
Maximizing Submodular Functions under Submodular Constraints

Madhavan R. Padmanabhan1 Yanhui Zhu1 Samik Basu1 A. Pavan1

1Department of Computer Science,

Iowa State University,

Ames, Iowa, USA

Abstract

We consider the problem of maximizing submodu-

lar functions under submodular constraints by for-

mulating the problem in two ways: SCSK-C and

DIFF-C. Given two submodular functions f and

g where f is monotone, the objective of SCSK-C

problem is to find a set S of size at most k that max-

imizes f(S) under the constraint that g(S) ≤ θ,

for a given value of θ. The problem of DIFF-C fo-

cuses on finding a set S of size at most k such that

h(S) = f(S) − g(S) is maximized. It is known

that these problems are highly inapproximable and

do not admit any constant factor multiplicative ap-

proximation algorithms unless NP is easy. Known

approximation algorithms involve data-dependent

approximation factors that are not efficiently com-

putable.

We initiate a study of the design of approximation

algorithms where the approximation factors are ef-

ficiently computable. For the problem of SCSK-C,

we prove that the greedy algorithm produces a solu-

tion whose value is at least (1−1/e)f(OPT)−A,

where A is the data-dependent additive error. For

the DIFF-C problem, we design an algorithm that

uses the SCSK-C greedy algorithm as a subrou-

tine. This algorithm produces a solution whose

value is at least (1− 1/e)h(OPT)−B, where B
is also a data-dependent additive error. A salient

feature of our approach is that the additive error

terms can be computed efficiently, thus enabling us

to ascertain the quality of the solutions produced.

1 INTRODUCTION

For a ground set V of size n, a function f : 2V → R is sub-

modular if for every S ⊆ T ⊆ V , and for every x ∈ V − T ,

f(S ∪ {x}) − f(S) ≥ f(T ∪ {x}) − f(T). I.e., the gain

in the value of the function when x is added to S is at least

the gain when x is added to a superset of S. Optimizing

submodular functions under various constraints has been

studied extensively. These problems are of the following

form: For a submodular function f , find a set S ⊆ V that

maximizes f(S) subject to the constraint that S ∈ F , where

F is a family of sets. A few of the well-studied constraints

are cardinality constraint, knapsack/modular constraint, and

matroid constraints. Even for the least restrictive constraint,

cardinality constraint, the problem is known to be NP-hard.

The classical work of Nemhauser et al. showed that a greedy

algorithm achieves a (1−1/e) approximation ratio if the sub-

modular function f is monotone Nemhauser et al. [1978a].

Submodular Constraints. Often, in submodular maximiza-

tion problems, there is a conflicting minimization constraint.

The generic nature of these problems is of the following

form: Given a submodular function f , another function g,

find a set S of size at most k that maximizes f(S), while

minimizing g(S). In this work, we study the case where

the function g is also a submodular function. The problem

of maximizing a submodular function under a submodular

constraint appears in a few application domains. The works

of Iyer and Bilmes [2012b, 2013] discuss several scenarios

where these problems arise naturally. These application do-

mains include sensor placement, speech data set selection,

probabilistic inference, and information diffusion Kempe

et al. [2003], Lin and Bilmes [2009, 2011], Krause et al.

[2008], Jegelka and Bilmes [2011].

SCSK-C and DIFF-C. Two of the standard ways to for-

malize the above-mentioned maximization-minimization

problem is via introducing a submodular constraint Iyer and

Bilmes [2013], Crawford et al. [2019], Wan et al. [2010]

and as maximizing the difference between submodular func-

tions Iyer and Bilmes [2012b], Narasimhan and Bilmes

[2005], Jin et al. [2021a], Kawahara and Washio [2011].

The Submodular Cost Submodular Knapsack (SCSK) is as

follows: given two non-negative, submodular functions f
and g over a ground set such that f is monotone and a value

θ, the goal is to find a set S that maximizes f(S) subject

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

to the constraint that g(S) ≤ θ. The Diff problem is the

following: Given non-negative, submodular functions f and

g where f is monotone, find a set S such that f(S)− g(S)
is maximized. In this paper, we will consider generaliza-

tions of these problems called SCSK-C and DIFF-C. The

SCSK-C problem is to find set S that maximizes f subject

to the constraint g(S) ≤ θ and |S| ≤ k. Similarly, DIFF-C

problem is to find a set S that maximizes the function f − g
such that |S| ≤ k. In SCSK-C setting, we will refer to

g(X) ≤ θ as submodularity budget constraint and θ as the

submodular budget. In this work, we address the problem

of obtaining approximation algorithms for these problems

whose approximation factors can be efficiently computed.

Data Dependent Approximations. Unfortunately, for both

SCSK and DIFF (and hence for both SCSK-C and DIFF-

C) it is known that efficient approximation algorithms are

not feasible. From the work of Iyer and Bilmes Iyer and

Bilmes [2013] it follows that if P does not equal NP, then

SCSK does not admit even admit 1/n1/2−ϵ-multiplicative

approximation algorithms, for any ϵ > 0. Narasimhan and

Bilmes Narasimhan and Bilmes [2005] showed that ev-

ery set function can be represented as the difference be-

tween two submodular functions, and thus DIFF is inapprox-

imable Narasimhan and Bilmes [2005], Iyer and Bilmes

[2012b]. Given the high inapproximability of these prob-

lems, it seems that there is no hope of theoretically ana-

lyzing the quality of the solutions produced by efficient

algorithms for these problems. However, it turns out that

data-dependent approximation guarantees can be obtained

for the SCSK-C problem.

A d-multiplicative approximation for submodular maximiza-

tion produces a solution S such that f(S) ≥ d× f(OPT),
where OPT is the optimal solution. Typically the value d
is independent of the actual function f that is being max-

imized. This is either a universal constant (such as 1/2 or

(1− 1/e)) or depends on the size of the ground set V . On

the contrary, algorithms with data-dependent approximation

guarantees have the following flavor: For a given function

f , the value of the solution produced by the algorithm is at

least df ×OPT , where df depends on the function f that

we seek to maximize and the constraints.

