
To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

Efficient task planning using abstract skills
and dynamic road map matching

Khen Elimelech, Lydia E. Kavraki, and Moshe Y. Vardi

Department of Computer Science,
Rice University,

Houston, TX 77005, USA.
{elimelech,kavraki,vardi}@rice.edu

Abstract. Task planning is the problem of finding a discrete sequence of
actions to achieve a goal. Unfortunately, task planning in robotic domains
is computationally challenging. To address this, in our prior work, we ex-
plained how knowledge from a successful task solution can be cached for
later use, as an “abstract skill.” Such a skill is represented as a trace
of states (“road map”) in an abstract space and can be matched with
new tasks on-demand. This paper explains how one can use a library of
abstract skills, derived from past planning experience, to reduce the com-
putational cost of solving new task planning problems. As we explain,
matching a skill to a task allows us to decompose it into independent
sub-tasks, which can be quickly solved in parallel. This can be done au-
tomatically and dynamically during planning. We begin by formulating
this problem of “planning with skills” as a constraint satisfaction prob-
lem. We then provide a hierarchical solution algorithm, which integrates
with any standard task planner. Finally, we experimentally demonstrate
the computational benefits of the approach for reach-avoid tasks.

1 Introduction

1.1 Background

In Artificial Intelligence (AI) and robotics research, task planning refers to the
problem of finding a discrete sequence of actions to achieve a certain goal [1].
Tasks can be specified to solve various robotic problems, such as manipulation,
autonomous navigation, target tracking, and others. When the planning domain
is large and complex, online task planning can become a computational challenge.
It is hence important to find ways to reduce this complexity, such that a task
plan can be found in a timely manner. This is especially important since often in
robotic domains task planning is a part of the broader Task And Motion Plan-
ning (TAMP) problem [2]. This problem also involves translating the symbolic
actions to feasible motion plans for the robot — a matter that further adds to

Work on this paper was supported in part by NSF-IIS-1830549.



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

2 K. Elimelech et al.

the computational cost. One way to reduce the task planning cost is exploiting
knowledge from past planning experience, to expedite the solution of new tasks.

To this end, in our prior work [3], we introduced the concept of abstract skills.
In robotics, the term “skill” often refers to a control policy that is learned from
numerous demonstrations to achieve a certain goal (e.g., in [4,5]). Uniquely, our
“skills” are not represented as policies of actions, but as traces of states, serving
as plan “road maps.” This approach, which we motivated in the aforementioned
work, allows intuitive cross-domain skill transfer and flexible adaptation to new
tasks. Further, skills can be cached after each successful task solution, which
means we only require a single execution to learn a generalizable skill. This
generalizability is made possible by caching the skills as road maps in an abstract
domain, and not directly in the task domain. As such, each abstract road map
can be dynamically reconstructed (on-demand) to match a variety of tasks, in a
variety of domains, and expedite their solution. As we shall explain, this caching
and reconstruction of abstract skills can be done automatically using suitable
“abstraction keys.” These are generic, user-specified devices that indicate how
to perform the required mapping of road maps to/from an abstract domain.

For example, consider a mobile robot that managed to reach a designated
goal by performing a certain maneuver. We can identify a sequence of critical
way points in the robot’s executed path (i.e., a road map); then, we can try
to strip robot-and-domain-specific attributes from the states in the road map,
before caching it as an abstract skill. Later, we can try to use this abstract skill
to guide the solution of a matching task by a new robot in a new domain.

1.2 Contribution

While our previous work suggested and motivated a theoretical framework for
skill transfer, the aim of this paper is to allow practical execution of those ideas.
Our goal is to explain how one can use a given “library” of abstract skills, derived
from past successful task solutions, to reduce the computational cost of solving
new task planning problems. Specifically, we provide the following contributions:
(i) formulation of the problem of “planning with abstract skills” as a constraint
satisfaction problem (in Section 4); (ii) an efficient algorithm for solving this
problem (in Section 5); and (iii) a practical demonstration of the algorithm
and the computational benefits of using skills for task planning (in Section 6).
Additional contributions, provided in the appendices, include: (iv) formulation
of new abstraction keys for geometric domains (in Appendix A); and (v) com-
plexity analysis for the algorithm (in Appendix B). For visualization and ease of
explanation, we precede the contributions by providing an exemplary scenario
for planning with skills in a discrete geometric domain (in Section 3).

To clarify, we do not seek to provide a new task planner, nor compete with
existing ones. In fact, our simple-yet-effective approach integrates with any stan-
dard task planner of choice and allows to use it more efficiently, thanks to the
incorporation of skills. The problem formulation and high-level algorithm are
applicable to any task type, while specific practical details are provided for
“reach-avoid” tasks — a common class of tasks in robotic contexts; this is yet



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

Efficient task planning using abstract skills and dynamic road map matching 3

another contribution in relation to our prior work, in which we only examined
“classical planning” tasks (with a single goal). As implied, our problem formula-
tion and algorithm are hierarchical: at the top level, we try to match one of the
cached skills to the task; and at the lower level, plan with this skill. As we shall
see, matching an abstract skill to the task often allows us to decompose it into
independent sub-tasks, which can be quickly solved in parallel. This matching
and decomposition can be done automatically and dynamically during planning.

1.3 Related work

Task planning is a prominent problem in AI research, where it is often referred
to as “automated planning” or “AI planning” [6]. The standard technique to
solve such problems, both in AI and robotics, is using a heuristic graph search
(e.g., [7,8]). Another prominent technique is using a reduction to a satisfiability
problem (e.g., [9,10]), which can be solved using an automated constraint satis-
fier. As mentioned, our algorithm relies on and integrates with existing planners.

