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Abstract

We study the problem of efficiently estimating

the effect of an intervention on a single variable

(atomic interventions) using observational sam-

ples in a causal Bayesian network. Our goal

is to give algorithms that are efficient in both

time and sample complexity in a non-parametric

setting. Tian and Pearl (AAAI ‘02) have ex-

actly characterized the class of causal graphs for

which causal effects of atomic interventions can

be identified from observational data. We make

their result quantitative. Suppose P is a causal

model on a set V of n observable variables with

respect to a given causal graph G with observable

distribution P . Let Px denote the interventional

distribution over the observables with respect to

an intervention of a designated variable X with

x.1 We show that assuming that G has bounded

in-degree, bounded c-components (k), and that

the observational distribution is identifiable and

satisfies certain strong positivity condition:

(i) [Evaluation] There is an algorithm that out-

puts with probability 2/3 an evaluator for a

distribution P ′ that satisfies dTV(Px, P
′) 6

ε using m = Õ(nε−2) samples from P and

O(mn) time. The evaluator can return in

O(n) time the probability P ′(v) for any as-

signment v to V.

(ii) [Generation] There is an algorithm that out-

puts with probability 2/3 a sampler for a

distribution P̂ that satisfies dTV(Px, P̂ ) 6

ε using m = Õ(nε−2) samples from P and

O(mn) time. The sampler returns an iid

sample from P̂ with probability 1 in O(n)
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1P (V | do(x)) is another notation for Px that is widely used
in the literature, with do(x) denoting an intervention on a variable
X with value x.

time.

We extend our techniques to estimate marginals

Px|Y over a given subset Y ⊆ V of variables of

interest. We also show lower bounds for the sam-

ple complexity showing that our sample com-

plexity has optimal dependence on the parame-

ters n and ε, as well as if k = 1 on the strong

positivity parameter.

1. Introduction

A causal model for a system of variables describes not only

how the variables are associated with each other but also

how they would change if they were to be acted on by an

external force. For example, in order to have a proper dis-

cussion about global warming, we need more than just an

associational model which would give the correlation be-

tween human CO2 emissions and Arctic temperature lev-

els. We instead need a causal model which would predict

the climatological effects of humans reducing CO2 emis-

sions by (say) 20% over the next five years. Notice how the

two can give starkly different pictures: if global warming

is being propelled by natural weather cycles, then changing

human emissions won’t make any difference to temperature

levels, even though human emissions and temperature may

be correlated in our dataset (just because both are increas-

ing over the timespan of our data).

Causality has been a topic of inquiry since ancient times,

but a modern, rigorous formulation of causality came about

in the twentieth century through the works of Pearl, Robins,

Rubin, and others (Imbens & Rubin, 2015; Pearl, 2009;

Rubin et al., 2011; Hernan & Robins, 2020). In partic-

ular, (Pearl, 2009) recasted causality in the language of

causal Bayesian networks (or causal Bayes nets for short).

A causal Bayes net is a standard Bayes net that is rein-

terpreted causally. Specifically, it makes the assumption of

modularity: for any variable X , the dependence of X on its

parents is an autonomous mechanism that does not change

even if other parts of the network are changed. This allows

assessment of external interventions, such as those encoun-

tered in policy analysis, treatment management, and plan-

ning. The idea is that by virtue of the modularity assump-

tion, an intervention simply amounts to a modified Bayes
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net where some of the parent-child mechanisms are altered

while the rest are kept the same.

The underlying structure of causal Bayes netP is a directed

acyclic graph G. The graph G consists of n + h nodes

where n nodes correspond to the observable variables V

while the h additional nodes correspond to a set of h hid-

den variables U. We assume that the observable variables

take values over a finite alphabet Σ. By interpreting P as

a standard Bayes net over V ∪ U and then marginalizing

to V, we get the observational distribution P on V. The

modularity assumption allows us to define the result of an

intervention on P . An intervention is specified by a subset

X ⊆ V of variables and an assignment2 x ∈ Σ|X|. In the

interventional distribution, the variables X are fixed to x,

while each variable W ∈ (V ∪ U) \ X is sampled as it

would have been in the original Bayes net, according to the

conditional distribution W | Pa(W ), where Pa(W ) (par-

ents of W ) consist of either variables previously sampled in

the topological order of G or variables in X set by the in-

tervention. The marginal of the resulting distribution to V

is the interventional distribution denoted by Px. We some-

times also use do(x) to denote the intervention process and

P (V | do(x)) to denote the resulting interventional distri-

bution.

