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Abstract. Reactive synthesis holds the promise of generating automatically a
verifiably correct program from a high-level specification. A popular such spec-
ification language is Linear Temporal Logic (LTL). Unfortunately, synthesizing
programs from general LTL formulas, which relies on first constructing a game
arena and then solving the game, does not scale to large instances. The specifi-
cations from practical applications are usually large conjunctions of smaller LTL
formulas, which inspires existing compositional synthesis approaches to take ad-
vantage of this structural information. The main challenge here is that they solve
the game only after obtaining the game arena, the most computationally expen-
sive part in the procedure. In this work, we propose a compositional synthesis
technique to tackle this difficulty by synthesizing a program for each small con-
junct separately and composing them one by one. While this approach does not
work for general LTL formulas, we show here that it does work for Safery LTL
formulas, a popular and important fragment of LTL. While we have to compose
all the programs of small conjuncts in the worst case, we can prune the inter-
mediate programs to make later compositions easier and immediately conclude
unrealizable as soon as some part of the specification is found unrealizable. By
comparing our compositional approach with a portfolio of all other approaches,
we observed that our approach was able to solve a notable number of instances
not solved by others. In particular, experiments on scalable conjunctive bench-
marks showed that our approach scale well and significantly outperform current
Safety LTL synthesis techniques. We conclude that our compositional approach
is an important contribution to the algorithmic portfolio of Safety LTL synthesis.

1 Introduction

Reactive synthesis is the automated construction, from a high-level description of its
desired behavior, of a reactive system that continuously interacts with an uncontrol-
lable external environment [7]. By describing a system in terms of what it should do,
instead of how it should do it, this declarative paradigm holds the promise of correct-by-
construction philosophy of program design [26, 32]. We believe that reactive synthesis
will be a viable way to create verified software. A popular language for specifying
properties that systems should satisfy is Linear Temporal Logic (LTL) [25].

* All authors are corresponding authors



In the last decade, there have been extensive breakthroughs in the study of LTL syn-
thesis [4, 22, 33]. A natural next step is to consider large scale synthesis instances. Many
practical specifications, by and large, are conjunctions of complex but smaller (shorter)
inner temporal specifications. While the development of techniques for reactive syn-
thesis for these inner formulas remains an active area of research [5, 11, 13, 22, 23], It
is fair to combat large-scale practical specifications starting with developing synthesis
algorithms for large conjunctions of (inner) temporal formulas.

Previously, large conjunctions, such as strong fairness properties, have been handled
successfully in the context of model-checking [1]. One of the cornerstones of scalable
model-checking is to represent the model by a partitioned transition relation, i.e., the
transition relation of the model is represented as a product of smaller transition rela-
tions. In model-checking, this representation has been a boon to scale to very large
systems. In reactive synthesis, however, this representation has been shown to be a bane
to scalability. More specifically, [31] attempts to solve synthesis of large conjunctions
by representing the state-space of the final game automaton as a product of the state-
space of the game automaton of every inner formula. The issue is that by doing so, the
state space of the final game may grow very large, since the algorithm loses the ability
to perform fast minimization of the game automaton [35].

On the other hand, compositional approaches have shown promise in synthesis of
large conjunctions. Theoretical compositional approaches are well known [12, 19] and
implementations that handle large conjunction have been emerging [2, 5, 9, 22]. For
example, Lisa [2] successfully scales synthesis to large conjunctions of LTL formulas
over finite traces or LTL [17] for short. This approach has been further extended to
handle large disjunctions in Lydia [9]. Yet, a challenge in these approaches is that the
inner formulas cannot be synthesized one after another separately to generate a program
for the large conjunction [19]. This is because having correct programs for all inner
formulas does not necessarily indicate the existence of a correct program of the large
conjunction. To this end, compositional approaches have been deployed to generate the
game automaton only, and not to solve the game. The game is solved only after the
generation of the complete game arena, which is the main difficulty of synthesis for
formulas with large lengths [26, 34].

In this work, we tackle this difficulty by looking into specialized compositional syn-
thesis techniques for Safety LTL formulas, which is a popular and important fragment
of LTL [28, 20, 24]. The key observation is that, for a Safety LTL formula, instead of
utilizing its exact game arena when being conjuncted with other formulas, we only need
to approximate the partial game arena to ensure the satisfaction of it under all circum-
stances, hence reducing the state space for subsequent operations. We note that recently,
another safety fragment of LTL called extended bounded response (EBR) LTL [8] has
been shown to be expressively equivalent to Safety LTL, but differs in the syntax of
Safety LTL. The conversion from Safety LTL to EBR-LTL may incur blow-up of for-
mula lengths [8], so we only consider Safety LTL here.

The synthesis instances we consider are Safety LTL formulas given in the form of
© = @1 A P2 A ...A . The Safety LTL fragment and the conjunctive instances to-
gether form a special structure, which naturally enables us to develop a more advanced
compositional synthesis approach. Indeed, our compositional synthesis technique can



apply at two decomposition levels. To begin with, the specification-level decomposition
breaks ¢ into the set of conjuncts {©1, @2, .., p,} and constructs the deterministic
safety automaton (DSA) of each conjunct ;, 1 < i < n. Meanwhile, inspired by [33],
we observe that one can directly consider the negation of Safety LTL ¢; in negation
normal form (NNF) as an LTL ; formula, a finite-trace variant of LTL that has the same
expressiveness power as first-order logic over finite traces [17]. This allows us to utilize
LTL ;-to-DFA construction tools integrated with compositional techniques [2, 9], which
have been proven outperforming MONA, to obtain the DFA of the bad prefixes of each
©;, which is simply the dual of the DSA of ;. Furthermore, instead of utilizing the
partitioned transition relation, which nullifies the benefits of automata minimization,
we keep the explicit-state symbolic-transition representation of each DSA to take the
maximal advantage of automata minimization, as in [2, 9]. As a result, our composi-
tional approach avoids the straightforward DSA construction from the whole formula
 and performs the DSA construction for each conjunct ; separately.

