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Abstract

We investigate the problems of maximizing
k-submodular functions over total size con-
straints and over individual size constraints. k-
submodularity is a generalization of submodularity
beyond just picking items of a ground set, instead
associating one of k types to chosen items. For sen-
sor selection problems, for instance, this enables
modeling of which type of sensor to put at a loca-
tion, not simply whether to put a sensor or not. We
propose and analyze threshold-greedy algorithms
for both types of constraints. We prove that our
proposed algorithms achieve the best known ap-
proximation ratios for both constraint types, up to a
user-chosen parameter that balances computational
complexity and the approximation ratio, while only
using a number of function evaluations that de-
pends linearly (up to poly-logarithmic terms) on
the number of elements n, the number of types
k, and the inverse of the user chosen parameter.
Other algorithms that achieve the best-known de-
terministic approximation ratios require a number
of function evaluations that depend linearly on the
budget B, while our methods do not. We empiri-
cally demonstrate our algorithms’ performance in
applications of sensor placement with k types and
influence maximization with k topics.

1 INTRODUCTION

There are a number of problems that can be abstracted as
selecting a subset of items with a limit on the number of
items, and for which redundancy between items can lead to
diminishing returns in terms of utility. Consider the problem
of monitoring a traffic network using a limited number of
sensors. We want to place sensors in the most informative lo-
cations. Putting additional sensors in close proximity to each

other would be redundant and result in little additional infor-
mation gain. Likewise, consider the problem of selecting a
subset of influencers on social media to seed an advertising
campaign. Sponsoring additional influencers will improve
the spread, but if the additional influencers have the same
followers, the improvement in the spread may be limited.
Both of these problems, which involve selecting a subset
of items, and for which redundancy can lead to diminish-
ing returns, can be modeled as submodular maximization
problems [Krause and Guestrin, 2007, Kempe et al., 2003].

A set function f : 2V → R over a set V of n elements is
said to be submodular if, for any S ⊆ T ⊂ V and e ∈ V \T ,
it satisfies the following diminishing returns property,

f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T ).

This inequality means that the marginal gain of adding e
to a set is non-increasing as the set gets larger. For many
problems, the function f is assumed to be monotone non-
decreasing: f(T ) ≥ f(S) for any S ⊆ T ⊆ V . While maxi-
mizing a monotone submodular function without constraints
is trivial (the optimal solution is the whole set V ), the prob-
lem of maximizing a monotone submodular function with
just a cardinality constraint of B is NP-hard even to approx-
imate with a ratio above (1 − 1/e) ≈ 0.632 [Nemhauser
et al., 1978]. Surprisingly, a simple greedy algorithm can
achieve the ratio of (1−1/e) usingO(nB) function evalua-
tions [Nemhauser et al., 1978]. While submodular functions
have been used in a number of applications, some problems
cannot be modeled well by just selecting a single set. We
give two examples to illustrate this.

Influence maximization with k topics: Influence maxi-
mization involves identifying a small subset, or seed set,
within a network that can achieve the greatest possible
spread of information. This selection problem is frequently
modeled as a submodular maximization problem in social
networks, as noted by Kempe et al. [2003]. However, if
the information being spread includes multiple topics with
varying effects on the network, the problem becomes more
complex. Specifically, due to budget constraints, we must
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limit our seed set to a specific number of individuals, with
each person being assigned a specific topic. In such cases,
the standard submodular maximization approach may not be
sufficient and could lead to a loss of important information.

Sensor placement with k types: Consider the case where
we want to monitor a traffic network through sensors. With
a limited budget, we only want to place sensors in the most
informative locations. This problem can be modeled as sub-
modular maximization [Krause and Guestrin, 2007]. How-
ever, the standard submodular maximization model fails to
account for scenarios where we have multiple sensor types
(e.g., temperature, humidity, illuminance) that need to be
installed at each location, with only one sensor per location.

To account for variations in sensor types or sponsored mes-
sages, a richer class of functions is needed beyond sub-
modular functions. In particular, the class of k-submodular

functions [Cohen et al., 2006, Kolmogorov, 2011, Huber
and Kolmogorov, 2012] can be used for these problems.
Instead of simply including an item e ∈ V , each selected
item is assigned one of k types. Marginal gains can depend
on the pair (e, i) ∈ V × {1, . . . , k}. The special case of
k = 2, bisubmodular functions, has been widely studied
For example, Singh et al. [2012] conducted sensor place-
ment experiments with bisubmodular function models. For
general k, Ward and Živnỳ [2014] mentioned the applica-
tions of the k-submodular function on sensor placement
and feature selection. Ohsaka and Yoshida [2015] proposed
algorithms for k-submodular optimization and applied them
to sensor placement and influence maximization problems.

In this paper, we focus on size (cardinality) constraints.
Specifically, we consider total size (TS) constraints, where
there is a limit on the total number of items from the ground
set selected regardless of type, and individual size (IS) con-
straints, where each of the k types has its own limit. Nei-
ther problem is a special case of the other. For a total size
constraint, 1/2 is the best known approximation ratio. For
individual size constraints, the best known approximation
ratio is 1/3. In both cases, there is room for improvement in
terms of the run time. A comparison table of works related
to our methods can be found in Table 1. In Section 1.2 we
discuss related works in more detail.

In this work we propose algorithms for maximizing k-
submodular functions under TS and IS constraints, achiev-
ing the best deterministic approximation ratios (up to a user
specified ε > 0) while removing linear dependence on the
constraint budgets in terms of value oracle complexity.

