
Kernel Merging for Throughput-Oriented Accelerator
Generation

Nicolas Derumigny
Colorado State University

Fort Collins, Colorado, USA

Univ. Grenoble Alpes, Inria, CNRS,

Grenoble INP, LIG

38000 Grenoble, France

Louis-Noël Pouchet
Colorado State University

Fort Collins, Colorado, USA

Fabrice Rastello
Univ. Grenoble Alpes, Inria, CNRS,

Grenoble INP, LIG

38000 Grenoble, France

Abstract

Progresses in High-Level Synthesis have enabled program-

mers to quickly explore design spaces for high-performance

accelerators (e.g. to explore trade-offs between coarse-grain

and fine-grain hardware parallelism). However, resource

sharing opportunities are often under-exploited byHLS tools,

especially in coarse-grain pipelined designs.

In this work, we target the issue of generating multi-

purpose yet efficient pipelined accelerators, demonstrating

our approach on sequences of dense linear algebra computa-

tions. We develop polyhedral program analysis to generate

the accelerator structure, as well as their profitability crite-

ria. In particular, we leverage cross-loop compute unit reuse

to create coarse-grain pipelined designs suited for batched

execution of sequences of operations.

1 Introduction

The accessibility of accelerator design has significantly in-

creased, following the constant improvement in quality and

ease of use of the hardware/software design stack (e.g., with

compilers for High-Level Synthesis such as the Xilinx Merlin

compiler [6, 28], with the HLS tools themselves [14, 31], etc.).

Designers can now quickly generate customized designs for

a particular application, or possibly (a set of) kernels within

it which are candidate for profitable acceleration [7, 33].

However, updating the functionalities being accelerated can

be difficult: at best, it requires uploading a new bitstream

on an FPGA, and at worst it is not possible afterwards for

ASIC-based designs.

Flexible accelerators, e.g., using overlays [19] or VTA [22],

is a response to the reprogrammability issue of specialized

accelerators, attempting to bring the best of both worlds:

(most of) the performance benefits of hardware specializa-

tion, whilemaintaining some generality of computations that

can be accelerated. In this work, we make a simple yet prag-

matic observation: it is possible to easily build a semi-generic

accelerator by restricting the functionalities addressed to those

amenable to polyhedral modeling, that is, each functionality

supported (e.g., GEMM, AXPY, etc.) by the accelerator can

be exactly modeled as a polyhedral program, where the loop

IMPACT’23, January 16, 2023, Toulouse, France

.

bounds and array access functions are affine expressions

made of the surrounding loop iterators.

Specifically, we demonstrate how kernel merging can be

efficiently implemented to create a multi-functionality ac-

celerator with high throughput and low area, when these

kernels are polyhedral programs, leveraging polyhedral code

generation algorithms such as CLooG [2]. We show that per-

formance/area profitability criteria for kernels to be candi-

date formerging in a common accelerator can be expressed as

properties of the kernels’ polyhedral representation, specifi-

cally focusing on a rich mix of dense linear algebra kernels.

In particular, we demonstrate how to create a generic ac-

celerator accepting arbitrary linear algebra expressions as

input (on scalars, vectors, matrices), by merging elementary

polyhedral kernels for each functionality, and enabling batch-

processing of expressions automatically. When computing

a correlation matrix for example, this generic accelerator

can achieve nearly the same throughput as a specialized

fixed-function accelerator, and provides gains in terms of

performance per operator usage on batched workloads by

enabling more advanced resource sharing via coarse-grain

pipelining compared to specialized accelerators. We make

the following contributions:

• We present a system to build a throughput-oriented, multi-

functionality accelerator from a set of input polyhedral

kernels, each describing some elementary functionality to

be supported.

• Wedevelop polyhedral-based analysis and transformations

to merge polyhedral kernels, and easily expose hardware

modules that are candidate for replication and sharing.

• We conduct extensive experimental evaluation, on numer-

ous dense linear algebra workloads, of two generic acceler-

ators that are fully implemented and measured in-situ on

a Xilinx ZCU104 board, demonstrating their competitive-

ness in throughput per area compared to fixed-function

accelerators optimized for throughput or resource sharing,

as well as accelerators generated by ScaleHLS [33].

The paper is organized as follows. Sec. 2 motivates the

problem and outline our proposed solution for semi-generic

accelerator design. Sec. 3 develop polyhedral analyses for the

accelerator design, itself summarized in Sec. 4. Experimental

1

IMPACT’23, January 16, 2023, Toulouse, France Nicolas Derumigny, Louis-Noël Pouchet, and Fabrice Rastello

results are presented in Sec. 5, before discussing related work,

limitations, and concluding.

2 Background and Motivation

We illustrate the gains of a semi-generic accelerator on a

simple example: a workload composed of 3 successive cor-

relation matrix (CORR) computations, a widely used data

science calculus. First, we show how coarse grain pipelining

may help speed up batched computation of CENTER, a sub-

problem of CORR, them we show the design choices at stake

when crafting a semi-generic accelerator capable of efficient

execution of both problems.

2.1 Example: Data Centering

1 L1: for (j = 0; j < N ; j++)

2 mean[j] = 0.0;

3 L2: for (i = 0; i < N ; i++)

4 for (j = 0; j < N ; j++)

5 mean[j] += data[i][j];

6 L3: for (j = 0; j < N ; j++)

7 mean[j] /= N;

8 L4: for (i = 0; i < N ; i++)

9 for (j = 0; j < N; j++)

10 data[i][j] -= mean[j];

Figure 1. CENTER naive implementation

Let us consider the program realising the following matrix

transformation, corresponding to data centering:

-�8 9 = -8 9 − (
∑

8′
-8′ 9)/=

One naive implementation of this computation is given in

Fig. 1 uses four loop nests with different operators:

L1: Initialisation of the mean vector (no operator)

L2: Column-wise accumulation of the matrix coefficients

(+)
L3: Division of the previous accumulation by # (/)
L4: Column-wise subtraction of the mean to the input

matrix (−)
These loops forms what we call functionalities or kernel,

which are defined as affine subparts of the input program

represented using single loop nest. Under the resource shar-

ing point of view, some of this functionalities can rely on the

same physical compute unit, that may or may not be shared

across kernels. For example, operator sharing can happen

between the addition and subtraction part, as it boils down to

a preprocessing of a single bitflip on FPGA per FP16-encoded

data. In the rest of the paper, we note this operator ±.
The dispatch of kernels over functional units that executes

them is fundamental for the generation of efficient accelera-

tors. For example, the usual coarse-grain replication [13, 17]

of a single high-performance design will fail to provide the

best throughput-per-area on a sequence of CENTER. How-

ever, an accelerator using 2 ± units can benefit from the low

usage of / to share the compute unit inside independent

problems of a batch; an example of its implementation is

given in Fig. 1.

This sharing is achieve through retiming [27] of the ker-

nels: by spreading problems across time, we avoid simul-

taneous usage of the / operator, enabling further resource

sharing. The transformed code is reported on Fig. 2. In the

HLS framework [30], this retiming must be followed by a

loop merging to ensure operator reuse; a sequence of trans-

formations that is equivalent to the creation of a coarse-grain

pipeline [35], each stage of the pipeline executing one kernel.