In this work, we focus our attention on the case that X is

a single observable variable, so that interventions on X are

atomic. We study the following estimation problems:

1. (Evaluation) Given an x ∈ Σ, construct an evaluator

for Px which estimates the value of the probability

mass function

Px(v)
def
= Pr

V∼Px

[V = v]

for any v ∈ Σn. The goal is to construct the evalua-

tor using only a bounded number of samples from the

observational distribution P , and moreover, the evalu-

ator should run efficiently.

2. (Generation) Given an x ∈ Σ, construct a generator

for Px which generates i.i.d. samples from a distri-

bution that approximates Px. The goal is to construct

the generator using only a bounded number of samples

from the observational distribution P , and moreover,

the generator should be able to output each sample ef-

ficiently.

We study these problems in the non-parametric setting,

where we assume that all the observable variables under

consideration are over a finite alphabet Σ.

2Consistent with the convention in the causality literature, we
will use a lower case letter (e.g., x) to denote an assignment to
the subset of variables corresponding to its upper case counterpart
(e.g., X).

Evaluation and generation are two very natural inference

problems3. Indeed, the influential work of (Kearns et al.,

1994) introduced the computational framework of distribu-

tion learning in terms of these two problems. Over the last

25 years, work on distribution learning has clarified how

classical techniques in statistics can be married to new al-

gorithmic ideas in order to yield sample- and time-efficient

algorithms for learning very general classes of distribu-

tions; see (Diakonikolas, 2016) for a recent survey of the

area. The goal of our work is to initiate a similar compu-

tational study of the fundamental problems in causal infer-

ence.

The crucial distinction of our setting from the distribution

learning setting is that the algorithm does not get samples

from the distribution of interest. In our setting, the algo-

rithm receives as input samples from P while its goal is

to estimate the distribution Px. This is motivated by the

fact that typically randomized experiments are hard (or un-

ethical) to conduct while observational samples are easy

to collect. Even if we disregard computational considera-

tions, it may be impossible to determine the interventional

distribution Px from the observational distribution P and

knowledge of the causal graph G. The simplest example

is the so-called “bow-tie graph” on two observable vari-

ables X and Y (with X being a parent of Y ) and a hidden

variable U that is a parent of both X and Y . Here, it’s

easy to see that P does not uniquely determine Px. (Tian

& Pearl, 2002b) studied the general question of when the

interventional distribution Px is identifiable from the obser-

vational distribution P . They characterized the class GX of

directed acyclic graphs with hidden variables such that for

any G ∈ GX , for any causal Bayes net P on G, and for

any intervention x to X , Px is identifiable from P . Thus,

for all our work we assume that G ∈ GX , because other-

wise, Px is not identifiable, even with an infinite number of

observations.

We design sample and time efficient algorithms for the

above-mentioned estimation problems. Our starting point

is the work of (Tian & Pearl, 2002b). (Tian & Pearl, 2002b)

(as well as other related work on identifiability) assumes,

in addition to the underlying graph being in GX , that the

distribution P is positive, meaning that P (v) > 0 for all

assignments v to V. We show that under reasonable as-

sumptions about the structure of G, we only need to as-

sume strong positivity for the marginal of P over a bounded

number of variables to design our algorithms. We extend

our techniques to the problem of efficiently estimating the

marginal interventional distributions over a subset of ob-

servable variables. Finally we establish a lower bound for

the sample complexity showing that our sample complexity

3Note that the distinction between the two problems is compu-
tational; one can produce a generator from an evaluator and vice
versa without requiring any new samples.
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has near optimal dependence on the parameters of interest.

We discuss our results in detail next.

