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Abstract

We design efficient distance approximation algorithms for several classes of structured high-
dimensional distributions. Specifically, we show algorithms for the following problems:

— Given sample access to two Bayesian networks P, and P, over known directed acyclic
graphs G; and Gy having n nodes and bounded in-degree, approximate dry (P1, P2) to
within additive error e using poly(n,e) samples and time

— Given sample access to two ferromagnetic Ising models P, and P, on n variables with
bounded width, approximate dry (Py, P) to within additive error € using poly(n,¢) sam-
ples and time

— Given sample access to two n-dimensional gaussians P; and P,, approximate dry (Py, Ps)
to within additive error € using poly(n,e) samples and time

— Given access to observations from two causal models P and @ on n variables that are
defined over known causal graphs, approximate dry (P,,Q,) to within additive error e
using poly(n,e) samples, where P, and @, are the interventional distributions obtained
by the intervention do(A = a) on P and @ respectively for a particular variable A
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Our results are the first efficient distance approximation algorithms for these well-studied prob-
lems. They are derived using a simple and general connection to distribution learning algorithms.
The distance approximation algorithms imply new efficient algorithms for tolerant testing of
closeness of the above-mentioned structured high-dimensional distributions.
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1 Introduction

A fundamental challenge in statistics and computer science is to devise hypothesis tests that use
a small number of samples. A classic problem of this type is identity testing (or, goodness-of-fit
testing): given samples from an unknown distribution P over a domain S, does P equal a specific
reference distribution Q7 A sequence of works [Pan08, BFR™13, VV14, CDVV14] in the property
testing literature has pinned down the finite sample complexity of this problem. It is known that
with O(|S|*/2672) samples from P, one can, with probability at least 2/3, distinguish whether
P = Q or whether dry(P,Q) > ¢; also, Q(|S|'/?¢72) samples are necessary for this task. A
related problem is closeness testing (or, two-sample testing): given samples from two unknown
distributions P and Q over S, does P = Q? Here, it is known that ©(|S|?/3e~4/3 + |S|1/272)
samples are necessary and sufficient to distinguish P = @ from dry (P, Q) > ¢ with probability
at least 2/3. The corresponding algorithms for both identity and closeness testing run in time
polynomial in |S| and e~ 1.

However, in order to solve these testing problems in many real-life settings, there are two issues
that need to be surmounted.

— High dimensions: In typical applications, the data is described using a huge number of
(possibly redundant) features; thus, each item in the dataset is represented as a point in a
high-dimensional space. If § = X", then from the results quoted above, identity testing or
closeness testing for arbitrary probability distributions over S requires 2°4) many samples,
which is clearly unrealistic. Hence, we need to restrict the class of input distributions.

— Approximation: A high-dimensional distribution requires a large number of parameters to
be specified. So, for identity testing, it is unlikely that we can ever hypothesize a reference
distribution @ such that it exactly equals the data distribution p. Similarly, for closeness
testing, two data distributions P and ) are most likely not exactly equal. Hence, we would like
to design tolerant testers for identity and closeness that distinguish between drpy (P, Q) < &1
and d7y (P, Q) > £ where €1 and ey are user-supplied parameters.

In this work, we design sample- and time-efficient tolerant identity and closeness testers for nat-
ural classes of distributions over X". More precisely, we focus on distance approzimation algorithms:

Definition 1.1. Let D1, Dy be two families of distributions over ¥™. A distance approximation
algorithm for (Dy,Dy) is a randomized algorithm A which takes as input € € (0,1), and sample
access to two unknown distributions P € D1,Q € Dy. The algorithm A returns as output a value
v € [0,1] such that, with probability at least 2/3:

v—e<dv(PQ) <vy+te
If D1 = Dy = D, then we refer to such an algorithm as a distance approximation algorithm for D.

Remark 1.2. The success probability can be amplified to 1 — & by taking the median of O(logé—1)
independent repetitions of the algorithm with success probability 2/3.

The distance approximation problem and the tolerant testing problem are equivalent in the
setting we consider. A distance approximation algorithm for (Dj, D) immediately gives a toler-
ant closeness testing algorithm for two input distributions P € Dy and Q € Dy with the same



asymptotic sample and time complexity bounds. Also a tolerant closeness testing algorithm for
distributions in D; and D9 gives a distance approximation algorithm for (Dy, Ds), although with
slightly worse sample and time complexity bounds (resulting from a binary search approach). In-
deed this connection was explored in the property testing setting in [PRR06] which established a
general translation result. Thus, in the rest of this paper we will focus on the distance approxi-
mation problem and the results translate to appropriate tolerant testing problems. The bounds on
the sample and time complexity will be phrased in terms of the description lengths of D; and Ds.

2 New Results

We design new sample and time efficient distance approximation algorithms for several well-studied
families of high-dimensional distributions given sample access. We accomplish this by prescribing a
general strategy for designing distance approximation algorithms. In particular, we first design an
algorithm to approximate the distance between a pairs of distributions. However, this algorithm
needs both sample access and an approximate evaluation oracle. We crucially observe that a
learning algorithm that outputs a representation of the unknown distribution given sample access,
can often efficiently simulate the approximation oracle. Thus the final algorithm only needs sample
access. This general strategy coupled with appropriate learning algorithms, leads to a number of
new distance approximation algorithms (and hence new tolerant testers) for well-studied families
of high-dimensional probability distributions.

2.1 Distance Approximation from EVAL Approximators

Given a family of distributions D, a learning algorithm for D is an algorithm £ that on input
e € (0,1) and sample access to a distribution P promised to be in D, returns the description of a
distribution P such that with probability at least 2 /3, dry (P, 15) < e. It turns out that for many
natural distribution families D over X", one can easily modify known learning algorithms for D
to efficiently output not just a description of P but the value of P(z) = Pr, p[X = x| for any
x € X". More precisely, they yield what we call EVAL approximators:

Definition 2.1. Let P be a distribution over a finite set U. A function Ep : U — [0,1] is a (8,7)-
EVAL approximator for P if there exists a distribution P over U such that

~ drv(P,P)< B

~VzeU, (1-9) P(z) < Ep(z) < (1+7) - P)
Typically, the learning algorithm outputs parameters that describe ]5, and then ]5(33) can be com-
puted (or approximated) efficiently in terms of these parameters.

Example 2.2. Suppose D is the family of product distributions on {0,1}". That is, any P € D
can be described in terms of n parameters pi,...,p, where each p; is the probability of the i’th
coordinate being 1. It is folklore that there is a learning algorithm which gets O(ne~2) samples from
P and returns the parameters p1,...,Pn of a product distribution P satisfying dry (P, ]5) < € with
probability 2/3. It is clear that given pi, ..., P, we can compute P(m) for any x € {0,1}" in linear
time as: .

P(x) =] @i pi+ (1 =) (1-pp))

=1



Thus, there is an algorithm that takes as input sample access to any product distribution P, has
sample and time complexity O(ne=?), and returns a circuit implementing an (e,0)-EVAL approzi-
mator for P. Moreover, any call to the circuit returns in O(n) time.

We establish the following link between EVAL approximators and distance approximation.