1 for(id=0; id<BATCH_SIZE +4; id++)

2 for (i = 0; i < N ; i++)

3 for (j = 0; j < N ; j++) {

4 if (id < BATCH_SIZE and i==0)

5 mean[id][j] = 0.0;

6 if (id < BATCH_SIZE +1 and id >=1)

7 mean[id -1][j] += data[id -1][i][j];

8 if (id < BATCH_SIZE +2 and id >=2 and i==0)

9 mean[id -2][j] /= N;

10 if (id >= 3 and i==0)

11 data[id -3][i][j] -= mean[id -3][j];

12 }

Figure 2. CENTER Coarse-grain pipelined implementation

However, this merging is not trivial when it comes to

iteration spaces: L1 and L3 iterate over a space of size # ,

while L2 and L3 iterates over a space of size # 2, hence the

need of conditions on the loop iterator (here 8) to ensure the

correct number of execution of the loops bodies of smaller

iteration space. As a downside, this means that the divider

unit is idle at least (# − 1)/# fraction of the time during the

whole computation.

More generally, we can quantify the quality of the design

by the mean occupancy of its units, that is, the mean occu-

pancy over all units, weighted by their replication factor in

the final design. For a fixed input graph of computation, the

more the units are used, the lesser the average execution time

will be. Occupancy as well as area units (expressed as DSP

usage) is reported in Tbl. 1 for a coarse-grained pipelined de-

sign realising 10-batched execution of CENTER, compared to

a dedicated design either replicated 10 times (CENTERx10)

or 10 successive calls to the same IP (10xCENTER); CGP-

CENTER-inf denoting the maximum achievable throughput,

corresponding to an infinite number of successive indepen-

dent CENTER instances.

While, as expected, the occupation of the divisor unit

progressed by 44.6% (from 0,76% to 1.1 %), occupancy of the

± unit dropped, which leads to a lower total occupancy. This

effect is due to the initial filling and emptying of the pipeline:

due to the merging, each unit is idle for 3 ·# 2 cycles waiting

for the other stage to complete, as demonstrated by the if

guards over id in the final code.

2

Kernel Merging for Throughput-Oriented Accelerator Generation IMPACT’23, January 16, 2023, Toulouse, France

Benchmark Cycles/Pb Operators DSP Occupancy Avg. Occ.

CENTER 8343 1±, 1/ 2 ±: 98.2% /: 0.76% 49.5%

CENTERx10 834 10±, 10/ 20 ±: 98.2% /: 0.76% 49.5%

10xCENTER 8343 1±, 1/ 2 ±: 98.2% /: 0.76% 49.5%

CGP-CENTERx10 5744 2±, 1/ 4 ±: 71.3% /: 1,1 % 47.9%

CGP-CENTER-inf 4096 2±, 1/ 4 ±: 100% /: 1.56 % 50.8%

Table 1. Performance and area metric for coarse-grained

pipeline (CGP) vs coarse grained replication (CGR) of CEN-

TER accelerator (matrices of size 64×64, FP16 data type)

This example shows that even though theoretical gains

may be achieved by coarse-grain pipelining, the real-life

speedup is far from being always beneficial, as a large batch

ing factor is needed to compensate the initial and final sub-

optimal execution stage.

2.2 A More Complex Example: Correlation

Even though CENTER transformation is a part of the Cor-

relation computation, optimising a Correlation accelerator

to the sole computation of batched sequences of CENTER is

flawed as it does not take into account all required operators.

Indeed, Correlation can be decomposed into several com-

putations, corresponding to the loop nests a programmer

would write when designing an HLS accelerator:

• CENTER: -�8 9 = -8 9 − (∑8′ -8′ 9)/=
• STDDEV: f-9 =

√

∑

8 (-�8)2/=
• CENTER-REDUCE: -�'8 9 =

(

-8 9 −
∑

8′ -8′ 9
)

/(f-9 · √=)
• T-MATMULT: (-�')C · -�'

AssumingN is the size of the inputmatrix, only T-MATMULT

is computed in$ (# 3) operations, the others being computed

in $ (# 2). Furthermore, T-MATMULT uses only additions

and multiplications, which means that the majority of the

time will be spent using these units on a dedicated accelera-

tor: sharing them will only lead to marginal gains. However,

CENTER, STDDEV and CENTER-REDUCE also require the

use of a division and a square root operator, which can be

shared between independent batched executions of Correla-

tion. This lead to significant area gains over the traditional

coarse-grain replication strategy by avoiding unnecessary

replicas of low-usage units, i.e. division and square root op-

erators, with minimal impact on overall latency.

This time, the kernel merging approach allows us to mix

both sharing and replication: we replicate the MATMULT

accelerator (composed of + and ∗) to keep minimal impact of

the sharing on the overall execution time, but we share the

/ and √· one. This lead to an increase of 17 % of the global

occupancy compared to a basic accelerator generated with

no intra-batch sharing, and an increase in execution time of

10.1 % while consuming two / and √· compute units less.

Furthermore, we enrich the accelerator with additional

data routing capability to become generic: depending on a

user command, any sub-computations of Correlation can

be computed. Area and execution time of the GA-CORR3

(generic accelerator capable of executing a 3-batched Cor-

relation) compared to a simple non batched, non-generic

accelerator is reported in Tbl. 2. As expected, the generic

batched accelerator is able to provide a reduction of 66.7 % of

the number of dividers and square root, no change in terms

of adders / multipliers, to the cost of a 10.1 % increase in exe-

cution time. This is best translated by the global occupation

metric, which jumped up by 16.96 %.

Benchmark Cycles Nb of + and ∗ Nb of
√· and / Global Occupancy

3xCORR 291221 3 3 46.78%

GA-CORR3 320603 3 1 63.74%

Table 2. Performance and area metric for coarse-grain

pipelined correlation and dedicated accelerator

3 Kernel Merging For Multi-Functionalities

Wenowpresent our approach to building amulti-functionality

accelerator. Intuitively, we start from a set of polyhedral

kernels, each computing a particular functionality. We aim

to capture what kind of workloads can be executed with

these functionalities available, and produce a throughput-

optimized accelerator implementation for those. In this work

we focus on compositions of dense linear algebra kernels,

although the techniques presented are not limited to this

particular class of computations.

3.1 Polyhedral kernel representation

In this work a kernel is a polyhedral program, that is a pro-

gram with a static control-flow (every branch taken in the

code can be exactly predicted at compile-time, independently

of the value of the data computed on). In addition, polyhe-

dral programs must be described exactly using only affine

functions of the surrounding loop iterator and parametric

constants. Three structures are used to describe such pro-

grams: for each statement (, we define their iteration domain

D(, which describe the set of all dynamic execution of the

statement, each identified by the vector of values that the

surrounding loop iterators take when it executes (that is the

iteration vector ®G(); their access functions which maps every

iteration vector to the specific memory location(s) accessed

by that instance; and a scheduling function Θ(which maps

every iteration vector with a multidimensional timestamp,

such that in the transformed code, the iteration vectors are

executed in the lexicographic order of their timestamps [2, 9].

We illustrate with the two kernels below, where for the

sake of illustration we decomposed a classical GEMM kernel

into two kernels.