1.1 OUR CONTRIBUTIONS

The contribution is threefold. First, we propose a threshold
greedy algorithm for k-submodular maximization under a
total size constraint, achieving a (1/2− ε)-approximation
guarantee using only O(knε−1 log(Bε−1)) function eval-

uations, for any user chosen ε > 0. kn evaluations are the
minimum needed to try each item-type pair once. This is the
first algorithm that achieves a deterministic, near-optimal ap-
proximation ratio under total size constraints without linear
dependence on the budget B in terms of function evalua-
tions. Since B can be as large as n, this is significant.

Second, we propose a threshold greedy algorithm for k-
submodular maximization under an individual size con-
straint, achieving a (1/3− ε)-approximation guarantee us-
ing onlyO(knε−1 log(Bε−1)) function evaluations, for any
user chosen ε > 0. This is the first algorithm that achieves
nearly the best known deterministic approximation ratio
under individual size constraints without linear dependence
on the budget B in terms of function evaluations. It also
removes quadratic dependence on the number of types k
in value oracle complexity compared to a stochastic greedy
method. Third, we test our method using real-world data.

1.2 RELATED WORKS

We next review related works on maximizing monotone k-
submodular functions, grouping works by constraint types.

Unconstrained: Unlike the k = 1 case, maximizing a
monotone k-submodular function even without constraints
is challenging. Iwata et al. [2015] showed that even achiev-
ing an approximation ratio α ∈ (k+1

2k , 1] is NP-hard.
Ward and Živný [2014] achieved max{1/3, 1/(1 + a)}
approximation guarantee using O(kn) number of func-
tion evaluations for the unconstrained case, where a =
max{1,

√

(k − 1)/4}. Iwata et al. [2015] improved the
guarantee to k

2k−1 using the same number of oracle calls.

Size Constraints: For size constraints, two types of con-
straints have been considered in the literature, namely to-
tal size (TS) constraints, where the number of items se-
lected shares a common budget, and individual size (IS)
constraints, where each of the k types has a budget. Ohsaka
and Yoshida [2015] analyzed the greedy algorithm and ob-
tained 1/2 and 1/3 approximation guarantees for total size
(TS) constraints and individual size (IS) constraints, respec-
tively. They also proposed stochastic versions of their greedy
algorithms to reduce the number of function evaluations,
inspired by the k = 1 stochastic greedy algorithm proposed
in Mirzasoleiman et al. [2015]. Those algorithms obtain
the same approximation guarantee with a user-specified
probability, but reduce time complexity from O(knB) to
O(k(n − B) logB log B

δ
) and O(k2n log B

k
log B

δ
) for to-

tal size and individual size, respectively, with δ denoting the
user-specified failure probability bound.

Qian et al. [2017] proposed a multiobjective evolution-
ary type algorithm for total size constraint, and showed
that their algorithm can find a 1/2-approximation solution
using O(knB log2 B) oracle calls. Matsuoka and Ohsaka



[2021] utilized curvature for k-submodular functions, weak
k-submodularity, and approximate k-submodularity to an-
alyze how curvature improves the approximation ratios
of the standard greedy and residual random greedy algo-
rithms. The aforementioned works are for the offline set-
ting, which we also consider. For the streaming setting, Ene
and Nguyen [2022] proposed an algorithm that achieves

1
2(1+Bmin(21/Bmin−1))

∈ (0.3, 0.25) approximation using

only O(nk) number of queries, where Bmin = mini∈[k] Bi.

Other Constraints: Some recent works have considered
knapsack constraints. If the cost of an item is the same
across all types, Tang et al. [2022] proposed an algorithm
inspired by Khuller et al. [1999], Sviridenko [2004] that
achieves 1

2 (1−
1
e
) using O(k4n5) number of function eval-

uations. Chen et al. [2022] proposed a partial-enumeration
algorithm inspired by Khuller et al. [1999] that achieves
1
4 (1−

1
e
) with time complexity O(kn2). Pham et al. [2021]

proposed an algorithm for the streaming setting that achieves
a 1

4 − ε approximation guarantee and if the cost is over
more general item-type pairs, their algorithm achieves
min{α2 ,

(1−α)k
(1+β)k−β

} − ε using O(kn
ε
logB) queries where

β = maxi ̸=j
c(e,i)
c(e,j) , and α ∈ (0, 1], ε ∈ (0, 1) are input

parameters. For matroid constraints, Sakaue [2017] pro-
posed an algorithm that achieves a 1/2-approximation and
Matsuoka and Ohsaka [2021] proposed an algorithm that
achieves a 1

1+c
-approximation where c is the curvature.

2 PROBLEM STATEMENT

We begin with background materials and notation. We then
state the two problems we consider.

For an positive integer i let [i] := {1, . . . , i} denote the set
of integers up to and including i. For a set S, let |S| denote
its cardinality. Let V denote a set of items (such as locations
where a sensor could be placed). Let n := |V | denote the
number of items. Let [k] := {1, . . . , k} denote the set of
possible types (such as available types of sensors). There
are equivalent ways to express solutions. The notation 2V

for the power-set of V in the k = 1 setting can be general-
ized to the set (k + 1)V of length-|V | (k + 1)-ary tuples to
denote type assignments for items, with a 0 indicating no
assignment (i.e. no sensor placed in that location). For clar-
ity, we will mostly denote solutions by item-type pairs. Let
S denote the set of subsets of item-type pairs corresponding
to elements of (k + 1)V ,

S := {
⋃

j∈[n]:
A(j) ̸=0

(V (j), A(j)) | A ∈ (k + 1)V }.