For the problem of SCSK-C, Iyer and Bilmes [2013], Iyer

et al. [2013] presented data-dependent approximation al-

gorithms, However, we observe that this data-dependent

approximation factor is NP-hard to compute. Given this, it

is hard to judge the quality of the solution produced by the

approximation algorithm (i.e., how close it is to the opti-

mal solution). We discuss this issue in detail in Section 2.

For the problem of DIFF-C, to the best of our knowledge,

no data-dependent approximation bounds have been estab-

lished. The works of Iyer and Bilmes [2012b], Narasimhan

and Bilmes [2005] provide a heuristic approach to solve the

problems of maximizing the difference between two sub-

modular functions f and g by replacing g with a surrogate

modular function g′ that bounds g and instead maximize

f − g′, which is submodular.

Our thesis is that data-dependent approximation factors are

more meaningful only when they can be computed efficiently.

Motivated by this, we explore the possibility of designing

algorithms with efficiently computable data-dependent ap-

proximation factors.

Our Contributions. To achieve efficiently computable ap-

proximation factors, we study the notion of multiplicative-

additive error approximation algorithms. We say that A is a

(d,A)-multiplicative-additive approximation algorithm for

the problem maximization problem if the output of A ≥
d×f(OPT)−A. We refer to d as multiplicative factor and

A as additive error.

Algorithms with Efficiently Computable Approximation Fac-

tors for SCSK-C. We first consider the standard greedy

algorithm for SCSK-C. We establish a new guarantee

on the quality of the solution produced by the solution.

Namely, we prove that if S is the solution produced, then

f(S) ≥ (1 − 1/e)f(OPT) − Afg. Here the additive er-

ror Afg is the data-dependent factor that depends on f
and g. A hallmark of our proof and analysis is that Afg

can be computed while running the greedy algorithm with

very little overhead, thus making the computation of Afg

efficient. Combining this proof with ideas from Conforti

and Cornuéjols [1984], we refine the multiplicative error to
1
cf
(1− (1−

cf
k)k), while keeping the additive error same.

We remark that while our proofs start with the standard ar-

guments known in the literature, there are critical departure

points. The main contribution in the proofs is conceptual

rather than technical, which enables us to obtain the desired

bounds.

DIFF-C via SCSK-C. We first observe that the DIFF-C

problem reduces to SCSK-C problem when the range of

g is non-negative integers. Building on this, we design an

approximation algorithm for DIFF-C that uses the natural

greedy algorithm for SCSK-C as a subroutine. Building

upon our theoretical analysis of the greedy algorithm for

SCSK-C, we analyze the quality of the solution S produced

for the DIFF-C problem and show that f(S) − g(S) ≥
(1 − 1/e)[f(OPT) − g(OPT)] − Afg, where Afg is the

efficiently computable additive error.

Experimental Validation: As proof of concept, we have

conducted experiments in the domains of information dif-

fusion. For both problems, these experiments reveal that

in practice the additive error is small, thus indicating that

our proposed algorithms produce a solution whose value is

close to (1− 1/e) of the optimal solution.

Prior and Related Work. For submodular maximization

with knapsack/modular constraint, Sviridenko [2004] pro-

posed a greedy algorithm with 1 − 1/e approximation

ratio, albeit with time complexity of O(n5) oracle calls.

Later works improved the run-time Feldman et al. [2020],

Yaroslavtsev et al. [2020], Li et al. [2022] with a small sac-

rifice in the approximation quality. One of the well-studied

constraints is the matroid constraint for which Nemhauser

et al. [1978b] provided a 1/2-approximation algorithm. The

breakthrough work of Calinescu et al. [2011] presented a

randomized algorithm with the optimal approximation ratio

to 1− 1/e. The work Buchbinder et al. [2019] proposed the

first deterministic algorithm with an approximation ratio of

0.5008.

The work in Harshaw et al. [2019] studied maximizing

f − g under a cardinality constraint when f is submodular

and g is modular, whereas Jin et al. [2021b] studied the

problem without the cardinality constraint and provided a

multiplicative-additive error approximation algorithm.

SCSC is a dual problem of SCSK studied in Iyer and Bilmes

[2013], Crawford et al. [2019]. The problem involves mini-

mizing a submodular function g while ensuring that another

submodular function f is no less than a given threshold τ .

There has been a vast amount of prior and related work on

submodular optimization. We refer the reader to the sur-

vey articles Krause and Golovin [2014], Buchbinder and

Feldman [2018].

2 HARDNESS OF APPROXIMATION

FACTORS

In Iyer and Bilmes [2013], Iyer et al. [2013], building on

the work of Conforti and Cornuéjols [1984], the authors

show that for Submodular Maximization under a down-

monotone constraint, the greedy algorithms can be analyzed

using data-dependent approximation factors. When applied

to SCSK-C, it follows that the natural greedy algorithm is a
1
cf
(1− (

(Kg−cf)
Kg

)kg)-approximation algorithm where

• cf is the curvature of the function f .

cf = minx∈V
1−f(x|V−{x})

f(x) .

• Kg is the size of the largest feasible set that satisfies

both the constraints,

Kg = max{|X| : g(X) ≤ θ and |X| ≤ k}.

• kg is the size of the smallest feasible S that satisfies the

constraints, but adding some element to S violates the

constraint. kg = min{|X| : g(X) ≤ θ and ∃j /∈
X, g(X ∪ j) > θ}.

To gauge the quality of the solution produced by the algo-

rithm, one should be able to effectively compute the value

of the expression 1
cf
(1− (

(Kg−cf)
Kg

)kg). We observe that it

is NP-Hard to compute Kg .

OBSERVATION 1. Given a submodular function g and θ,

it is NP-Hard to calculate Kg where Kg = max{|X| :
g(X) ≤ θ and |X| ≤ k}.

Algorithm 1 Basic Greedy Algorithm

1: X = ∅
2: for i = 1 to k do

3: X = X ∪ {argmaxv f(X ∪ {v})|g(X ∪ {v}) ≤ θ}
4: end for

5: return X

The proof is provided in the Appendix.

