formal connection,

implicit in the work of Saunderson et al. Saunderson et al. (2012), between the ability of the SDP to

certify a non-trivial lower bound on the discrepancy and the ellipsoid fitting problem.

Theorem 38 (Saunderson et al. (2012)) Let A ∈ R
m×n have i.i.d. standard Gaussian entries and

m ≤ n. Then

P(SDP(A) = 0) = P(v1, . . . , vn have the ellipsoid fitting property),

where v1, . . . , vn are independent samples from N (0, Id) and d = n−m.
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Combining Theorems 38 and 2, we conclude that the SDP fails to solve the detection problem

in the negatively-spiked Wishart model when m < n −√n polylog(n). In particular, the inability

of the SDP to distinguish between instances with discrepancy 0 and Θ(
√
n) matches the worst-

case hardnes of approximation result due to Charikar, Newman and Nikolov Charikar et al. (2011).

Further, if Conjecture 1 is true, the threshold for success of the SDP is exactly m = n − 2
√
n.

These results complement those of Mao and Wein Mao and Wein (2021) by confirming the phase

transition for the SDP takes place at the same finite-scale corrected value m = n−√n polylog(n)
as for low-degree polynomials.

The proof of Theorem 38, which we provide for the sake of completeness, makes use of the

following lemma.

Lemma 39 (Lemma 2.4 and Proposition 3.1 of Saunderson et al. (2012)) Let U ⊆ R
n be a sub-

space. There exists X ∈ R
n×n with X ⪰ 0 and diag(X) = 1n such that U is contained in the

kernel of X if and only if there is a matrix V whose row span is the orthogonal complement of U
and whose columns have the ellipsoid fitting property.

Proof [Proof of Theorem 38] We begin the proof with a definition from Saunderson et al. (2012): a

subspace U has the ellipsoid fitting property if there exists a matrix whose row span is U and whose

columns satisfy the ellipsoid fitting property. By definition, SDP(A) = 0 means that there exists

X ∈ R
n×n with X ⪰ 0 and diag(X) = 1n satisfying AT

i XAi = 0 for i = 1, . . . ,m. Equivalently,

the subspace U = span{A1, . . . , Am} is contained in the kernel of X . Defining U⊥ to be the

orthogonal complement of U , Lemma 39 tells us that SDP(A) = 0 is equivalent to U⊥ having the

ellipsoid fitting property. However, note that U⊥ has the same distribution as the span of v1, . . . , vn,

independent samples from N (0, Id) with d = n−m. Altogether, we have:

P(SDP(A) = 0) = P(U⊥ has the ellipsoid fitting property)

= P(v1, . . . , vn have the ellipsoid fitting property).

Appendix D. Invertibility lemma

Lemma 40 If n > d(d + 1)/2, then AA∗ is not invertible for any v1, . . . , vn. If n ≤ d(d + 1)/2,

then AA∗ is invertible with probability 1.

Proof Consider the vectors v1v
T
1 , . . . , vnv

T
n in the d(d + 1)/2-dimensional vector space S

d×d of

symmetric d× d matrices. Since AA∗ is the Gram matrix of the vectors v1v
T
1 , . . . , vnv

T
n , it AA∗ is

invertible iff v1v
T
1 , . . . , vnv

T
n are linearly independent. If n > d(d + 1)/2, then clearly there must

be a linear dependency since the vector space S
d×d has dimension d(d+ 1)/2.

We now show linear independence with probability 1 provided n ≤ d(d + 1)/2. Defining

Π : Sd×d → S
d×d to be the projector onto the orthogonal complement of span(v2v

T
2 , . . . , vnv

T
n ),

the proof will be complete by showing P(Π(v1v
T
1 ) = 0) = 0. Observe that since Π is a projector, all

of its eigenvalues are 0 or 1 and since n ≤ d(d+1)/2, Π has rank at least 1, so it has an eigenvector

M ∈ S
d×d with eigenvalue 1. As a consequence, we have that P(Π(v1v

T
1 ) = 0) ≤ P(

〈

M, v1v
T
1

〉

=
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0). Since M ∈ S
d×d, we may write its eigendecomposition as M =

∑d
i=1 λiwiw

T
i , where

λ1, . . . , λd ∈ R and {w1, . . . , wd} form an orthonormal basis of Rd. Now, we have that

〈

M, v1v
T
1

〉

=
d
∑

i=1

λi ⟨wi, v1⟩2 .

We see that
〈

M, v1v
T
1

〉

is a non-zero linear combination (because M ̸= 0) of d independent and

identically distributed random variables ⟨w1, v1⟩2 , . . . , ⟨wd, v1⟩2 with distribution χ2
1 each. Hence,

we conclude that P(
〈

M, v1v
T
1

〉

= 0) = 0, completing the proof.