Equivalently, V can be partitioned by type,

X := {( ∪
j∈[n]:
A(j)=1

{V (j)}, . . . , ∪
V (j)∈[n]:
A(j)=k

{V (j)}) | A ∈ (k + 1)V }

denoting the sets of partitions of elements by type (among
elements with an assignment). For any S ∈ S, for each
type i ∈ [k], we define Ui(S) := {a ∈ V | s.t. (a, i) ∈
S} to be the set of items assigned type i. We also define
U(S) :=

⋃

i∈[k] Ui(S) to denote the set of elements with
some type-assignment.

We call a function f : S → R monotone (non-decreasing)

if for any sets S, S′ ∈ S over item-type pairs satisfying
S ⊆ S′, f(S) ≤ f(S′). We call a monotone function f :
S → R k-submodular if for any sets S, S′ ∈ S satisfying
S ⊆ S′, and any item-type pair (e, i) with e ̸∈ U(S′) (i.e.
the item has no assigned type), f satisfies a diminishing
returns property,

f(S ∪ {(e, i)})− f(S) ≥ f(S′ ∪ {(e, i)})− f(S′).

We refer to such differences as marginal gains, representing
them using conditioning notation f((e, i)|S) := f(S ∪
{(e, i)})− f(S).

First, we introduce a lemma presented in Tang et al. [2022]
that will be used in proofs.

Lemma 1. (Tang et al. [2022]) For any S, S′ ∈ S with

S ⊆ S′, we have

f (S′)− f(S) ≤
∑

(e,i)∈S′\S

f((e, i)|S).

Remark 2. We use set notation (with sets over item-type
pairs) to simplify the presentation. We note that f and
subsequently marginal gains are only defined over S, for
which there are no item-type pairs with the same item.
For non-monotone functions, k-submodular functions are
those with the above diminishing returns property (referred
to as orthant submodularity) and an additional pairwise-
monotonicity condition [Ward and Živnỳ, 2014].

In the following, let f be an arbitrary non-negative, mono-
tone, k-submodular function. We further assume that
f(∅) = 0, which is without loss of generality because other-
wise, we can redefine f(S) := f(S)− f(∅) for all S ∈ S .

We next state the two problems we consider.

Problem 1. For a monotone k-submodular function f and
total size constraint B, solve

argmax
S∈S: |S|≤B

f(S).

Problem 2. For a monotone k-submodular function f and
individual size constraints {Bi}

k
i=1, solve

argmax
S∈S:

|Ui(S)|≤Bi ∀i∈[k]

f(S).

Neither Problem 1 nor Problem 2 are special cases of the
other, but both generalize unconstrained maximization, for
which it was shown that it is NP-hard to even approximate
with a ratio larger than k+1

2k > 1
2 [Iwata et al., 2015].



Table 1: Table of selected related works. For unconstrained maximization, which both Problems 1 and 2 generalize, it
is known that it is NP-hard to approximate better than k+1

2k > 1
2 [Iwata et al., 2015]. ∗For individual size constraints,

B ←
∑k

i=1 Bi. †This result is for the streaming case, with Bmin = mini∈[k] Bi. The approximation guarantee is at least
1/4 and achieves its best (0.2953) when Bmin tends to infinity. ‡Curvature c ∈ [0, 1] with c = 0 for linear functions.

Reference Constraint Approximation Time

Ohsaka and Yoshida [2015]

total size

1/2 O(knB)
Ohsaka and Yoshida [2015] 1/2 with prob. ≥ 1− δ O(kn logB log B

δ
)

Qian et al. [2017] 1/2 O(knB log2 B)
This paper 1/2− ε O(knε−1 log(Bε−1))

Ohsaka and Yoshida [2015]

individual size∗

1/3 O(knB)
Ohsaka and Yoshida [2015] 1/3 with prob. ≥ 1− δ O(k2n log B

k
log B

δ
)

Ene and Nguyen [2022] 1
2(1+Bmin(21/Bmin−1))

† O(kn)

Matsuoka and Ohsaka [2021] 1
1+2c where c is curvature ‡ O(knB)

This paper 1/3− ε O(knε−1 log(Bε−1))

Algorithm 1 k-submodular Threshold Greedy-TS

Input: access to a value oracle for a monotone k-
submodular function f : (k + 1)V → R

+, an integer
budget B ∈ Z

+ and a tolerance parameter ε > 0.
Output: a set S of item-index pairs with |U(S)| ≤ B.
Initialize S ← ∅, τ ← d = maxe∈V,i∈[k] f({(e, i)})

while τ > (1−ε)εd
2B do

for e, i ∈ V \ U(S), [k] do

if |U(S)| < B and f((e, i)|S) ≥ τ then

S ← S ∪ {(e, i)}.
end if

end for

Update τ ← (1− ε)τ .
end while

Return S

3 THRESHOLD GREEDY - TOTAL SIZE

In this section, we present our first algorithm designed for
Problem 1, maximizing a k-submodular function under a
total size constraint B. The pseudo-code is presented in Al-
gorithm 1. The algorithm design is inspired by the threshold
greedy algorithm for k = 1 submodular maximization pro-
posed by Badanidiyuru and Vondrák [2014]. Algorithm 1
uses a decreasing sequence of thresholds, starting from
d := maxe∈V,i∈[k] f({(e, i)}), which is the largest value
among any item-type pair. For each threshold τ considered,
the algorithm iterates over all item-type pairs that are still
feasible, in an arbitrary order. A feasible item-type pair (e, i)
is added to the current solution S if its marginal gain with
respect to S is above the current threshold, f((e, i)|S) ≥ τ .
After going over all the item-type pairs, the algorithm low-
ers the threshold and repeats. The algorithm will terminate
when the selected subset uses up the budget |S| = B or the
lower bound for the threshold is reached εd

2B .