The iteration domain of Kernel1 is D 1 : {[8, 9] : 0 ≤ 8 <
0=3 0 ≤ 9 < # }, and Kernel2 is D 2 : {[8, 9, :] : 0 ≤ 8 <

0=3 0 ≤ 9 < # 0=3 0 ≤ : < # }. The access functions
of K1 include '403 1 : {[8, 9] → � [G,~] : G = 8 0=3 ~ = 9}
and K2 includes '403 2 : {[8, 9, :] → �[G,~] : G = 8 0=3 ~ =

:}. The original schedule of K1 is Θ 1 (®G(1) = {[8, 9] →
3

IMPACT’23, January 16, 2023, Toulouse, France Nicolas Derumigny, Louis-Noël Pouchet, and Fabrice Rastello

1 // Kernel 1

2 for (i = 0; i < N; ++i)

3 for (j = 0; j < N; ++j)

4 C[i][j] = beta * C[i][j]; // S1

5 // Kernel 2

6 for (i = 0; i < N; ++i)

7 for (j = 0; j < N; ++j)

8 for (k = 0; k < N; ++k)

9 C[i][j] += alpha * A[i][k] * B[k][j];

Figure 3. Example

[C1, C2, C3, C4, C5] : C1 = 0 0=3 C2 = 8 0=3 C3 = 0 0=3 C4 =

9 0=3 C5 = 0, that is a 23 + 1 encoding of the schedule, for a

loop depth 3 [10, 11].

3.2 Kernel Set and Workloads

Given a set of polyhedral kernels that are candidate to be

merged, we aim to execute workloads that are arbitrary com-

positions (in sequence or in parallel) of calls to these kernels.

These computations can be captured by a simple language

for straight-line programs, which is then trivially amenable

to compilation, to extract a a forest of directed acyclic graphs,

where each node represents one kernel call. We assume each

kernel represents a pure function, and summarizes its func-

tionality as follows.

Definition 1 (Kernel representation). Given a kernel , we

define its functionality as the signature of the kernel augmented

with the loop bounds, for each loop:

 : 8=?DC1, ..., 8=?DC=, #1, ..., #< → >DC?DC1, ..., >DC?DC?

We also define $?B the set of arithmetic operations executed

by .

For example, the complete signature of 2 is

 2 : � [#] [#], �[#] [#], � [#] [#], 0;?ℎ0, # , #, # → � [#] [#]
where $?B 2 = {+, ∗, ∗}. A workload in the present work

can be modeled as a straight-line program, such that (a) tem-

porary variables are allowed; (b) there is a single kernel call

per instruction; (c) type and size analysis for every input/out-

put passed as argument to the program kernels succeeds,

given the signatures of every kernel. Focusing on (dense)

linear algebra, high-level expressions can be written in this

simple form, which is then compiled to obtain a sequence of

kernel calls implementing this program. Parallelism between

kernel calls is automatically detected from the DAGs, creat-

ing "batches" of calls when possible from the input workload,

simply recognizing parallelizable operations by computing

the earliest schedule of each node in the DAGs.

We illustrate with the simple following program with 4 in-

structions, that is a valid input to our system. For clarity K1 is

renamed to MatScale, and K2 is renamed to MatMulScaleA.

In our prototype implementation, supported variable types

are scalars, 1D arrays (vectors) and 2D arrays (matrices),

which should all be of the same data type.

1 TMP1 [N] [N] : = MatScale (C1 [N] [N] , 4 2 , N , N)

2 TMP2 [N] [N] : =

3 MatMulScaleA (TMP1 [N] [N] , A [N] [N] , B [N] [N] , 5 1 , N , N , N)

4 TMP3 [N] [N] : = MatScale (C2 [N] [N] , 4 3 , N , N)

5 TMP4 [N] [N] : =

6 MatMulScaleA (TMP3 [N] [N] , A [N] [N] , B [N] [N] , 5 2 , N , N , N)

This program may be input by the user, and is then com-

piled to a sequence of "instructions" to be executed by the

accelerator. As described in Sec. 4, the accelerator executes

a stream of instructions given as input, where each instruc-

tion contains the name of the kernel to invoke, to which

hardware unit it is placed, and the operands/loop bound in-

formation as in the example above. The order of execution

follows the order of instructions sent to the accelerator. A

simple compilation step creates this sequence of instructions

from the input program above.

A simple dataflow analysis produces these two DAGs:

"0C"D;(20;4�("0C(20;4 (�1, 42), �, �, 51) and the similar

"0C"D;(20;4�("0C(20;4 (�2, 43), �, �, 52) from this input

program. This analysis delivers the set of calls to be executed

as their earliest start time (assuming each call takes 1 time

quantum), e.g. MatScale:0,0 and MatMulScaleA:1,1 giv-

ing explicitly the number of calls (i.e., the number of entries

per kernel name) and the parallelism opportunities (i.e., all

calls at the same time step can be executed in parallel). In

our current implementation, we weight timesteps by their

iteration latency, and a simple greedy placement of the calls

on the available hardware units is implemented.

Therefore the problems to be addressed when designing

the accelerator include (a) how many parallel instances of

each kernel should be possible? And (b) Which operations

(+,*, etc) may be shared between kernels?

3.3 Kernel Merging

We now outline our high-level method for generating a se-

mantically correct perfectly nested loop structure, that cap-

ture the set of all functionalities to be implemented by the

accelerator. We leverage polyhedral program analysis and

transformations [2] to create such code structure.

Iteration domain extension The first operation is to

normalize all kernels so that every statement is represented

by an iteration domain of identical, maximal dimensional-

ity across all kernels, while preserving the semantics. This

amounts to computing a maximal common loop embed-

ding, and statement perfectization [33] is an instance of

such transformation. Specifically, we first compute <0G3

the maximal dimensionality of all iterations domains to be

merged: <0G3 = <0G ∈:4A=4;B38<(D). Then, for every
kernel whose dimensionality is less than<0G3 , we create

D4GC

= *=8E4AB4 (<0G3) ∩ D ∩ >=48C4A38<B (), where
*=8E4AB4 (G) builds the infinite/unbounded polyhedron of

dimensionality G , and >=48C4A38<B () is the lexicographic
4

Kernel Merging for Throughput-Oriented Accelerator Generation IMPACT’23, January 16, 2023, Toulouse, France

minimum of every dimension in<0G3 that is not a dimen-

sion in D . For example, we would get: D4GC
 1 : {[8, 9, :] :

0 ≤ 8 < # 0=3 0 ≤ 9 < # 0=3 : = 0}.
We then further extend the iteration domains systemati-

cally with one additional dimension: :83 , which represents

the unique ID of a kernel that is merged. For our example,

assuming Kernel1 (K1) identifier is 1, and K2’s is 2, we get:

D4GC
 1 : [1] → {[:83, 8, 9, :] : 0 ≤ 8 < # 0=3 0 ≤ 9 <

0=3 : = 0 0=3 :83 = 1}.
Scheduling for fusion and pipelining The next oper-

ation builds the union of all extended iteration domains

into a single polyhedral program, by building a schedule

for fusion. This schedule merges all loop levels, and only

separate kernels at the inner-most loop level. For example,

the short notation for Θ 2 is {[8, 9, :] → [0, 8, 0, 9, 0, :, 0]}.
The schedules merging K1, then K2, are simply their original

identity schedule (possibly extended to <0G3), where we

use the kernel id to compute the last schedule dimension,

for every statement in each kernel. We have Θ : [] →
{[:83, 8, ...,<] → [0, 8, 0, ..., 0,<, :83]} if the kernel contains
a single statement, otherwise :83 needs to be extended to

model the unique id of every statement in the kernel instead,

in their order of execution, such that for every kernel and

every statement :83 is globally unique.