This limitation implies that while we can run the algo-

rithm knowing that it has an approximation factor of
1
cf
(1 − (

(Kg−cf)
Kg

)kg), we cannot hope to effectively com-

pute what this term evaluates to and thus we will not be

able to ascertain the quality of the solution produced. If we

attempt to bound the cf , Kg and kg, then in the worst case

cf = 1,Kg = k, kg = 1, leading to trivial 1
k -approximation

when applied to SCSK-C.

The above observation and discussion motivate the need for

establishing guarantees with efficiently computable approx-

imation factors.

3 GREEDY ALGORITHM FOR SCSK-C

In this section, we provide approximation guarantees, with

efficiently computable approximation factors, for the natural

greedy algorithm for SCSK-C. The GREEDY algorithm for

SCSK-C problem is described in Algorithm 1.

The Algorithm 1 computes X by iteratively adding the ªbestº

element to the partial solution. Given an element v ∈ V
and X ⊆ V , the marginal gain of v with respect to X ,

denoted f(v|X), is f(X∪{v})−f(X). Given a set S ⊆ V
and an integer γ, we define Maximum Constrained Gain

Element (denoted MCGE) as the element v that achieves

the maximal marginal gain, f(v|X) subject to the constraint

g(X ∪ {v}) ≤ γ. More formally

MCGE(S, γ) = argmax
v∈V

{f(v|S) | g(S ∪ v) ≤ γ}

where argmax{∅} is considered as undefined. Given X and

γ, we define Maximum Constrained Gain (denoted MCG)

as the marginal gain of f due to MCGE(S, γ) with respect

to S. i.e., MCG(S, γ) = f(MCGE(S, γ)|S).

The following theorem characterizes the solution obtained

using Algorithm 1 using additive and multiplicative errors.

THEOREM 1. Let OPTk,θ be the optimal value of f un-

der the constraints, and X be the solution returned by the

Algorithm 1, then the following holds

f(X) ≥ (1− 1/e)[OPTk,θ] −
∑k−1

i=1 [MCG(Xi, 2θ)−MCG(Xi, θ)]

Proof. Let X∗
k,θ be an optimal solution such that f(X∗

k,θ) =
OPTk,θ and let O denote the size of X∗

k,θ. Note that O ≤ k.

Let Xi−1 denote the partial solution at the start of the ith
iteration of the greedy algorithm; and initially X0 = ∅.

With each iteration i, we associate an additional set X ′
i as

follows. During iteration i, let ui be an element that can

maximize f(Xi−1 ∪ {u}) such that g(Xi−1 ∪ {u}) ≤ 2θ.

More precisely, let ui = MCGE(Xi−1, 2θ), and we say that

X ′
i = Xi−1 ∪ {ui}. Note that the set X ′

i is not constructed

by the greedy algorithm (X ′
i may violate the constraint

g(X ′
i) ≤ 2θ ≠⇒ g(X ′

i) ≤ θ). The set X ′
i is used for the

analysis of the algorithm.

For every 1 ≤ i ≤ k−1, we have the following inequalities.

OPTk,θ ≤ f(X∗
k,θ ∪Xi) ≤ f(Xi) +

∑

e∈X∗
k,θ

f(e|Xi)

≤ f(Xi) +
∑

e∈X∗
k,θ

[f(X ′
i+1)− f(Xi)]

≤ f(Xi) +O × f(X ′
i+1)−O × f(Xi)

The first two inequalities follow since f is monotone and

submodular. We now explain the third inequality: a sub-

tle point here is that we cannot claim that f(e|Xi) ≥
f(Xi+1) − f(Xi) as it might be possible that g(Xi ∪
{e}) > θ and this element e is not considered during it-

eration i. However, as X∗
k,θ is an optimal solution, we have

g(X∗
k,θ) ≤ θ, which, in turn, implies that g(e) ≤ θ for

every e ∈ X∗
k,θ. Therefore, g(Xi ∪ {e}) ≤ 2θ due to sub-

modularity of g. Recall that X ′
i+1 is obtained by adding

ui+1 = MCGE(Xi, 2θ) to the set Xi. Since g(Xi∪{e}) ≤
2θ, it must be the case that f(ui+1|Xi) ≥ f(e|Xi). Thus,

f(e|Xi) ≤ f(X ′
i+1) − f(Xi). The last inequality follows

because the size of the optimal solution is O.

By adding (O− 1)OPTk,θ on both sides of the last inequal-

ity and rearranging terms, we obtain

OPTk,θ − f(X ′
i+1) ≤

O − 1

O
(OPTk,θ − f(Xi))(1)

This inequality relates X ′
i+1 with Xi. However, if we could

relate Xi+1 with Xi instead, then we could obtain a re-

currence relation. To achieve this, we now consider the

relationship between the sets Xi+1 and X ′
i+1.

By our definitions of Xi+1 and X ′
i+1, we have

f(Xi+1) = f(Xi) +MCG(Xi, θ).
f(X ′

i+1) = f(Xi) +MCG(Xi, 2θ).

Thus,

−f(X ′
i+1) = −f(Xi+1)−[MCG(Xi, 2θ)−MCG(Xi, θ)].

Substituting this in Equation 1, we obtain the following

recurrence relation.

OPTk,θ − f(Xi+1) ≤
O − 1

O
(OPTk,θ − f(Xi))

+ [MCG(Xi, 2θ)−MCG(Xi, θ)].
(2)

For notational brevity, we use MCGDi to denote

MCG(Xi, 2θ)−MCG(Xi, θ).

Algorithm 2 Basic Greedy with Additive Error Computa-

tion

1: X = ∅;A = 0
2: for i = 1 to k do

3: w = argmaxv{f(X ∪ {v} | g(X ∪ {v}) ≤ θ}.

4: if (i ̸= 1) then

5: u = argmaxv{f(X ∪ {v})|g(X ∪ {v}) ≤ 2θ}.

6: A = A + f(u|X) − f(w|X).

7: end if

8: X = X ∪ {w}.

9: end for

10: return A and X .

CLAIM 1.