2. Our Contributions

Let P be a causal Bayes net4 over a graph G, in which the

set of observable variables is denoted by V and the set of

hidden variables is denoted by U. Let n = |V|. There is

a standard procedure in the causality literature (see (Tian

& Pearl, 2002a)) to convert G into a graph on n nodes.

Namely, under the semi-Markovian assumption that each

hidden variable U does not have any parents and affects

exactly two observable variables Xi and Xj , we remove U
from G and put a bidirected edge between Xi and Xj . We

end up with an Acyclic Directed Mixed Graph (ADMG) G,

having n nodes corresponding to the variables V and hav-

ing edge set E→ ∪ E↔ where E→ are the directed edges

and E↔ are the bidirected edges. Figure 1 shows an exam-

ple. The in-degree of G is the maximum number of directed

edges coming into any node. A c-component refers to any

maximal subset of nodes/variables which is connected us-

ing only bidirected edges. Then V gets partitioned into

c-components: S1,S2, . . . ,Sℓ.

Let X be a designated variable in V. Without loss of gen-

erality, suppose X ∈ S1.

Assumption 2.1 (Identifiability with respect to X). There

does not exist a path of bidirected edges between X and

any child of X . Equivalently, no child of X belongs to S1.

The second assumption we make is about the observational

distribution P . For a subset of variables S ⊆ V, let

Pa
+(S) = S ∪

⋃

V ∈S
Pa(V ) where Pa(V ) are the ob-

servable parents of V in the graph G.

Assumption 2.2 (α-strong positivity with respect to X).

Suppose X lies in the c-component S1, and let Z =
Pa

+(S1). For every assignment z to Z, P (Z = z) > α.

So, if |Pa+(S1)| is small, then Assumption 2.2 only re-

quires that a small set of variables take on each possible

configuration with non-negligible probability. When As-

sumption 2.2 holds, we say that the causal Bayes net is

α-strongly positive with respect to X . More generally, if

an observational distribution P satisfies ∀s, P (S = s) > α
for some α > 0 and subset S of variables we say P is α-

strongly positive with respect to S.

2.1. Algorithms

Suppose P is an unknown causal Bayes net over a known

ADMG G on n observable variables V that satisfies identi-

fiablity (Assumption 2.1) and α-strong positivity (Assump-

tion 2.2) with respect to a variable X ∈ V . Let d denote

4Formal definitions appear in Section 3.

Figure 1. An acyclic directed mixed graph (ADMG) where the

bidirected edges are depicted as dashed. The in-degree of the

graph is 2. The c-components are {A,C} and {B,D,E}.

the maximum in-degree of the graph G and k denote the

size of its largest c-component.

We present an efficient algorithm for the evaluation and

generation problems.

Theorem 2.3. [Evaluation and Generation5] For any in-

tervention x to X and parameter ε ∈ (0, 1), there is an

algorithm that takes m = Õ
(

|Σ|2kdn
αkε2

)

samples from P ,

and in O
(

mn|Σ|2kd
)

time, learns a distribution P̂ satisfy-

ing dTV(Px, P̂ ) 6 ε such that

– Evaluation: Given an assignment w to V \{X} com-

puting P̂ (w) takes O(n|Σ|(kd+ k)) time

– Generation: Obtaining an independent sample from

P̂ takes O(n|Σ|(kd+ k)) time .

We now discuss the problem of estimating Px|F, i.e., the

marginal interventional distribution upon intervention x to

X over a subset of the observables F ⊆ V. We show finite

sample bounds for estimating Px|F when the causal Bayes

net satisfies Assumption 2.1 and Assumption 2.2, thus ob-

taining quantitative counterparts to the results shown in

(Tian & Pearl, 2002b) (See Theorem 4 of (Tian & Pearl,

2002b)). We use f to denote the cardinality of F.