Appendix E. Details of experiments

In this section, we elaborate on how the plots in Figure 1 were generated. The plots corresponding

to the SDP and the least-squares construction appeared in Saunderson et al. (2013), but for different

ranges of (n, d). To generate the left plot in Figure 1, we used the the CVXPY package to test feasi-

bility of the original ellipsoid fitting SDP. We implemented two shortcuts to reduce the computation

time. First, for we performed the simulation only for n ≤ d(d + 1)/2 since the linear system will

be infeasible with probability 1 for n > d(d + 1)/2. For all n > d(d + 1)/2, we filled in the cell

corresponding to (n, d) with black without actually performing the simulation, since by Lemma 40

the ellipsoid fitting property will fail with probability 1 in this regime. Second, for all of plots in

Figure 1, we performed the simulations starting from d = 1 until encountering 5 consecutive values

of d for which all 10 of the trials were successful and then filled in all remaining cells corresponding

to larger values of d with white. We believe that this shortcut does not affect the final appearance of

the plot in any noticeable way.

We remark that for the least-squares construction, the n = cd2 scaling of the phase transition

is only apparent for larger values of n, d in the middle plot of Figure 1 and that the transition from

infeasibility to feasibility is much coarser than in the left and right plots of Figure 1. To accentuate

these effects, we reproduce the plots in Figure 1 on a log2 scale in Figure 18 so that the parabola

n = cd2 becomes a line with slope 2.

Figure 18: Plots from Figure 1 on a log2 scale. (Left) Ellipsoid fitting SDP, (Middle): Least-

squares, (Right): Identity perturbation
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Appendix F. Probabilistic norm bounds

We restate Theorem 22 below for convenience.

Theorem 41 (Theorem 22) Given DV , DE ∈ N such that DE ≥ DV ≥ 2 and ϵ > 0, with

probability at least 1− ϵ, for all shapes α on square and circle vertices such that |V (α)| ≤ DV and

|Eα| ≤ DE , |Uα| ≤ 1, and |Vα| ≤ 1,

∥Mα∥ ≤
(

(2DE + 2) ln(DV ) + ln(11n) + ln

(

1

ϵ

))|V (α)|+|E(α)|
n

φ(V (α))−φ(Smin)+φ(Iso(α))

2

where Smin is a minimum vertex separator of α.

Proof Corollary 8.16 of Ahn et al. (2016) says that for all ϵ′ > 0 and all shapes α with square and

circle vertices and no isolated vertices outside of Uα ∪ Vα, with probability at least 1− ϵ′,

∥Mα∥ ≤ 2|V◦(α)||V◦(α)||V□(α)||V□(α)|n
φ(V (α))−φ(Smin)+φ(Iso(α))

2

·
(

6e

⌈

ln(n
φ(Smin)

ϵ′ )

6(|V (α) \ (Uα ∩ Vα)|+ |E(α)|)

⌉)|E(α)|+|V (α)\(Uα∩Vα)|

.

The result is trivial if |V (α)| ≤ 1 or E(α) = ∅ so we can assume that |V (α)| ≥ 1 and E(α) ≥ 1.

For the shapes α we are considering, φ(Smin) ≤ 1 so for each such shape α, for all ϵ′ > 0,

∥Mα∥ ≤ |V (α)||V (α)|+|E(α)|n
φ(V (α))−φ(Smin)+φ(Iso(α))

2

(

6e

⌈

ln
(

n
ϵ′

)

6|V (α)|

⌉)|V (α)|+|E(α)|

.

We will now apply this to all such shapes α with ϵ′ = ϵ
11DV

(2DE+2) and take a union bound. Since

DE ≥ DV ≥ |V (α)|, we have that ln
(

n
ϵ′

)

≥ (2DE + 2) ln(DV ) ≥ 2DV ≥ 2|V (α)|, so

⌈

ln
(

n
ϵ′

)

6|V (α)|

⌉

≤ ln
(

n
ϵ′

)

2|V (α)| .

Thus, for each such shape α, with probability at least 1− ϵ
11DV

(2DE+2) ,

∥Mα∥ ≤
(

(2DE + 2) ln(DV ) + ln(11n) + ln

(

1

ϵ

))|V (α)|+|E(α)|
n

φ(V (α))−φ(Smin)+φ(Iso(α))

2 .

Using the following proposition and taking a union bound, we have that with probability at least

1− ϵ, the above bound holds for all such shapes α, as needed.

Proposition 42 If DV , DE ∈ N and DV ≥ 2 then there are at most 4DV
(2DE+2) shapes α on

square and circle vertices such that |V (α)| ≤ DV , |Eα| ≤ DE , |Uα| ≤ 1, and |Vα| ≤ 1.

Proof We can specify a non-empty shape α as follows:
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1. Specify whether Uα and Vα have a circle vertex, a square vertex, or are empty. If Uα and

Vα both have circle vertices or both have square vertices, specify whether they are the same

vertex. There are a total of 11 choices for this.

2. Specify the number of circle vertices and square vertices in V (α) \ (Uα ∪ Vα). There are at

most D2
V choices for this.

3. For each of the DE possible edges, either specify its two endpoints or ∅ if it does not exist.

There are at most
(

DV
2

)

+ 1 ≤ D2
V choices for each possible edge.

Appendix G. Proof of Lemma 4

For convenience we restate the lemma below.

Lemma 43 (Lemma 4) Let B = Γ + αIn. We have

(AA∗)−11n =
1

s2 − ru
·
(

(1 + 1TnB
−1w)B−11n − (1TnB

−11n)B
−1w

)

(27)

where r, s, u are defined as

(

r s
s u

)

:=

(

1TnB
−11n 1 + 1TnB

−1w
1 + 1TnB

−1w −d+ wTB−1w

)

.