Theorem 2.3. Suppose we have sample access to distributions P and Q over a finite set. Also,
suppose we have access to (g,¢)-EVAL approxzimators for P and Q. Then, with probability at least
2/8, drv (P, Q) can be approzvimated to within O(e) additive error using O(¢=2) samples from P
and O(s72) calls to the two EVAL approzimators.

Thus, in the context of Example 2.2, the above theorem immediately implies a distance approx-
imation algorithm for product distributions using O(ne~2) samples and time. Theorem 2.3 extends
the work of Canonne and Rubinfeld [CR14] who considered the setting § = v = 0. We discuss the
relation to prior work in Section 2.7.

2.2 Bayesian Networks

A standard way to model structured high-dimensional distributions is through Bayesian networks.
A Bayesian network describes how a collection of random variables can be generated one-at-a-time
in a directed fashion, and they have been used to model beliefs in a wide variety of domains (see
[JNO7, KF09] for many pointers to the literature). Formally, a probability distribution P over n
variables X1,...,X,, € X is said to be a Bayesian network on a directed acyclic graph G with n
nodes if* for every i € [n], X; is conditionally independent of Xnon-descendants(i) 21ven Xparents(i)-
Equivalently, P admits the factorization:

P(z) = Pr[X =x] =

Pr, Pr [X; = z; | Vj € parents(i), X; = ;] forallz € ¥" (1)

X~P
1

n

)

For example, product distributions are Bayesian networks on the empty graph.
Invoking our framework of distance approximation via EVAL approximators on Bayesian net-
works, we obtain the following:

Theorem 2.4. Suppose G and Go are two DAGs on n vertices with in-degree at most d. Let Dy
and Dy be the family of Bayesian networks on Gy and Go respectively. Then, there is a distance ap-
prozimation algorithm for (D1, Ds) that gets m = O(|X|" ne=2) samples and runs in O(|S|*1mn)
time.

We design a learning algorithm for Bayesian networks on a known DAG G that uses O(ne—2|8|¢1)
samples where d is the maximum in-degree. It returns another Bayesian network PonG , described
in terms of the conditional probability distributions X; | Zparents(s) for all i € [n] and all settings
of Tparents(i) € »deg(®) - Given these conditional probability distributions, we can easily obtain P(ac)
for any z, and hence, an (e,0)-EVAL approximator for P, by using (1). Theorem 2.4 then follows
from Theorem 2.3.

Theorem 2.4 extends the works of Daskalakis et al. [DP17] and Canonne et al. [CDKS17] who
designed efficient non-tolerant identity and closeness testers for Bayesian networks. Their arguments

*We use the notation Xg to denote {X; : i € S} for a set S C [n].



appear to be inadequate to design tolerant testers. In addition, their results for general Bayesian
networks were restricted to the case when G; = G3. Theorem 2.4 immediately gives efficient
tolerant identity and closeness testers for Bayesian networks even when G # G2. Canonne et
al. [CDKS17] obtain better sample complexity but they make certain balancedness assumption on
each conditional probability distribution. Without such assumptions, the sample complexity of our
algorithm is optimal.

2.3 Ising Models

Another widely studied model of high-dimensional distributions is the Ising model. It was originally
introduced in statistical physics as a way to study spin systems ([Isi25]) but has since emerged
as a versatile framework to study other systems with pairwise interactions, e.g., social networks
([MS10]), learning in coordination games ([El93]), phylogeny trees in evolution ([Ney71, Far73,
Cav78]) and image models for computer vision ([GG86]). Formally, a distribution P over variables
X1,...,Xn € {—1,1} is an Ising model if for all z € {—1,1}"™:

exp Zz . nAlxlx+021 nl Ti
P&} = ( 2jeln) AijTiT] efn] ) 2

Zze{—l,l}" exp (Zi#e[n} Aijzizj + 0 Zie[n} Zi)

where 6 € R is called the external field and A;; are called the interaction terms. An Ising model is
called ferromagnetic if all A;; > 0. The width of an Ising model as in (2) is max; > _; [A;;| + 16].
Invoking our framework on Ising models, we obtain:

Theorem 2.5. Let D be the family of ferromagnetic Ising models having width at most d. Then,
there is a distance approzimation algorithm for D with sample complezity m = e©(@e=4n8 log(%)
and runtime O(mn? + e 2n'"logn).

We use the parameter learning algorithm by Klivans and Meka [KM17] that learns the parame-
ters 0, Ay; of another Ising model P such that P(z) is a (14 ¢) approximation of P(x) for every .
This results holds for any Ising model, ferromagnetic or not. But in order to get an EVAL approx-
imator, we need to compute P(x) from é, Aw In general, the partition function (i.e., the sum in
the denominator of Equation (2)) may be #P-hard to compute, but for ferromagnetic Ising models,
Jerrum and Sinclair [JS93] gave a PTAS for this problem. Thus, we obtain an (g, ¢)-EVAL approx-
imator for ferromagnetic Ising models that runs in polynomial time, and then Theorem 2.5 follows
from Theorem 2.3.

Daskalakis et al. [DDK19] studied independent testing and identity testing for Ising models
and design non-tolerent testers. Their sample and time complexity have polynomial dependence
on the width instead of exponential (as in our case), but their algorithms seem to be inherently
non-tolerant. In contrast, our distance approximation algorithm leads to a tolerant closeness-
testing algorithm for ferromagnetic Ising models. Also, Theorem 2.5 offers a template for distance
approximation algorithms whenever the partition function can be approximated efficiently. In
particular, Sinclair et al [SST14] showed a PTAS for computing the partition function of anti-
ferromagnetic Ising models in certain parameter regimes.

We also show that we can efficiently approximate the distance to uniformity for any Ising model,
whether ferromagnetic or not. Below, U is the uniform distribution over {—1,1}".



Theorem 2.6. There is an algorithm which, given independent samples from an unknown Ising
model P over {—1,1}" with width at most d, takes m = O(e?De=*n8log(n/e)+e " log? %) samples,
O(mn?® + e "n%log® 1) time and returns a value e such that |e — dpy (P,U)| < € with probability at
least 7/12, where U 1is the uniform distribution over {—1,1}™.

The proof of Theorem 2.6 again proceeds by learning the parameters é, A of an Ising model
P that is a multiplicative approximation fo P. As we mentioned earlier, computing the partition
function is in general hard, but now, we can efficiently estimate the ratio P(x)/P(y) between any
two z,y € {—1,1}". At this point, we invoke the uniformity tester shown by Canonne et al. [CRS15]
that uses samples from the input distribution as well as pairwise conditional samples (the so-called
PCOND oracle model).

2.4 Multivariate Gaussians

Theorem 2.3 applies also when ¥ is not finite, e.g., the reals. Then, in the definition of the (3, ~)-
EVAL approximator Ep for a distribution P, we require that there is a distribution P such that
drvy (P, ]5) < B and Ep is a (1 £ )-approximation of the probability density function of P at any .