Hierarchical Task Network (HTN) [11] is a relevant variation of the standard
task planning formalism. HTN sees planning as the problem of decomposing a
task to a hierarchy of atomic sub-tasks. However, there is a significant difference
between this framework and ours: here, the sub-tasks into which we decompose
a problem are dynamically defined by matching a skill to the task; in contrast,
in HTN, the sub-tasks are predefined, and we only search for their right con-
struction. Hierarchical Goal Network (HGN) [12] is another relevant variation.
HGN sees planning towards a goal as the problem of identifying a sequence of
sub-goals. The idea of sub-goal decomposition is similar to our notion of road
map matching. Yet, this formalism is more restrictive, as it (i) only considers
plans that monotonously progress towards the goal; (ii) relies on domain-specific
decomposition “methods”; and (iii) is not suitable for general tasks.

A similar hierarchy of planning levels, with inter-level induced constraints, is
also expressed in various other robotic planners, such as SyCLoP [13],
IDTMP [14], and HPN [15]; yet, these planners aim to return motion plans
and not task plans, as we do. More importantly, in contrast to the mentioned
works, our hierarchical approach does not suggest to plan in an abstract domain.
The top level of our algorithm can be thought of as meta-planning; after that,
we look for a plan directly in the task domain.

The usage of road maps for planning is most prominent in motion planning,
i.e., in continuous geometric domains. Such methods, led by the Probabilistic
Road Map (PRM) algorithm [16], rely on a randomly-sampled sparse graph,
over which a plan can be calculated, instead of examining the entire continuous
domain. Several points differentiate these works from ours: first, we consider
planning in discrete domains; second, the road maps we rely on are derived from
past experience and are not random; third, we do not plan over the states in the
road map, as we consider them already ordered.

Finally, works in experience-based planning (e.g., [17]) often rely on a similar-
ity metric between tasks, in order to retrieve relevant experience. We, however,
avoid that, by directly matching the given task and an abstract skill.



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

4 K. Elimelech et al.

2 Preliminaries

To be able to formulate the problem of task planning with abstract skills, we
must first formulate (i) the standard task planning problem, and (ii) the concept
of abstract skills.

2.1 Task planning

Let us begin by formally defining the planning domain.

Definition 1. A task planning domain D
.
= (S,A, T ) is comprised of a state

space S (continuous or discrete), an action space A, and a set T ⊆ S × A × S
of discrete transitions. Transitions in the domain are deterministic, meaning,
∀(S, a,S′) ∈ T , ∄S′′ ∈ S, such that (S, a,S′′) ∈ T . An execution E in D is a
sequence of alternating states and actions, i.e.,

E
.
= (S0, a1,S1, a2, . . . ,Sn) . // execution (1)

The execution E is feasible in the domain if ∀i ∈ {1, . . . , n}, (Si−1, ai,Si) ∈ T .
In that case, we say that E is induced by the action sequence (a1, . . . , an).
We use S (E) to mark the trace of states from E.

A task can be thought of as a collection of constraints on the states and/or
actions of an execution. Such constraints can be, e.g., global, temporal, or cost-
related. In this work we will focus on finite reach-avoid tasks.

Definition 2. A reach-avoid task T
.
= (Goals, Savoid) is comprised of a set Goals

of goal regions ⊆ S, and a region Savoid ⊆ S to avoid. For an execution E, the
task constraints require us to visit all the goal regions (in any order):

∀Sgoal ∈ Goals, ∃S ∈ S (E) , s.t. S ∈ Sgoal, // reach (2)

and never reach the avoid regions:

S (E) ∩ Savoid = ∅. // avoid (3)

To ensure timely termination, we also demand that E does not include additional
transitions after all goal states are reached. Formally:

∄i < length (S (E)) , s.t. S (E) [1 : i] satisfies (2). // terminate (4)

To solve a task, we should find a plan (i.e., a sequence of actions) to be
applied from the current start state, whose execution is feasible in the domain
and satisfies the task constraints.

Definition 3 (Task planning problem). For a start state Sstart, a task T ,
and a domain D, find a finite sequence of actions (a1, . . . , an) ∈ An, such that
the sequence induces a feasible execution in D, starting from Sstart, and the
execution satisfies all the task constraints (i.e., valid for the task).

Note that here we only care to find a feasible plan and not an optimal one.



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

Efficient task planning using abstract skills and dynamic road map matching 5

2.2 Abstract skills and abstraction keys

In our previous work [3], we introduced the concept of abstraction keys.

Definition 4. A public abstraction key PK
.
=

(
projectp, reconstp,P

)
is

comprised of a parametric state projection function projectp : S → Ξ;
its inverse — a parametric state reconstruction function reconstp : Ξ → S;
and a parameter space P , such that p ∈ P . The sets of parameters that are valid
for projection of S and for reconstruction of ξ are marked PS , Pξ, respectively.

As we shall soon demonstrate, every public abstraction key allows us to
perform a certain type of transformation on states. Intuitively, applying the
projection function removes a property from a state — leading to an abstract
state in the PK-induced abstract state space Ξ; applying the reconstruction
function re-sets a property. The parameter p is used to specify these properties.

Using abstraction keys, we then defined the concept of abstract skills

Definition 5. An abstract skill K
.
= (ARM,PK) is comprised of an Abstract

Road Map ARM , and a public abstraction key PK. The ARM is a state trace
in the PK-induced abstract state space.

An abstract skill can generally be inferred and cached upon solution of a
task — by projecting (a part of) the state trace of the plan execution S (E)
into an abstract domain, using a chosen public abstraction key PK. In that case,
the parameter p chosen for this projection serves as the private abstraction key
of that state trace. Later, this skill’s ARM can be reconstructed (grounded) into
a new domain by choosing a new parameter p′ to serve as the private key for
reconstruction (using the same public key PK). As we shall learn, PK serves the
double purpose of expressing in which scenarios the skill is useful, and providing
the required transformation for adjusting it to each such scenario.