For example, to fuse K1 with K2 we would get Θ4GC
 1 :

[1] → {[:83, 8, 9, :] → [0, 8, 0, 9, 0, :, :83] : :83 = 1}, and
Θ 2 : [2] → {[:83, 8, 9, :] → [0, 8, 0, 9, 0, :, :83] : :83 =

 2}. Note however further modification of the schedule may

be implemented: in particular, loop permutation may be em-

ployed to implement fine-grain parallelism when possible,

as discussed below in Sec. 3.4, for example Θ 2 : [2] →
{[8, 9, :] → [0, 8, 0, :, 0, 9, :83] : :83 = 2} permutes the :

and 9 loops, to expose a synchronization-free inner-parallel

loop if possible.

Controlling separation The final operation is to actually

generate the candidate loop nest, by using polyhedral code

generation [2]. Intuitively, CLooG [2] generates a code that

scans the iteration domains in the lexicographic order of

the timestamps computed by the Θ functions. A key aspect

of performance for the generated codes is to implement

separation along every loop dimension, that is the process of

grouping iterations of the loop as a function of the specific set

of statements to be executed. For example, along the : loop,

at iteration 0 both K1 and K2 execute, but at iteration > 0

only 2 executes. In this work, we aim to push conditionals

that guard the execution of a statement to the inner-most

loop level, therefore we simply turn off separation in CLooG,

to obtain the code below:

3.4 Profitability Criteria

While any set of polyhedral programs can be merged with

the procedure above, not all such programs are candidate for

efficient acceleration, andmay not benefit from beingmerged

1 for (i = 0; i < N; ++i)

2 for (k = 0; k < N; ++k)

3 for (j = 0; j < N; ++j) {

4 if (KER == K1 && k == 0)

5 C[i][j] = beta * C[i][j]; // S1

6 if (KER == K2)

7 C[i][j] += alpha * A[i][k] * B[k][j];

8 }

Figure 4. Example code structure

with other kernels. However, the profitability criteria can be

expressed as the result of polyhedral analyses on the set of

kernels.

Pipelining A central objective is to enable coarse-grain

pipelining across kernels. Therefore we model a criterion for

making pipelining possible (otherwise no pipelining is im-

plemented), that eventually drives the loop order: the inner-

most loop should be such that either there is no loop-carried

dependence (LCD) along it for the kernel, or if there is a LCD,

the distance must be constant, and greater than the expected

iteration latency (for one iteration of the inner-most loop).

The final loop permutation for the program is computed such

that we minimize dependences satisfied by the inner-most

loop level in the merged program, using only loop permuta-

tions as the possible transformations. We simply compute

all possible loop permutations for the merged loop nest, and

for each case compute whether the inner loop is parallel. If

this system has no solution, we relax it to enable LCD for the

inner-most loop level iff the dependence distance is greater

than the iteration latency for the statement.

Exposing Functional Units A kernel can be viewed as

the actual computation statement(s) associated with it, along

with their iteration domain. As we generate a fused loop nest,

all statements share the same unique loop nest implemented

in hardware to iterate them. Therefore two parallel instances

of a kernel can be implemented by simply replicating the

statement(s) in the inner-most loop. We call such hardware

instances implementing a statement a functional unit (FU),

and we aim to select how many instances of each functional

unit should be implemented in the accelerator. We note that

depending on the kernels being merged, syntactically identi-

cal statements (after variable renaming) may occur: in this

case two functional units may compute exactly the same

operations, albeit perhaps with different iteration domains.

This can be easily detected from the kernels representations,

and we merge into a single FU those computing identical

operations, to facilitate solving the optimization problem

below. Note in our simple compilation phase to convert the

input straight-line program to a sequence of instructions,

we exploit the fact that multiple kernels/functionalities may

be mapped to the same FU, perhaps by adjusting the loop

bounds passed as argument to the instruction, to find a com-

pact scheduling+placement.

5

Kernel Merging for Throughput-Oriented Accelerator Generation IMPACT’23, January 16, 2023, Toulouse, France

Loop Control Logic The accelerator is organised around a

single loop defined in HLS-C++ as a for ranging from 0 to a

maximum value given by the LBG. This loop corresponds to

a flattened version of the fully merged loops of all accelerated

kernels, and is pipelined to achieve a maximum throughput

of 1 execution of all FU per cycle, i.e. to fully exploit all FUs.

The role of the loop control logic is twofold. First, it sched-

ules operations on the FU, and second it iterates over all

merged kernels to ensure a correct and complete execution

of the input workload.

Off-Chip Communications Data in the local buffer are

coalesced [32] for transfers into 64-bit packets that are sent

or received together in one burst to/from the off-chip DRAM

before and after execution of the accelerator. Execution time

is measured by an on-chip counter wired to the main clock,

whose value is fetched before the execution of the computa-

tion and right after its termination (i.e. not including commu-

nications). The local buffer communicates with off-chipmem-

ory using the AXI4 bus connected to one high-performance

communication port of the Zync MPSoC. Its setup is con-

trolled by MMIO-mapped registers using an AXILite bus,

managed by a wrapper C++ application running on CPU in-

tegrated in the ZCU104MPSoC. This application also handles

the execution flow as well as memory management from an

embedded Linux OS, using libraries provided by the PYNQ

framework as well as autogenerated drivers from Vitis HLS.

Access to the Local Buffer Each FU loads and stores

data from a global, on-chip buffer implemented with double-

port BRAMs whose accesses are spread over a three-stage

pipeline: read, execute and write in order to conserve the

initiation interval of 1 of the FU enforced by the loop control

logic. To allow off-chip communications at a rate of 64-bit

per cycle, the Local Buffer is partitioned cyclically by a factor

of 2, allowing 4 simultaneous FP16 loads/stores.

5 Experimental Results

In this section, we will analyse the performance of two

merged accelerators whose characteristics are reported in

Tbl. 3: one optimized for dense linear algebra computation,

the other for the computation of correlation matrices, as

expressed in PolyBench/C [25]. All measurements are done

on a ZCU104 board running the PYNQ 2.6 Linux image, and

all IP are generated from annotated C++ code using Xilinx

Vitis 2022.1 [30] on Linux 6.0.7. Resource usage is measured

after out-of-context P&R for each HLS accelerator, which

excludes AXI data routing to the integrated CPU. Cycles

measurements of the proposed accelerator are taken from

on-chip counter on the target board, whereas custom acceler-

ators execution time are computed from the pipeline latency

given by the HLS Tool report. Unless specified, the data type

used is 16-bit floating point. The total functionalities of the

accelerators are summarized in Tbl. 4.