The most prominent instance in which we can apply our framework in this setting is for the
class of multivariate gaussians, again another widely used model for high-dimensional distributions
used throughout the natural and social sciences (see, e.g., [MDLW18]). There are two main reasons
for their ubiquity. Firstly, because of the central limit theorem, any physical quantity that is a
population average is approximately distributed as a gaussian. Secondly, the gaussian distribution
has maximum entropy among all real-valued distributions with a particular mean and covariance;
therefore, a gaussian model places the least restrictions beyond the first and second moments of
the distribution.

For ;1 € R™ and positive definite 3 € R™*" the distribution N (u, ) has the density function:

1
(27’()”/2

1 _
N 55 ) = e (-3t - w) 3)

Invoking our framework on multivariate gaussians, we obtain:

Theorem 2.7. Let D be the family of multivariate gaussian distributions, {N(u,X) : p € R", 3 €
R™™ % > 0}. Then, there is a distance approzimation algorithm for D with sample complezity
O(n?e72) and runtime O(n¥e~2) (where w > 2 is the matriz multiplication constant).

It is folklore that for any P = N(u,Y), the empirical mean ji and empirical covariance )y
obtained from O(n%~2) samples from P determines a gaussian P = N (j1, %) satisfying dpy (P, P) <
¢ with probability at least 3/4. To get an EVAL approximator, we need evaluations of N (f, i]; x) for
any x as in (3). Since det(3) is computable in time O(n®), Theorem 2.7 follows from Theorem 2.3.

This result is interesting because there is no closed-form expression known for the total vari-
ation distance between two gaussians of specified mean and covariance. Devroye et al. [DMR18§]
give expressions for lower- and upper-bounding the total variation distance that are a constant
multiplicative factor away from each other. On the other hand, our approach (see Corollary 6.3)
yields a polynomial time randomized algorithm that, given ui, X1, ug2, 29, approximates the total
variation distance dpy (N (p1,31), N (u2, X2)) upto +e additive error.



2.5 Interventional Distributions in Causal Models

A causal model for a system of random variables describes not only how the variables are correlated
but also how they would change if they were to be externally set to prescribed values. To be
more formal, we can use the language of causal Bayesian networks due to Pearl [Pea09]. A causal
Bayesian network is a Bayesian network with an extra modularity assumption: for each node i in
the network, the dependence of X; on X4 ents(s) 1S an autonomous mechanism that does not change
even if other parts of the network are changed.

Suppose P is a causal Bayesian network over variables X,..., X, on a directed acyclic graph
G with nodes labeled {1,...,n}. The nodes in G are partitioned into two sets: observable V
and hidden U. A sample from the observational distribution P yields the values of variables
Xy = {X; :€ V}. The modularity assumption allows us to define the result of interventions on
causal Bayesian networks. An intervention is specified by a subset S C V and an assignment
s € 251 In the resulting interventional distribution, the variables in S are fixed to s, while the
variables X; for ¢ ¢ S are sampled in topological order as it would have been in the original
Bayesian network, according to the conditional probability distribution X; | X parents(i)s where
Xparents(i) consist of either variables previously sampled in the topological order or variables in S
set by the intervention. Finally, the variables in U are marginalized out. The resulting distribution
on Xy is denoted Pk.

The question of inferring the interventional distribution from samples is a fundamental one.
We focus on atomic interventions, i.e., where the intervention is on a single node A € V. In this
case, Tian and Pearl [TP02a, Tia02] exactly characterized the graphs G such that for any causal
Bayesian network P on GG and for any assignment a € 3 to X 4, the interventional distribution P, is
identifiable! from the observational distribution P on Xy,. For identification to be computationally
effective, it is also natural to require a strong positivity condition on P, defined in Section 7. We
show that we can efficiently estimate the distances between interventional distributions of causal
Bayesian networks whenever the identifiability and strong positivity conditions are met:

Theorem 2.8 (Informal). Suppose P, Q are two unknown causal Bayesian networks on two known
graphs G1 and G on a common observable set V' containing a special node A and having bounded
in-degree and c-component size. Suppose G1 and Go both satisfy the identifiability condition, and
the observational distributions P and Q satisfy the strong positivity condition.

Then there is an algorithm which for any a € ¥ and parameter € € (0,1) returns a value e
such that |e — drv (P, Qa)| < & with probability at least 2/3 using poly(|S|,n,e~1) samples from
the observational distributions P and Q and running in time poly (||, n,e™1).

We again use the framework of EVAL approximators to prove the theorem, but there is a compli-
cation: we do not get samples from the distributions P, and @),, but only from P and (). We build
on a recent work ([BGK'20]) that shows how to efficiently learn and sample from interventional
distributions of atomic interventions using observational samples, assuming the identifiability and
strong positivity conditions.

Theorem 2.8 solves a very natural problem. To concoct a somewhat realistic example, suppose
a biologist wants to compare how a particular point mutation affects the activity of other genes for
Africans and for Europeans. Because of ethical reasons, she cannot conduct randomized controlled
trials by actively inducing the mutation, but she can draw random samples from the two popula-
tions. It is reasonable to assume that the graph structure of the regulatory network is the same

fThat is, there exists a well-defined function mapping P to P, but which may not be computationally effective.



for all individuals, and we further assume that the causal graph over the genes of interest is known
(or can be learned through other methods). Also, suppose that the gene expression levels can be
discretized. She can then, in principle, use the algorithm proposed in Theorem 2.8 to test whether
the effect of the mutation is approximately the same for Africans and Europeans.

2.6 Improving Success of Learning Algorithms Using Distance Estimation

Finally we give a link between efficient distance approximation algorithms and boosting the success
probability of learning algorithms. Specifically, let D be a family of distributions for which we have
a learning algorithm 4 in dpy distance e that succeeds with probability 3/4. Suppose there is also
a distance approximation algorithm B for D. We prescribe a method to combine the two algorithms
A and B to learn an unknown distribution from D with probability at least (1 — §). To the best
of our knowledge, this connection has not been stated explicitly in the literature. The proof of the
following theorem is given in Section 8.

Theorem 2.9. Let D be a family of distributions. Suppose there is a learning algorithm A
which for any P € D takes ma(e) samples from P and in time t(e) outputs a distribution Py
such that dpy (P, P) < € with probability at least 3/4. Suppose there is a distance approxima-
tion algorithm B for D that given any two completely specified distributions P1 and Py estimates
dry(P1, P2) up to an additive error € in tg(e,d) time with probability at least (1 — &). Then
there is an algorithm that uses A and B as subroutines, takes O(ma(c/4)log$) samples from

P, runs in O(t 4(c/4) log + +tp(e /4, W) log? %) time and returns a distribution P such that

drv (P, ]5) < e with probability at least 1 — 9.

To achieve the above result we repeat A independently R = O(log %) times which guarantees at
least 2R /3 successful repetitions from Chernoff’s bound except § probability, which we condition on.
Sucessful repetitions must produce distributions which are pairwise 2¢ close by triangle inequality.
We approximate the pairwise distances between all pairs of repetitions up to an additive € and then
find out a repetition whose learnt distribution P has the most number of other repetitions within
3e distance. The later number must be at least 2R/3 — 1, guaranteeing P must have a successful
repetition within 3¢ distance. Thus P must be at most 4¢ close to P from triangle inequality.