Beyond that, before composing the DSAs to construct the ultimate one, the game-
level decomposition splits each DSA into winning part and losing part by conduct-
ing a safety game. More specifically, we propose two decomposition versions, that are
state-based game-level decomposition and strategy-based game-level decomposition.
The state-based decomposition considers the winning part as the set of winning states.
It thus trims the DSA by clustering all losing states into a single one and minimizes the
resulting DSA. The strategy-based decomposition, instead, considers the winning part
as the maximally permissive strategy of the safety game, e.g., a finite-state transducer,
that encompasses all the necessary information to ensure the satisfaction of the con-
junct under all circumstances [3]. Thereby, it trims the DSA by clustering all states and
also transitions that do not belong to this strategy. The trimmed DSA is also minimized
for subsequent computation. In addition, minimization is applied during every round of
composing two DSAs into a product automaton.

We have implemented our compositional synthesis algorithms in a prototype tool
called Gelato. To demonstrate the efficiency of our algorithms, we perform an empir-
ical evaluation by comparing Gelato with the monolithic approach, i.e., not leverag-
ing the proposed compositional synthesis technique, and Strix [22], the state-of-the-
art LTL synthesis tool. By comparing our compositional approach with a portfolio of
other approaches, we observed that our approach was able to solve a notable number
of instances that were not solved by others. In particular, experiments on scalable con-
junctive benchmarks showed that our approach scale well and significantly outperform
current Safety LTL synthesis techniques. We are convinced that our compositional ap-
proach is a valuable and important contribution to the current portfolio of Safety LTL
synthesis algorithms.

Related Works. There have been several theoretical compositional synthesis approaches
and implementations proposed for LTL formulas of the form ¢ = ¢; A -+ A @y
In [19], a Safraless compositional approach, inspired by [21], uses generalized co-Biichi
tree automata to avoid the determinization of Biichi automata and parity condition for
obtaining the game arena. This compositional approach checks the realizability of ¢ =
©1 A+ - Ay by first checking the realizability of each sub-formula ¢; with the structure
of tree automata rather than DS As that we use in this work; they try to reuse the result of



each conjunct ; when checking ¢ = 1 A - -+ A ,. To the best of our knowledge, there
is no implementation for this approach. This may partially be because tree automata are
not as easy and well studied as word automata, especially in terms of tool support. We
note that current practical synthesis tools [5, 11, 13, 23] are all based on word automata,
just as our algorithm is here.

To make use of word automata, in [ 14], the authors proposed an algorithm that treats
the tree automaton for each conjunct ¢; as a universal co-Biichi word automaton, the
game on which can then be solved by a reduction to solving a safety game, based on
a given bound of the length of words. When composing the synthesized programs for
the conjuncts to obtain a program for the whole formula ¢, this algorithm also relies
on the computation of the maximally permissive strategy for each safety game as we
do in this work; they have implemented the algorithm in the tool Acacia+ [5]. In fact,
our strategy-based decomposition variant is inspired by this approach. The difference
is that we do not need a given bound for building the safety game, since we focus on
Safety LTL formulas, while their algorithm can be incomplete if the given bound is not
large enough. Another key difference is that we construct the safety game based on the
construction of automata on finite words, while their algorithm builds a universal co-
Biichi automaton for each conjunct. This allows us to leverage advanced compositional
DFA construction in literature [2, 9], a key to make our algorithm outperform the state
of the arts (cf. Section 4).

Another compositional synthesis approach, presented in [29], constructs composi-
tionally a parity game from an LTL formula of the form ¢ = 1 A --- A ¢, based on a
variant of Safra’s determinization. In addition, this approach tries to detect local parity
games that are equivalent to safety games to improve efficiency. As aforementioned, we
construct automata on finite words, which is different from the algorithm in [29].

The compositional approach proposed in [15] is based on decomposing the LTL
formula into sub-formulas that are independent, such that completely separate synthe-
sis tasks can be performed for them. The approach from [16] first splits the system into
components and then proceeds in an incremental fashion such that each component can
already assume a particular strategy for the synthesized components. The implemen-
tations of both approaches above are not, however, publicly available. We remark that
there is a compositional construction of the game arena from LTL formulas [12], which
is not involved with the synthesis task.

2 Preliminaries

2.1 LTL/LTLj¢

Linear Temporal Logic (LTL) [25] is one of the most popular logics for temporal prop-
erties. Given a set P of propositions, the syntax of LTL formulas is defined as:

@ = true | false | p | (—=p) | (p1 A @2) | (1 v 92) | (O9) | (p1U 2)

| (pr We2) | (o1 M p2) | (1 R #2)-



where p € P is an atom. O (Next), ¢/ (Until), ) (Weak Until), M (Release) and
R (Weak Release) are temporal connectives. We use the abbreviations Qo = truelf ¢
and [Jp = false M ¢, for temporal connectives ¢ (Eventually) and [] (Always).

A trace m = mgm; ... is a sequence of propositional interpretations (sets), where
7m € 2P (m = 0) is the m-th interpretation of 7, and || represents the length of
7. Trace 7 is an infinite trace if |r| = oo, which is formally denoted as 7 € (27)®.
Otherwise 7 is a finite trace, denoted as 7 € (27)*. LTL formulas are interpreted over
infinite traces. Given an infinite trace 7w and an LTL formula ¢, we inductively define
when ¢ is true in 7 at instant ¢ (¢ > 0), written 7, i |= ¢, as follows:

— m,4 = true and 7, i ¥ false;

- mifaiffaem and m,i = —aiffa ¢ 73

- T, =1 A e, iff i =y and 7, i = o

- T, =1 Vv e, iff m i = 1 or T, i = pa;

- miE=Opiff m,i+ 1 = ¢;

- M4 = o1 U o, iff Fk.k = i such that m, k = o, and Vji < j < k, 7,7 = 1.