Proof

The Woodbury formula Woodbury (1950) states that

(B + UCV )−11n = B−11n −B−1U(C−1 + V B−1U)−1V B−11n. (28)

We set B as above. Let U ∈ R
n×2 be defined by

Uij =

{

1 if j = 1, and

wi = ∥vi∥22 − d if j = 2.

So the columns of U are 1n and w. Let V = UT , and set

C =

(

d 1
1 0

)

.

Observe that UCV = W . Next,

C−1 + V B−1U =

(

0 1
1 −d

)

+

(

1TnB
−11n 1TnB

−1w
1TnB

−1w wTB−1w

)

=

(

1TnB
−11n 1 + 1TnB

−1w
1 + 1TnB

−1w −d+ wTB−1w

)

=:

(

r s
s u

)

.
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Thus

(C−1 + V B−1U)−1 =
1

ru− s2

(

u −s
−s r

)

,

and

V B−11n =

(

1TnB
−11n

wTB−11n

)

=

(

r
s− 1

)

.

Hence

(C−1 + V B−1U)−1V B−11n =
1

ru− s2
·
(

ru− s(s− 1)
−sr + r(s− 1)

)

=
1

ru− s2
·
(

ru− s2 + s
−r

)

.

Next, since U has first column 1n and second column w,

(AA∗)−11n = B−11n −B−1U(C−1 + V B−1U)−1V B−11n

= B−11n −
1

ru− s2
B−1U ·

(

ru− s2 + s
−r

)

=
(

1− ru− s2 + s

ru− s2
)

B−11n +
r

ru− s2
B−1w

=
1

ru− s2
·
(

− sB−11n + rB−1w
)

=
1

s2 − ru
·
(

(1 + 1TnB
−1w)B−11n − (1TnB

−11n)B
−1w

)

.

Appendix H. Hermite polynomials

Here, we provide some technical results regarding Hermite polynomials that are useful when apply-

ing Proposition 20. Throughout, we use the convention N = {1, 2, 3 . . .} (with 0 not included).

Lemma 44 For all j ∈ N,

h1(x)hj(x) = xhj(x) =
√

j + 1hj+1(x) +
√

jhj−1(x).

Proof Since the normalized Hermite polynomials {hj : j ∈ N∪{0}} are orthonormal with respect

to the inner product

⟨hi, hj⟩ := E
x∼N(0,1)

[hi(x)hj(x)],

we have that

xhj(x) =
∞
∑

k=0

E
y∼N(0,1)

[yhj(y)hk(y)]hk(x).

We now make the following observations:
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1. If k < j − 1 then Ey∼N(0,1)[yhj(y)hk(y)] = 0 because yhk(y) is a degree k + 1 polynomial

and hj(y) is orthogonal to all polynomials of degree less than j.

2. If k > j + 1 then Ey∼N(0,1)[yhj(y)hk(y)] = 0 because yhj(y) is a degree j + 1 polynomial

and hk(y) is orthogonal to all polynomials of degree less than k.

3. If k = j then Ey∼N(0,1)[yhj(y)hk(y)] = 0 because yhj(y)hk(y) is an odd polynomial.

4. If k = j − 1 then the leading term of yhk(y) = xj√
(j−1)!

so we can write yhk(y) =
√
jhj(y) + p where p has degree at most j − 1. This implies that Ey∼N(0,1)[yhj(y)hk(y)] =

Ey∼N(0,1)[
√
j(hj(y))

2] =
√
j.

5. If k = j+1 then the leading term of yhj(y) =
xk√
j!

so we can write yhj(y) =
√
j + 1hk(y)+p

where p has degree at most k − 1. This implies that

E
y∼N(0,1)

[yhj(y)hk(y)] = E
y∼N(0,1)

[
√

j + 1(hk(y))
2] =

√

j + 1.

Corollary 45 For all j ∈ N with j ≥ 2,

x2hj(x) =
√

(j + 1)(j + 2)hj+2(x) + (2j + 1)hj(x) +
√

j(j − 1)hj−2(x).

Proof By Lemma 44,

x2hj(x) = x
√

j + 1hj+1(x) + x
√

jhj−1(x)

=
√

j + 1(
√

j + 2hj+2(x) +
√

j + 1hj(x)) +
√

j(
√

jhj(x) +
√

j − 1hj−2(x))

=
√

(j + 1)(j + 2)hj+2(x) + (2j + 1)hj(x) +
√

j(j − 1)hj−2(x).

Corollary 46 For all j ∈ N,

h2(x)hj(x) =
x2 − 1√

2
hj(x) =

√

(j + 1)(j + 2)

2
hj+2(x) +

√
2jhj(x) +

√

j(j − 1)

2
hj−2(x).

Remark 47 Note that for the case j = 1,
√

j(j − 1) = 0. Thus, for j = 1, even though hj−2(x) =
h−1(x) is undefined it does not matter as

√

j(j − 1)hj−2(x) = 0 regardless of what h−1(x) is.
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Appendix I. Analysis of the Pseudo-Calibration Construction

In this section, we describe and analyze the construction of M from Ghosh et al. (2020). This

construction is obtained by using pseudo-calibration (for background on pseudo-calibration, see

Barak et al. (2019)) on the following distributions.