Due to our implementation, we allow every merged mi-

crokernel to be executed on a compatible FU. Therefore, the

only difference of FU between the Linear Algebra (LA-GA)

and Correlation (CORR-GA) rely in 1) the support of trian-

gular iteration space for GA-LA and 2) the presence of one

square root / division unit for GA-CORR. On all accelerators,

only three different types of FU are integrated:

• one capable of handling mulmm and all the mul and

add/sub derivatives, based on two operators (± and ∗)
• one only handling add and its derivatives (including

sub) composed of one operator ±
• one handling sqrt and div, based on two operators:√· and /

Number of operators Nb. of IVG supports Local Buffer

0 ± 1 0 ∗ 1 0/1 √
0 FU triangular loops Size

BLAS 2 1 0 0 2 Yes 25 Matrices

CORR 3 3 1 1 4 No 25 Matrices

Table 3. Configuration of the LA-GA accelerator and the

Correlation accelerator

Kernel Description Op. LA-GA CORR-GA

noop Do nothing None X X

mulmm Matrix-matrix multiplication ± and ∗ X X

mulmv Matrix-vector multiplication ± and ∗ X X

multrmm Triangular matrix-matrix multiplication ± and ∗ X

multrmv Triangular matrix-vector multiplication ± and ∗ X

mulsm Scalar-matrix multiplication ∗ X X

multrsm Scalar-triangular matrix multiplication ∗ X

mulsv Scalar-vector multiplication ∗ X X

muls Scalar-scalar multiplication ∗ X X

trm Matrix transposition None X X

addm Matrix addition ± X X

addv Vector addition ± X X

adds Scalar addition ± X X

addtrm Triangular matrix addition ± X

subm Matrix subtraction ± X X

subcmv Column-wise matrix subtraction ± X X

subv Vector subtraction ± X X

subs Scalar subtraction ± X X

pmulm Point-wise matrix multiplication ∗ X X

pmulv Point-wise vector multiplication ∗ X X

oprodv Outer (vector) product ∗ X X

sqrtv Point-wise vector square root
√· X

sqrts Scalar square root
√· X

accsumcm Columns-wise accumulation of a matrix ± X X

cutminv Vector round to 1 low values None X X

divms Pointwise division of matrices / X

divvs Pointwise division of vectors / X

divcmv Point-wise division with column-wise value / X

set0m Initialisation of a matrix to 0 None X X

setidm Initialisation of a matrix to �3 None X X

setd1 Initialisation of the diagonal of a matrix to 1 None X X

Table 4. Supported kernel by either the Correlation or the

Linear Algebra accelerator

We compare our accelerator with the Max Sharing (MS)

design, where only one physical operator accelerator for

each operation type is instantiated, and the Max Throughput

(MT) that achieves minimal execution time while keeping

all data in a local buffer of the same characteristics than

the generic accelerator one. On both MT and MS, no gener-

icity of the design is possible, i.e. only a single benchmark

can be executed. We evaluate our generic accelerator on

three metrics: execution time (in cycle), throughput per area,

7

IMPACT’23, January 16, 2023, Toulouse, France Nicolas Derumigny, Louis-Noël Pouchet, and Fabrice Rastello

computed as #�_�!$%
�-��_) �"�∗#�_'�($*'�� with #�_�!$% the

number of floating-point operation in the input benchmarks,

and "#_'�($*'�� the number of DSP or chunk of 10

000 FF / LUT in the design; and occupancy, computed as
#�_$%

�-��*)�$# _) �"�∗#�_*#�) , with #�_$% the number of op-

erations being executable by the operator in the input pro-

gram, and #�_*#�) the number of compatible units in the

design.

5.1 Linear Algebra

Execution time, resources and performance per area metric

are reported in Tbl. 5, while Tbl. 6 report occupancy. Per-

formances on batches of 5 independent problems are also

evaluated, in Tbl. 7. The accelerator for linear algebra, noted

LA-GA is composed of two FUs: (a) one which supports ma-

trix multiplication, thus integrating an adder and a multiplier,

as well as all kernels relying on either an addition, a multi-

plication, a subtraction or a transposition; and (b) one which

only supports transposition as well a additions/subtractions.

This choice was guided by the necessity to cover all linear

algebra expressions (hence the first "generic" FU) while be-

ing able to coarse-grain pipeline kernels composed of both

multiplication and additions such as SCALE.

Indeed, SCALE is composed of two kernels: the first one

is mulsm (multiplication scalar-matrix, with $ (# 2)) and the

second one is addm (addition of matrix, also with$ (# 2) com-

plexity). The accelerator is then able to execute in parallel

two different instances of SCALE on its two FUs. However,

this does not achieve full usage of the compute units as the

adder, also present in the first FU, stays idle. Moreover, the

coarse-grain pipeline must be filed and emptied at the start of

the batched execution sequence, which limits its maximum

occupancy to 1− 2
��)��_(�/�+2 for a pipeline composed of 2

stages, resulting in, 71 % for a batch size of 5.

On SCALE and GER, the LA-GA is around 2 times slower

than MS for non-batched workloads. This is due to the dedi-

cated accelerator expressing in one fully pipelined loop nest

the complete application, whereas the LA-GA splits it in

several (fully pipelined) kernels, increasing the final latency.

These differences fade away when the input is batched as the

LA-GA will overlap kernel execution through coarse-grain

pipelining and preset systematically faster execution that MS

except for GER, where the batching factor is not enough to

benefit from coarse-grain pipelining due to a 3-stage pipeline.

However, occupancy and throughput-per-area falls behind

both MS and MT for two reasons: first, coarse-grain pipelin-

ing is limited by the first and last stages of the pipeline;

and the genericity of the accelerator is achieved at the cost

of area, both because of glue logic and idling units. The

former can be quantified by the performance-per-LUT and

performance-per-FF, which remains between 3 and 20 times

lower than dedicated accelerator. For idling units, we take the

GER BLAS primitive as an example. GER does not use mulmm

no mulmv (or their triangular derivative), which means that a

maximum of one unit (either ± or ∗) is active in the first FU.

Conversely, dedicated accelerators (both MS or MT) do not

have this constraint, hence resulting in higher occupancy.

5.2 Correlation

For data science applications such as Covariance, linear alge-

bra primitives are not sufficient as other kernels are needed:

column-wise accumulation of the matrix (a one-kernel im-

plementation of �C · 1E42C>A), column-wise subtraction of

a vector to a matrix and cut-of of a vector (used to avoid

floating-points error when divising by a near-zero value) as

well as division and square root.

Therefore, we enriched our accelerator with one FU merg-

ing these two kernels to create the CORR-GA accelerator

whose configuration is detailed in Tbl. 3: (a) 3 FU capable of

computing mulmm and all derivatives (kernels relying on ±
and/or ∗); and (b) 1 FU capable of computing either

√· or /
This topology was tailored to a batched execution of size

3: as seen in Sec. 2, ∗ and / are shareable instructions across
batches as they are dominated in terms of occupancy time

by the final matrix multiply of the correlation computation.

Reports of the execution time as well as performance-per-

area metrics are summarized in Tbl. 8, while occupancy of

the units is detailed in Tbl. 9.

Globally, the CORR-GA performs similarly to the LA-GA:

execution time is slower than MS due to the decomposition

of kernels that are otherwise expressible in one loop nest.

However, as the accelerator was tailored for 3 executions of

CORR (instead of a trade-off of all benchmarks), we exhibit

occupancy gains in this workload. Indeed, occupancy of ±
and ∗ units are dominated by the final matrix multiplication

of CORR, while
√· and / usage tripled due to their sharing

between the three batched instance.

5.3 Scaling and comparison

We evaluate the scalability of our approach on three different

aspect: data type, number of entries of the local buffer and

problem size. Area measurements are reported after P&R in

Tbl. 10. While switching from half precision to double pre-

cision doubles LUT due to the additional routing resources

necessary to handle the supplementary data, the accelerator

only increase by around 25 % when quadrupling the size of

the local buffer. This is due to the fact that loading and stor-

ing units that are the only elements to scale with its size: the

remaining data dispatch, FU selection and iteration vector

generation stay identical. On the other hand, LUT and FF and

DSP usage increase linearly with the number of FU, suggest-

ing that our approach does not generate quadratic amount

of logic with respect to its raw computation power. However,

synthesis time increases significantly with the number of

FUs, reaching several hours for a GA with 10 FUs.