- 4 = @1 W o, iff either 3k.k > i such that m, k |= ¢, and Vj.i < j < k, we
have 7, j |= @1, or Vk.k = i we have m, k |= ¢1.

- T, = @1 Mo iff 3k.k = isuchthat m, k = @1, and Vji < j < k, 7, j | ¢1.

- m,1 = @1 R, iff Jk.k = i suchthat m, k |= 1, and V5.0 < j < k, m,j = o, or

Vk.k =i we have m, k = .

LTL; is a variant of LTL interpreted over finite traces instead of infinite traces [17].
The syntax of LTL is exactly the same to the syntax of LTL. We define 7,¢ = ¢,
stating that ¢ holds at position i, as for LTL, except that for the temporal operators:

- m,i = Opiffi <last(m) and m,i + 1 |= ¢

- mi b p1U o iff 350 < j < last(w) and 7, j = @2, and Vk.i < k < j we have
™, k '= ©1-

- 0 = o1 W o, iff either 3k.i < k < last(w) such that 7,k |= @2, and Vj.i <

j < k,wehave m,j = @1, or Vk.i < k < last(w) we have 7, k = ¢1.

- m,1 o1 Mo iff 3k.i < k < last(nw) such that m, k |= @1, and Vj.i < j < k,

] ): $1-

- 7,1 | 1 Ree, iff Ik.i < k < last(w) such that 7,k |= 1, and Vi < j < K,

m,J = @2, or Vk.i < k < last(r) we have 7, k = pa.
where we denote the last position in the finite trace 7 by last(7). In addition we define
the weak next operator @ as abbreviation of ® ¢ = —O—¢. Note that, over finite traces,
—O¢p # O—y, instead —Op = @—p. We say that a trace satisfies an LTL; formula
@, written 7 = @, if 7,0 = .

Without loss of generality, assume the input LTL formulas in Negation Normal
Form (NNF), which requires negations only occurring in front of atomic propositions.

2.2 Safety/Co-Safety LTL

Intuitively, a safety formula rejects traces whose “badness” follows from a finite pre-
fix. Dually, a co-safety formula accepts traces whose “goodness” follows from a finite
prefix. We formally refer to these prefixes as bad/good prefixes accordingly. Consider a
language £ < (27)“ of infinite traces P. A finite trace h € (27)* is a bad (resp., good)
prefix for £ iff for all infinite traces € (27, we have that h -7 ¢ L (resp., h-7 € L).



A language L is a safety language iff every trace that violates (resp., satisfies) ¢ has a
bad (resp., good) prefix. We say that an LTL formula is a safety (co-safety) formula iff
||ll, i-e., the set of infinite traces that satisfy ¢, is a safety (co-safety) language.

We now introduce a fragment of LTL, where safety (resp., for co-safety) is ex-
pressed as a syntactical feature, by restricting the occurrences of temporal connectives.

Definition 1 ([6, 27]). Safety LTL (resp. Co-Safety LTL) formulas are LTL formulas in
NNF containing only temporal operators such as O, R, and W (resp., O, M, and U).

Theorem 1 ([6, 27]). Every safety (resp., co-safety) formula is equivalent to a formula
in Safety LTL (resp., Co-Safety LTL).

Note that, the syntactic fragment of Safety (resp. Co-Safety) LTL in Definition 1 is
equivalent to the one defined in [33], which requires that the 7/ (resp. ]R) connective
does not occur. Specifically, since 1 W s = ((Op2) R¢1) Vv p2, and o1 M w2 =
w2l (1 A @2), every occurrence of } can be replaced by R and O, and every occur-
rence of M can be replaced by ¢/, without introducing any extra negations. Thus, every
safe (resp., co-safe) formula is equivalent to a Safety (resp., Co-Safety) LTL formula (.

2.3 Safety LTL Synthesis

Reactive synthesis concerns constructing the behaviors of an agent that satisfy a given
property while interacting with its environment [26]. Formally, a reactive synthesis
problem is described as a tuple P = (X, Y, @), where X’ and ) are two disjoint sets
of variables controlled by the environment and the agent, respectively, and ¢ is a lin-
ear temporal formula over X U ) expressing desired properties. A deterministic agent
strategy is a function o : (2%)* — 2Y. A trace is an infinite sequence 7 = (X U
Yp)(X; uYy)... e (2¥9Y)% over the alphabet 2%V, A trace 7 is compatible with an
agent strategy o, if o(¢) = Yy and 0(Xo X7 ... X;) = Y;41 forevery ¢ > 0, where ¢
denotes empty trace. Analogously, finite prefix 7 = (XoUYo)(X;uY1). .. (X UYy)
is compatible with o if 0(Xo X7 ... X;) = Y;41 forevery 0 < i < k. Given a synthesis
problem P = (X, ), ©), an agent strategy o realizes  if every trace 7 that is compat-
ible with o satisfies ¢. There are two versions of reactive synthesis, depending on the
first player. Here we consider the case where the agent moves first; the variant where
the environment moves first can be obtained with a minor modification.
In this paper, we focus on the problem of Safety LTL Synthesis.

Definition 2 (Safety LTL Synthesis). The problem of Safety LTL synthesis is described
as atuple P = (X, Y, p), where v is a Safety LTL formula over X U ). Computing an
agent strategy o that realizes @ if one exists, is called the Safety LTL synthesis problem.