3 Practical demonstration: grid world planning domain

To demonstrate the concept and potential of using abstract skills, we choose
to examine a discrete planning domain whose state space S can be illustrated
over a two dimensional grid with C columns and R rows, with the origin lying
in the bottom-left cell. The transitions are defined from each cell to one of its
eight neighbors. This domain of focus allows us to easily visualize and discuss
reach-avoid tasks, as shown in Figure 1a. A library of abstract skills is visualized
in Figure 1b. Each such skill is represented with its ARM – a sequence of states
in a particular topological configuration. As defined before, each abstract skill
also specifies a public abstraction key, which allows reconstructing the ARM into
a destination domain’s state space. For the grid world domain, we define here
a new set of geometric abstraction keys, which convey spatial transformations:
rotation, spatial translation, scaling (stretching), and a combination of all of
those. By reconstructing an abstract skill’s ARM with such a public key, through
an appropriate choice of parameter (i.e., private key) p, we can rotate, stretch,
and position the road map anywhere on the grid. These keys are formulated in
Appendix A, and visualized in Figure 4.



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

6 K. Elimelech et al.

(a) (b)

Fig. 1: (a) Exemplary scenario: a grid world planning domain, an initial state (in blue),
and a reach-avoid task to solve (in light blue — goal regions, in grey — avoid regions).
(b) Abstract road maps (ARMs) representing a library of abstract skills.

To clarify, generally, the public key-induced abstract state space Ξ, which
contains the states in the ARM , may be structurally different from S (e.g., of
a lower dimension). We also emphasize that these spaces do not need to be
globally isomorphic to allow reconstruction, but only express local invertibility.
In this example, the abstract space can be simply thought of as a more compact
two-dimensional grid, based on the number and topology of states in the ARM .
Further, we only choose this scenario for its ability to intuitively and visually
illustrate the concepts presented in the paper. The formulation to follow is rele-
vant to any discrete transition system over a state space – whether this space is
discrete, continuous, geometric, or symbolic.

4 Planning with skills as a constraint satisfaction problem

Consider a start state Sstart, and a task T in domain D, as previously defined.
Now, assume that alongside the planning domain and task specifications, one has
access to a Library (database) of abstract skills, each comprised of an abstract
road map, and a public abstraction key. Such skills are learned from previous
solutions of other tasks, either in this domain or another. We wish to understand
if one of the skills in the Library can be properly transferred to our domain D,
and, if so, use it to efficiently find a solution to T . To provide an automatable
solution to this problem, we must first formulate it. This problem is inherently
hierarchical, and requires overcoming two challenges: first, skill matching, and,
then, action recovery. Let us formulate each of these challenges.

4.1 Skill matching

First, we discuss the problem of skill matching, in which we wish to under-
stand which skills from the Library are potentially useful for solving our task.
Practically, for each skill K that we consider, we want to answer the question:
“can we reconstruct its Abstract Road Map ARM into a road map in our state
space that is compliant with our current state, task T , and domain D?” Intu-
itively, for the reach-avoid task in our exemplary scenario, where the abstraction



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

Efficient task planning using abstract skills and dynamic road map matching 7

key allows to perform spatial transformation on states, we wish to ask: “can the
abstract skill’s ARM be somehow rotated, stretched, and placed on the grid,
such that it overlaps with the start state and goal regions, and does not overlap
with the regions to avoid?” A visualization of this idea is given in Figures 2a-2b.

To formally answer this question, for a skill K, comprised of an abstract road
map ARM and a public key

(
projectp, reconstp,P

)
, we shall determine the

existence of a parameter p ∈ P that complies to the following constraints. First,
we demand that p is a valid choice as a private abstraction key for reconstruction:

p ∈ PARM , i.e., ∀ξ ∈ ARM, p ∈ Pξ. // p is a private key (5)

Second, we demand that the initial state of the Reconstructed Road Map RRM
.
=

reconstp (ARM) aligns with our current state:

RRM [1] = Sstart. // RRM matches current state (6)

Third, we demand that all the states in RRM would indeed be mapped into the
domain’s state space (as PK may be defined on a state space larger than ours):

RRM ⊆ S. // RRM matches domain (7)

Finally, we demand that RRM satisfies all the state-related task constraints:

RRM respects state-related constraints of T // RRM matches task (8)

The detailed formulation of this demand surely depends on the type of task.
For reach-avoid tasks, all three task constraints are defined on the states of the
execution (S (E)); hence, we should practically demand that assigning RRM
instead of S (E) would satisfy these constrains.

Meaning, we demand that the states in the RRM reach all goal regions:

∀Sgoal ∈ Goals, ∃S ∈ RRM , s.t. S ∈ Sgoal, // RRM reaches (9)

that these states avoid the “avoid” regions:

RRM ∩ Savoid = ∅, // RRM avoids (10)

and that the RRM ends in one of the goal regions:

∄i < length (RRM) , s.t. RRM [1 : i] satisfies (9).// RRM terminates (11)

Overall, we can formulate the the following constraint satisfaction problem:

given : An abstract skill K = (ARM,PK) ∈ Library,
a task T , a domain D, and a start state Sstart

find : A parameter p ∈ PK.P ,

s.t. : p is a valid private abstraction key as in (5) ,

RRM matches current state as in (6) ,

RRM matches domain as in (7) ,

RRM matches task as, e.g., in (9) ∧ (10) ∧ (11).

(12)

If we manage to find an abstract skill and a private key p that satisfy these
constraints, we say that this is a “successful match”.



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

8 K. Elimelech et al.

(a) (b) (c)

Fig. 2: (a) Unsuccessful skill matching: the “orange skill” reconstruction does not
match the initial state, and the “green” one does not match the task. (b) Successful skill
matching. (c) Action recovery: finding actions to follow the reconstructed road map.