Remark 3. For implementation, we will use lazy evaluation

Minoux [1978]. If the output set S does not use up the size
budget B, we can pad the output S with extra feasible ele-
ments to use up the budget, such as based on their previously
marginal gains with respect to earlier conditioning sets (if
using lazy evaluation) or a randomly chosen set. Provided
this step does not involve value queries, by monotonicity
the following guarantees will still hold.

We next state our main results for Problem 1.

Theorem 4. Algorithm 1 achieves a (1/2 − ε)-
approximation for the problem of maximizing a monotone

k-submodular function under a total size constraint using

at most O(nkε−1 log(Bε−1)) function evaluations.

Proof. Run-time: The run-time is dominated by function
evaluations. The for loop takesO(nk) time. The outer while

loop is called t′ times, where t′ is the smallest integer t′ such
that (1 − ε)t

′

d ≤ (1−ε)εd
2B . Let t denote the value where

equality holds, so t′ = ⌈t⌉. Rearranging, t satisfies

t = 1−
log(2Bε−1)

log(1− ε)
≤ 1 +

log(2Bε−1)

ε
,

where the last inequality follows from log(1 − x) <
−x for x < 1. Then, t′ can be upper bounded by
O(ε−1 log(Bε−1)) by observing that t′ ≤ t + 1. Thus,
with O(ε−1 log(Bε−1)) calls of the outer while loop, the
total run time is O(nkε−1 log(Bε−1)).

Approximation guarantee: For proving the approximation
guarantee, we divide the problem into two cases. The first
case is when we used up the budget, i.e., we have selected
B items upon the execution of the algorithm is finished.
Similar to the construction in [Ohsaka and Yoshida, 2015],
we consider swapping one element at a time from the output
of our algorithm, S, with one item in the optimal set OPT.
Since |OPT| = B, we need at most B steps to construct
OPT starting from S. Then, we show that each step of the



swapping result in a small gain in the function value, and
thus the total advantage of the OPT over S is also not large.
The second case is when we have selected less than B items.
The result from the first case also holds if the algorithm
selected B items ignoring the size constraint. Then, since
the gain of the items exceeding the budget is small (less than
the minimum threshold by the selection rule), the total gain
of those items is also small. This will indicate that the value
of the selected set is also not far from the value of OPT.
Let S◦ denote the solution output by Algorithm 1.

Case 1: When the final selected S◦ satisfies |U(S◦)| = B.

Let (ej , ij) ∈ V × [k] denote the j-th pair chosen by the
algorithm, and let Sj denote the set S after (ej , ij) was
added. We define S0 = ∅. Let OPT be the optimal solution.
In the following, we will compare the marginal gains of item-
type pairs in S◦ to the marginal gains for item-type pairs in
OPT. We will construct a sequence of subsets of item-type
pairs, combining pairs from S◦ and OPT in order to show
inequalities resulting in the stated approximation bound.
Some care will be needed for item-type pairs (e, i) ∈ S◦

and (e, i′) ∈ OPT where an item e is included in both S◦

and OPT but with different types.

We begin by indexing the item-type pairs in the output
S◦ = {(e1, i1), . . . , (eB , iB)} in the order they were added
to form S◦. We next let Sj denote S after j elements were
added, so Sj := {(e1, i1), . . . , (ej , ij)} for j ∈ [B] and we
set S0 := ∅ as the initial empty set. Thus by construction
f(Sj+1)− f(Sj) = f((ej+1, ij+1)|Sj).

We also index the item-type pairs in the optimal solution
OPT = {(e′1, i

′
1), . . . , (e

′
B , i

′
B)} using the same indices in

OPT as we have in S◦ for pairs containing the same items.
That is, if the item ej in the jth selected pair (ej , ij) in
Algorithm 1 is also in a pair (ej , i′) in OPT, the latter pair
should have the same index (even though the type ij and i′

assigned to that item in S◦ and OPT respectively may be
different). For other pairs in OPT, the indexing is arbitrary.
With this alignment of indices of pairs in S◦ and OPT that
share a common item, we construct a sequence of cardinality
B sets O0, O1, . . . , OB , by swapping elements of OPT
with elements of S◦ in increasing order of the indexing (i.e.
beginning with the first pair selected by Algorithm 1),

O0 :={(e′1, i
′
1), (e

′
2, i

′
2), . . . , (e

′
B−1, i

′
B−1), (e

′
B , i

′
B)}

O1 :={(e1, i1), (e
′
2, i

′
2), . . . , (e

′
B−1, i

′
B−1), (e

′
B , i

′
B)}

...

OB−1 :={(e1, i1), (e2, i2), . . . , (eB−1, iB−1), (e
′
B , i

′
B)}

OB :={(e1, i1), (e2, i2), . . . , (eB−1, iB−1), (eB , iB)}.