OPTk,θ − f(Xk) ≤

(

O − 1

O

)k−1

(OPTk,θ − f(X1))

+

k−1
∑

i=1

MCDGi

The proof of the claim is provided in the Appendix.

Since f(X1) ≥
OPTk,θ

O , it follows that OPTk,θ−f(X1) ≤
O−1
O ·OPTk,θ. Plugging this in the inequality from Claim 1

we obtain that

f(Xk) ≥ (1− 1/e)OPTk,θ −
k−1
∑

i=1

MCDGi

This concludes the proof.

3.1 ADDITIVE ERROR: COMPUTATION

INTERPRETATION AND TIGHTNESS

Computation. We show that additive error term
∑k−1

i=i MCG(Xi, 2θ) −
∑k−1

i=1 MCG(Xi, θ) can be com-

puted very efficiently. Consider Algorithm 2. Consider an

iteration ℓ of this algorithm, note that u = MCG(Xℓ−1, θ)
and v = MCG(Xℓ−1, 2θ). Thus at the end of the algo-

rithm A equals
∑ℓ−1

i=i MCG(Xi, 2θ)−
∑ℓ−1

i=1 MCG(Xi, θ).
Clearly, the set X is the greedy solution. Note that the total

number of calls made by Algorithm 2 to f and g is O(nk),
which is asymptotically the same as the number of calls

made by the Algorithm 1. Here n is the size of the ground

set. As stated in the introduction, this paves way for a quick

understanding of the quality of the result generated by the

greedy algorithm.

Interpretation. We now discuss the interpretation of the ad-

ditive error. Informally, additive error captures the difference

between the solutions produced by the greedy algorithms

that are run with submodular budgets of 2θ and θ. More

precisely, it is the following. Let Xi be the set at the end of

the ith iteration of the greedy algorithm (with submodular

budget θ). Let wi be the maximum marginal gain possible

with respect to Xi with submodular budget of θ and ui be

the maximum marginal gain possible with respect to Xi

with submodular budget of 2θ. The additive loss is the sum

of the differences ui − wi.

Tightness. Next, we consider whether the approximation

factors in the above analysis can be improved. In the above,

the additive error is data-dependent, and it is natural to ask

whether this is necessary. Our next result establishes that the

additive error can not be made data-independent even if we

settle for a multiplicative factor that is lower than (1− 1/e).
We establish the following result whose proof appears in the

appendix.

THEOREM 2. There does not exist a polynomial time algo-

rithm A for SCSK and SCSK-C such that it outputs a set X
with guarantee f(X) ≥ d ·OPT −A where d < 1, A > 0
are universal constants.

3.2 EXTENSIONS

We extend the above proof and analysis in two different

directions. First, we can refine the above result and capture

the multiplicative error using the curvature of the function

f , denoted by cf and defined as 1 −minx
fV −{x}(x)

f(x) . The

proof of the following theorem is provided in the appendix.

THEOREM 3. Let X be the solution produced by Algo-

rithm 1, then

f(X) ≥
1

cf

(

1− (1−
cf
k
)k
)

OPTk,θ −A,

where A is the additive error same as in Theorem 1.

We next consider a slight modification of Algorithm 2. Note

that the for loop is executed exactly k times. Suppose that

during an iteration i, there is no element v such that g(X ∪
{v}) ≤ θ. Once this happens the algorithm does not append

any new elements to X in future iterations, however, the

value A could keep changing (as there could be elements

u for which g(X ∪ {u}) ≤ 2θ. Consider a modification

where the algorithm stops when it fails to find an element v
such that g(X ∪ {v}) ≤ θ. In this case, the algorithm will

produce a set X of size ℓ ≤ k. We can bound the quality of

the solution produced as stated in the following theorem.

THEOREM 4. Let OPTk,θ be the optimal value of f under

the constraints, and X be the solution with |X| = ℓ obtained

from above describe modified version of Algorithm 2, then

the following holds

f(X) ≥ (1− (1− 1/k)ℓ)[OPTk,θ] −
∑ℓ−1

i=1 [MCG(Xi, 2θ)−MCG(Xi, θ)]

The proof of the above theorem is exactly the same as the

proof of Theorem 1. Thus we omit the proof. Note that,

Algorithm 3 Algorithm for DIFF-C: LINEAR-APPROX

1: S = ϕ
2: for i = 0 to λ do

3: X = A(f, g, k, i)
4: if f(X) − g(X) > f(S) − g(S) then

5: S = X
6: end if

7: end for

8: return X

both the additive error and multiplicative error (which is

(1 − (1 − 1/k)ℓ) can be computed efficiently in this case

as well. The main difference between Theorem 1 and 4 is

that Theorem 1 has a higher (and thus better) multiplica-

tive factor but also a higher additive error (and thus worse)

compared to Theorem 4.

4 FROM SCSK-C TO DIFF-C

In this section, we design algorithms for DIFF-C, that

use algorithm for SCSK-C as a subroutine. Algorithm 3

(LINEAR-APPROX algorithm) presents the algorithm for

DIFF-C problem.

The bound λ on the iteration is based on the maximum

valuation of g; A denotes the algorithm for addressing the

SCSK-C problem. In each iteration i (i.e., for each valua-

tion of g), A is used to compute the set X for which f is

maximal under the constraint that g’s valuation is ≤ i and

|X| ≤ k. The difference between f and g at X is then com-

pared against the prior computed difference and the larger

of the two is considered as the current maximal difference.

THEOREM 5. Let f and g be two submodular functions

where f is monotone, and let h = f − g. In Algorithm 3,

if the subroutine A can solve SCSK-C exactly, then the

algorithm produces a set S such that h(S) ≥ h(OPT) −
1. Algorithm 3 makes O(λ) calls to A, where λ = k ×
maxe∈V g(e).

The proof is provided in the Appendix.

THEOREM 6. In Algorithm 3, suppose that Algorithm A is

the Basic Greedy Algorithm (Algorithm 1) for SCSK-C, let

h = f − g. If Algorithm 3 outputs a set G then

h(G) ≥ (1− 1/e)h(OPT)−A,

where the additive error A can be computed efficiently.