Random: Sample n vectors v1, . . . , vn from N (0, Id).

Planted: First sample a hidden direction u from {− 1√
d
, 1√

d
}d and n random ±1 variables

b1, . . . , bn. Then sample n vectors v′1, . . . , v
′
n from N (0, Id) and replace each vector v′i with

vi = v′i − ⟨v′i, u⟩u+ biu.

For the planted distribution, the rank one matrix M = uuT satisfies vTi Mvi = 1 for all i ∈ [n]. For

the random distribution, there is no hidden direction u but with high probability, pseudo-calibration

will still give us a matrix M such that vTi Mvi = 1 for all i ∈ [n]. In order to describe this matrix

M , we need a few definitions.

Definition 48 Given values {αi,a : i ∈ [n], a ∈ [d]}, we make the following definitions:

1. Define |α| to be |α| =∑n
i=1

∑d
a=1 αi,a

2. Define αi to be αi =
∑d

a=1 αi,a

3. Define αT
a to be αT

a =
∑n

i=1 αi,a

4. Define α! to be α! =
∏n

i=1

∏d
a=1 αi,a!

5. Define hα(v1, . . . , vn) to be hα(v1, . . . , vn) =
∏n

i=1

∏d
a=1 hαi,a((vi)a)

Let T = Ω(log n) be a truncation parameter. By Lemma 4.4 of Ghosh et al. (2020), the construction

given by pseudo-calibration with truncation parameter T is as follows.

Definition 49 Define Ẽ[1] to be

Ẽ[1] =
∑

α:|α|≤T, For all i∈[n],a∈[d],αi and αT
a are even

(
∏n

i=1

√
αi!hαi(1)

)

√
α!d

|α|
2

hα(v1, . . . , vn)

Definition 50 For all a ∈ [d], we define Ẽ[x2a] to be Ẽ[x2a] =
1
dẼ[1]. For all distinct a, b ∈ [d],

define Ẽ[xaxb] to be

Ẽ[xaxb] =
∑

α:|α|≤T, For all i∈[n],c∈[d]\{a,b},αi and αT
c are even,

αT
a and αT

b
are odd.

(
∏n

i=1

√
αi!hαi(1)

)

√
α!d

|α|
2
+1

hα(v1, . . . , vn)

Remark 51 These equations have different coefficients than Lemma 4.4 of Ghosh et al. (2020)

because we are using the normalized Hermite polynomials.

Definition 52 For all distinct a, b ∈ [d], we take Mab = Ẽ[xaxb]

Ẽ[1]
. For all a ∈ [d], we take Maa =

Ẽ[x2
a]

Ẽ[1]
= 1

d .
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I.1. Verifying M is PSD

While the pseudo-calibration construction is more complicated than the least squares and identity

perturbation constructions, it is actually easier to give a rough analysis for it. The reason is that

Ẽ[1]M can be directly decomposed into shapes. Moreover, all of the shapes α appearing in Ẽ[1]M
have the following properties

1. Mα appears in Ẽ[1]M with coefficient λα = O(d−(
|E(α)|

2
+1)) where we take |E(α)| to be the

sum of the labels of the edges in E(α).

2. Let Uα = (u) and Vα = (v), every square vertex has even degree and has degree at least 2. If

u ̸= v then u and v have odd degree. If u = v then u has even degree (which may be 0).

Note that we take the degree of a vertex to be the sum of the labels of the edges incident to

that vertex.

3. Every circle vertex has even degree and has degree at least 4.

Using the same logic that we used to prove Lemma 28, each such shape α contains a path from Uα

to Vα so the minimum weight vertex separator of α is a single square. By Theorem 22, with high

probability, ||Mα|| is Õ(n
|V◦(α)|

2 d
|V

□
(α)|−1

2 ). We now make the following observations:

1. Since every square vertex except u, v has degree at least 2, |E(α)| = ∑

w∈V□(α) deg(w) ≥
2|V□(α)| − 2 which implies that |V□(α)| ≤ |E(α)|

2 + 1

2. Since every circle vertex has degree at least 4, |E(α)| = ∑

w∈V◦(α)
deg(w) ≥ 4|V◦(α)|

which implies that |V◦(α)| ≤ |E(α)|
4

Putting these observations together, with high probability, λα||Mα|| is

Õ(n
|V◦(α)|

2 d
|V

□
(α)|−1−|E(α)|

2
−1) ≤ Õ

(

1

d

(

8
√
n

4
√
d

)|E(α)|)

This implies that the dominant term is 1
dId as it is the only term that appears which has no edges.

Thus, with high probability, Ẽ[1]M is PSD. As noted in Remark 5.9 of Ghosh et al. (2020), with

high probability, Ẽ[1] is 1± o(1) so this implies that with high probability, M is PSD, as needed.

Remark 53 This analysis is very similar to the analysis on p.21 of Ghosh et al. (2020) for attempt

1 where each edge splits its factor of 1√
d

between its two endpoints. While this attempt fails for

the higher degree setting of Ghosh et al. (2020), it succeeds for degree 2, which is what we are

analyzing here.