The problem of Safety LTL synthesis can be solved by a reduction to safety games,
which is a two-player game over a so-called deterministic safety automaton [33].

Deterministic Safety Automata. A deterministic safety automaton (DSA)is atuple D =
(2%, S, s0,0), where 27 is the alphabet, S is a finite set of states with sq as the initial
state, and § : S x 2P — Sisa partial transition function. Given an infinite trace



7 € (2P)“, the run r of D on 7, denoted by » = Run(D, 1), is a sequence of states
T = $0S182... such that s,.1 = 0(s;,m;) for every ¢ > 0. 7 is accepted by D if
r = Run(D,7) is well defined. Note that, J is a partial function, meaning that given
s € Sand a € 27, §(s,a) can either return a state s’ € S or be undefined. Thus,
r = Run(D, ) may not be an infinite sequence due to the possibility of d(s;, ;) being
undefined for some (s;,7;) € S x 2.

Symbolic DSA. The symbolic-state representation of a DSA D = (27,5, s0,6) is a
tuple A = (S(2),K(Z,P,2')), where Z = {z1,...z,} are propositions encoding
the state space S, with n = [log |S|], and their primed counterparts 2’ = {z1,... 2.}
encode the next state. Each state s € S corresponds to an interpretation Z € 2% over
propositions Z. When representing the next state of the transition function, the same
encoding is used for an interpretation Z’ over Z’. Then, S and K are Boolean formulas
representing so and 0, respectively. S(Z) is satisfied only by the interpretation of the
initial state so over Z. K(Z,P, Z') is satisfied by interpretations Z € 2%, P € 27 and
7' € 27" iff §(s, P) = s', where s and &' are the states corresponding to Z and Z'.

Safety Games. A safety game is defined as a tuple G = (X,), D), where D =
(QXUJ’, S, 50,0) is a DSA, and X and ) are two disjoint sets of variables, controlled by
the environment, and the agent, respectively. A trace 7 € (2%“Y)“ is winning for the
agent if r = Run(D, 7r) is accepted by D. An agent strategy o is winning if every trace
7 that is compatible with ¢ is a winning play. Solving a DSA game aims to computing
an agent winning strategy if one exists. A state s € S is winning for the agent if there
exists an agent strategy such that all traces beginning in s are winning for the agent.
The winning set of a DSA is the set of all winning states of the agent. To compute the
winning set of G, we perform the fixpoint computation as follows:

Wino = S;
Win; 11 = Win; n {se 5| 3IYVX.0(s, X UY) € Win;}.

Clearly, a safety game G can be analyzed by checking whether the initial state s is
a winning state, in which case we say that G is realizable. Next, we see that for safety
games there exists maximally permissive strategies [3].

Maximally Permissive Strategies. Different definitions of maximally permissive strate-
gies exist. In this work we refer to the definition in [3], where strategies are compared
by looking at inclusion of the behaviors/outcomes they allow.

Definition 3 (Non-Deterministic Strategy). A non-deterministic strategy for the agent
is defined as a function o : (2%)* — 227 The set of deterministic strategies induced

by a non-deterministic strategy o is the set
[[e]] = {o: 2%)* > 2Y|o(h) € a(h), for h e (2%)*}.

Definition 4 (Maximally Permissive Strategy). A non-deterministic strategy « is at
least as permissive as o if [[o/]] € [[«]]. A non-deterministic strategy o is a maximally
permissive strategy if [[/]] € [[«]], for every non-deterministic strategy o/ .

Theorem 2 ([3]). Let G be a safety game. We have that if G is realizable, then G has a

. L . . v
maximal permissive strategy that is memoryless, i.e., o : S — 227,



3 Compositional Approaches for Safety LTL Synthesis

3.1 From Safety LTL to DSA

Consider a Safety LTL formula ¢, since every trace rejected by its corresponding DSA
D¢, can be rejected in a finite number of steps, we can alternatively define the language
accepted by D, by the finite prefixes that it rejects [20]. Therefore, the DSA construc-
tion can be achieved by first obtaining the DFA D{; that accepts all the bad prefixes of ¢,
and then complementing it, which gives us the DSA of ¢ [33]. The construction shown
in [33] is processed as follows: given a Safety LTL formula ¢, first negate it to obtain a
Co-Safety LTL formula —¢, then translate it into a first-order logic formula fol(—y).
The DFA of fol(—) is able to accept exactly the set of bad prefixes for ¢, and can be
constructed using MONA [18], a DFA construction tool from logic specifications.

Note that the key step here is to leverage the technique and tools developed for
constructing D{;. To do so, we make use of LYDIA [9], which has shown better perfor-
mance than MONA. In particular, this change does not require the explicit translation
to first-order logic. Instead, we can directly consider the Co-Safety formula —¢ as an
LTL; formula, and give it to LYDIA as input. The returned automaton is the DFA that
accepts all the good prefixes of —¢, e.g., the bad prefixes of .

Theorem 3. Let 1) be a Co-Safety LTL formula in NNF, ¢ the same formula as 1), but
in LTL¢, and  a finite trace. Then  is good prefix of ¢ iff m |= .

Proof. We prove it by induction over the structure of ¢.

— Base case, if ¢ = pis an atom, 7 is a good prefix for ¢ iff p € my. By definition of
©, we have that 7 |= . If ¢ = —p, 7 is a good prefix of ¥ iff p ¢ 7, then 7 - .

— If ¢ = ¥y A 9o, 7 is a good prefix for ¢ implies 7 is a good prefix for both ¥; and
1)2. By induction hypothesis, 7 = 1 and 7 = @2, where 1 and 9 are defined as
1 and 19, respectively, in LTL ¢. Then, we have that 7 =1 A p.