Proof. We will start with some notation. Let S∗
i is the op-

timal solution to the SCSK-C instance with θ = i. Let

Gi be the set returned by the Basic Greedy Algorithm for

SCSK-C instance with θ = i. Let A(i) be the correspond-

ing additive error. We first consider the case when the range

of g is integers. By Theorem 1, we have for 1 ≤ i ≤ λ,

f(Gi) ≥ (1− 1/e)f(S∗
i)−A(i) (3)

Let OPT be the optimal solution for h = f − g, and let

θ∗ = g(OPT). Note that h(OPT) = f(OPT) − θ∗. Let

the solution returned by the Algorithm 3 occur at i = β.

Thus the set G returned by the algorithm is Gβ and h(G) =
h(Gβ) = f(Gβ)− g(Gβ). Note that g(Gβ) must equal β,

otherwise the algorithm would not have returned the set Gβ .

Since the algorithm returned the set Gβ , we have f(Gβ)−
β ≥ f(Gθ∗)− θ∗. And we also know that by Inequality 3

f(Gθ∗) ≥ (1− 1/e) f(OPT)−A(θ∗). Thus

f(Gβ)− β
≥ f(Gθ∗)− θ∗

≥ (1− 1/e) f(OPT)−A(θ∗)− θ∗

= (1− 1/e) (f(OPT)− θ∗)− (θ∗/e+A(θ∗))
= (1− 1/e)h(OPT)− (θ∗/e+A(θ∗))

In the above we can view θ∗

e + A(θ∗) as additive error.

However, since we do not know the value of θ∗, we do

not know how to compute this value efficiently, instead

will exhibit and upper bound on this quantity that can be

comouted efficiently. One way to achieve this is to compute

i/e + A(i), 1,≤ i,≤ λ and take the maximum of these

values. This will be an upper bound on the additive error and

clearly, this quantity can be computed efficiently. Below we

employ another approach to bound the above quantity. We

will first derive a bound on θ∗. Building on this, we derive

an efficiently computable upper bound on θ∗

e +A(θ∗).

We know that f(S∗
β) − β is at most f(OPT) − θ∗ and

f(Gβ)−β is at least f(Gθ∗)−θ∗. A worst possible scenario

at which this happens is f(Gβ) is as large as possible and

f(Gθ∗) is as small as possible. This happens when f(Gβ) =
f(S∗

β) and f(Gθ∗) equals (1−1/e)f(OPT)−A(θ∗). Thus

in this scenario

f(Gβ)− β = f(S∗
β)− β ≤ f(OPT)− θ∗

Since f(Gθ∗) = (1 − 1/e)f(OPT) − A(θ∗), we obtain

that

f(Gβ)− β ≤
f(Gθ∗) +A(θ∗)

1− 1/e
− θ∗

Thus

θ∗ ≤
f(Gθ∗) +A(θ∗)

1− 1/e
− f(Gβ) + β

From this it follows that

θ∗ ≤ B = max
i

f(Gi) +A(i)

1− 1/e
− f(Gβ) + β

Thus B is the desired upperbound on θ∗. Note that for every

i, we can compute f(Gi)+A(i) while running Algorithm 3.

Thus the bound B can be efficiently computed. Let A =
maxi≤B(A(i) + i/e). Note that θ∗

e +A(θ∗) ≤ A. Thus we

have

h(S) = h(Gβ) ≥

(

1−
1

e

)

h(OPT)−A

When the range of g is not necessarily positive integers,

then, as in the proof of Theorem 5 the additive error will

have an additional factor of 1.

Computing the Additive Error. We note that the additive

error A can be computed efficiently as follows: When call

the Greedy algorithm for SCSK-C in Step 3, we can compute

A(i). Thus we keep track of A(i)+ i/e for every 1 ≤ i ≤ λ.

As discussed above we can compute the value B while run-

ning the algorithm. This implies that A = maxi≤B(A(i)+i)
can be computed efficiently.

LOG-APPROX Algorithm: a faster approximation for

DIFF-C. We now make a few remarks about improving the

runtime of Algorithm 3. The run time of the is proportional

to λ, which in turn depends on the range of g Ð the algo-

rithm is invoking A(f, g, k, i) for every i, 1 ≤ i ≤ λ. This

could be expensive in practice. Thus we propose a modifica-

tion to the Algorithm; we refer to the modified version as

LOG-APPROX algorithm. This algorithm calls A(f, g, k, 2i)
for every i, 1 ≤ log λ. This will ensure that we make only

log λ invocations of the subroutine A and thus drastically

reduce the run time. By doing the same analysis as above

we can prove that h(S) ≥ 1
2 (1− 1/e)h(OPT)−A.

5 EXPERIMENTS

In this section, we empirically examine the performance

of SCSK-C and DIFF-C on the application of Informa-

tion Diffusion in social networks. All the algorithms are

implemented in C++ and run on a Linux server with AMD

Opteron 6320 CPU (8 cores and 2.8 GHz) and 64GB RAM.

Information Diffusion. The diffusion of information in a

social network under various probabilistic diffusion models

is captured as a submodular function Kempe et al. [2003].

For a (seed) set X ⊆ V , the submodular function f(X)
is the expected number of users influenced by X . On the

other hand, there is often some cost function g associated

with each seed set; a candidate g, in the context of social

influence, quantifies the value of a set of entities in the

network based on the number of followers of the set. We

use such a submodular cost function in our experiments.

The goal is to find a seed set of size ≤ k that maximizes f
(influence) while minimizing g (cost).

Datasets. For the application of information diffusion,

we collect six directed networks to conduct experiments:

NetHept Net [2009], p2p-Gnutella31 Ripeanu et al. [2002],

Facebook Leskovec and Mcauley [2012], Bitcoin Kumar

et al. [2016], Wikipedia Leskovec et al. [2010] and DBLP

Yang and Leskovec [2012]. The number of nodes of them

ranges from 3,783 to 317,080. Due to space limitations, we

present the plots only for three of these graphs.