I.2. Verifying that vTi Mvi ≈ 1

As discussed in Section 7 of Ghosh et al. (2020), pseudo-calibration guarantees that the constraints

vTi Mvi = 1 are satisfied up to a very small truncation error which can be easily repaired. However,

looking at the entries of M directly, it is not at all easy to see why vTi Mvi ≈ 1. In this subsection,

we show how to directly verify that vTi Mvi ≈ 1. In particular, we give a direct proof that for each
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α such that |α| ≤ T − 2 (where T = Ω(log n) is the truncation parameter), the coefficient of hα
in
∑d

a=1

∑d
b=1 Ẽ[xaxb](vi)a(vi)b matches the coefficient of hα in Ẽ[1]. This analysis is a special

case of the analysis on p.42-45 of Ghosh et al. (2020).

There are several ways that hα can appear in
∑d

a=1

∑d
b=1 Ẽ[xaxb](vi)a(vi)b. These ways are

as follows:

1. For some a ∈ [d] and b ∈ [d] \ {a}, hαi,a−1((vi)a) is multiplied by (vi)a and hαi,b−1((vi)b)
is multiplied by (vi)b, giving

√
αi,aαi,bhαi,a((vi)a)hαi,b

((vi)b).

Letting α′ be α where αi,a and αi,b are decreased by 1, the coefficient of hα′ in Ẽ[xaxb] is

(
∏n

i=1

√
αi!hαi(1)

)

√
α!d

|α|
2

·
√
αi,aαi,bhαi−2(1)

√

αi(αi − 1)hαi(1)

so the total contribution from these terms is

(
∏n

i=1

√
αi!hαi(1)

)

√
α!d

|α|
2

d
∑

a=1

∑

b∈[d]\{a}

αi,aαi,bhαi−2(1)
√

αi(αi − 1)hαi(1)

2. For some a ∈ [d], hαi,a−2((vi)a) is multiplied by (vi)
2
a, giving

√

αi,a(αi,a − 1)hαi,a((vi)a).

Letting α′ be α where αi,a is decreased by 2, the coefficient of hα′ in Ẽ[x2a] is

(
∏n

i=1

√
αi!hαi(1)

)

√
α!d

|α|
2

·
√

αi,a(αi,a − 1)hαi−2(1)
√

αi(αi − 1)hαi(1)

so the total contribution from these terms is

(
∏n

i=1

√
αi!hαi(1)

)

√
α!d

|α|
2

d
∑

a=1

αi,a(αi,a − 1)hαi−2(1)
√

αi(αi − 1)hαi(1)

Together, the terms in cases 1 and 2 give a total contribution of

(
∏n

i=1

√
αi!hαi(1)

)

√
α!d

|α|
2

·
√

αi(αi − 1)hαi−2(1)

hαi(1)

3. For some a ∈ [d] and b ∈ [d] \ {a}, hαi,a−1((vi)a) is multiplied by (vi)a and hαi,b+1((vi)b)

is multiplied by (vi)b, giving
√

αi,a(αi,b + 1)hαi,a((vi)a)hαi,b
((vi)b).

Letting α′ be α where αi,a is decreased by 1 and αi,b is increased by 1, the coefficient of hα′

in Ẽ[xaxb] is
(
∏n

i=1

√
αi!hαi(1)

)

√
α!d

|α|
2

·
√
αi,a

d
√

(αi,b + 1)

so the total contribution from these terms is
(d−1)αi

d
(
∏n

i=1

√
αi!hαi (1))

√
α!d

|α|
2

By symmetry, we have

the same contribution from the terms where hαi,a+1((vi)a) is multiplied by (vi)a and hαi,b−1((vi)b)

is multiplied by (vi)b so the total contribution from all of these terms is
2(d−1)αi

d
(
∏n

i=1

√
αi!hαi (1))

√
α!d

|α|
2
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4. For some a ∈ [d], hαi,a((vi)a) is multiplied by (vi)
2
a, giving (2αi,a + 1)hαi,a((vi)a).

The coefficient of hα in Ẽ[x2a] is

1

d

(
∏n

i=1

√
αi!hαi(1)

)

√
α!d

|α|
2

so the total contribution from these terms is
(

2αi

d
+ 1

)

(
∏n

i=1

√
αi!hαi(1)

)

√
α!d

|α|
2

Together, the terms in cases 3 and 4 give a total contribution of

(2αi + 1)

(
∏n

i=1

√
αi!hαi(1)

)

√
α!d

|α|
2

5. For some a ∈ [d] and b ∈ [d] \ {a}, hαi,a+1((vi)a) is multiplied by (vi)a and hαi,b+1((vi)b)

is multiplied by (vi)b, giving
√

(αi,a + 1)(αi,b + 1)hαi,a((vi)a)hαi,b
((vi)b).

Letting α′ be α where αi,a and αi,b are increased by 1, the coefficient of hα′ in Ẽ[xaxb] is
(
∏n

i=1

√
αi!hαi(1)

)

√
α!d

|α|
2

·
√

(αi + 1)(αi + 2)hαi+2(1)

d2
√

(αi,a + 1)(αi,b + 1)hαi(1)

so the total contribution from these terms is
(
∏n

i=1

√
αi!hαi(1)

)

√
α!d

|α|
2

· d(d− 1)
√

(αi + 1)(αi + 2)hαi+2(1)

d2hαi(1)

6. For some a ∈ [d], hαi,a+2((vi)a) is multiplied by (vi)
2
a, giving

√

(αi,a + 2)(αi,a + 1)hαi,a((vi)
2
a).