— If v = 1 Vv 19, 7 is a good prefix for 1) implies 7 is a good prefix for either 1),
or 9. Without loss of generality, suppose 7 is a good prefix for ¢);. By induction
hypothesis, 7 }= ¢1 where ¢; is the LTLy formula defined as ;. Then, 7 |=
©1 V @2, with ¢, defined in LTL ¢ as v».

— If i) = Oy, wis a good prefix for v iff suffix 7’ = my7ms . .. , TMlx|—1 Of T is a good
prefix for ¢;. By induction hypothesis, 7', 1 = ¢; where ¢ is defined as ¢ in
LTL . Then, we have that 7 = O;.

— If v = 11 U 12, 7 is a good prefix for 1) iff there exists 0 < ¢ < |7| — 1 such that
suffix 7’ = mmip1,. .., T|x—1] Of 7 is a good prefix for 17, and for all 0 < j < 4,
7" = miTj41,...,mi—1 is a good prefix for ¢1. By induction hypothesis, 7', i |=

2 where @9 is defined as 99 in LTLy, and ©”,j |= 1 with ¢y defined as v, in
LTL . Therefore, m = ©1 U ¢2.
— The cases for YV, M, and R are derived from the above.

3.2 Compositional Safety LTL Synthesis

The crux of our compositional approach is to avoid the DSA construction of the com-
plete Safety LTL formula ¢ by performing the DSA construction for each conjunct ¢;,



and, most importantly, solving the safety game over the DSA before composing it with
the other DSAs. We first propose a compositional approach based on the computation
of the agent winning states of safety games. In particular, inspired by the compositional
automata construction technique presented in [2], we also employ here the explicit-DSA
to symbolic-DSA switch heuristics to achieve promising practical benefits.

State-Based Compositional Approach. After checking realizability of each ¢, through
the corresponding safety game, we prune the safety game wrt the winning states and
then minimize the game; the algorithm then goes through a phase of combining two
DSAs, minimizing the combined DSA, solving the safety game over the DSA, and
pruning the game again, until a switch to a symbolic representation occurs. When we
have switched to using the symbolic representation for DSAs, we will not perform
minimization on the DSAs since it is time-consuming because of large DSA state
space; instead, in each round we only combine the DSAs and solve the safety game
over the corresponding DSA. Specifically, given a Safety LTL formula in the form of
© = Ni<i<n Pi» and switch-over threshold values ty,t; > 0 that represent the thresh-
olds for the numbers of states in an individual DSA and in the product of two DSAs,
respectively, to trigger the symbolic representation, the algorithm proceeds as follows.

1. Decomposition. Construct minimal DSA D; for each sub-formula ¢; of ¢ in explicit-
state representation as described in Section 3.1 and let H; = {Dy, ..., D,}. Then,
forallie {1,...,n},

(a) compute the winning set W; of the agent in the safety game G; = (X, ), D,).
Return ¢ is unrealizable if G, is unrealizable.

(b) Prune D; such that only the states in W, are retained. Formally, let D; =
(X, S, s0, ). Then prune D; with respect to W; obtaining DY = (X, W;, sg, ™)
where the transition function % is defined as follows:

50 (s,0) = o(s,0) ?fé(s,a) eW;,

undefined  if 0(s,0) ¢ W.

(c) Minimize D;’. Note that, since DSAs are represented as DFAs, the pruning step
is performed on DFAs, and therefore we can apply minimization techniques on
DFAs to obtain the minimal DSA.

2. Explicit-state composition. For j € {1,...,n —1},let H; = {D1...Dp_j41}
be the set of DSAs in the j-th iteration. If [; has only one DSA D;, then return
a winning strategy for the agent in G = (X, Y, D). Otherwise, pick from H; two
DSAs, D; and D, chosen by the dynamic smallest-first heuristic [2] which always
returns two DSAs in H; with the smallest number of states. This allows to find
an order that can optimize time and space in the composition phase. Indeed, if the
algorithm would fail on the composition of the smallest two DFAs in that iteration,
then it would probably fail on the composition of all other pairs of DFAs as well.
Let |D| be the number of states in a DSA D represented in explicit-state form. If
|D1| > t1 or |Da| > t1, or (|Dq] - |D2|) > to, then change state representation
moving to Step 3 and let k be the iteration in which this occurs, i.e., take k = j. If
not, continue with the explicit-state representation and perform the following steps.
(a) Construct Dy » = Dy n Dy, and minimize D1 5 to generate D.



(b) Compute the winning set T of the agent in safety game G = (X, ), D). Return
 is unrealizable if D is unrealizable.

(c) Prune D such that only the states in W are retained (see Step 1(b)), and mini-
mize it. Then, create H; 1 = {D,D3...Dp_ji1}.

(d) Go to Step 2.

3. Change state representation. Convert all DSAs in Hy = {D1, ..., D,_p41} from
explicit-state to symbolic-state representation, and proceed to Step 4. Note that the
state space of each DSA D; is encoded symbolically using a different set of state
variables Z;, where all Z; are disjoint. Since no more minimization occurs after
this point, the total set of state variables Z = Z; U ... U Z,,_j defines the state
space of the final DSA.

4. Symbolic-state compeosition. For j € {k,...,n}, let H; = {D1,...,Dp_j+1}
be the set of DSAs in the j-th iteration. If H; has only one DSA, return a win-
ning strategy for the agent, otherwise return ¢ is unrealizable. Otherwise, assume
w.l.o.g. that D; and D, are the two DSAs chosen by the DSF heuristic and perform
the following steps:

(a) Construct D = DY n Dy . Recall that, since D; and Dy are in symbolic form,
we do not perform DSA minimization of D1 5.

(b) Compute the winning set W of the agent in the safety game G = (X, ), D).
Return ¢ is unrealizable if any of the two G is unrealizable. Then, create
Hj;1={D,D3...Dp_ji1}.