2.7 Previous work

Prior work most related to our work is in the area of distribution testing. The topic of distribution
testing is rooted in statistical hypothesis testing and goes back to Pearson’s chi-squared test in 1900.
In theoretical computers science, distribution testing research is relatively new and focuses on de-
signing hypothesis testers with optimal sample complexity. Goldreich and Ron [GR11] investigated
uniformity testing (distinguishing whether an input distribution P is uniform over its support or e-
far from uniform in total variation distance) and designed a tester with sample complexity O(m/e*)
(where m is the size of the sample space). Paninski [Pan08] showed that ©(y/m/e?) samples are
necessary for uniformity testing, and gave an optimal tester when & > m~/4. Batu et al. [BFR™13]
initiated the investigation of identity (goodness-of-fit) testing and closeness (two-sample) testing
and gave testers with sample complexity O(y/m/e5) and O(m?/3poly(1/e)) respectively. Optimal
bounds for these testing problems were obtained in Valiant and Valiant [VV14] (©(y/m/e?)) and
Chan et al. [CDVV14] (©(max(m?/3e=%/3,/me~2))) respectively. Tolerant versions of these testing



problems have very different sample complexity. In particular, Valiant and Valiant [VV11, VV10]
showed that tolerant uniformity, identity, and closeness testing with respect to the total variation
distance have a sample complexity of ©(m/logm). Since the seminal papers of Goldreich and Ron
and Batu et al., distribution testing grew into a very active research topic and a wide range of prop-
erties of distributions have been studied under this paradigm. This research led to sample-optimal
testers for many distribution properties. We refer the reader to the surveys [Canl5, Rub12] and
references therein for more details and results on the topic.

When the sample space is a high-dimensional space (such as {0,1}")), the testers designed for
general distributions require exponential number of samples (2°4™) if the sample space is {0, 1}"
for a constant ). Thus structural assumptions are to be made to design efficient (poly(n,1/¢))
and practical testers for many of the testing problems. The study of testing high-dimensional
distributions with structural restrictions was initiated only very recently. The work that is most
closely related to our work appears in [DDK19, CDKS17, DP17, ABDK18] (these works also give
good expositions to other prior work on this topic). These papers consider distributions coming
from graphical models including Ising models and Bayes nets. In Daskalakis et al. [DDK19], the
authors consider distributions that are drawn from an Ising model and show that identity testing and
independence testing (testing whether an unknown distribution is close to a product distribution)
can be done with poly(n,1/e) samples where n is the number nodes in the graph associated with
the Ising model. In Canonne et al. [CDKS17] and Daskalakis et al. [DP17], the authors consider
identity testing and closeness testing for distributions given by Bayes networks of bounded in-degree.
Specifically, they design algorithms with sample complexity O(23(4+1)/4p, /£2) that test closeness of
distributions over the same Bayes net with n nodes and in-degree d. They also show that ©(y/n/c?)
and ©(max(y/n/e2,n%/*/¢)) samples are necessary and sufficient for identity testing and closeness
testing respectively of pairs of product distributions (Bayes net with empty graph). Finally, in
Acharya et al.[ABDKI18], the authors investigate testing problems on causal Bayesian networks as
defined by Pearl [Pea09] and design efficient (poly(n,1/¢)) testing algorithms for certain identity
and closeness testing problems for them. All these papers consider designing non-tolerant testers
and leave open the problem of designing efficient testers that are tolerant for high-dimensional
distributions which is the main focus in this paper.

Our main technical result builds on the work of Canonne and Rubinfeld [CR14]. They consider
a dual access model for testing distributions. In this model, in addition to independent samples, the
testing algorithm has also access to an evaluation oracle that gives probability of any item in the
sample space. They establish that having access to evaluation oracle leads to testing algorithms with
sample complexity independent of the size of the sample space. Indeed, in order to design testing
algorithms, they give an algorithm to additively estimate the total variation distance between two
unknown distributions in the dual access model. Our distance estimation algorithm is a direct
extension of this algorithm.

Another access model considered in the literature for which such domain independent re-
sults are obtained is the conditional sampling model introduced independently in Chakraborty
et al. [CFGM16] and Canonne et al. [CRS14]. In this model, the tester has access to a condi-
tional sampling oracle that given a subset S of the sample space outputs a random sample from
the unknown distribution conditioned on S. The conditional sampling model lends itself to algo-
rithms for testing uniformity and testing identity to a known distribution with sample complexity
O(1/£?). Building on Chakraborty et al. [CFGM16], Chakraborty and Meel [CM19] proposed a
tolerant testing algorithm with sample complexity independent of domain size for testing unifor-



Algorithm 1: Distance approximation
Input : Sample access to distribution P; oracle access to circuits Cp and Cg.
Output: Approximate value of dry (P, Q)

1 fori=1,...,t =0(¢?logé ') do

Draw a sample x from P;

a <+ Cp(z);

B+ Cqlw);

5 Ci<_1a>6 (1—%);

1t
6 return ;> ;| ¢

W N

mity of a sampler that takes in a Boolean formula ¢ as input and the sampler’s output generates
a distribution over the witnesses of .

3 Distance Approximation Algorithm

In this section, we prove Theorem 2.3 which underlies all the other results in this work. In fact, we
show the following theorem that is more detailed.

Theorem 3.1. Suppose we have sample access to distributions P and Q) over a finite set. Also,
suppose we can make calls to two circuits Cp and Cg which implement (3, v)-EVAL approzimators
for P and Q) respectively. Let T be the mazimum running time for any call to Cp or Cq.

Then for any €,6 > 0, drv (P, Q) can be approzimated up to an additive error % + 38 +¢ with

probability at least 1 — &, using O(e=2log 6~ 1) samples from P and O(¢=21logé~' - T) runtime.

Note that the EVAL approximators in Theorem 3.1 must return rational numbers with bounded
denominators as they are implemented by circuits with bounded running time. The exact model
of computation for the circuits does not matter so much, so we omit its discussion.

We now turn to the proof of Theorem 3.1. As mentioned in the Introduction, if Cp and Cg were
(0,0)-EVAL approximators, the result already appears in [CR14]. The proof below analyzes how
having nonzero 8 and + affects the error bound.

Proof. We invoke Algorithm 1. Notice that the algorithm only requires sample access to one of the
two distributions but to both of the EVAL approximators. Let P be the distribution S-close to P
which is approximated by the output of Cp; similarly define 0.
We have |dry (P, Q) — drv (P, Q)| < dry (P, P) 4 dtv(Q, Q) < 28 from the triangle inequality.
i

Hence, it is sufficient to approximate dry (P, Q) additively up to % + B +e.

drv (P,Q) = 3 3" IP() ~ Q)]
- Y (P Q)

= Z (1 — Q(@) P(x) (Since P(z) > 0)
)



From the above, if we have complete access (both evaluation and sample) to P and Q, then
we can estimate the distance with O(si2 log %) samples and evaluations. However as we have only

approximate evaluations of P and Q and samples from the original distribution P, we need some
additional arguments. Let Ep and Eg be the functions implemented by the circuits Cp and Cg
respectively.