Letting α′ be α where αi,a is increased by 2, the coefficient of hα′ in Ẽ[x2a] is
(
∏n

i=1

√
αi!hαi(1)

)

√
α!d

|α|
2

·
√

(αi + 1)(αi + 2)hαi+2(1)

d2
√

(αi,a + 2)(αi,a + 1)hαi(1)

so the total contribution from these terms is
(
∏n

i=1

√
αi!hαi(1)

)

√
α!d

|α|
2

· d
√

(αi + 1)(αi + 2)hαi+2(1)

d2hαi(1)

Together, the terms in cases 5 and 6 give a total contribution of
(
∏n

i=1

√
αi!hαi(1)

)

√
α!d

|α|
2

·
√

(αi + 1)(αi + 2)hαi+2(1)

hαi(1)

Putting everything together, it is sufficient to show that
√

αi(αi − 1)hαi−2(1) + (2αi + 1)hαi(1) +
√

(αi + 1)(αi + 2)hαi+2(1) = hαi(1)

To show this, recall that by Corollary 45, for all j ∈ N ∪ {0} and all x ∈ R,

x2hj(x) =
√

(j + 1)(j + 2)hj+2(x) + (2j + 1)hj(x) +
√

j(j − 1)hj−2(x).

Plugging in x = 1 and j = αi, the result follows.
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Appendix J. Analysis of the Identity Perturbation Construction

In this section, we provide an analysis of the identity perturbation construction and show that it is

PSD provided that n ≤ d2/polylog(d). Again without loss of generality, we assume that n ≥ d.

Recall that

X := XIP =
1

d
Id +A∗(c)

where c is chosen such that A(X) = 1n. By direct calculation and the invertibility of (AA∗)−1,

there is a unique vector c satisfying the constraintA(X) = 1n, and it is given by c = −1
d(AA∗)−1w,

where recall wi = ∥vi∥2 − d. Again by the Woodbury formula Woodbury (1950), it holds that

(AA∗)−1w = (B + UCV )−1w = B−1w −B−1U(C−1 + V B−1U)−1V B−1w (29)

where B,U,C, and V are defined in Section G. Using a similar calculation as in Section G and

recalling also the definitions of r, s, and u given there, we obtain

(AA∗)−1w = B−1w −B−1U(C−1 + V B−1U)−1V B−1w

= B−1w − 1

ru− s2
B−1U

(

u −s
−s r

)(

s− 1
u+ d

)

= (
u+ sd

ru− s2
)B−11n − (

s+ rd

ru− s2
)B−1w

Hence,

X =
1

d
Id +

1

d
(
u+ d

s2 − ru
)A∗B−11n +

1

d
(
d(s− 1)

s2 − ru
)A∗B−11n −

1

d
(
s+ rd

s2 − ru
)A∗B−1w. (30)

By (9), it holds that with high probability

u+ d = wTB−1w = Θ(
1

d2
)∥w∥22,

which implies in particular that u + d = wTB−1w > 0. Moreover, s2 − ru = Ω(n/d) with high

probability by (8), so also s2− ru ≥ 0. It follow from Lemma 8 that the second term of (30) is PSD

with high probability.

Next we show that the third term of (30) satisfies

∥1
d
(
d(s− 1)

s2 − ru
)A∗B−11n∥op = o(1/d) (31)

with high probability. In the proof of Lemma 7, we in fact showed that |s − 1| = |1TnB−1w| =
õ(n/d2). Moreover, the proof of Lemma 8 implies also that ∥A∗B−11n∥op = O(n/d2). Thus (31)

follows from s2 − ru = Ω(n/d) (see (8)) assuming that n ≤ d2/polylog(d).

Moreover, by Lemmas 5, 7, and 9 as well as (8), we obtain that the last term of (30) is o(1/d)
in operator norm assuming that n ≥ d and n ≤ d2/polylog(d).

Combining the results for the last three terms of (30), we conclude that X = XIP ⪰ 0 with high

probability, as desired. □
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Appendix K. Notes on a previous approach

In this section, we discuss the mistake appearing in a previous version of this paper, sketch how

this mistake can be repaired, and explain why we instead use the Woodbury matrix identity in the

current paper.

The approach used in the previous version of this paper was as follows. Taking M = (d2 +
d)I + d1n1

T
n and ∆ = M −AA∗,7 we have that

XLS = A∗((AA∗)−11n) = A∗((In −M−1∆)−1M−11n).

Expanding (In −M−1∆)−1 as a Neumann series:

(In −M−1∆)−1 = In +M−1∆+

∞
∑

j=2

(M−1∆)j

and observing that M−11n = 1
d2+d+dn

1n, we have that

(d2 + d+ dn)XLS = A∗(1n) +A∗((M−1∆)1n) +A∗









∞
∑

j=2

(M−1∆)j



 1n



 .