By construction, for j ∈ {0, . . . , B} we have Sj ⊆ Oj .
Furthermore, for j + 1 ∈ [B], we have Sj ⊆ Oj ∩ Oj+1.
By this construction, we also have that at the time when
Algorithm 1 selected its (j + 1)st pair (ej+1, ij+1), the
aligned pair in OPT, (e′j+1, i

′
j+1) was also feasible. This

entails that both the item was still available,

e′j+1 ̸∈ U(Sj) ∀ j + 1 ∈ [B], (1)

and that the budget had not yet been consumed. Trivially
the budget B was never violated. (1) follows by construc-
tion since either the items in the (j + 1)st pairs in S◦ and
OPT match, e′j+1 = ej+1, for which reason we would
have aligned them in the first place, or, if they are not the
same, then that item was never chosen by Algorithm 1, so
e′j+1 ̸∈ U(S◦), for which the ordering of OPT is arbitrary
but importantly means e′j+1 was always available.

We consider the difference f(Oj)− f(Oj+1). This is not a
marginal gain since neither set contains the other. However,
since the sets differ in exactly one index (the (j + 1)st) by
construction, we can bound the difference.

f(Oj)− f(Oj+1)

=
(

f(Oj ∩Oj+1) + f((e′j+1, i
′
j+1)|Oj ∩Oj+1)

)

−
(

f(Oj ∩Oj+1) + f((ej+1, ij+1)|Oj ∩Oj+1)
)

≤ f((e′j+1, i
′
j+1)|Oj ∩Oj+1) (2)

≤ f((e′j+1, i
′
j+1)|Sj), (3)

where (2) follows from monotonicity and (3) follows from
orthant submodularity with Sj ⊆ Oj ∩ Oj+1. We cannot
directly relate the marginal gain f((e′j+1, i

′
j+1)|Sj) to that

achieved by the (j + 1)st pair added to S◦ in Algorithm 1,
f((ej+1, ij+1)|Sj), since the ordering of the for loop is
arbitrary. We will be able to bound the ratio of those two
marginal gains based on how the threshold τ is shrunk.
We will first consider the case the threshold was the initial
threshold and then consider the alternative case.

Sub-case τj+1 = d: Suppose the threshold τj+1 when
the (j + 1)st pair was added in Algorithm 1 was the ini-
tial threshold, τj+1 = d, by construction the largest of all
marginal gains. Then

f((ej+1, ij+1)|Sj) = τj+1 = d ≥ f((e′j+1, i
′
j+1)|Sj).

Sub-case τj+1 < d: Suppose the threshold τj+1 < d,
equivalently Algorithm 1 is in the second or later execution
of the outer while loop. The pair (e′j+1, i

′
j+1) was consid-

ered in the previous while loop execution but not added.
(Recall the element e′j+1 is either ej+1 or an element never
chosen in S◦, and thus any pair containing e′j+1 was still fea-
sible in the previous while loops.) Since the pair (e′j+1, i

′
j+1)

was not added, its marginal gains with respect to the greedy
set in the previous while loops, one of {Sj , Sj−1, . . . , ∅},
must have been below the previous threshold τj+1(1−ε)−1.
By orthant submodularity, marginal gains are non-increasing
in the conditioning set, so

f((e′j+1, i
′
j+1)|Sj) ≤ (1− ε)−1τj+1 (4)

≤ (1− ε)−1f((ej+1, ij+1)|Sj), (5)



where (4) holds because (e′j+1, i
′
j+1) is not chosen in a

previous round and (5) holds because (ej+1, ij+1) is chosen
in this round. Thus, whether (ej+1, ij+1) was added during
the first execution of the while loop or later, we have

f(Oj)− f(Oj+1) ≤ f((e′j+1, i
′
j+1)|Sj)

≤ (1− ε)−1f((ej+1, ij+1)|Sj)

= (1− ε)−1
(

f(Sj+1)− f(Sj)
)

. (6)

Using a telescoping sum with O0 = OPT and OB = S◦,

f(OPT)− f(S◦) =

B−1
∑

j=0

(f(Oj)− f(Oj+1)

≤
B−1
∑

j=0

1

1− ε
(f(Sj+1)− f(Sj))

=
1

1− ε
f(S◦),

using (6) and f(∅) = 0, which for ε < 1 implies

f(S◦) ≥
1− ε

2− ε
f(OPT)

≥ (
1

2
− ε)f(OPT). (7)

Case 2: When the final selected S◦ satisfies |U(S◦)| < B.
Let ℓ = |U(S◦)| < B denote the number of elements added.
Let S̃ denote a set of cardinality B that Algorithm 1 would
have selected if Algorithm 1 terminated only when either (a)
B pairs had been selected or (b) the marginal gains on all
remaining elements evaluated as zero. Without loss of gen-
erality, we only consider (a), as we could trivially identify
that event (b) was occurring and add an arbitrary feasible
subset of item-type pairs so that |U(S◦)| = B without any
reduction in value, and the following inequalities will still
hold (any item-type pairs in OPT that were feasible once
all marginal gains reduced to zero, but not chosen to pad
S◦, have equal marginal gains to those that were). Thus, by
construction S◦ ⊂ S̃ and S̃ has B − ℓ extra elements.