8

Kernel Merging for Throughput-Oriented Accelerator Generation IMPACT’23, January 16, 2023, Toulouse, France

Bench Arithmetic Execution Time (cycles) FLOP/C/DSP FLOP/C/10kFF FLOP/C/10kLUT

name expression MS MT LA-GA MS MT LA-GA MS MT LA-GA MS MT LA-GA

SCALE � = U · � + � 5572 2059 8258 0.368 0.497 0.165 5.080 13.593 2.193 7.722 20.466 1.053

GEMV ~ = U · � · G + V · ~ 4553 2126 4396 0.457 0.391 0.315 3.960 12.950 4.184 5.686 18.752 2.010

TRMV ~ = U · � · G + V · ~ 2339 2435 2380 0.458 0.293 0.300 6.177 5.894 3.982 9.311 8.735 1.913

GER � = U · G · ~C +� 4738 2057 8343 0.436 0.401 0.165 6.093 13.528 2.187 9.348 20.058 1.051

GEMM � = U · � · � + V ·� 307586 134018 274540 0.433 0.397 0.323 5.759 12.934 4.287 8.860 19.011 2.059

TRMM � = U · � · � + V ·� 149696 155840 145516 0.458 0.293 0.314 5.964 5.816 4.169 8.991 8.688 2.002

Table 5. Throughput of a custom IP optimized for Max Sharing (MS) and Max Throughput (MT) and the Generic Accelerator

(LA-GA) for several Linear Algebra Benchmarks

Bench Occupancy (±) Occupancy (∗) Global Occupancy

name MS MT LA-GA MS MT LA-GA MS MT LA-GA

SCALE 73.51% 99.47% 24.80% 73.51% 99.47% 49.60% 73.51% 99.47% 41.33%

GEMV 89.96% 96.33% 46.59% 92.77% 49.67% 96.09% 91.37% 65.22% 79.59%

TRMV 88.93% 85.42% 43.70% 94.40% 45.34% 92.77% 91.66% 58.70% 76.41%

GER 86.45% 99.56% 24.55% 87.80% 50.56% 49.86% 87.13% 66.89% 41.42%

GEMM 85.23% 97.80% 47.74% 87.89% 67.24% 98.47% 86.56% 79.46% 81.56%

TRMM 88.93% 85.42% 45.74% 94.40% 90.68% 97.11% 91.66% 88.05% 79.99%

Table 6. Occupancy of a custom IP optimized for Max Sharing (MS) and Max Throughput (MT) and the Generic Accelerator

(LA-GA) for several Linear Algebra Benchmarks

Bench Exec. Time (cycles) Occupancy (0 ± 1) Occupancy (0 · 1) Global Occupancy

name MS MT CORR-GA MS MT CORR-GA MS MT CORR-GA MS MT CORR-GA

SCALEx5 27860 10295 24726 73.51% 99.47% 41.41% 73.51% 99.47% 82.83% 73.51% 99.47% 69.02%

GEMVx5 22765 10630 21544 89.96% 96.33% 47.53% 92.77% 49.67% 98.03% 91.37% 73.00% 81.20%

TRMVx5 11695 12175 11379 88.93% 85.42% 45.70% 94.40% 45.34% 97.02% 91.66% 65.38% 79.91%

GERx5 23690 10285 41279 86.45% 99.56% 40.71% 87.80% 50.56% 82.70% 87.13% 75.06% 68.71%

GEMMx5 1537930 670090 1356136 85.23% 97.80% 48.33% 87.89% 67.24% 99.67% 86.56% 82.52% 82.56%

TRMMx5 748480 779200 711016 88.93% 85.42% 46.81% 94.40% 90.68% 99.37% 91.66% 88.05% 81.85%

Table 7. Occupancy of a custom IP optimised for maximum efficiency and the Custom Generic Accelerator (LA-GA) for a

batched subset of Linear Algebra Benchmarks
Bench Arithmetic Execution Time (cycles) FLOP/C/DSP FLOP/C/10kFF FLOP/C/10kLUT

name expression MS MT CORR-GA MS MT CORR-GA MS MT CORR-GA MS MT CORR-GA

CENTER -�8 9 = -8 9 − (∑8′ -8′ 9)/= 8343 4166 12480 0.495 0.495 0.055 10.362 19.448 1.090 9.570 15.374 0.425

STDDEV f-9 =

√

∑

8 (-�8)2/= 16691 8370 29053 0.247 0.247 0.047 7.796 13.991 0.936 6.148 10.148 0.365

CENTER-REDUCE-DIV -�'8 9 =

(

-8 9 −
∑

8′ -8′ 9
)

/(f-9 · √=) 20935 10486 33352 0.247 0.164 0.052 6.579 9.707 1.021 5.579 7.761 0.398

CORR (-�')C · -�' 291221 144614 303763 0.468 0.314 0.150 10.905 17.962 2.955 9.119 13.834 1.152

CORRx3 3×CORR 873663 433842 320603 0.468 0.314 0.425 10.905 17.962 8.400 9.119 13.834 3.275

Table 8. Throughput of a custom IP optimized for Max Sharing (MS) and Max Throughput (MT) and the Generic Accelerator

(CORR-GA) for Covariance subexpressions
Bench Occupancy (±) Occupancy (∗) Occupancy (/) Occupancy (

√·) Global occupancy

name MS MT CORR-GA MS MT CORR-GA MS MT CORR-GA MS MT CORR-GA MS MT CORR-GA

CORR 94.23% 94.88% 30.11% 91.44% 46.04% 29.22% 0.02% 0.02% 0.02% 1.43% 1.44% 1.37% 46.78% 37.68% 22.43%

CORRx3 94.23% 94.88% 85.60% 91.44% 46.04% 83.06% 0.02% 0.02% 0.06% 1.43% 1.44% 3.89% 46.78% 37.68% 63.74%

Table 9. Occupancy of a custom IP custom IP optimized for Max Sharing (MS) and Max Throughput (MT) and the Generic

Accelerator (CORR-GA) for Correlation subexpressions

Data Type Nb. Entries Nb. FU Pb. Size LUT FF DSP BRAM

FP16 25 2 64 9418 4524 6 109

FP64 25 2 64 19535 7428 14 109

FP16 50 2 64 10945 4705 6 109

FP16 100 2 64 11899 4952 6 409

FP16 25 2 150 12701 4939 8 650

FP16 25 4 64 14723 5971 12 109

FP16 25 6 64 20957 7382 18 109

FP16 25 10 64 31998 10947 30 112

FP16 25 20 64 HLS Synthesis time out (> 3h)

Table 10. Scaling properties of the LA-GA accelerator

Data Type Implementation OP/Cycle/DSP

INT32 ResNet-18 ScaleHLS [33] 1.343

INT32 ResNet-18 TVM-VTA [23] 0.344

INT32 LA-GA GEMM 0.646

FP32 GEMM ScaleHLS 0.393

FP32 LA-GA GEMM 0.277

Table 11. Performance per area comparison with data ex-

tracted from other published accelerators

9

IMPACT’23, January 16, 2023, Toulouse, France Nicolas Derumigny, Louis-Noël Pouchet, and Fabrice Rastello

We also provide as a indicative example in Tbl. 11 a com-

parison of our performance against two state-of-the art de-

signs dedicated tomachine learningworkloads: ScaleHLS [33]

and VTA [23], on GEMM, extrapolated from their FP16 (2

DSP per addition, 2 DSP per multiplication) to an FP32 pro-

jection (2 DSP per addition, 3 DSP per multiplication) and

and INT32 one (0 DSP per addition, 3 DSP per multiplication)

from the ScaleHLS publication, and compare to ours. On this

metric, we achieve comparable performance to their designs,

however ScaleHLS optimizes a single workload and is not

producing a generic accelerator.