Algorithm 4 Budget-Conscious Greedy Algorithm

1: Input: θ1, · · · , θk .

2: X = ∅
3: for i = 1 to k do

4: If there is no v such that g(X ∪ {v}) ≤ θi, then

5: X remains unchanged

6: Else X=X ∪ {argmaxvf(X ∪ {v})|g(X ∪ {v}) ≤ θi}
7: end for

8: return X

5.1 EXPERIMENTS FOR SCSK-C

The main objective we seek in these experiments is to

demonstrate that the approximation factors can be com-

puted efficiently, which helps to gain an understanding of

the quality of the solution. For the Natural greedy algorithm

(Algorithm 2), we compute the additive error produced and

also study how the additive error changes as the submodular

budget θ increases.

Comparison Algorithms. We compare the solutions pro-

duced by the Natural Greedy algorithm (Algorithm 2) with

two variants. Note that during each iteration of the Algo-

rithm 2, the entire submodular budget θ is made available.

We obtain a budget-conscious variant of this algorithm that

allows iteration i to spend at most θi < θ budget. Algorithm

4 describes this strategy. By following an analysis that is

very similar to that of Theorem 1, we can show that this

algorithm produces a set X for such that f(X) is at least

(1− 1/e)f(OPT)−A, and A can be computed efficiently.

We use the following budget-conscious algorithms (Algo-

rithm 4). Equal Partition: Use θ/k, 2θ/k, · · · θ as input

to the budget-conscious Greedy algorithm. Random Parti-

tion: Select a random sequence of thresholds to use in the

budget-conscious Greedy Algorithms.

0 50 100 150 200 250 300

200

400

600

800

1,000

θ

f
(X

)

0 50 100 150 200 250 300

0

10

20

30

40

θ

A
d

d
it

iv
e

E
rr

o
r

Basic Greedy Random Partition

Equal Partition

Figure 1: SCSK-C, NetHept; k = 50, a) θ vs. f(X); b) θ
vs. Additive Error with submodular cost on Basic Greedy,

Random Partition and Equal Partition

Results Analyses. We chose k = 50 and varied the sub-

modularity budget θ from 10 to 300. The results are shown

in Fig. 1 to 4. As can be seen, the Basic Greedy, Equal

Partition and Random Partition algorithms produce very

similar results, except for Facebook. It can be seen from

Fig. 1b, 2b, 4b, that as the submodular budget increases,

the additive error decreases. Recall that the additive factor

is approximately the difference between the quality of the

0 50 100 150 200 250 300

1.4

1.6

1.8

2

·104

θ

f
(X

)

0 50 100 150 200 250 300

0

200

400

600

800

1,000

θ

A
d

d
it

iv
e

E
rr

o
r

Figure 2: SCSK-C, p2p-Gnutella31; k = 50, a) θ vs. f(X);
b) θ vs. Additive Error with submodular cost on Basic

Greedy, Random Partition and Equal Partition

0 50 100 150 200 250 300

50

100

150

200

θ

f
(X

)

0 50 100 150 200 250 300

0

10

20

30

40

θ

A
d

d
it

iv
e

E
rr

o
r

Figure 3: SCSK-C, Wikipedia; k = 50, a) θ vs. f(X); b) θ
vs. Additive Error with submodular cost on Basic Greedy,

Random Partition and Equal Partition

seed sets produced with submodular constraints θ and 2θ.

Thus all θ grows larges there may not be much difference

between the constraints g(X) ≤ θ and g(X) ≤ 2θ. It is

likely that a set that satisfies the latter constraint will also

satisfy the former constraint.

We analyze the quality of the produced solutions. For

NetHept, p2p-Gnutella31 and DBLP, the additive error is

less than 10% of f(X) most of the time and much smaller

many times. When this happens, we can conclude that for all

these sets f(X) ≥ 0.53f(OPT). For example, for NetHept,

when k = 50, θ = 200, the greedy algorithm produced

a solution X of size 50, and the additive error is 0 and

f(X) = 968.21. This implies that f(X) ≥ 0.63f(OPT).
Another example is DBLP, at θ = 20, Basic Greedy pro-

duced a solution with value 13810 and the additive error is

1044. This implies that additive error is less than 7.5% of the

optimal value. Thus we can be guaranteed that the value pro-

duced by the algorithm is at least 0.55f(OPT). For graphs

such as Facebook, Bitcoin, and Wikipedia, additive errors

are higher. For example, for Bitcoin with θ = 160, the Basic

Greedy produced a solution with value 110, whereas the ad-

ditive error is 26. This implies that the value of the solution

is at least 0.4f(OPT). The density of the graphs could ex-

plain this phenomenon. The Average degrees of Facebook,

Bitcoin, and Wikipedia graphs are 43, 12, and 29, whereas,

for the other graphs, the average degree is less than 8. For

higher average degree graphs, there is a larger difference

between the constraints g(X) ≤ θ and g(X) ≤ 2θ.

In terms of running time, all the three algorithms can finish

in 12 seconds on the NetHept network with over 15,000

nodes, demonstrating the time-efficiency of our algorithm

(the details are presented in supplementary materials). Com-

pared to Random Partition and Basic Greedy algorithms,

Equal Partition is faster because it started from a small cost,

0 50 100 150 200 250 300

1

1.5

2

2.5

3

·104

θ

f
(X

)

0 50 100 150 200 250 300

0

500

1,000

1,500

θ

A
d

d
it

iv
e

E
rr

o
r

Figure 4: SCSK-C, DBLP; k = 50, a) θ vs. f(X); b) θ
vs. Additive Error with submodular cost on Basic Greedy,

Random Partition and Equal Partition

which allows for faster identification of the element incur-

ring maximal marginal gain within the cost budget (at a

specific iteration). In contrast, Random Partition can gen-

erate various cost sequences while the submodular cost of

each iteration for Basic Greedy is fixed.