First, since S̃ has B elements selected according to decreas-
ing thresholds, the result (7) from Case 1 holds for S̃,

f(S̃) ≥
1− ε

2− ε
f(OPT). (8)

Second, since S◦ only accumulated ℓ elements before the
terminal threshold bound of (1−ε)εd

2B was reached, then
the marginal gains of the remaining B − ℓ elements in
S̃ can be bounded, with the largest possible value of the
threshold τ in the last execution of the while loop being

(1− ε)−1 (1−ε)εd
2B = εd

2B , using Lemma 1,

f(S̃)− f(S◦) ≤
∑

(e,i)∈S̃\S◦

f((e, i)|S◦)

≤ (B − ℓ)
εd

2B

⇐⇒ f(S◦) ≥ f(S̃)− (B − ℓ)
εd

2B
. (9)

We note that since by construction S◦ ⊂ S̃, each of the
item-index pairs in S̃\S◦ must have contained items not
in U(S◦), so the marginal gains in the formulas above are
well-defined.

With (8) and (9), monotonicity of f , and d ≤ f(OPT),

f(S◦) ≥ f(S̃)− (B − ℓ)
εd

2B
(by (9))

≥
1− ε

2− ε
f(OPT)− (B − ℓ)

εd

2B
(by (8))

≥ (
1

2
− ε)f(OPT).

Algorithm 1 and the proof of Theorem 4 generalizes the
threshold greedy algorithm for submodular (k = 1) func-
tions proposed in [Badanidiyuru and Vondrák, 2014]. The
reason why a threshold algorithm can improve the greedy
algorithm on time complexity is that, while the greedy al-
gorithm considers adding one element during one pass of
all the remaining elements, the threshold algorithm adds
multiple elements during one pass. By utilizing similar tech-
niques for choosing threshold sequences, we obtain the
same reduction in worst-case function evaluations with the
same additive reduction in the (worst-case) approximation
ratio. More specifically, Badanidiyuru and Vondrák [2014]
achieved a (1− 1/e− ε)-approximation guarantee for the
k = 1 case, where 1− 1/e is the best possible when k = 1;
we achieved (1/2−ε)-approximation, where 1/2 is (asymp-
totically) the best possible for general k [Iwata et al., 2015].
As for the time complexity, Ohsaka and Yoshida [2015] im-
proved from order B to log(B) by considering a random set
with size of order log(B)

B
when adding each element. They

showed that the aforementioned set has overlapping items
with items in an optimal set that are still available with high
probability. With a threshold strategy, we improved the run
time from order B to log(B) by considering a sequence of
O(log(B)) thresholds.

4 THRESH. GREEDY - INDIVIDUAL SIZE

In this section, we present our second algorithm, a thresh-
old greedy algorithm for Problem 2, maximizing a k-
submodular function under individual size constraints. The



Algorithm 2 k-submodular Threshold Greedy-IS

Input: access to a value oracle for a monotone k-
submodular function f : (k + 1)V → R

+, integers
B1, · · · , Bk ∈ Z

+ and a tolerance parameter ε.
Output: an item-index pair set S with |Ui(S)| ≤ Bi for
each i ∈ [k].
Initialize S ← ∅, B ←

∑

i∈[k] Bi, τ ← d =

maxe∈V,i∈[k] f({(e, i)})

while τ > (1−ε)εd
3B do

I ← {i ∈ [k] : |Ui(S)| < Bi}
for e, i ∈ V \ U(S), I do

if f((e, i)|S) ≥ τ then

S ← S ∪ {(e, i)}.
end if

end for

Update τ ← (1− ε)τ .
end while

Return S

pseudo-code is presented in Algorithm 2. Similar to Algo-
rithm 1, the algorithm considers a decreasing sequence of
thresholds, starting from d = maxe∈V,i∈[k] f({(e, i)}). For
each threshold τ considered, the algorithm searches through
all the item-type pairs that satisfy the following conditions:
the item has not been chosen regardless of type, and the
number of items with type i has not exceeded Bi. While
searching, the algorithm includes the item-type pairs whose
marginal gains are above the current threshold. After going
over all such item-type pairs, the algorithm decreases the
threshold and repeats the search. The algorithm will termi-
nate when the selected subset already satisfies |Ui(S)| = Bi

for all i ∈ [k] or the considered threshold is below εd
3B ,

where B =
∑

i∈[k] Bi. We have the following result.

Theorem 5. Algorithm 2 achieves a (1/3 − ε)-
approximation for the problem of maximizing a monotone

k-submodular function under individual size constraints

using at most O(nkε−1 log(Bε−1)) function evaluations.

In [Ohsaka and Yoshida, 2015], to design a stochastic ver-
sion of the greedy algorithm in the individual size constraint
case, unlike the total size constraint case, we need a set
that overlaps with the available items in an optimal set with
high probability for each type. This induces an additional k
term compared with the total size constraint. For a thresh-
old strategy, there is no such concern since we consider all
available elements during each iteration of the while loop.
It is still feasible to use a sequence of thresholds with size
O(log(B)) to get the same approximation guarantee.

In the interest of space, we defer the proof of Theorem 5 to
Appendix A. The general structure of the proof is similar to
the proof of Theorem 4, but extra care is taken in construct-
ing the sequence of intermediate solutions {O1, . . . , OB−1}.
In the proof of Theorem 4 for a total size constraint, when

constructing Oj+1 from Oj , we can swap types without
limitation as long as the total budget is not exceeded, as
there is no constraint on a specific type. With individual
size constraints, however, multiple select swaps are needed
going from Oj to Oj+1 to maintain feasibility.