4.2 Action recovery

Let us consider the abstract skill K was matched to our task by finding a suitable
private key p for reconstruction. With this key, we are able to reconstruct the
abstract road map as RRM

.
= reconstp (ARM). Since the reconstructed road

map RRM contains only states, the next challenge is, naturally, to recover a
sequence of actions in our domain, which follows the RRM and completes the
task. A visualization of this concept is given in Figure 2c.

Formally, we look for a sequence of actions = (a1, . . . , an) ∈ An that com-
plies to three constraints. First, we demand that following the actions induces a
feasible execution in the domain D, when applied from our current state:

∀aj ∈ actions, ∃S ∈ S, s.t. (Sj , aj ,S) ∈ T , where Sj
.
= aj−1◦· · ·◦a1(Sstart).

// execution is feasible in domain (13)

Second, we demand that following the sequence of actions must “tag” all the
states in the road map RRM , in order:

∀i ∈ {1, . . . , length (RRM)}, ∃ti ∈ {1, . . . , length (actions)}, s.t.
RRM [i] = ati ◦ · · · ◦ . . . a1(Sstart) ∧ i > j ⇐⇒ ti > tj .

// execution follows RRM (14)

Third, although we verified that the states in RRM satisfy the state-related task
constraints, we should still verify that executing the sequence of actions does not
violate any of the standing constraints, and completes the task:

E = (Sstart, a1 S1, a2, . . . ,Sn) satisfies standing constraints in T.

// execution is valid for task (15)

Again, the detailed formulation of this demand depends on the type of task.
For reach-avoid tasks, since following the road map inherently satisfies the “reach”
and “terminate” constraints, we should only verify that the execution respects
the “avoid” constraints (as in (3)).



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

Efficient task planning using abstract skills and dynamic road map matching 9

Overall, this problem can be written as the constraint satisfaction problem:

given : A reconstructed road map RRM,

a task T , a domain D, and a start state Sstart,

find : A finite sequences of actions = (a1, . . . , an) ∈ An,

s.t. : execution is feasible in domain as in (13),

execution follows the RRM as in (14),

execution is valid for task as, e.g., in (3) .

(16)

If we manage to find such a satisfactory action sequence, then the task is solved.

4.3 The joint problem: skills as dynamic constraints

By matching a skill before looking for a task-satisfying action sequence, we es-
sentially impose a set of additional constraints on the task, intended to restrict
the solution space and, by such, reduce the computational cost of solving the
task. For a simple reach-avoid task, this means replacing the basic task con-
straint “visit Sstart and finally Sgoal”, with a more restrictive temporal constraint
“visit RRM [1] ≡ Sstart, then RRM [2], ..., and finally RRM [end] ≡ Sgoal”.
These skill-induced constraints are not known until we find a matching abstract
skill and reconstruct its ARM ; further, these constraints can be revoked and
replaced with new constraints, induced by another matching skill. We hence say
that abstract skills represent dynamic constraints for task planning.

Despite being hierarchically defined, the skill matching and action recov-
ery problems are not independent of each other. Naturally, the constraints in
the action recovery problem are based on the matched skill. While in the re-
verse, a matched skill should be reconsidered if we cannot recover a feasible
action sequence that complies to it, and it prevents us from finding (an other-
wise possible) solution to the problem. Thus, the problem of planning with skills
is formally defined as a constraint satisfaction problem over the joint space of
abstract skills × private abstraction keys × action sequences, under the union
of constraints from both problems. Nevertheless, a naive solution, e.g, by search-
ing this joint state space, or feeding the problem as a whole to a constraint solver,
is expected to be inefficient, as it ignores the hierarchical structure of the con-
straints. To address this issue, we suggest an efficient and hierarchical solution
approach to this problem in the following section.

5 Solving the problem: a hierarchical planning algorithm

In the previous section, we formulated the problem of planning with abstract
skills as a constraint satisfaction problem. We now wish to explain one way
in which it can be solved. To take advantage of the hierarchical nature of the
constraints, we propose a bi-level planning algorithm.

At the “first level”, we try to match a skill to our problem by looking for a
skill for which exists a suitable private key. Using this key, we can reconstruct the



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

10 K. Elimelech et al.

Algorithm 1: Task planning with abstract skills (for general tasks).

1 Algorithm planWithAbstractSkills(task T , domain D, start state Sstart,
library of abstract skills Library, generic task planner Planner)

2 forall skill K ∈ Library do
3 RRM ← matchSkill(K, T , D, Sstart)

4 if RRM ̸= Null // matching skill found

5 then
6 actions ← recoverActions(RRM, T, D, P lanner) // plan with

skill’s road map

7 if actions ̸= Null then
8 return actions // success!

9 else
10 continue // action recovery failure, skill unfeasible

11 else
12 continue // skill does not match, try the next one

13 end
14 return Planner.plan(Sstart, T, D) // plan as usual (w/o skills)

skill’s ARM into a RRM and use it as input to the “second level”. There, we look
for a feasible and valid action sequence, which follows the RRM and completes
the task. If no suitable action sequence is found, we declare the matched skill
unfeasible. Then, we should report this failure back to the first level and update
its solution, e.g., by looking for another skill, or an alternative private key for the
matched skill. We would then attempt to re-solve the second layer, and repeat
the process as needed, until a complete solution for both layers is found. If at
some point no solution can be found at the first layer (e.g., no more skills to
examine), we should fall back to standard task planning, without skills; by such,
this algorithm is inherently complete. We remind again that this approach does
not come to replace standard task planners, and that it actually relies on a given
planner to solve the action recovery problem. This high-level approach, which
does not depend on the type of task, is summarized in Algorithm 1.

Generally, the “skill matching” and the “action recovery” problems can be
solved independently, in any desired method; though, as expressed before, the
exact constraint formulation, and, by such, the solution methods, depend on the
type of task (and the public abstraction key). Next, we develop practical solution
procedures for each of these sub-problems, for reach-avoid tasks.