Eq(z)\ -
_ZlEP = ><1‘ Ep<x>) Pla)+
A
%: [ P(2)>Q(x) (1 - p(m)> ~ Lp@)>Eo() (1 - Ei(@) P(z)
B

We start with an upper bound for the absolute value of the error term B. We consider the
partition of sample space into Si, Sy and S3, where S; = {z : 115(x)>Q(x) = ]‘EP(1‘)>EQ(CE)}7 So =
{25 1p)50() > LBp(0)>Bo()} and S3 = {2 1 1) 60) < LEp(e)>Eo (@)}

Nz FEo(x ~
‘B’ = Z [1P($)>Q(Z‘) (1 — gEZ-;) - 1Ep(:l?)>EQ(£L“) <1 — Eig:l,‘;) P(x)‘
Nz Eo(x ~
< Z [115($)>Q(z) (1 — §E$;> - 1EP(CL‘)>EQ(I) (1 - Eigxi) P( )‘
Qz) _ Eg(x) 0w\ ¢
_;11 2200 | (z) ~ Epla) +;‘21 2)>0( $)< P(x)>P(m)+
Y lbp(@)>Eol) (1 - 22 g;) P(z)

TES3

1 Q(x Eg(z) 1+7) Q(z Q(z Eg(z) 2 Qx
For x in Sy with P(z) ), EH% E ; < Eg(x) < EJ% Pgm; so that ngi — Ei( <& (@)

>
. For z in Sy, P(z) > Q(x) implies Ep(x) < Eqg(z) and hence, (1—+)P(z) < Ep(x
(z

m

e
- (@ )
(1 +7)Q(z) so that Q(z)/P(z) > —7. For x in S3, Ep(x) > Eg(x) implies P(z) < (ZL‘), and

Ty
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hence Therefore:

Eg(x) < (1=9)Qx)  1-
» Ep(z) > (147) P(x) > 1+v

2v 4 2y - 2y 4
|B’<Zﬁp($)+2mp($)+2mp($)
xT

p(z)
Eg(z Eg(z A
- Z Lo (@)>Eql® (1 22 P+ Aot (1 5200 ) (P@) -~ PGa)
g

Eq(x A A DA
Note that: | Y2, 15> roe) (1 - 7245 ) (P(2) = P(2))| < 2, |P@)~P(@)| < 8. So, |dry (P, Q)
9 ) Eq(z) ) Eq(z)
C| < ﬁ—l—ﬁ. We can rewrite C' as E,..p [1Ep(x)>EQ(z) (1 — < )} Since 1 g, (2)>Eq (x) ( Eq(x) )

Ep(z) Ep(z)
lies in [0, 1], by the Chernoff bound, we can estimate the expectation up to e additive error with
probability at least (1 — ) by averaging O( log 5) samples from P. O

Theorem 3.1 can be extended to the case that P and @ are distributions over R” with infinite
support. We change Definition 2.1 so that Ep(z) is a (1 + ~)-approximation of f(z) where f(z)
is the probability density function for P. Then, Theorem 3.1 and Algorithm 1 continue to hold as
stated. In the proof, we merely have to replace the summations with the appropriate integrals.

4 Bayesian networks

First we apply our distance estimation algorithm for tolerant testing of high dimensional distri-
butions coming from bounded in-degree Bayesian networks. Bayesian networks defined below are
popular probabilistic graphical models for describing high-dimensional distributions succinctly.

Definition 4.1. A Bayesian network P on a directed acyclic graph G over the vertex set [n] is a
joint distribution of the n random variables (X1, Xs,...,X,) over the sample space X" such that
for every i € [n] X; is conditionally independent of X,on-descendants(i) 970€n Xparents(i), where for
S C [n], Xg is the joint distribution of (X; : i € S), and parents and non-descendants are defined
from G.

P factorizes as follows:

P(z) = H I}D = x; | Vj € parents(i), X; = ;] forallz e ¥ (4)
z:l

Hence a Bayesian network can be completely described by a set of conditional distributions for
every variable X;, for every fizing of its parents X arents(i)-

12



To construct an EVAL approximator for a Bayesian network, we first learn it using an efficient
algorithm. Such a learning algorithm was claimed in the appendix of [CDKS17] but the analysis
there appears to be incomplete [Can20]. We show the following proper learning algorithm for
Bayesian networks that uses the optimal sample complexity.

Theorem 4.2. There is an algorithm that given a parameter € > 0 and sample access to an
unknown Bayesian network distribution P on a known directed acyclic graph G of in-degree at most
d, returns a Bayesian network P on G such that dry (P, ]3) < € with probability > 9/10. Letting X
denote the range of each variable X;, the algorithm takes m = O(|X|" nlog(|X|9 1 n)e=2) samples
and runs in O(|%]|%mn) time.

This directly gives us a distance estimation algorithm for Bayesian networks.

Theorem 2.4. Suppose G and Go are two DAGs on n vertices with in-degree at most d. Let Dy
and Dy be the family of Bayesian networks on G and Go respectively. Then, there is a distance ap-
prozimation algorithm for (D1, Ds) that gets m = O(|X|" 1 ne=2) samples and runs in O(|S|*1mn)
time.

Proof. Given samples from P; and P, we first learn them as Pl and ]52 using Theorem 4.2 in
dry distance /4. This step costs m = O(|2|" nlog(|X|% !n)e2) samples and O(|X|4 1mn)
time and succeeds with probability 4/5. P, and P, gives efficient (£/4,0)-EVAL approximators
from Equation (4). It follows from Theorem 3.1 that we can estimate dry (P, P2) up to an ¢
additive error using O(e2) additional samples from P; except for 1/5 probability. O

Our distance estimation algorithm has optimal dependence on n and e from the following non-
tolerant identity testing lower bound of Daskalakis et al.

Theorem 4.3 ([DDK19]). Given sample access to two unknown Bayesian network distributions
Py and Py over {0,1}"™ on a common known graph, testing P = @Q wversus dpy(P,Q) > ¢ with
probability > 2/3 requires Q(ne=?) samples.

It remains to prove Theorem 4.2.

4.1 Learning Bayesian networks

In this section, we prove a strengthened version of Theorem 4.2 that holds for any desired error
probability 4.

Theorem 4.4. There is an algorithm that given parameters €, > 0 and sample access to an
unknown Bayesian network distribution P on a known directed acyclic graph G of in-degree at most
d, returns a Bayesian network Q on G such that dry (P, Q) < € with probability > (1—0). Letting 3
denote the alphabet for each variable X;, the algorithm takes m = O(|Z|4 nlog(|S|4 1n)e =2 log 1)
samples and runs in O(|Z|%tmn) time.