(¢) Go to Step 4.

To prove the correctness of the algorithm described above, i.e., to prove that the

algorithm correctly evaluates realizability of the input safety formula ¢ and synthesizes
a valid winning strategy (if realizable), we make use of the following result.

Lemma 1. Let D be a DSA with winning set W for the agent player in the safety game
played over D. Let D" be the pruning of D w.r.t. W, as described above. Then, every
winning strategy in the safety game over D is a winning strategy in the safety game over
DY, and vice-versa.

Proof. We begin by showing that every winning strategy in the safety game G =
(X,Y,D)is also a winning strategy in the safety game G = (X, ), D").

Let 0 : (2%)* — 2Y be a strategy. Let 7, = (Xo,0(¢)),(X1,0(Xo)),- -,
(Xn,0(Xo,X1,...X,,—1)) be a play of finite-length induced by o. Given a DSA
D = (X u),S, sg,d), let s, be the unique state in which the run of 7, beginning
in so in DSA D’ terminates. We will show that when o is a winning strategy for the
agent, then the terminal state sy of the run of all finite plays 7, is such that s, € W.

By means of contradiction, suppose o is a winning strategy such that there exists a
finite play 7, such that the terminal state of its run in DSA D is s, € S\W. Then, since
DSAs are determined games and both players have memoryless winning strategies, the
environment can begin executing a memoryless environment winning strategy from s,.
Then, by definition of winning strategies of the environment, this ensures that every
resulting play is winning for the environment. Thus, we have a contradiction.

Therefore, every agent winning strategy o in the safety game over D can be exe-
cuted in a game over D since D" is defined over the winning set of D. Finally, since
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0*(my) € W in DSA D for all 7, we get that (6*)*(7,) € W in DSA D" for all 7,
where §* and (§)* are the transitive closures of § and 0*. Thus, o is also a winning
strategy in safety game over D" as it never encounters an undefined transition in D*.
Next, we show that a strategy that is not winning for the agent in a safety game over
D is also not a winning strategy for the agent in the safety game over D*. The proof
for this is the dual of the earlier case. For strategies that are not winning for the agent,
the terminal state of the run of every finite-play in D lies in S\W. Then, it is easy to
see that these strategies will encounter an undefined transition in the game over D".
Meaning, that the strategy is not winning for the agent in the safety game over D".

Theorem 4. The state-based compositional approach is sound and complete for Safety
LTL synthesis.

Proof. Clearly, o is a winning strategy for the agent for the input formula ¢ iff o is
a winning strategy in every DSA in H;. Suppose D; and Ds are chosen in the first
iteration of the algorithm. Then, by Lemma 1, since winning strategies are preserved via
pruning, we get that o is a winning strategy in every DSA in H1\{D;, D2} u{D}", D¥'}.
Since o is a winning strategy in both D’and D, o is a winning strategy for D}’ n Dy’ .
Since the language of D" n DY is equivalent to that of its minimal DSA D o, we get
that o is also a winning strategy in D; 5. Thus, o is a winning strategy for the input
formula iff o is a winning strategy in every DSA in H5. By repeated application of this
argument, we show that o is a winning strategy for the input formula iff it is a winning
strategy over the single DSA in H,,.

It should be noted that when pruning each DSA, the state-based decomposition ap-
proach focuses only on winning states and therefore trims the DSAs by clustering all
losing states into a single one and minimizes the resulting DSA. Nevertheless, certain
transitions, though leading to winning states, do not contribute to the realizability of
the conjunct since such transitions do not belong to the maximally permissive strategy
of the safety game, e.g., a finite-state transducer that encompasses all the necessary
information to ensure the satisfaction of the conjunct under all circumstances [3]. Fur-
thermore, trimming also these transitions might result in an even smaller DSA. We now
give a compositional approach based on the computation of the maximally permissive
strategy of safety games over DSAs.

Strategy-Based Compositional Approach. Unlike the state-based approach, in each
round, it trims from the DSAs not only all states but also transitions that do not belong
to the maximally permissive strategy. The algorithm proceeds as follows.

1. Decomposition. Let D; ... D,, be the minimal DSAs for each sub-formula ¢; of
the input formula ¢ in the explicit-state representation as described in Section 3.1.
Then, for all i € {1,...,n}, proceed as follows.

(a) Compute the set of winning states W; in the safety game G; = (X,), D).
Return ¢ unrealizable if G; is unrealizable.

(b) Compute the maximally permissive strategy a; based on the set of winning
states W;. To do so, we define a strategy generator, which is a nondeterministic
transducer 7 = (2¥YY W, 50, 0, 7), where

— W; < S is the set of winning states;
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- 7: Wi — 22" is the output function such that
(s) {YV|VX5(s,X0Y)eW;} ifseW,,
T )] otherwise.
- 0: W; x 2% — 2Wi is the transition function such that o(s, X) = {s' |
=65, XuY)andY €7(s)};
This transducer represents the maximally permissive strategy o : (2%)* —
22” in the following way: a(e) = 7(so), and (&%) = 7(sp41) for every
¢F e (2%)*, where sy is the ending state of Run(4, %) = s¢s182... 5k,
7k = (XO ] Yo)(Xl U Yl) Ce (Xk U Yk) and Yy € O[(gkil).

(c) Prune D; according to «;. Intuitively, this pruning trims all states and tran-
sition that do not belong to «;, unlike the state-based approach which only
cuts states. Let D = (X, 5, s0,0) be a DSA. We prune D with respect to
T = (X, W, s, 0, 7) such that obtaining D = (X, W, sq, §'), where transition
function §° is defined as follows:

5(s, X UY) = I(s, X VYY) %fY € 7(s),
undefined ifY ¢ 7(s).