5.1 Abstract-skill matching for reach-avoid tasks

To match an abstract skill we need to address two sub-problems: (1) choosing a
skill for examination, and (2) looking for a private key for its reconstruction. In
this work, we can assume that the skills are chosen at random from the library,
until a match is found. More generally, we can consider “smarter” skill ordering,
e.g., based on the road map length, or an estimated probability of skill feasibility.



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

Efficient task planning using abstract skills and dynamic road map matching 11

For a chosen skill, we should find an appropriate private key for reconstruction
of its ARM , by solving the skill matching problem formulated in (12). For reach-
avoid tasks, this can be done with a directed search, as we propose here. This
search method is summarized as the matchSkill procedure in Algorithm 2.

First, we should select one of the goal regions Sgoal ∈ Goals to be the termi-
nation region. Then, we should start by looking for parameter values p ∈ PARM

with which we can reconstruct a road map that starts at Sstart and terminates
at Sgoal, as this, conveniently, does not require reconstructing the entire ARM .
In our case, the state and parameter spaces are numerical, and the reconstruc-
tion function is geometric; hence, considering the goal region Sgoal is defined
by a radius r around a specific state Sgoal, the compliant parameters can be
expressed as the solution space to the following system:{

reconstp (ARM [1]) = Sstart,

||reconstp (ARM [end])− Sgoal||2 ≤ r.
(17)

Solutions can be numerically or symbolically derived. Of course, if r = 0, this
become simply a system of a equations. If the goal region is comprised of a
discrete set of states, we can solve such an equation system for different states
from the region and find the superset of solutions. In Appendix A, we provide
a concrete derivation of this system and explain how to solve it, considering the
geometric abstraction keys we used in our example. This system has an easy-to-
find, closed solution, achievable in constant time, which does not depend on the
length of the road map. In the more general case, when the constraints are not
numerical, the relevant parameters can be derived by intersecting PARM with
PSstart

and PSgoal
. A formulation of this concept appears in our prior work [3].

If we managed to find a non-empty set of parameters that satisfy the start
and goal constraints, we should select a parameter p among them and use it to
derive a reconstructed road map RRM = reconstp (ARM). If RRM satisfies
the remaining task and domain constraints, we can return it as a private key,
alongside the reconstructed road map RRM , and move on to the second layer.
If the RRM does not satisfy the remaining task and domain constraints, we may
(i) sequentially examine additional parameters (solutions of the system), until
we find a valid private key; or (ii) consider another final region from Goals, and
repeat the process; or (iii) simply declare the skill “non-matching” and examine
another one from the Library.

5.2 Action recovery using dynamic task decomposition

At the second level of the planning algorithm, we need to recover the action
sequence that follows the reconstructed road map RRM and solves the task, as
formulated in (16). As previously mentioned, since a matched skill must not vio-
late the task constraints, and since for a matched skill’s RRM ⊆ S (E), following
the RRM (constraint (14)) often inherently resolves some of the task constraints.
This is specifically true for a reach-avoid task, where following the reconstructed



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

12 K. Elimelech et al.

Algorithm 2: Search-based skill matching (for reach-avoid tasks).

1 Procedure matchSkill(skill K, task T , domain D, start state Sstart)

2 forall Sgoal ∈ T.Goals do // assume a certain final goal

3 p ← K.PK.getGoalCompliantParam(K.ARM , Sstart, Sgoal)
4 if p ̸= Null then
5 RRM ← K.PK.reconstp (ARM) // reconstruct road map

6 if RRM.isInStateSpace(D.S) then
7 if RRM satisfies T ’s “reach” (9) and “avoid” (10)

constraints then
8 return RRM // private key found, i.e., match!

9 continue // task/domain constraint failure, consider

another final goal (or another compliant parameter)

10 end
11 return Null // skill inapplicable

1 Procedure PK.getGoalCompliantParam(ARM , start state Sstart,
goal region Sgoal)

2 params ← solve the symbolic system (17) (or similar) // params that

satisfy the start & final goal constraints

3 if params ̸= ∅ then
4 p ← chooseElementRandomly{params}
5 return p

6 return Null // start/final goal constraint failure

road map of a matched skill inherently satisfies the task’s “reach” and “termina-
tion” constraints and leaves us to worry only for global “avoid” constraints dur-
ing action recovery. We identify here that in such cases, where the only standing
constraints for action recovery are global constraints, the action recovery problem
becomes decomposable. This decomposition is dynamically determined accord-
ing to the skill-induced constraint, which forces the returned action sequence to
pass through a series of way points on RRM . Thus, instead of looking for one
long action sequence between the first and end states of RRM , we can look for
length (RRM)− 1 shorter action sequences actionsi = (ai1, . . . , a

i
ni
), corre-

sponding to the length (RRM)− 1 segments of a road map (between each pair
of consecutive states).

Essentially, this means that imposing the road map constraint allows us to
decompose a reach-avoid task T into smaller reach-avoid sub-tasks T i, ∀i ∈
{1, . . . , length (RRM) − 1}. The start state for each sub-task T i is the corre-
sponding road map state RRM [i], the (only) goal state is the next state in the
road map RRM [i+1], and the global avoid regions Savoid are same as in T . The
solution of all these tasks should be sequenced, to provide the overall solution.

Each of these sub-problems can be solved independently with any solver that
we would use to solve the original task planning problem, and even different
solvers. In particular, we can use the suggested skill-based solver. This means



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

Efficient task planning using abstract skills and dynamic road map matching 13

Algorithm 3: Action recovery with a road map (for reach-avoid tasks).