We actually prove a stronger bound on the distance between P and @ in terms of the KL

divergence. The KL divergence between two distributions P and @ is defined as KL(P,Q) =
> P(i)In %. From Pinsker’s inequality, we have dry2(P, Q) < 2KL(P, Q). Thus a dry learning
result follows from a KL learning result. We present Algorithm 2 for the binary alphabet case

(X ={0,1}) and reduce the general case to the binary case afterwards.
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Algorithm 2: Fixed-structure Bayesian network learning

Input : Samples from an unknown Bayesian network P over {0,1}" on a known graph G
of in-degree < d, parameters m,t
Output: A Bayesian network @ over G
Get m samples from P;
for every vertex i do
for every fizing a of i’s parents do
N; ¢ < the number of samples where i’s parents are set to a;
if N;, >t then
Q(i | a) < the Laplace corrected empirical distribution at node i in the subset of
samples where i’s parents are set to a;

S U W N =

else
L Q(i | a) < uniformly random bit;

The Laplace corrected empirical estimator takes z samples from a distribution over k items and
assigns to item ¢ the probability (z; +1)/(z + k) where z; is the number of occurrences of item 7 in
the samples. We will use the following general result for learning a distribution in KL distance.

Theorem 4.5 ([KOPS15]). Let D be an unknown distribution over k items. Let D be the Laplace
corrected empirical distribution of z samples from D. Then for k > 2,z > 1, E[KL(D,D)] <
(k—1)/(z+1).

We will use a KL local additivity result for Bayesian networks, a proof of which is given in
[CDKS17]. For a Bayesian network P, a vertex i, and a setting a value a of its parents, let II[7, a]
denote the event that parents of i take value a, and let P(i | a) denote the distribution at vertex 4
when its parents takes value a.

Theorem 4.6. Let P and ) be two Bayesian networks over the same graph G. Then

KL(P,Q) =) > PI[i;al] - KL(P(i | ), Q(i | ))

Lemma 4.7. For m = 24n2%log(n2%) /e and t = 121og(n2%), Algorithm 2 satisfies KL(P,Q) < 6¢
with probability at least 3/4 over the randomness of sampling.

Proof. Call a tuple (i,a) heavy if P[II[i,a]] >
of samples where i’s parents are a.

Consider the event “all heavy (i, a) tuples satisfy N; , > n2¢P[I1[i, a]]t/c”. It is easy to see from
Chernoff and union bounds that this event holds with 19/20 probability. Hence for the rest of the
argument, we condition on this event. In this case, all heavy items satisfy IV; , > t.

Now, we see that:

and light otherwise. Let N; , denote the number

_E€_
2dn,

— For any heavy (i,a), by Theorem 4.5,

5
< .
10n2¢ - P[I1[i, a]]

E[KL(P(i | a), Q(i | a))]
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— For any light (4, a) that satisfies N; o > t, it follows from Theorem 4.5 that E[KL(P(i | a), Q(¢ |
a))] < 1.

— Items which do not satisfy N;, > t must be light for which KL(P(i | a),Q(i | a)) < pln2p +
(1 —p)In2(1 —p) < 1 where p = P[i = 1|a], since in that case Q(i | a) is the uniform bit.

Using Theorem 4.6, we get

i,a) light

(3,a) heavy

The lemma follows from Markov’s inequality. O

Now we reduce the case when X is not binary to the binary case. We can encode each o € ¥ of
the Bayesian network as a log |X| size boolean string which gives us a Bayesian network of degree
(d+ 1) log |X] over nlog|X| variables. Then we apply Lemma 4.7 to get a learning algorithm with
O(e) error in dry and 3/4 success probability. Subsequently we repeat O(log %) times and find out
a successful repetition using Theorem 2.9.

5 Ising Models

In this section, we give a distance approximation algorithm for the class of bounded-width ferromag-
netic Ising models. Recall from Section 2.3 that a probability distribution P from this class is over
the sample space {—1,1}" and that P(x), the probability of an item = € {—1,1}", is proportional
to the numerator:

N(x) = exp Z A jrix; +0 Z Zi |,
i\j i

where A; js and 6 are parameters of the model. The constant of proportionality, also called the
partition function of the Ising model is Z = )" N(x), which gives P(x) = N(z)/Z. The width of
the Ising model is defined as max; Zj |A; ;| + 6. In a ferromagnetic Ising model, each A;; > 0.

Given two such Ising models, we give an algorithm for additively estimating their total varia-
tion distance. We first learn these two Ising models up to total variation distance /8 using the
following learning algorithm given by Klivans and Meka [KM17]. In fact, it gives a stronger (1+¢)
multiplicative approximation guarantee for every probability value.

Theorem 5.1 (Theorem 7.3 in [KM17]). There is an algorithm which, given independent samples
from an unknown Ising model P with width at most d, returns parameters flm and 0 such that the
Ising model P constructed with the latter parameters satisfies (1 — e)P(z) < P(x) < (14 ¢)P(z)
for all x € {~1,1}". This algorithm takes m = e®De=*n¥log(n/dc) samples, O(mn?) time and
succeeds with probability 1 — 0.

However learning the parameters of an Ising model is not enough to efficiently evaluate the
probability at arbitrary points. Naively computing the constant of proportionality Z would take 2"
time. For certain classes of Ising models polynomial time algorithms are known which approximates
Z up to a (1+¢) approximation factor. In particular we use the following approximation algorithm
for ferromagnetict Ising models due to Jerrum and Sinclair [JS93].

¥ As pointed out by [Sri19], Jerrum and Sinclair’s result (and hence, our result) extends to the non-uniform external
field setting where there is a 6; for each ¢ instead of 81 = --- = 0,, = 0, with the restriction that each 6, > 0.
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Theorem 5.2. There zs an algorithm which given the parameters of a ferromagnetic Ising model
distribution P, in O(¢~2n'"logn) time returns a number Z such that with probability at least 9/10,
(1-e)Z2<Z<(1+ E)Z, where Z is the partition function of P.

Combining the previous two results with our general distance estimation algorithm, we can now
obtain our main result for Ising models which we restate below.

Theorem 2.5. Let D be the family of ferromagnetic Ising models having width at most d. Then,
there is a distance approzimation algorithm for D with sample complexity m = eC@e—4n8 log(g)
and runtime O(mn? + e 2n'"logn).

Proof. We first use Theorem 5.1 to get the parameters for a pair of Ising models P and Q which
are, with probability at least 9/10, pointwise (1 + €/8) approximations to P and Q. If P or Q
has any negative pairwise interaction term, then we modify them to zero, thus making P and Q
ferromagnetic. We claim that since P and () are ferromagnetic to start with, this can only improve
the approximation factor. The reason is that Klivans and Meka, in their proof of Theorem 5.1, show
the more general result that for any log-polynomial distribution, i.e, any distribution P on {—1,1}"
where P(z) « exp(T(x)) for a bounded-degree polynomial T', they can obtain a polynomial 7
with the same degree that satisfies a bound on ||[T — T'||; = 3_,, |T[e] — T[a]| where T[a] and T'a]
are the coefficients of the monomial indexed by a. It is clear that if T[a] > 0, changing T'o] to
max (0, T[a]) can only reduce ||T —T);.

Abusing notation for simplicity, henceforth let P and Q be the distributions after this modifica-
tion. Let Np(x) and Ny (2) be the numerators for P and Q respectively. Then we apply Theorem 5.2

to estimate, with probablhty 4/5, the partition functions Zp and ZQ of P and Q respectively up
to a (1 £+ ¢/8) multiplicative factor. Therefore, Ep(z) = Np(x)/Zp and Eg(x) = NQ(x)/ZQ are
(e/8, € /4)-EVAL approximators for P and ) respectively, where the ¢/8-close distributions are P
and @Q. It follows from Theorem 3.1 that conditioned on the above, we can estimate dry (P, Q) up
to an € additive error with probability at least 9/10. O

5.1 Distance to uniformity

Next we give an algorithm for estimating the distance between an unknown Ising model and the
uniform distribution over {—1,1}".