6 Related Work

The topic of semi-specialized accelerator design [5, 18, 20]

have been widely studied, targeting a variety of subdomains

such as encryption [21], graph processing [4] or machine

learning [1, 3, 12, 34]. For example Cong et al. [8] propose

a technique to quickly generate accelerators on a template

architecture, but targets single application acceleration on

MPSoC, in contrast to our multi-functionality approach.

ScaleHLS [33] is an end-to-end MLIR-based framework for

throughput-optimized accelerator generation, and does not

target merging efficiently multiple functionalities/kernels to

accelerate.

The Versatile Tensor Accelerator [23] relies on concepts of

decomposition of programs into kernels for deported execu-

tion on an accelerator, but is optimised for deep learning with

functional units limited to configurable GEMM and tensor-

specialised ALU, for which kernels have to be described

using micro-code instead of directly integrating them in the

design. In contrast, the functional units themselves that are

candidate for resource sharing are design parameters in our

generic accelerator design.

Resource sharing for area-efficient accelerator generation

is another weel-studied research topic [16, 26]. Li et al.[17]

proposed a method based on loop body components require-

ments to create area-efficient design suited for coarse-grain

replication. However, this method does not consider neither

coarse-grain pipelining nor generality of the accelerator. Jain

et al. [15] manually derive the accelerator architecture from

targeted workloads, while we automatically infer its param-

eters given polyhedral description of the functionalities.

Morvan et al. [24] tackled the problem of under-usage of

imperfectly nested loop pipelining by automated insertion of

padding computations. Such an approach can be applied on

the merged loops presented in this paper to further reduce

idle time of the FU.

7 Limitations

Though the kernel merging approach for general accelerator

generation is promising, our implementation suffers from

several flaws, both on the technical side (unused/overused

FPGA resources) and on our evaluation of the accelerator.

Routing between FU and Buffers Our implementation

allows every FU can access every memory location of the

local buffer for easier customisation of the generated acceler-

ator. Indeed, a generic local buffer load/store IP is integrated

for every FU, that rely on costly multiplexers, which can be

avoided by specializing it to the access pattern of the FU.

Deeper polyhedral analysis and re-scheduling may also

exhibit cross-FU reuse when the same data is used by 2 differ-

ent FU. A future research directionmay be to ensuremaximal

merging of these data path to avoid as best as possible re-

dundant loading; but we expect this analysis to lead to few

real-life usse cases.

Merging ofKernels withDifferent Iteration Space In all

tested benchmarks, the iteration space vector can be shared

amongst all merged kernel. However, this is not true in gen-

eral: two kernels may iterate over dimensions of different

size, which requires the generation of two iteration vector

by the IVG. This leads to additional LUT-based logic limiting

the application of our approach on LUT-constraints designs,

but should not disturb the execution time

Data Reuse: Optimizing Buffer Communication Our

implementation does not consider reuse of data inter iter-

ation of the FU, as this may introduce loop carried depen-

dencies and thus stall the pipeline. However, short-distance

single-producer / multiple consumer data can be kept in

FF-based memory to alleviate BRAM’s load, diminishing

pressure on ports and allowing further parallel computation

on the now-loadable data.

Further Sharing of Operations inside FU Our current

framework does not allow an FU realising a fused multiply-

add (FMA) to work as a both an adder and a multiplier at the

same time. However, such a behaviour is crucial for maximal

usage of the accelerator on tasks graphs that do not rely

on FMA, but still uses both additions and multiplications as

(single) operators. Adding such capabilities require a signifi-

cant increase of the front-end on the FU, in the sense that

additional logic and routing is needed for the transmission

of second operator arguments; logic that cannot be reused

in any non-parallel kernel. Therefore, we expect a trade-off

between the occupancy of the operators and the amount of

glue needed for the flexibility to fully utilise them.

Vectorisation of the FU In our evaluation, we only con-

sider FU composed of one operation of fused multiply-add.

While this is a technical limitation of our current imple-

mentation, there is no reason to do so in the general case.

Though we expect the relative quantity of glue logic to de-

crease with the size of the FUs, we also expect sub-optimal

uses of these larger FUs as they also come with a more spe-

cialised (hence less reusable) operation graph that single or

double-operation units.

10

Kernel Merging for Throughput-Oriented Accelerator Generation IMPACT’23, January 16, 2023, Toulouse, France

8 Conclusion

While the accessibility and ease-of-use of fixed-function ac-

celerator design has significantly increased, updating the

functionalities being accelerated can be tedious if at all possi-

ble. In contrast, multi-purpose accelerators aim to keep most

benefits of fixed-function acceleration, while being efficient

on a variety of workloads.

In this work, we presented a system to build a throughput-

oriented, multi-functionality accelerator from a set of in-

put polyhedral kernels. We conducted detailed evaluation

with on-board measurements of two generic accelerators

for dense linear algebra workloads, exposing the merits and

limitations of such multi-functionality accelerator design.

Acknowledgements

This work was supported in part by the U.S National Science

Foundation award #1750399.

References
[1] Stefan Abi-Karam, Yuqi He, Rishov Sarkar, Lakshmi Sathidevi, Zihang

Qiao, and Cong Hao. 2022. GenGNN: A Generic FPGA Framework

for Graph Neural Network Acceleration. CoRR abs/2201.08475 (2022).

arXiv:2201.08475 h�ps://arxiv.org/abs/2201.08475

[2] C. Bastoul. 2004. Code Generation in the Polyhedral Model Is Easier

Than You Think. In 13th International Conference on Parallel Architec-

tures and Compilation Techniques, PACT. IEEE, Antibes, France, 7–16.

[3] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q

Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind

Krishnamurthy. 2018. TVM: end-to-end optimization stack for deep

learning. arXiv preprint arXiv:1802.04799 11, 2018 (2018), 20.

[4] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong,

and Deming Chen. 2021. ThunderGP: HLS-Based Graph Processing

Framework on FPGAs. In The 2021 ACM/SIGDA International Sympo-

sium on Field-Programmable Gate Arrays (Virtual Event, USA) (FPGA

’21). Association for Computing Machinery, New York, NY, USA, 69–80.

h�ps://doi.org/10.1145/3431920.3439290

[5] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigo-

rian, and Glenn Reinman. 2012. CHARM: A Composable Heteroge-

neous Accelerator-Rich Microprocessor. In Proceedings of the 2012

ACM/IEEE International Symposium on Low Power Electronics and

Design (Redondo Beach, California, USA) (ISLPED ’12). Association

for Computing Machinery, New York, NY, USA, 379–384. h�ps:

//doi.org/10.1145/2333660.2333747

[6] Jason Cong, Muhuan Huang, Peichen Pan, Di Wu, and Peng Zhang.

2016. Software infrastructure for enabling FPGA-based accelerations

in data centers. In Proceedings of the 2016 International Symposium on

Low Power Electronics and Design. 154–155.

[7] JasonCong, PengWei, CodyHao Yu, and Peng Zhang. 2018. Automated

accelerator generation and optimization with composable, parallel and

pipeline architecture. In 2018 55th ACM/ESDA/IEEE Design Automation

Conference (DAC). IEEE, 1–6.