5.2 EXPERIMENTS FOR DIFF-C

20 40 60 80 100

0

200

400

600

800

k

f
(X

)
−

g
(X

)

20 40 60 80 100

60

80

100

k

A
d

d
it

iv
e

E
rr

o
r

LOG-APPROX LINEAR-APPROX supSub

Figure 5: DIFF-C, NetHept; a) Budget vs Difference on

LOG-APPROX, LINEAR-APPROX and supSub; b) Budget

vs Additive error on LOG-APPROX and LINEAR-APPROX

20 40 60 80 100

0.5

1

1.5

2

·104

k

f
(X

)
−

g
(X

)

20 40 60 80 100

1,450

1,460

1,470

k

A
d

d
it

iv
e

E
rr

o
r

Figure 6: DIFF-C, p2p-Gnutella31; a) Budget vs Difference

on LOG-APPROX, LINEAR-APPROX and supSub; b) Budget

vs Additive error on LOG-APPROX, LINEAR-APPROX

We use Basic Greedy of SCSK-C (Algorithm 1) as a sub-

routine of LOG-APPROX and LINEAR-APPROX.

Baseline Algorithm. We compare our methods against the

supSub method proposed by Iyer and Bilmes [2012a]. This

replaces the submodular function g with a surrogate modular

function g′ and attempts to maximize f−g′. In addition, this

method iteratively updates the surrogate modular function g′

the seed set until convergence. The work of Jin et al. [2021b]

presents the best known algorithm (called ROI-Greedy) to

maximize f − g′, when f is submodular and g′ is modular.

In our implementation of supsub, we use this algorithm. We

vary the cardinality constraint k from 10 to 100 to compare

our LOG-APPROX and LINEAR-APPROX with supSub.

Results Analyses. As we see in Fig. 6 to 8, Algorithm

LOG-APPROX and LINEAR-APPROX perform better than

the supSub method. Interestingly, we observe that LOG-

APPROX and LINEAR-APPROX produced similar results on

NetHept, p2p-Gnutella31, Bitcoin and DBLP. The plots of

the Bitcoin network are presented in supplementary materi-

als. Based on this observation, it is sufficient to use Algo-

rithm LOG-APPROX when the cost function is submodular,

as it is fast and only sacrifices a small amount of objec-

tive value. While supSub performed well on Wikipedia, it

required more time to converge on the Bitcoin network.

Overall, there is still a substantial performance gap between

our LINEAR-APPROX/LOG-APPROX and supSub. Details

of the timing results are presented in supplementary materi-

als. When we examine the additive errors, we find the same

pattern as for SCSK-C. For low average degree graphs,

the average (over all choices of k) additive errors are small

(8%, 4%, 6% for NetHept, P2P and DBLP) and larger for

graphs denser graphs (29%, 43%, 13% for Wiki, Facebook,

and Bitcoin). This implies that for the Nethept graph, the (av-

erage) quality of the solution produced is at least 0.55OPT
whereas for the Wiki graph, the (average) quality of the

solution is at least 0.34OPT .

20 40 60 80 100

50

100

150

200

250

300

k

f
(X

)
−

g
(X

)

20 40 60 80 100

20

40

60

80

100

k

A
d

d
it

iv
e

E
rr

o
r

Figure 7: DIFF-C, Wikipedia; a) Budget vs Difference on

LOG-APPROX, LINEAR-APPROX and supSub; b) Budget

vs Additive error on LOG-APPROX and LINEAR-APPROX

20 40 60 80 100

1

1.5

2

2.5

·104

k

f
(X

)
−

g
(X

)

20 40 60 80 100

1,200

1,400

1,600

1,800

2,000

k

A
d

d
it

iv
e

E
rr

o
r

Figure 8: DIFF-C, DBLP; a) Budget vs Difference on LOG-

APPROX, LINEAR-APPROX and supSub; b) Budget vs Ad-

ditive error on LOG-APPROX and LINEAR-APPROX

6 CONCLUSIONS

In this work, for SCSK-C and DIFF-C, we designed al-

gorithms, and established multiplicative-additive approxi-

mation guarantees on the quality of the solutions produced

while ensuring that the multiplicative factor and the additive

error can be computed efficiently. An interesting research

direction is to extend this methodology to other submodular

optimization problems.

Acknowledgements

The work was supported in part by the NSF grants 1934884

and 2130536.

References

Nethept. https://microsoft.com/en-us/

research/people/weic/, 2009.

Niv Buchbinder and Moran Feldman. Submodular func-

tions maximization problems. In Teofilo F. Gonzalez,

editor, Handbook of Approximation Algorithms and Meta-

heuristics, Second Edition, Volume 1: Methologies and

Traditional Applications, pages 753±788. Chapman and

Hall/CRC, 2018.

Niv Buchbinder, Moran Feldman, and Mohit Garg. Deter-

ministic (1/2+ ε)-approximation for submodular maxi-

mization over a matroid. In Proceedings of the Thirtieth

Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 241±254. SIAM, 2019.

Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Von-

drák. Maximizing a monotone submodular function sub-

ject to a matroid constraint. SIAM Journal on Computing,

40(6):1740±1766, 2011.

Michele Conforti and Gérard Cornuéjols. Submodular

set functions, matroids and the greedy algorithm: Tight

worst-case bounds and some generalizations of the rado-

edmonds theorem. Discret. Appl. Math., 7(3):251±274,

1984.

Victoria G. Crawford, Alan Kuhnle, and My T. Thai. Sub-

modular cost submodular cover with an approximate ora-

cle. In International Conference on Machine Learning,

2019.

Moran Feldman, Zeev Nutov, and Elad Shoham. Practi-

cal budgeted submodular maximization. arXiv preprint

arXiv:2007.04937, 2020.

Chris Harshaw, Moran Feldman, Justin Ward, and Amin Kar-

basi. Submodular maximization beyond non-negativity:

Guarantees, fast algorithms, and applications. In Inter-

national Conference on Machine Learning, pages 2634±

2643. PMLR, 2019.

Rishabh Iyer and Jeff Bilmes. Submodular optimization

with submodular cover and submodular knapsack con-

straints. In International Conference on Neural Informa-

tion Processing Systems, pages 2436±2444, USA, 2013.

Curran Associates Inc. URL http://dl.acm.org/

citation.cfm?id=2999792.2999884.