1 Procedure recoverActions(RRM , task T , domain D,
generic task planner Planner)

2 subplans ← [ ]
3 l ← length (RRM)
4 for i from 1 to l − 1 do /* in parallel */

5 sub T ← new reach-avoid task // decompose task to sub-tasks

6 sub T.avoid region ← T.avoid region
7 sub T.goal state ← RRM [i+ 1]
8 subplan[i] ← Planner.plan(RRM [i], sub T,D) // solve sub-tasks

9 if subplan[i] = Null then
10 return Null // sub-task unfeasible, abort

11 end
12 return subplan[1], . . . , subplan[l − 1]

that we can inherently use skills in recursion. Furthermore, while sequential
solution of the sub-tasks is already expected to be more efficient than solving the
original problem (due to its super-linear complexity), the independent sub-tasks
can even solve them in parallel! This action recovery paradigm is summarized as
the recoverActions procedure in Algorithm 3. Note that when the task is not
decomposable (e.g., if it specifies also temporal constraints), we should solve the
more general action recovery problem, with the skill-induced constraint. In that
case, RRM can be thought of intuitively as a “lead” for the action search.

Handling feasibility failures The final part of the algorithm is concerned
with the policy for handling skill “feasibility failures”, i.e., “what to do” when
an attempt to follow the RRM of a matched skill turns out to be unfeasible. For
decomposable reach-avoid tasks, a skill is declared unfeasible if the solution of
at least one of the sub-tasks induced by the RRM fails. Due to the limited scope
of this paper, in Algorithm 1, we simply consider new skills on such failures. In
future work, we plan to thoroughly develop more advanced policies, e.g., allowing
to skip unreachable states in the road map. Such policies will allow us to avoid
“wasting” the computational effort already invested in partial action recovery.

6 Experimental Results

To put our approach to the test, we examined four reach-avoid tasks in the
“grid world” domain D200×200 we introduced in Section 3. Each of these tasks is
specified using a single goal region, and “avoid” regions. These tasks represent
different search space topologies and obstruction levels. A visualization of these
tasks, alongside the chosen start state for each task, is provided in Figures 3a-3d.
Note that the drawn grid is of coarser resolution than the actual one considered.

From solution of previous tasks, we derived and cached a library of abstract
skills, using the geometric keys we mentioned in Section 3 and formulated in



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

14 K. Elimelech et al.

(a) Task 1. (b) Task 2. (c) Task 3. (d) Task 4.

Fig. 3: The reach-avoid tasks we considered in the grid world domain; initial state is
in blue, goal regions are in light blue. If a skill from a library (Figure 1b) matched the
problem, its reconstructed road map RRM is also drawn (in respective color).

Appendix A. Note that formulation of this process is provided separately in a
follow-up to this work. The ARMs of the skills in the Library, each of which is
derived from a solution of a single past task, are visualized in Figure 1b. Such
tasks can generally be solved in a different domain than the one they will be
used in, including grid worlds of different sizes and with different action spaces.

To show the versatility of the approach, we considered two standard search-
based planners: BFS and A*. Each of these planners hold particular benefits:
while A* typically achieves better computation times, by taking advantage of a
distance-to-goal heuristic, BFS is also useful in domains in which we do not have
a distance measure. Then, considering each planner, each of our tasks was solved
in two ways: (i) by naively using the task solver; and (ii) by using the given solver
with exploitation of abstract skills, as suggested in Algorithm 1. For comparative
reasons, for the second option, we solved the action recovery twice – with basic
sequential solution of the sub-tasks, and by allowing their parallel solution (as
explained in Section 5.2). The computation times for the different task solutions
are presented in Table 1. The algorithms were implemented in Python with no
special optimization. The experiments were conducted on a desktop computer,
equipped with an Intel Core i7-6700K CPU and 32GB of RAM.

For tasks 1-3, we managed to successfully match a skill to the problem. The
reconstructed road map RRM for each of the matched skills, leading from the
start to the goal, is shown in Figures 3a-3c. Evidently, matching a skill allowed
us to significantly reduce the computation time in comparison to standard us-
age of the planners. This reduction was a result of the task decomposition, even
without considering sub-task parallelization, which can help reduce the cost of
the problem even more. While the improvement ratio depends on many factors,
including the planner, task, and topology and length of the road map, these
results motivate our claim for the benefit of planning with abstract skills. We
recall that theoretical justification to this improvement is given in Appendix B.
For task 4, no matching skill was found, leading us to deploy the task planner
naively. Nonetheless, the cost of the unsuccessful matching attempt was negligi-
ble in comparison to the planning cost. Tasks 3 also demonstrates the flexibility of
the state-based representation against predefined macro-actions, as the road map
was not compromised by the “obstacle” — we dynamically planned around it.



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

Efficient task planning using abstract skills and dynamic road map matching 15

Table 1: Planner efficiency w/o and w/ skills (w/o and w/ sub-task parallelization).

BFS A*
Baseline w/ skills w/ skills (par) Baseline w/ skills w/ skills (par)

Task 1
Skill matching (sec) – 0.001 0.001 – 0.001 0.001
Action recovery (sec) 57.514 36.899 24.343 2.814 0.2610 0.120
# searched nodes 6337 9219 9219 890 511 511

Task 2
Skill matching (sec) – 0.0005 0.0005 – 0.0005 0.0005
Action recovery (sec) 114.225 32.234 20.155 0.958 0.119 0.042
# searched nodes 8848 9811 9811 467 415 415

Task 3
Skill matching (sec) – 0.0008 0.0008 – 0.0008 0.0008
Action recovery (sec) 120.315 18.492 10.275 3.599 0.110 0.070
# searched nodes 9199 6171 6171 1344 337 337

Task 4
Skill matching (sec) – 0.0007 0.0007 – 0.0007 0.0007
Action recovery (sec) 75.341 75.341 75.341 3.569 3.569 3.569
# searched nodes 7286 7286 7286 1270 1270 1270

Table 1 also presents the number of graph node expanded by the search
algorithms. In most cases, following the road map caused us to expand less
graph nodes (grid cells) during the search and, by such, led to a reduction in
its cost. Yet, curiously, following the road map sometimes caused us to expand
more graph nodes and still led to a reduction in the search cost. This is a clear
expression of the benefit of the problem decomposition. The cost of graph node
expansion is not constant and also grows as the search progresses, as we must
repeatedly check if new nodes were previously visited, against a growing list of
visited nodes. Thus, although the total number of expanded nodes grew, since it
was divided among the solutions of multiple sub-tasks, the total cost of operation
was smaller. In our experiments, this increase in the number of expanded nodes
only happened with the BFS planner, which performs an exploratory search. In
this case, the increase was caused by re-exploring regions of the domain in the
solution of multiple sub-tasks. This can potentially be mitigated via information
sharing among the sub-task solutions, as we plan to examine in our future work.