[8] Jason Cong, Peng Wei, Cody Hao Yu, and Peng Zhang. 2018. Auto-

mated Accelerator Generation and Optimization with Composable,

Parallel and Pipeline Architecture. In 2018 55th ACM/ESDA/IEEE De-

sign Automation Conference (DAC). 1–6. h�ps://doi.org/10.1109/DAC.

2018.8465940

[9] Paul Feautrier. 1991. Dataflow analysis of array and scalar references.

International Journal of Parallel Programming 20, 1 (1991), 23–53.
[10] P. Feautrier. 1992. Some efficient solutions to the affine scheduling

problem, part II: multidimensional time. International Journal of Par-

allel Programming 21, 6 (1992), 389–420.

[11] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David

Parello, Marc Sigler, and Olivier Temam. 2006. Semi-Automatic Com-

position of Loop Transformations. International Journal of Parallel

Programming 34, 3 (June 2006), 261–317.

[12] Yijin Guan, Hao Liang, Ningyi Xu, Wenqiang Wang, Shaoshuai Shi,

Xi Chen, Guangyu Sun, Wei Zhang, and Jason Cong. 2017. FP-DNN:

An Automated Framework for Mapping Deep Neural Networks onto

FPGAs with RTL-HLS Hybrid Templates. In 2017 IEEE 25th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM). 152–159. h�ps://doi.org/10.1109/FCCM.2017.25

[13] Andrei Hagiescu, Weng-Fai Wong, David F Bacon, and Rodric Rabbah.

2009. A computing origami: Folding streams in FPGAs. In Proceedings

of the 46th Annual Design Automation Conference. 282–287.

[14] Intel. 2022. High Level Synthesis Compiler. h�ps://www.intel.com/

content/www/us/en/so�ware/programmable/quartus-prime/hls-

compiler.html.

[15] Abhishek Kumar Jain, Douglas L Maskell, and Suhaib A Fahmy. 2016.

Throughput oriented FPGA overlays using DSP blocks. In 2016 Design,

Automation & Test in Europe Conference & Exhibition (DATE). IEEE,

1628–1633.

[16] Lana Josipović, Axel Marmet, Andrea Guerrieri, and Paolo Ienne. 2022.

Resource Sharing in Dataflow Circuits. In 2022 IEEE 30th Annual Inter-

national Symposium on Field-Programmable Custom Computing Ma-

chines (FCCM). IEEE, 1–9.

[17] Peng Li, Peng Zhang, Louis-Noel Pouchet, and Jason Cong. 2015.

Resource-Aware Throughput Optimization for High-Level Synthe-

sis. In Proceedings of the 2015 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (Monterey, California, USA) (FPGA

’15). Association for Computing Machinery, New York, NY, USA,

200–209. h�ps://doi.org/10.1145/2684746.2689065

[18] Cheng Liu, Ho-Cheung Ng, and Hayden Kwok-Hay So. 2015. Quick-

Dough: A rapid FPGA loop accelerator design framework using soft

CGRA overlay. In 2015 International Conference on Field Programmable

Technology (FPT). 56–63. h�ps://doi.org/10.1109/FPT.2015.7393130

[19] Sihao Liu, Jian Weng, Dylan Kupsh, Atefeh Sohrabizadeh, Zhen-

grong Wang, Licheng Guo, Jiuyang Liu, Maxim Zhulin, Rishabh Mani,

Lucheng Zhang, et al. 2022. OverGen: Improving FPGA Usability

through Domain-specific Overlay Generation. In 2022 55th IEEE/ACM

International Symposium on Microarchitecture (MICRO). IEEE, 35–56.

[20] Steven Margerm, Amirali Sharifian, Apala Guha, Arrvindh Shriraman,

and Gilles Pokam. 2018. TAPAS: Generating Parallel Accelerators

from Parallel Programs. In 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO). 245–257. h�ps://doi.org/10.

1109/MICRO.2018.00028

[21] A. Mkhinini, P. Maistri, R. Leveugle, and R. Tourki. 2017. HLS design

of a hardware accelerator for Homomorphic Encryption. In 2017 IEEE

20th International Symposium on Design and Diagnostics of Electronic

Circuits & Systems (DDECS). 178–183. h�ps://doi.org/10.1109/DDECS.

2017.7934578

[22] Thierry Moreau, Tianqi Chen, Luis Vega, Jared Roesch, Eddie Yan,

Lianmin Zheng, Josh Fromm, Ziheng Jiang, Luis Ceze, Carlos Guestrin,

et al. 2019. A hardware–software blueprint for flexible deep learning

specialization. IEEE Micro 39, 5 (2019), 8–16.

[23] Thierry Moreau, Tianqi Chen, Luis Vega, Jared Roesch, Eddie Yan,

Lianmin Zheng, Josh Fromm, Ziheng Jiang, Luis Ceze, Carlos Guestrin,

and Arvind Krishnamurthy. 2019. A Hardware–Software Blueprint for

Flexible Deep Learning Specialization. IEEE Micro 39, 5 (2019), 8–16.

h�ps://doi.org/10.1109/MM.2019.2928962

[24] Antoine Morvan, Steven Derrien, and Patrice Quinton. 2013. Polyhe-

dral Bubble Insertion: A Method to Improve Nested Loop Pipelining

for High-Level Synthesis. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems 32, 3 (2013), 339–352. h�ps:

//doi.org/10.1109/TCAD.2012.2228270

11

IMPACT’23, January 16, 2023, Toulouse, France Nicolas Derumigny, Louis-Noël Pouchet, and Fabrice Rastello

[25] L.-N. Pouchet. 2011. PolyBench: The Polyhedral Benchmarking suite,

version PolyBench/C 4.2.1. h�p://polybench.sf.net. Last accessed:

May 2017.

[26] Bajaj Ronak and Suhaib A Fahmy. 2016. Multipumping flexible DSP

blocks for resource reduction on Xilinx FPGAs. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 36, 9 (2016),

1471–1482.

[27] Nicholas Weaver. 2008. Retiming, repipelining and c-slow retiming.

Reconfigurable Computing (2008), 383–399.

[28] Xilinx. 2022. The Merlin compiler. h�ps://github.com/Xilinx/merlin-

compiler.

[29] Xilinx. 2022. UltraScale Architecture Configuration User Guide (UG570).

[30] Xilinx. 2022. Vitis High-Level Synthesis User Guide (UG1399).

[31] Xilinx. 2022. Vitis Unified Software Platform. h�ps://www.xilinx.com/

products/design-tools/vitis/vitis-platform.html.

[32] Xilinx. 2022. Vitis Unified Software PlatformDocumentation: Application

Acceleration Development (UG1393).

[33] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang,

Stephen Neuendorffer, and Deming Chen. 2022. ScaleHLS: A New

Scalable High-Level Synthesis Framework on Multi-Level Intermedi-

ate Representation. In 2022 IEEE International Symposium on High-

Performance Computer Architecture (HPCA). IEEE, 741–755.

[34] Xinyi Zhang, Weiwen Jiang, and Jingtong Hu. 2020. Achieving Full

Parallelism in LSTM via a Unified Accelerator Design. In 2020 IEEE

38th International Conference on Computer Design (ICCD). 469–477.

h�ps://doi.org/10.1109/ICCD50377.2020.00086

[35] Heidi Ziegler, Byoungro So, Mary Hall, and Pedro C Diniz. 2002.

Coarse-grain pipelining on multiple FPGA architectures. In Proceed-

ings. 10th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines. IEEE, 77–86.

12