Theorem 2.6. There is an algorithm which, given independent samples from an unknown Ising
model P over {—1,1}" with width at most d, takes m = O(e?De=4n8log(n/e)+c " log? 1) samples,
O(mn? + & "n?log? 1) time and returns a value e such that e — drv (P,U)| < & with probability at
least 7/12, where U is the uniform distribution over {—1,1}".

Proof. We first learn the ising model using Theorem 5.1. As we noted earlier computing the
partition function naively is intractable in general. However computing N, /N, the ratio of the
probabilities of two items x,y can be computed in O(n?) time up to (1 + ) approximation from
Theorem 5.1. Canonne et al. [CRS15] have given an algorithm for computing distance to uniformity
from an unknown distribution using sampling and pairwise conditional sampling (PCOND) access to
it using my = O(e?log® 1) PCOND samples and my = O(¢ ™" log® 1) samples with probability 2/3
up to a O(¢e) additive error. A closer look at their algorithm reveals that all their PCOND accesses
are made from a routine called ‘COMPARE’, whose job is to compute the ratio of probabilities
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of two points x and z with probability 1 — § upto (1 £ n)-factor using conditional samples. In
fact it suffices for their algorithm to correctly compute the ratio if it is in [1/K, K], report ‘HIGH’
if it is in (K, 00|, and ‘LOW’ if it is in [0,1/K) for a parameter K. In the case of ising model,
assuming success of Theorem 5.1 we can replace the routine ‘COMPARE’ by computing N, /N,
using the parameters of the learnt model upto (1 & &) approximation in O(n?) time with § = 0.
Their algorithm makes ms3 = O(s_7log3 é) calls to ‘COMPARE’. Using their choices of various
parameters our theorem follows. ]

6 Multivariate Gaussians

In this section we give an algorithm for additively estimating the total variation distance between
two unknown multidimensional Gaussian distributions. For a mean vector y € R™ and a positive
definite covariance matrix ¥ € R™*", the Gaussian distribution N(u, ) has the pdf:

;T) = ! ex —lx— Ty Yz -
NG Bi) = s e (5o =) TS ) o)

We use the following folklore learning result for learning the two Gaussians.

Theorem 6.1. Let P be an n-dimensional Gaussian distribution. Let i € R™ and 3 e R pe
the empirical mean and the empirical covariance defined by O(n?e~2) samples from P. Then, with
probability at least 9/10, the distribution P = N (i1, X) satisfies dryv (P, P) < €.

We are now ready to prove Theorem 2.7 restated below.

Theorem 2.7. Let D be the family of multivariate gaussian distributions, {N(u,%) : p € R", ¥ €
R™" % > 0}. Then, there is a distance approzimation algorithm for D with sample complexity
O(n?c2) and runtime O(n¥e~2) (where w > 2 is the matriz multiplication constant).

Proof. We first apply Theorem 6.1 to obtain P and Q such that each is within £/4 distance from
P and Q respectively. Since we can evaluate the pdf of P and Q exactly, they serve as (€/4,0)
EVAL -approximators for P and ). Each determinant computation costs O(n*) time. Subsequently
from (the continuous analog of) Theorem 3.1, using O(¢~2) samples from P and O(n*s~?) time,
we can estimate dry (P, Q) up to an additive € error with probability at least 4/5. O

Remark 6.2. The above time analysis uses the unrealistic real RAM model in which real number
computations can be carried out exactly upto infinite precision. However, there are strongly polyno-
mial time algorithms for computing matriz determinant and inverse [Gacl8, Wil65], so that even
in the more realistic word RAM model, the above algorithm runs in polynomial time.

As a by-product of our analysis, we also obtain an efficient randomized algorithm to compute
the total deviation distance between two gaussians specified by their parameters.

Corollary 6.3. For any two vectors ju1, s € R™ and two positive-definite matrices ¥1, Y9 € R™*™,
dry (N (uy,21), N(u1,£1)) can be estimated up to an additive € error in O(n3c~2) time.

Proof. We again invoke Algorithm 1. Since the parameters are already provided, we can readily
obtain (0,0)-EVAL approximators for N(u1,%1) and N(pg,22). For Algorithm 1, we also need
sample access to one of the two distributions. It is well known that if v ~ N(0,1) and ¥ = LLT,
then Lv+p ~ N(u, X); the matrix L can be obtained in O(n?) time using a Cholesky decomposition.
Hence, each sample from N (u1,¥1) costs O(n?) time, so that the entire algorithm runs in O(n3~2)
time. O
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7 Causal Bayesian Networks under Atomic Interventions

We describe Pearl’s notion of causality from [Pea09]. Central to his formalism is the notion of an
intervention. Given a variable set V' and a subset S C V, an intervention do(s) is the process of
fixing the set of variables in S to the values s. If the original distribution on V is P, we denote the
interventional distribution as Ps, intuitively, the distribution induced on V when an external force
sets the variables in S to s.

Another important component of Pearl’s formalism is that some variables may be hidden (la-
tent). The hidden variables can neither be observed nor be intervened upon. Let V and U denote
the subsets corresponding to observable and hidden variables respectively. Given a directed acyclic
graph H on V' UU and a subset S C (VUU), we use II(S) and Pag(S) to denote the set of all
parents and observable parents respectively of S, excluding S, in H. When the graph H is clear,
we may omit the subscript.

Definition 7.1 (Causal Bayesian Network). A (semi-Markovian) causal Bayesian network (CBN)
on variables X1, ..., X, is a collection of interventional distributions defined by a tuple (V,U,G,
{Pr[X; | o)) i € Vo) € SO Pr[Xy]}), where (i) G is a directed acyclic graph on
VUU = [n], (i) Pr[X; | zry)] is the conditional probability distribution of X; given that its parents
Xri(i) take the values zyy(;, and (iii) Pr[Xy] is the distribution of the hidden variables {X; : i € U}.

A CBN P = (V,U,G, {Pr[X; | zng) = i € Vo) € SO Pr[Xy]) defines a unique
interventional distribution Ps for every subset S C'V (including S = 0) and assignment s € »ISl,
as follows. For all x € XIV1:

Py(x) >ulliev\s Prlzi [ zzm)] - Pr[Xu =u] if © is consistent with s
xTr) =
° 0 otherwise.

We use P to denote the observational distribution (S = (). G is said to be the causal graph
corresponding to the CBN P.