(d) Minimize D!, and create R = {D},... D!}

2. Explicit-state composition. For j € {1,...,n —1},1et R; = {D1...D,_j41} be
the set of DSAs in the j-th iteration. If R; has only one Dy, then return a determin-
istic strategy for the agent. Otherwise, pick from R; two DSAs, D; and D,, chosen
by the DSF heuristic. If | Dy | > 1 or |Ds| > ty, or (|D1] - |D2|) > t2, then change
state representation moving to Step 3 and let k be the iteration in which this occurs,
ie., take k = j.

If not, continue with explicit-state representation as follows.

(a) Compute Step 2(a) and 2(b) as for the state-based approach, obtaining the DSA
D, which is the minimal DSA of D] , = D; N Do, and the winning set .

(b) Compute maximally permissive strategy o based on W (see Step 1(b)).

(c) Prune D in according to « (see Step 1(c)), obtaining D?, and minimize it. Then,
create Rj+1 = {D, Dg e Dn7j+1}.

(d) Go to Step 2.

3. Step 3 and 4 are performed as Step 3 and 4 of the state-based approach.

Lemma 2. Let D, W and D! be as above, then the agent has a winning strategy in
the safety game G = (X,), D) iff the agent has a winning strategy in the safety game
gt = <X7y7Dt>'

Proof. The proof follows Lemma 1.

Lemma 3. The agent has a winning strategy in safety game G = (X, ), D; j> iff pi A
@; is realizable.

Proof. We first obverse that ¢; A ¢; is realizable iff there exists an agent strategy o that
is winning in both safety games G; = (X, Y, D, and G; = (X, Y, D;), where D; and
D; are the DSAs for ¢; and @, respectively. By Lemma 2, we know that the ¢ is also
winning in both safety games over D! and D;, and then it is also a winning strategy for
D} ; = D} n D}, as required.
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Theorem 5. The Safety LTL synthesis problem P = (X, Y, ©), where p = /\1<i<n ©is
is realizable iff the agent has a winning strategy in safety game G = (X, Y, D), where
Dt is the last DSA obtained executing the strategy-based compositional approach.

Proof. We can prove it by repeatedly applying Lemma 3, then we have that o is an
agent winning strategy for the input formula ¢ iff it is a winning strategy in the safety
game over the single DSA D¢.

4 Experimental Evaluation

4.1 Implementation

We implemented our two compositional synthesis approaches described in Section 3.2
in a prototype tool Gelato, on top of the Safety LTL synthesis tool SSyft [33]. We
first use SPOT [10] to parse the input Safety LTL formula ¢ in the form of ¢ A

- A @i,k = 1 and then call LYDIA [9] to obtain the DSAs for the smaller Safety
LTL conjuncts ¢;,1 < ¢ < k. Note that all the explicit-state DSAs are, in fact,
stored with their corresponding bad-prefixes DFAs. In this way, we can exploit the
advanced compositional approach in LYDIA for constructing the DFAs of bad prefixes
from small Safety LTL conjuncts. We then employ MONA for the minimization, state-
pruning/strategy-prunning and product operations for explicit-state DSAs by operating
on their bad-prefixes DFAs. Note that Gelato needs to take switch-over thresholds 1,
to from explicit-states to symbolic-states representations and then performs synthesis
on symbolic-state DSAs [34], where CUDD 3.0.0 [30] is used as the BDD library. The
thresholds ¢; and ¢, are empirically set to 700 and 1500, respectively, in all experi-
ments. We use native support of SSyft for solving safety game over symbolic DSAs
and extracting the winning strategies if ¢ is realizable; we refer to [33] for more details.

4.2 Experimental Methodology

We compare our tool Gelato with two state of the art tools, namely SSyft, the synthesis
tool dedicated for Safety LTL [33], and Strix (version 21.0.0) [22], the state-of-the-art
synthesis tool for general LTL. In particular, we optimize SSyft by using LYDIA rather
than MONA to construct the DSA, which highly speeds up the performance of SSyft
used in [33]. Experiments were run on a computer cluster, where each instance took
exclusive access to a computing node with Intel-Xeon processor running at 2.6 GHz,
with 8GB of memory and 30 minutes of time limit.

We consider large-scale Safety LTL synthesis instances in the form of ¢ = 1 A
w2 A ... A k. We collected in total 2,500 Safety LTL synthesis instances, consisting of
1,250 instances from the Conjunction benchmark family and 1,250 instances from the
Random-Conjunction benchmark family. Since Strix only supports the synthesis set-
ting where the environment acts first, the instances taken by them had to be modified
slightly to add a O (Next) operator in front of all environment variables. The Conjunc-
tion benchmark family has 1,250 instances that are constructed from basic cases taken
from Safety LTL synthesis datasets [33]. In particular, these basic cases are Safety LTL
formulas splitting into 5 categories. Every category ¢ (1 < ¢ < 5) consists of a set of
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Fig. 1: Cactus plot indicating number of benchmarks solved by each tool over time.

Safety LTL formulas with ¢ nesting O (Next) operators. Indeed, the more nesting O op-
erators are, the more difficult the basic case is. In order to evaluate the performance on
scalability of handling conjunction formulas, for every category of Safety LTL formu-
las, we obtain 50 scalable conjunction instances by increasing the number of conjuncts
from 1 to 5. The Random-Conjunction benchmark family also has 1,250 instances that
are constructed in the similar way as the Conjunction instances. The key difference is
that, all the variables in the randomly conjuncted formula are chosen randomly from a
set of 20 candidate variables. Moreover, if a variable v is an environment-variable in
the basic case, then the replacement variable v’ of v is also an environment-variable in
the randomly conjuncted formula. The same applies to the agent-variables.

We have evaluated the results from Gelato with those from Strix and SSyft, and we
only find consistent results for the commonly solved cases.