Rishabh K. Iyer and Jeff A. Bilmes. Algorithms

for approximate minimization of the difference be-

tween submodular functions, with applications. CoRR,

abs/1207.0560, 2012a. URL http://arxiv.org/

abs/1207.0560.

Rishabh K. Iyer and Jeff A. Bilmes. Algorithms for approxi-

mate minimization of the difference between submodular

functions, with applications. In Conference on Uncer-

tainty in Artificial Intelligence, 2012b.

Rishabh K. Iyer, Stefanie Jegelka, and Jeff A. Bilmes. Fast

semidifferential-based submodular function optimization.

In Proceedings of the 30th International Conference on

Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21

June 2013, volume 28 of JMLR Workshop and Conference

Proceedings, pages 855±863. JMLR.org, 2013.

Stefanie Jegelka and Jeff A. Bilmes. Submodularity beyond

submodular energies: Coupling edges in graph cuts. In

The 24th IEEE Conference on Computer Vision and Pat-

tern Recognition, CVPR 2011, Colorado Springs, CO,

USA, 20-25 June 2011, pages 1897±1904. IEEE Com-

puter Society, 2011.

Tianyuan Jin, Yu Yang, Renchi Yang, Jieming Shi, Keke

Huang, and Xiaokui Xiao. Unconstrained submodular

maximization with modular costs: Tight approximation

and application to profit maximization. Proc. VLDB En-

dow., 14(10):1756±1768, 2021a.

Tianyuan Jin, Yu Yang, Renchi Yang, Jieming Shi, Keke

Huang, and Xiaokui Xiao. Unconstrained submodular

maximization with modular costs: Tight approximation

and application to profit maximization. Proceedings of

the VLDB Endowment, 14(10):1756±1768, 2021b.

Yoshinobu Kawahara and Takashi Washio. Prismatic algo-

rithm for discrete D.C. programming problem. In John

Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fer-

nando C. N. Pereira, and Kilian Q. Weinberger, editors,

Advances in Neural Information Processing Systems 24:

25th Annual Conference on Neural Information Process-

ing Systems 2011. Proceedings of a meeting held 12-

14 December 2011, Granada, Spain, pages 2106±2114,

2011.

D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the

spread of influence through a social network. In ACM

SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pages 137±146, 2003.

Andreas Krause and Daniel Golovin. Submodular func-

tion maximization. In Lucas Bordeaux, Youssef Hamadi,

and Pushmeet Kohli, editors, Tractability: Practical Ap-

proaches to Hard Problems, pages 71±104. Cambridge

University Press, 2014.

Andreas Krause, Ajit Paul Singh, and Carlos Guestrin. Near-

optimal sensor placements in gaussian processes: Theory,

efficient algorithms and empirical studies. J. Mach. Learn.

Res., 9:235±284, 2008.

Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and

Christos Faloutsos. Edge weight prediction in weighted

signed networks. In Data Mining (ICDM), 2016 IEEE

16th International Conference on, pages 221±230. IEEE,

2016.

Jure Leskovec and Julian Mcauley. Learning to discover

social circles in ego networks. Advances in neural infor-

mation processing systems, 25, 2012.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg.

Predicting positive and negative links in online social

networks. In Proceedings of the 19th international con-

ference on World wide web, pages 641±650, 2010.

Wenxin Li, Moran Feldman, Ehsan Kazemi, and Amin Kar-

basi. Submodular maximization in clean linear time.

In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,

and Kyunghyun Cho, editors, Advances in Neural In-

formation Processing Systems, 2022. URL https:

//openreview.net/forum?id=JXY11Tc9mwY.

Hui Lin and Jeff Bilmes. How to select a good training-data

subset for transcription: Submodular active selection for

sequences. In Annual Conference of the International

Speech Communication Association, pages 2859±2862,

01 2009.

Hui Lin and Jeff Bilmes. Optimal selection of limited vo-

cabulary speech corpora. In Annual Conference of the

International Speech Communication Association, pages

1489±1492, 01 2011.

M. Narasimhan and J. Bilmes. A submodular-supermodular

procedure with applications to discriminative structure

learning. In (UAI), pages 404±412, 2005.

George Nemhauser, Laurence Wolsey, and M L. Fisher. An

analysis of approximations for maximizing submodular

set functions. Mathematical Programming, 14:265±294,

12 1978a.

George L Nemhauser, Laurence A Wolsey, and Marshall L

Fisher. An analysis of approximations for maximizing

submodular set functionsÐi. Mathematical program-

ming, 14(1):265±294, 1978b.

Matei Ripeanu, Ian Foster, and Adriana Iamnitchi. Mapping

the gnutella network: Properties of large-scale peer-to-

peer systems and implications for system design. arXiv

preprint cs/0209028, 2002.

Maxim Sviridenko. A note on maximizing a submodular

set function subject to a knapsack constraint. Operations

Research Letters, 32(1):41±43, 2004.

Peng-Jun Wan, Ding-Zhu Du, Panos Pardalos, and Weili

Wu. Greedy approximations for minimum submodular

cover with submodular cost. Computational Optimization

and Applications, 45(2):463±474, Mar 2010. ISSN 1573-

2894. doi: 10.1007/s10589-009-9269-y. URL https:

//doi.org/10.1007/s10589-009-9269-y.

Jaewon Yang and Jure Leskovec. Defining and evaluating

network communities based on ground-truth. In Proceed-

ings of the ACM SIGKDD Workshop on Mining Data

Semantics, pages 1±8, 2012.

Grigory Yaroslavtsev, Samson Zhou, and Dmitrii Avdiukhin.

ªbring your own greedyº+ max: near-optimal 1/2-

approximations for submodular knapsack. In Interna-

tional Conference on Artificial Intelligence and Statistics,

pages 3263±3274. PMLR, 2020.

	Introduction
	Hardness of Approximation Factors
	Greedy Algorithm for SCSK-C
	Additive Error: Computation Interpretation and Tightness
	Extensions

	From SCSK-C to Diff-C
	Experiments
	Experiments for SCSK-C
	Experiments for Diff-C

	Conclusions