It is standard in the causality literature [TP02b, VP90, ABDK18] to assume that each variable in
U is a source node with exactly two children from V, since there is a known algorithm [TP02b, VP90]
which converts a general causal graph into such graphs. Given such a causal graph, we remove
every source node Z from G and put a bidirected edge between its two observable children X; and
Xo. We end up with an Acyclic Directed Mixed Graph (ADMG) graph G, having vertex set V'
and having edge set £~ U E? where E™ are the directed edges and E<’ are the bidirected edges.
The in-degree of G is the maximum number of directed edges coming into any vertex in V. A
c-component refers to any maximal subset of V' which is interconnected by bidirected edges. Then
V' gets partitioned into c-components: Si,S3,...,5. Figure 1 shows an example.

Throughout this section, we focus on atomic interventions, i.e. interventions on a single variable.
Let A € V correspond to this variable. Without loss of generality, suppose A € S;. Tian and Pearl
[TP02a] showed that in an ADMG G as above, P, can be completely determined from P for all
a € ¥ iff the following condition holds.

Assumption 7.2 (Identifiability wrt A). There does not exist a path of bidirected edges between
A and any child of A. Equivalently, no child of A belongs to Si.

Recently algorithms and sample complexity bounds for learning and sampling from identifi-
able atomic interventional distributions were given in [BGK'20] under the following additional
assumption. For S C V, let Pa™(S) = S U Pa(9).
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Figure 1: An acyclic directed mixed graph (ADMG) where the bidirected edges are depicted as
dashed. The in-degree of the graph is 2. The c-components are {A,C} and {B, D, E'}.

Assumption 7.3 (a-strong positivity wrt A). Suppose A lies in the c-component Sy, and let
Z = Pa™t(S1). For every assignment z to Z, P(Z = z) > .

We state the two main results of [BGK™'20], which given sampling access to the observational
distribution P of an unknown causal Bayesian network on a known ADMG return an (e, 0)-EVAL ap-
proximator and an approximate generator for P,. For the two results below, suppose the CBN P
satisfies identifiablity (Assumption 7.2) and a-strong positivity (Assumption 7.3) with respect to a
variable A € V' . Let d denote the maximum in-degree of the graph G and k denote the size of its
largest c-component.

Theorem 7.4 (EVAL approximator [BGK'20]). For any intervention a to A and parameter € €
(0,1), there is an algorithm that takes m = O (\25:2% |2kd)
time, returns a circuit Ep,. With probability at least 2/3, the circuit Ep, implements an (g,0)-
EVAL approzimator for P,, and it runs in O(n) time for all inputs.

) samples from P, and in O(mn|3

Theorem 7.5 (Generator [BGK™'20]). For any intervention a to A and parameter € € (0,1), there

~ 5kd
is an algorithm that takes m = O (‘EOLQ n) samples from P, and in O(mn|Z|?*?) time, returns a

probabilistic circuit Gp, that generates samples of a distribution f’a satisfying dTy(Pa, Pa) <e. On
each call, the circuit takes O(n|X|**@e=11log6™1) time and outputs a sample of P, with probability
at least 1 — 6.

We give a distance approximation algorithm for identifiable atomic interventional distributions
using the above two results and Theorem 3.1.

Theorem 7.6 (Formal version of Theorem 2.8). Suppose P, Q are two unknown CBN’s on two
known ADMGs G1 and G on a common observable set V' both satisfying Assumption 7.2 and
Assumption 7.3 wrt a special vertex A. Let d denote the mazximum in-degree, and k denote the size
of the largest c-component of G1 and Gs.

Then there is an algorithm which for any a € ¥ and parameter e € (0,1), takes m = O (%)

ag?
samples from P and Q, runs in time O(mn|%|**?* 4 n|%|?4e=3) and returns a value e such that
le — dry (Pa, Qu)| < & with probability at least 2/3.

Proof. We first invoke Theorem 7.5 to obtain the generators for distributions P, and Q, that
are /10 close to the two interventional di§tri13utions P, and Q, respectively in dty. By trian-
gle inequality, it suffices to estimate dpy (P,,Q,) up to an additive 4¢/5 error. Next we invoke
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Theorem 7.4 to obtain circuits Ep, and Eg , that each implement (¢/10,0)-EVAL approximators
for the two interventional distributions P, and @, respectively. Let Pa and Qa denote the two
distributions that Ep, and Fg , respectively compute evaluations of. Using the triangle inequality,
dTV(Pa,Pa) < ¢/5 and dTv(Qa,Qa) < ¢/5. Thus Epg and Eq , are (¢/5,0)-EVAL approximators
for P, and Q, respectively. From Theorem 3.1, we need O(e~2) samples from P, and O(e~2) calls
to Ep, and Eq , to estimate dTv(pa, Qa) up to an additive 4e/5 error. d

8 Improving Success of Learning Algorithms Using Distance Es-
timation

In this section we give a general algorithm for improving the success probability of learning certain
families of distributions. Specifically, let D be a family of distributions for which we have a learning
algorithm A in dpy distance € that succeeds with probability 3/4. Suppose there is also a distance
approximation algorithm B for D. The algorithm presented below, which uses A and B, learns an
unknown distribution from D with probability at least (1 — J).

Algorithm 3: High probability distribution learning

Data: Samples from an unknown distribution P

Result: A distribution P such that dpy (P, P) < e with probability 1 — &
for 0 < i< R=0(log$) do

P; + Run A on samples from P to get a learnt distribution;

count; < 0;

for every unordered pair 0 < i < j < R do

d;; < Estimate distance between P; and P; up to additive error ¢ using B;
if d;; < 3¢ then

L count; < count; + 1;

N =

w

[P N T~ NS BN

count; < count; + 1;

9 ¢* = arg max; count;;
10 return Pj-;

Theorem 2.9. Let D be a family of distributions. Suppose there is a learning algorithm A
which for any P € D takes ma(e) samples from P and in time t(e) outputs a distribution Py
such that dpy (P, Py) < € with probability at least 3/4. Suppose there is a distance approxima-
tion algorithm B for D that given any two completely specified distributions P1 and Py estimates
dry(P1, Py) up to an additive error € in tg(e,d) time with probability at least (1 — §). Then
there is an algorithm that uses A and B as subroutines, takes O(ma(c/4)log$) samples from

P, runs in O(t 4(c/4) log + +tp(e /4, W) log? 1) time and returns a distribution P such that

drv (P, P) < € with probability at least 1 — 4.

Proof. The boosting algorithm is given in Algorithm 3. We take R = 324 log% repetitions of A to
get the distributions P;s. From Chernoff’s bound at least 2R/3 distributions (successful) satisfy
drv (P;, P) < e with probability at least 1 —¢§/2, which we condition on henceforth. These successful
distributions have pairwise distance at most 2¢. Conditioned on the (1;) calls to B succeeding, the
pairwise distances between the successful distributions are at most 3. Hence every successful i has
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its count value at least 2R/3 —1. This means ¢*, which has the maximum count value (> 2R/3—1)
must intersect at least one successful i’ such that dry (P;+, Py) < 3e. By triangle inequality we get
dTV(Pi*7 P) < 4e.

It suffices for each call to B succeed with probability at least #. O

Assuming black-box access to A O(m 4 log %) samples are needed in the worst case to learn with
1 — ¢ probability since otherwise all the o(log %) repetitions may fail. We can apply the above al-
gorithm to improve the success probability of learning bayesian networks on a given graph with small
indegree and multidimensional Gaussians.
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