It is a standard fact that when n = Ω(d), with high probability λmin(A∗(1n)) = λmin(
∑n

i=1 viv
T
i )

is Ω(n). In order to show that XLS ⪰ 0 with high probability, it is sufficient to show that with high

probability:

1. ∥M−1∆∥op < 1,

2. ∥A∗(M−1∆1n)∥op = o(n),

3. For all j ≥ 2, ∥A∗((M−1∆)j1n)∥op = o(n).

Proposition 5.2 of the previous version of this paper claimed that with high probability, ∥∆1n∥∞ =

Õ(d
√
n) which implies that ∥M−1∆1n∥∞ = Õ(d

√
n

d2
) = o(1). In turn, this implies that ∥M−1∆1n∥2 =

o(
√
n). By Lemma 3 of Saunderson (2011), with high probability ∥A∗∥2→op = Θ(d+

√
n) so this

implies that for all j ≥ 1, ∥A∗(M−1∆)j1n∥ = o(n).
Unfortunately, this proposition is incorrect. As we discuss below, the correct bound on ∥∆1n∥∞

is Õ(n
√
d). This gives ∥M−1∆1n∥∞ = Õ

(

n
√
d

d2

)

= Õ
(

n/d3/2
)

. This is sufficient when n ≪
d3/2 but is not sufficient when n ≫ d3/2. This means that in order to prove our result using

this approach, we cannot consider A∗ and (M−1∆)j1n separately. Instead, we must analyze their

product A∗((M−1∆)j1n).

Remark 54 If we showed the stronger statement ∥(M−1∆)j1n∥∞ = o(1) for all j then we would

have that every coordinate of (In−M−1∆)−11n = 1n+M−1∆1n+
∑∞

j=2 (M
−1∆)j1n is positive.

This implies that XLS ⪰ 0. We found experimentally that this is true when n ≪ d3/2. However,

when n ≫ d3/2, (In −M−1∆)−11n has negative coordinates, so the interaction between A∗ and

(In −M−1∆)−11n is crucial.

7. Note that this ∆ is different from the one used in the rest of the current paper.
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K.1. Computing ∆ and M−1∆

In order to discuss why Proposition 5.2 of the previous version of this paper is incorrect and how to

actually carry out this approach, it is helpful to express ∆ and M−1∆ in terms of graph matrices.

Recall that:

AA∗ = Mα1 + 2Mα2a +
√
2Mα2b

+
√
2Mα2c + dMα2d

+ 2Mα3a + 2
√
2(d− 1)Mα3b

+ (d2 − d)Mα3c

+
√
24Mα4 + 6

√
2Mα3b

+ 3dMα3c .

where α1, α2a, α2b, α2c, α2d, α3a, α3b, α3c, and α4 are the following proper shapes:

1. α1 is the same as in Section B.2.

2. Uα2a = (u) and Vα2a = (v) where u, v are circle vertices, Wα2a = {w} where w is a square

vertex, and E(α2a) = {{u,w}2, {w, v}2}.

3. Uα2b
= (u) and Vα2b

= (v) where u, v are circle vertices, Wα2b
= {w} where w is a square

vertex, and E(α2b) = {{u,w}2}.

4. Uα2c = (u) and Vα2c = (v) where u, v are circle vertices, Wα2c = {w} where w is a square

vertex, and E(α2c) = {{w, v}2}.

5. Uα2d
= (u) and Vα2d

= (v) where u, v are circle vertices, Wα2d
= {}, and E(α2d) = {}.

6. Uα3a = Vα3a = (u) where u is a circle vertex, Wα3a = {w1, w2} where w1, w2 are square

vertices, and E(α3a) = {{u,w1}2, {u,w2}2}.

7. Uα3b
= Vα3a = (u) where u is a circle vertex, Wα3b

= {w} where w is a square vertex, and

E(α3b) = {{u,w}2}.

8. Uα3c = Vα3c = (u) where u is a circle vertex, Wα3c = {}, and E(α3c) = {}.

9. Uα4 = Vα4 = (u) where u is a circle vertex, Wα4 = {w} where w is a square vertex, and

E(α4) = {{u,w}4}.
Since Mα2d

= 1n1
T
n − In and Mα3c = In, we have that:

AA∗ = (d2+d)Idn+d1n1
T
n+Mα1+2Mα2a+

√
2Mα2b

+
√
2Mα2c+2Mα3a+(2

√
2d+4

√
2)Mα3b

+
√
24Mα4 .

Since M = (d2 + d)In + d1n1
T
n ,

∆ = M−AA∗ = −Mα1−2Mα2a−
√
2Mα2b

−
√
2Mα2c−2Mα3a−(2

√
2d+4

√
2)Mα3b

−
√
24Mα4 .

We now compute M−1∆. Since M = (d2+d)I+d1n1
T
n , we have that M−1 = 1

d2+d

(

I − 1
n+d+11n1

T
n

)

.

Definition 55 Define αJ to be the shape with UαJ = (u), VαJ = (v), WαJ = ∅, and E(αJ) = ∅.
Since 1n1

T
n = I +MαJ , we have

M−1 =
1

d2 + d

(

n+ d

n+ d+ 1
I − 1

n+ d+ 1
MαJ

)

.

We now compute the product of MαJ with each of the graph matrices appearing in ∆.
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1. MαJMα1 = Mα5 + Mα1 where Mα5 is the shape such that Uα5 = (u) and Vα5 = (v)
where u, v are circle vertices, Wα5 = {w◦, w1, w2} where w◦ is a circle vertex and w1, w2

are square vertices, and E(α1) = {{w◦, w1}, {w◦, w2}, {w1, v}, {w2, v}}.