This is the first algorithm to achieve a deterministic, nearly
1/3-approximation without linear dependence on the bud-
gets. The stochastic greedy algorithm proposed in [Ohsaka
and Yoshida, 2015] achieves 1/3 with (at least) a user-
specified probability, and the run time bound is slower than
ours by a factor of k. In [Ene and Nguyen, 2022], a stream-
ing algorithm with only O(kn) queries is proposed, but the
approximation ratio is worse.

5 EXPERIMENTS

In this section, we empirically evaluate the performance of
our proposed methods with applications of sensor placement
with k types and influence maximization with k topics. We
compare our results with baselines in terms of both the
objective value achieved and oracle complexity. The code
of our experiments can be found on https://github.
com/yididiyan/k_submodular/.

Baselines: We compare our algorithms against the greedy
and stochastic greedy algorithms proposed in [Ohsaka and
Yoshida, 2015]. For all implementations, we use lazy evalu-
ation. For our proposed threshold algorithms, we consider
ε = 0.1, 0.2, 0.5 and 0.8. We note that for our threshold
algorithms with approximation ratios (in the worst-case) of
1
2 − ε and 1

3 − ε for total size constraints and individual
size constraints respectively, the worst-case bound becomes
vacuous, but the algorithm could potentially work well in
practice, as was shown in experiments in [Li et al., 2022] for
a threshold algorithm for k = 1 submodular maximization
with a knapsack constraint. For stochastic greedy algorithms,
we use δ = 0.1, 0.2, 0.5 and 0.8 (δ bounds the failure prob-
ability of achieving the stated approximation ratio) for fair
comparisons with threshold greedy algorithms, although in
the original paper [Ohsaka and Yoshida, 2015], only δ = 0.1
was considered. We do not consider other baselines men-
tioned in Table 1 as there are differences in setups. We refer
to Appendix B for a more detailed discussion.

Metrics: We evaluate the performance of our methods
and baselines according to two criteria: the objective value
and the number of function queries. We first explore how
these depend on the constraint parameters, namely the total
budget B for total-size constraints and the type-specific
budgets {Bi} for individual size. Then we demonstrate the
main advantage of the proposed threshold greedy algorithm
over the stochastic greedy algorithm under individual size
constraints, namely the improvement by a factor of k in the
theoretical guarantee.



(a) Entropy comparison for TS
constraints.

(b) Entropy comparison for IS
constraints.

(c) Comparison of function
queries for TS constraints.

(d) Comparison of function
queries for IS constraints.

Figure 1: Sensor placement over k types.

5.1 SENSOR PLACEMENT

Sensor Placement with k types: In this section, we ap-
ply our algorithms for maximizing k-submodular functions
with the individual size constraint to the sensor placement
problem with k kinds of sensors. To formally define the
problem, we need several notations from information theory.
Let Ω = {X1, X2, . . . , Xn} be a set of discrete random vari-
ables. The entropy of a subset S of Ω is defined as H(S) =
−
∑

s∈domS Pr[s] log Pr[s]. The conditional entropy of Ω
having observed S is H(Ω | S) := H(Ω) −H(S). In the
sensor placement problem, we want to set the sensors so
as to maximize the reduction of expected entropy, which is
equivalent to finding a set S that maximizes the entropy.

Now we formalize the sensor placement problem. There
are k kinds of sensors for different measures. For total
size constraints, we want to allocate B sensors to set V
of n locations. For individual size constraints, we want
to allocate Bi many sensors of the i-th kind for each
i ∈ [k] to set V of n locations. In both settings, each lo-
cation can be instrumented with exactly one sensor. Let
Xi

e be the random variable representing the observation
collected from a sensor of the i-th kind if it is installed
at the e-th location, and let Ω =

{

Xi
e

}

e∈V,i∈[k]
. Then,

the problem is to select S ∈ (k + 1)V that maximizes

f(S) = H
(

⋃

e∈U(S)

{

X
S(e)
e

})

subject to |U(S)| ≤ B

for total size constraints, |Ui(S)| ≤ Bi for each i ∈ [k]
for individual size constraints. Ohsaka and Yoshida [2015]
showed that f is monotone k-submodular.

Experiment settings: We use the publicly available Intel

Lab dataset preprocessed by Ohsaka and Yoshida [2015].
This dataset contains approximately 2.3 million readings
collected from 54 sensors deployed in the Intel Berkeley
research lab between February 28th and April 5th, 2004.
Temperature, humidity, and light values are extracted and
discretized into bins of 2 degrees Celsius each, 5 points
each, and 100 luxes each, respectively. Hence there are
k = 3 kinds of sensors to be allocated to n = 54 locations.
For total size constraints, we set the value of B to 3, 6, 9,
. . . , 54. For individual size constraints, we denote budgets
for sensors measuring temperature, humidity, and light by
B1, B2, and B3 respectively. We set B1 = B2 = B3 = b,
where b is a parameter varying from 1 to 18.

Results: The results are shown in Figure 1. For total size
constraints, Figure 1a shows that in terms of function val-
ues, all algorithms tested using different hyperparameter
values had similar performances. In terms of the number
of function evaluations (with lazy evaluations) as shown in
Figure 1c, for the stochastic greedy algorithm, the number
of function evaluations stays almost identical regardless of
the δ parameter. One possible reason is that the δ param-
eter only appears inside the logarithm term of the size of
the stochastic set, so varying it would not affect the size
significantly. For our threshold greedy algorithm, however,
increasing ε significantly reduces the number of function
evaluations (since the number of thresholds considered is of
order O(1/ε)) without significant degradation in solution
quality. We note there is a drop in the number of function
evaluations by stochastic greedy algorithms as the budget
B approaches the maximum value n (the number of lo-
cations). This phenomenon was reported in [Ohsaka and
Yoshida, 2015] and may be due in part to the formula of the
stochastic batch size (B appears in the denominator).