7 Conclusion

This paper came to explain how to incorporate abstract skills into task planners.
These abstract skills, which were introduced in our previous work, are repre-
sented as abstract state road maps, derived from previous task solutions; these
road maps can be automatically adjusted and deployed to guide the solution of
new tasks (even in new domains). We began by formulating the problem as a
constraint satisfaction problem. We then presented a high-level hierarchical so-
lution algorithm, which allows us to use standard task planners more efficiently,
using a precursory “skill matching” process. Finally, we proved the potential
benefits of this approach in the solution of a series of reach-avoid tasks. There,
considering two different planners, we managed to significantly reduce the plan
computation time. Future work will explore several extensions of this promising
approach. These include better handling of skill feasibility failures, composi-
tional planning from skills, application in more complex task planning domains
(e.g., PDDL-based), and application in continuous planning domains.



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

16 K. Elimelech et al.

References

1. Karpas, E., Magazzeni, D.: Automated planning for robotics. Annual Review of
Control, Robotics, and Autonomous Systems 3(1), 417–439 (2020), https://doi.
org/10.1146/annurev-control-082619-100135

2. Garrett, C.R., Chitnis, R., Holladay, R., Kim, B., Silver, T., Kaelbling, L.P.,
Lozano-Pérez, T.: Integrated task and motion planning. Annual Review of Control,
Robotics, and Autonomous Systems 4(1), 265–293 (2021), https://doi.org/10.
1146/annurev-control-091420-084139

3. Elimelech, K., Kavraki, L.E., Vardi, M.Y.: Automatic cross-domain task plan trans-
fer by caching abstract skills. In: Workshop on the Algorithmic Foundations of
Robotics (WAFR) (Jun 2022)

4. Shridhar, M., Manuelli, L., Fox, D.: CLIPort: What and where pathways for robotic
manipulation. In: Conference on Robot Learning (CoRL) (Nov 2021)

5. Wang, Z., Garrett, C.R., Kaelbling, L.P., Lozano-Pérez, T.: Learning compositional
models of robot skills for task and motion planning. The International Journal of
Robotics Research (IJRR) 40(6-7), 866–894 (2021)

6. Ghallab, M., Nau, D., Traverso, P.: Automated planning and acting. Cambridge
University Press (2016)

7. Hoffmann, J., Nebel, B.: The ff planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research (JAIR) 14, 253–302
(2001)

8. Helmert, M.: The fast downward planning system. Journal of Artificial Intelligence
Research 26, 191–246 (2006)

9. Rintanen, J.: Madagascar: Scalable planning with SAT. Proceedings of the 8th
International Planning Competition (IPC-2014) 21, 1–5 (2014)

10. Cashmore, M., Fox, M., Long, D., Magazzeni, D.: A compilation of the full PDDL+
language into SMT. In: International Conference on Automated Planning and
Scheduling (ICAPS). pp. 79–87 (Jun 2016)

11. Georgievski, I., Aiello, M.: HTN planning: Overview, comparison, and beyond.
Artificial Intelligence 222, 124–156 (2015)

12. Shivashankar, V., Kuter, U., Nau, D., Alford, R.: A hierarchical goal-based for-
malism and algorithm for single-agent planning. In: International Conference on
Autonomous Agents and Multiagent Systems (AAMAS). pp. 981–988 (Jun 2012)

13. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Motion planning with dynamics by a syn-
ergistic combination of layers of planning. IEEE Transactions on Robotics (T-RO)
26(3), 469–482 (2010)

14. Dantam, N.T., Kingston, Z.K., Chaudhuri, S., Kavraki, L.E.: Incremental task and
motion planning: A constraint-based approach. In: Robotics: Science and systems
(R:SS) (Jul 2016)

15. Kaelbling, L.P., Lozano-Pérez, T.: Hierarchical task and motion planning in the
now. In: IEEE International Conference on Robotics and Automation (ICRA). pp.
1470–1477 (May 2011)

16. Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robot.
Automat. 12(4), 566–580 (1996)

17. Chamzas, C., Cullen, A., Unhelkar, V., E. Kavraki, L.: Learning to retrieve relevant
experiences for motion planning. In: IEEE International Conference on Robotics
and Automation (ICRA) (May 2022)



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

Efficient task planning using abstract skills and dynamic road map matching 17

A Geometric abstraction keys for spatial transformation

Let us define several new abstraction keys, in which the projection and recon-
struction functions represent spatial transformations on two-dimensional geo-
metric states. Note that, in contrast to keys presented in our prior work [3],
these convey no dimensionality reduction nor a change in the state structure.
Each of the public abstraction keys to follow allows us to perform a specific type
of spatial transformation on states: rotation, scaling (stretching), and spatial
translation. By applying the reconstruction function on the abstract states in
an ARM , with a choice of parameter p, we can set the value of the respective
property (angle/scale/position) of the RRM . This is demonstrated in Figure 4.