2. MαJMα2a = Mα6a +Mα2a where Mα6a is the shape such that Uα6a = (u) and Vα6a = (v)
where u, v are circle vertices, Wα6a = {w◦, w} where w◦ is a circle vertex and w is a square

vertex, and E(α6a) = {{w◦, w}2, {w, v}2}.

3. MαJMα2b
= Mα6b

+ Mα2c where Mα6b
is the shape such that Uα6b

= (u) and Vα6b
= (v)

where u, v are circle vertices, Wα6b
= {w◦, w} where w◦ is a circle vertex and w is a square

vertex, and E(α6b) = {{w◦, w}2}.

4. MαJMα2c = (n− 2)Mα2c +Mα2b
.

5. MαJMα3a = Mα7a where Mα7a is the shape such that Uα7a = (u) and Vα7a = (v) where

u, v are circle vertices, Wα7a = {w1, w2} where w1, w2 are square vertices, and E(α7a) =
{{v, w1}2, {v, w2}2}.

6. MαJMα3b
= Mα7b

where Mα7b
is the shape such that Uα7b

= (u) and Vα7b
= (v) where u, v

are circle vertices, Wα7b
= {w} where w is a square vertex, and E(α7b) = {{v, w}2}.

7. MαJMα4 = Mα8 where Mα8 is the shape such that Uα8 = (u) and Vα8 = (v) where u, v are

circle vertices, Wα8 = {w} where w is a square vertex, and E(α8) = {{v, w}4}.

Putting everything together, we have that

M−1∆ =
1

(d2 + d)(n+ d+ 1)

(

− (n+ d)Mα1 + (Mα5 +Mα1)− 2(n+ d)Mα2a + 2 (Mα6a +Mα2a)

−
√
2(n+ d)Mα2b

+
√
2 (Mα6b

+Mα2c)−
√
2(n+ d)Mα2c +

√
2 ((n− 2)Mα2c +Mα2b

)

− 2(n+ d)Mα3a + 2Mα7a − (2
√
2d+ 4

√
2)(n+ d)Mα3b

+ (2
√
2d+ 4

√
2)Mα7b

−
√
24(n+ d)Mα4 +

√
24Mα8

)

=
1

(d2 + d)(n+ d+ 1)

(

− (n+ d− 1)Mα1 − 2(n+ d− 1)Mα2a −
√
2(n+ d− 1)Mα2b

−
√
2(d− 1)Mα2c − 2(n+ d)Mα3a − (2

√
2d+ 4

√
2)(n+ d)Mα3b

−
√
24(n+ d)Mα4

+Mα5 + 2Mα6a +
√
2Mα6b

+ 2Mα7a + (2
√
2d+ 4

√
2)Mα7b

+
√
24Mα8

)

.

Now that we have obtained a graph matrix decomposition of M−1∆, we demonstrate why

Proposition 5.2 of the previous version of this paper is incorrect. Note that M−1∆ contains the

term

− 1

(d2 + d)(n+ d+ 1)

√
2(n+ d− 1)Mα2b

.

We now make the following observations:

1. Mα2b
1n = (n− 1)Mαw .

2. Mαw is an n× 1 vector, ∥Mαw∥2 = Õ(
√
dn), and ∥Mαw∥∞ = Õ(

√
d).
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Putting these observations together, the contribution to ∥M−1∆1n∥∞ from the Mα2b
term of M−1∆

is Õ(n
√
d

d2
) = Õ( n

d3/2
). It can be checked that the contribution to ∥M−1∆1n∥∞ from the other terms

of M−1∆ is smaller. Thus, the correct bound is
∥

∥M−1∆1n
∥

∥

∞ = O(n/d3/2).

K.2. Proof sketch for repairing the argument

While this proposition is not correct, the three statements needed for this approach to succeed are

correct. For convenience, we recall these statements here.

1. ∥M−1∆∥op < 1,

2. ∥A∗(M−1∆1n)∥op = o(n),

3. For all j ≥ 2, ∥A∗((M−1∆)j1n)∥op = o(n).

To show these statements, we can follow the proof of Lemma 28 to show that in all of the terms

which appear in these expressions, the minimum vertex separator consists of one square vertex. We

can then use the similar weighting schemes to bound these terms. Two notable cases for wactual are

as follows.

1. For α2b where the square appears again to the left, but not to the right, and the edge vanishes,

we assign
√
n to each vertex and 1 to the square (which is an under-assignment). This means

that each time α2b appears, we may have a debt for this square. Fortunately, we can use the

same ideas as before. In particular, we can pay off this debt by making the edge in α2b a

right-critical edge if it vanishes and finding the corresponding left-critical edge.

2. For α2c, because of M−1 we have a coefficient of O( 1
nd) rather than O( 1

d2
). This allows us

to assign weight
√
n to the two circle vertices and d to the square vertex which is sufficient to

handle any debt. Note that this is one of the cases which can have a left-critical edge.

While this approach can be made to work, we use the Woodbury matrix identity approach in the

current paper for two reasons. First, it gives a better approximation toAA∗. Second, it requires less

casework and only requires paying off debt for one square, instead of several such squares.
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