For individual size constraints, Figure 1b show that for func-
tion values, all the algorithms tested with varying hyper-
parameters have similar performances. For the number of
function evaluations shown in Figure 1d, we can see there
is a drop as δ get larger for the stochastic greedy algorithm,
but the drop is not that significant compared with that of the
threshold greedy algorithm when ε is varied. Again, this is
due to the fact that the δ parameter only appears inside the
logarithm term of the size of the stochastic set (so affects
the runtime logarithmically), while the ε parameter affects
the runtime of the threshold algorithm linearly. When both
δ and ε are set to 0.8, it becomes apparent that the threshold
algorithm outperforms the stochastic greedy algorithm in
terms of the number of function evaluations. Specifically,
at the largest margin, the threshold algorithm requires only
one-third of the number of function evaluations compared
to the stochastic greedy algorithm.

Overall, we observed that increasing the parameter δ for
(baseline) stochastic greedy did not significantly impact
the function values or the number of function evaluations.
However, increasing ε in our proposed threshold algorithms



(a) Influence spreads. (b) Function evaluations.

Figure 2: Influence maximization over k topics under indi-
vidual size constraints.

resulted in a significant reduction in the number of function
evaluations with only a negligible decrease in the function
values. For these experiments, our threshold algorithms en-
able significantly better tradeoffs in balancing accuracy and
runtime compared to the baseline methods.

5.2 INFLUENCE MAXIMIZATION

Influence Maximization with k Topics: In this problem,
a social network is presented as a directed graph G = (V,E)
where V is a set of nodes and E is the set of edges. Each
edge (u, v) ∈ E is associated with weights {piu,v}i∈[k],
where piu,v represents the strength of influence from user u
to v on topic i. The objective is to maximize the number of
users in the network who eventually get influenced by one
of the topics. For information diffusion, we use the k-topic

independent cascade (k-IC) model presented in Ohsaka and
Yoshida [2015], which generalizes the independent cascade
model [Kempe et al., 2003].

More specifically, the influence spread σ : (k +
1)V → R+ in the k-IC model is defined as σ(S) =

E

[∣

∣

∣

⋃

i∈[k] Ai (Ui(S))
∣

∣

∣

]

, where Ai (Ui(S)) is a random

variable representing the set of influenced nodes in the dif-
fusion process of the i-th topic. It is shown in [Ohsaka and
Yoshida, 2015] that the influence spread function σ is mono-
tone k-submodular. Given a directed graph G = (V,E),
edge probabilities {piu,v | ((u, v) ∈ E, i ∈ [k])}, and a
budget B for total size constraint (or Bi for i ∈ [k] for in-
dividual size constraint), the problem is to select a seed set
S ∈ (k + 1)V that maximizes σ(S) subject to |U(S)| ≤ B
(or |Ui(S)| ≤ Bi for each i ∈ [k]).

Experiment settings: We use the preprocessed data of Digg
network from [Ohsaka and Yoshida, 2015], where we have
3,523 users, 90,244 links, and k = 10 topics. Recall that
for individual size constraints, the number of function eval-
uations for the stochastic greedy algorithm is Õ(k2n), and
Õ(kn) for the threshold greedy algorithm. We set individual
size b = 2 and compare both the function values and the
number of function evaluations when k is varied. Similar
to [Ohsaka and Yoshida, 2015], during the process of the
algorithms, the influence spread was approximated by simu-

lating the diffusion process 100 times. When the algorithms
terminate, we simulated the diffusion process 10,000 times
to obtain sufficiently accurate estimates of the spread.

Results: For this set of experiments, the results are shown in
Figure 2. Regarding influence spread, we can observe from
Figure 2a that all methods perform comparably, except for
some variability in larger values of k due to the randomness
of diffusions. However, when considering the number of
function evaluations, it becomes apparent in Figure 2b that
the stochastic greedy algorithm significantly underperforms
compared to all other methods. For the threshold greedy al-
gorithms, there is some (though not significant) performance
advantage when the ε is set to 0.5.

Interestingly, the greedy algorithm outperforms the stochas-
tic greedy algorithm in terms of the number of function
evaluations by a large margin. This is due to the fact that the
greedy algorithm allows for a more efficient implementation
using lazy evaluations. This phenomenon is also reported in
[Ene and Nguyen, 2022]. From this, we can infer that our
threshold greedy algorithms also allow for the implementa-
tion of lazy evaluations in a similarly efficient manner.

6 CONCLUSION

In this work, we proposed algorithms for the problem
of maximizing monotone k-submodular functions under
size constraints. We showed that algorithms employing a
threshold-greedy strategy improve the run-time among de-
terministic approximation algorithms with the best-known
approximation ratios, and for independent size constraints
could even improve on the run-time of a stochastic greedy al-
gorithm. There are a number of important future directions,
including investigating if similar strategies could improve
run-time for more complicated constraints such as matroids,
knapsacks, etc., application specific adaptations, and inves-
tigating what approximation ratios are achievable for these
and related problems.
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