First, we defined a rotation key :

RK.P .
= {θ ∈ R | 0 ≤ θ < 2π} (18)

RK.projectθ :

(
col
row

)
7→

(
cos−θ − sin−θ
sin−θ cos−θ

)
·
(
col
row

)
, (19)

RK.reconstθ :

(
col
row

)
7→

(
cos θ − sin θ
sin θ cos θ

)
·
(
col
row

)
(20)

Second, we define a spatial translation key :

TK.P .
=

{
(x, y) ∈ R2

}
, (21)

TK.projectx,y :

(
col
row

)
7→

(
col − x
row − y

)
, (22)

TK.reconstx,y :

(
col
row

)
7→

(
col + x
row + y

)
(23)

Third, we define a scaling key :

SK.P .
=

{
(α, β) ∈ R2 | α, β ̸= 0

}
, (24)

SK.projectα,β :

(
col
row

)
7→

( 1
α · col
1
β · row

)
(25)

SK.reconstα,β :

(
col
row

)
7→

(
α · col
β · row

)
(26)

Fig. 4: Abstraction keys for geometric transformation of an abstract road map.



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

18 K. Elimelech et al.

Lastly, since the former keys transform states over the same state space (two
dimensional positions), these keys can inherently be composed. Thus, we can
define the combination key, which can represent any combination of rotation,
translation, and scaling:

CK.P .
= {p .

= (θ, x, y, α, β) | θ ∈ RK.P , (x, y) ∈ TK.P , (α, β) ∈ SK.P} (27)

CK.projectp
.
= SK.projectα,β ◦ TK.projectx,y ◦ RK.projectθ, (28)

CK.reconstp
.
= RK.reconstθ ◦ TK.reconstx,y ◦ SK.reconstα,β (29)

Note that these keys are not tied to the grid world domain. Specifically,
they can also be used for transferring skills to/from continuous state spaces;
we therefore also allow non-integer values in their parameter spaces. The keys
can also trivially be adapted to convey the respective transformations in higher-
dimensional state spaces.

A.1 Skill matching

As mentioned in Section 5.1, when considering these keys, we can often solve
the skill matching problem easily and symbolically. Let us consider a start
state Sstart, a task with a desired end goal state Sgoal, and an abstract skill K,
represented by the abstract road map ARM , and the “combination” public ab-
straction key. As previously described in (17), the parameter values p for this
public key that satisfy the “start state” and “final goal” constraints can be found
by solving the following system of equations:{

CK.reconstp(ARM [1]) = Sstart,

CK.reconstp(ARM [end]) = Sgoal,
(30)

which is trivially equivalent to{
TK.reconstx,y ◦ SK.reconstα,β(ARM [1]) = RK.reconst−θ(Sstart),

TK.reconstx,y ◦ SK.reconstα,β(ARM [end]) = RK.reconst−θ(Sgoal).
(31)

This system can be easily solved by standard symbolic or numerical solvers.
In fact, in our grid world case, where the start and goal states are integer vectors,
it can also be solved using a standard linear solver by pre-resolving the non-linear
rotation. Specifically, to make sure the reconstructed states remain on the grid,
we can limit the rotation angle to one of four possible options: θ ∈

{
0, π

2 , π,
3π
2

}
.

For each possible rotation, we are left to consider an easily-solvable linear system
(with four variables and four equations), only containing the translation and
scaling. The final solution would be the union of solutions from the four systems.



To appear at the 2022 International Symposium on Robotics Research (ISRR). Preprint version.

Efficient task planning using abstract skills and dynamic road map matching 19

B Complexity analysis

With the skill-based planning approach, we replace one constraint satisfaction
problem with a more complicated one. On one hand, we add variables to the
problem (the abstract skill and private key) and, by such, potentially increase the
computational cost of the solution (“increase the size of the search space”). On
the other hand, a skill imposes new constraints on the actions, which potentially
reduces the cost of the solution (“reduces the size of the search space”). Since
the intended purpose of the skill-based approach is to reduce the planning cost,
it is important to justify and explain when this equilibrium becomes favorable.

Let planEffort (n) represent the maximal/expected computational effort of
finding a path between states of distance n (actions). By first matching a skill
with an ARM of k + 1 (equally-spaced) states and decomposing this problem,
we can potentially reduce this computational effort to k · planEffort

(
n
k

)
. Of

course, following a skill can lead to a longer plan, which would imply a higher
planning cost, i.e., k · planEffort

(
ϕ · n

k

)
, where ϕ is the factor by which the

path length increases by following the road map.
Let L mark the number of skills examined until finding the applicable skill,

and matchEffort (Skill) — the cost of skill matching. Since we can also po-
tentially pay a cost for partially following the road map of an unfeasible skill,
we use subTasksSolved (Skill) to mark the number of sub-tasks solved until
the skill is declared un/feasible; with our algorithm, the value of this function is
∈ {1, . . . , k − 1} if the skill is unfeasible, and exactly k for the successful skill.

Thus, the theoretical computational cost of planning with skills is:

L∑
i=1

(
matchEffort (Skilli) + subTasksSolved (Skilli) · planEffort

(
ϕi ·

n

ki

))
.

(32)
If we assume that every applicable skill is also feasible, and that we are indeed

able to solve sub-tasks in parallel, then this expression reduces to:

L∑
i=1

(
matchEffort (Skilli)

)
+ planEffort

(
ϕi ·

n

ki

)
. (33)

Since we assume (i) the matching effort to be minor in comparison to the
planning effort, as seen in our experiments; (ii) the planning effort for task plan-
ners to grow super-linearly with n; and (iii) that using the skill does not increase
the returned plan length in a factor of ki; this means a reduction in computation
effort, as intended. In fact, the higher the growth rate of planEffort (n), in
respect to n, the more preferable planning with skills becomes.

For example, when action recovery is done with a BFS graph search, and
considering action set of size m, this would mean reducing the action recovery

effort from mn to m
ϕ·n
k (measured by the number of expanded graph nodes).

Of course, the previous discussion implicitly assumes that we can indeed find
an applicable skill to solve the problem. Otherwise, we can inherently fall back
to a standard planning, and only pay for unsuccessful matching.