4.3 Results

We denote the winning states-based variant and the winning strategy-based variant of
our algorithm in Section 3.2 by Gelato-States and Gelato-Strat, respectively. We com-
pare both Gelato-States and Gelato-Strat against SSyft and Strix in terms of the num-
ber of solved cases and the running time. Additionally, we also consider two virtual best
solvers, VBSO0 (two existing tools, without Gelato) and VBS1 (all implementations).
The cactus plot in Figure 1 reports how many benchmarks solved by each tool over
time; we do not show the part where the running time is below 1 second for clarity. We
can see that Gelato-Strat only has a slight advantage comparing to Gelato-States, with
Gelato-Strat solving 2,325 cases and Gelato-States 2,324 cases, out of a total 2,500
cases. The performance of Gelato-Strat is similar to that of Gelato-States on most of
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Fig. 2: Number of solved cases for different number of conjunctions in Conjunction benchmarks

the cases and is better on large instances. Regarding the number of solved cases, the
performance of Gelato-Strat is significantly better than SSyft and Strix, since they only
manage to solve 1,753 and 1,771 cases, respectively. In particular, Strix solved 554
cases less than Gelato-Strat did while taking more time to solve as many instances
as both implementations in Gelato. This is reasonable since Strix considers the whole
set of LTL while Gelato is carefully designed for big conjunctions of Safety LTL for-
mulas. It is clear to see that our Gelato-Strat has the best performance regarding the
number of solved cases within the same time limit. Between two virtual best solvers,
VBS1 is significantly better than VBSO0, with 2,369 cases solved by VBS1 and 1,979
cases by VBSO. It is worth mentioning that both our implementations Gelato-Strat and
Gelato-States perform even better than VBSO0.

The experimental results showed that our approach can solve a notable number of
instances that cannot be managed by existing tools. Therefore, we believe that our com-
positional algorithm is a valuable and important contribution to the current portfolio of
Safety LTL synthesis approaches.

On a closer inspection, we observe that Gelato-Strat and Gelato-States have a
bigger advantage over SSyft and Strix for Conjunction benchmarks than they do for
Random-Conjunction benchmarks. For Random-Conjunction benchmarks, Gelato-Strat
and Gelato-States solve 3 cases more than SSyft and 100 more than Strix; while for
Conjunction benchmarks, Gelato-Strat and Gelato-States solve 1,092 and 1,091 cases,
respectively, which are approximately twice as many as those of SSyft and Strix. This
may due to the fact that our pruning operation in the synthesis procedure reduces more
state space of the intermediate programs from the Conjunction benchmarks than those
from the Random-Conjunction cases.
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Figure 2 shows the number of solved cases of all tools for different numbers of
conjuncts in Conjunction benchmarks. From Figure 2, we can see that the advantage of
Gelato-Strat and Gelato-States over SSyft and Strix gets larger as the expansion length
(i.e., the number of conjunctions) grows. This is because constructing DSAs by LYDIA
for each small conjunct in Gelato does not get much harder as the length increases;
it is more dependent on the size of the small conjunct formulas than the number of
conjuncts. In contrast, the performance of SSyft, which relies on LYDIA to construct
the DSA for the whole formula, decreases greatly when the expansion length grows.
Moreover, we observe that the performance of Gelato does not vary too much when
the expansion length grows. This confirms that our compositional synthesis approaches
indeed can mitigate the difficulty encountered by other approaches that solve the game
only after obtaining the game arena. We also observe similar performance trend of each
tool when the expansion length grows for Random-Conjunction benchmarks, except
that the advantage of our Gelato-Strat and Gelato-States over SSyft and Strix is not as
significant as depicted in Figure 2.

Finally, we compared the running time of Gelato-States and Gelato-Strat on all
benchmarks. It is surprising to see that Gelato-States is competitive with Gelato-Strat
in general, although, Gelato-Strat solves one more case than Gelato-States and per-
forms better than Gelato-States in hard cases. Gelato-Strat in particular, was expected
to benefit from the fact that the transducer of the maximally permissive strategy is sup-
posed to more compact than the one of the winning states. Indeed, both transducers
have the same number of states, thus leaving no state space to prune for Gelato-Strat.
Nevertheless, the transducer of the maximally permissive strategy should contain fewer
propositional evaluations on the transitions. However, this does not lead to a more com-
pact transducer when the transducers are in an explicit-state symbolic-transition rep-
resentation. On the one hand, the transition conditions are represented symbolically in
BDDs, it is possible that removing evaluations that do not belong to the maximally per-
missive strategy generate larger BDDs. On the other hand, removing evaluations even
bring an extra cost. Thereby, we can not expect significant advantage of applying the
strategy-based compositional approach.

5 Conclusion

We presented a novel compositional synthesis technique specialized for Safety LTL
formulas in the form of ¢ = @1 A 2 A -+ A ©s. In contrast to extant compositional
synthesis approaches that solve the game after obtaining the game arena, our algorithm
synthesizes a program for each smaller conjunct ¢;,1 < ¢ < n separately and then
composes them one by one. A big advantage of our algorithm is that the intermedi-
ate programs will be made smaller with pruning techniques, mitigating the possibility
of blow-up of program state space. Empirical evaluation shows that our proposed al-
gorithm outperforms the state of the arts in terms of the number of solved cases and
running time. We believe that our compositional approach is a valuable contribution to
the portfolio of Safety LTL synthesis algorithms. As future work, we plan to study how
to further improve the construction of DSAs for each conjunct, which is the current
bottleneck of our approach. Alternatively, we can investigate how to decompose the
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specification better to obtain smaller conjunct formulas. It is also interesting to see how
our approach performs on practical benchmarks. We leave this to future work as well.
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