A generator for Px obviously also gives a generator for the

marginal of Px on any subset F. We observe that given a

generator, we can also learn an approximate evaluator for

the marginal of Px on F sample-efficiently. This is be-

cause using O(|Σ|f/ε2) samples of P̂x, we can learn an

explicit description of P̂x|F upto total variation distance

ε with probability at least 9/10, by simply using the em-

pirical estimator. Since P̂x is itself ε-close to Px in total

variation distance, we get an algorithm that with constant

probability, returns an evaluator for a distribution that is

2ε-close to Px|F. Summarizing:

5All our learning algorithms succeed with 1−δ probability and
the sample and the time complexity dependences are O(log 1

δ
)

and O(log3 1

δ
) respectively for any 0 < δ < 1.
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Corollary 2.4. For any subset F ⊆ V with |F| = f , inter-

vention x to X and parameter ε ∈ (0, 1), there is an algo-

rithm that takes m = Õ
(

|Σ|2kdn
αkε2

)

samples from P and in

O(mn|Σ|2kd) time returns an evaluator for a distribution

P̂x|F on F such that dTV(Px|F, P̂x|F) 6 ε.

Note that the as the sample complexity depends linearly on

n, the total number of variables in the model, which could

be potentially large. We show that in such cases where f
is extremely small we can perform efficient estimation with

small sample size. A more detailed discussion of our anal-

ysis on evaluating marginals which includes the algorithms

and proofs can be found in Appendix C. Precisely, we show

the following theorem:

Theorem 2.5. For any subset F ⊆ V with |F| = f , inter-

vention x to X and parameter ε ∈ (0, 1), there is an algo-

rithm that takes m = Õ

(

|Σ|2(f+k(d+1))2

αkε2

)

samples from P

and runs in O(m(f + k(d+ 1))|Σ|2(f+k(d+1))2) time and

returns an evaluator for a distribution P̃F on F such that

dTV(Px|F, P̃F) 6 ε.

2.2. Lower Bounds

We next address the question of whether the sample com-

plexity of our algorithms has the right dependence on the

parameters of the causal Bayes net as well as on α. We also

explore whether Assumption 2.2 can be weakened. Since

in this section, our focus is on the sample complexity in-

stead of time complexity, we do not distinguish between

evaluation and generation.

To get some intuition, consider the simple causal Bayes net

depicted in Figure 2a. Here, X does not have any parents

and X is not confounded with any variable. Y is a child

of X , and suppose X and Y are boolean variables, where

P (X = 0) = α for some small α. Now, to estimate the

interventional probability PX=0(Y = 0) = P (Y = 0 |
X = 0) to within±ε, it is well-known that Ω(ε−2) samples

(X,Y ) with X = 0 are needed. Since X = 0 occurs with

probability α, an Ω(α−1ε−2) lower bound on the sample

complexity follows.

However, from this example, it’s not clear that we need

to enforce strong positivity on the parents of X or the c-

component containing X , since both are trivial. Also, the

sample complexity has no dependence on n and d. The

following theorem addresses these issues.

Theorem 2.6. Fix integers d, k > 1 and a set Σ of size

> 2. For all sufficiently large n, there exists an ADMG G
with n nodes and in-degree d so that the following hold. G
contains a node X such that |Pa(X)| = d and |S1| = k
(where S1 is the c-component containing X). For any Z ∈
Pa(X) ∪ S1, there exists a causal Bayes net P on G over

Σ-valued variables such that:

(i) For the observational distribution P , the marginal

P |(Pa(X)∪S1)\{Z} is uniform but the marginal

P |Pa(X)∪S1
has mass at most α at some assignment.

(ii) There exists an intervention x on X such that learning

the distribution Px upto dTV-distance ε with probabil-

ity 9/10 requires Ω(n|Σ|d/αε2) samples from P .

So, P must have a guarantee that its marginal on Pa(X) ∪
S1 has mass > α at all points in order for an algo-

rithm to learn Px using O(n|Σ|d/αε2) samples. For

comparison, our algorithm in Theorem 2.3 assume strong

positivity for Pa
+(S1) and achieve sample complexity

O(n|Σ|2kd/αkε2). For small values of k and d, the upper

and lower bounds are close. It remains an open question to

fully close the gap.

To hint towards the proof of Theorem 2.6, we sketch the

argument when Z is a parent of X and n = 3. Figure 2b

shows a graph where X has one parent Z and no hidden

variables. Both X and Z are parents of Y , and all three

are binary variables. Consider two causal models P andQ.

For both P and Q, Z is uniform over {0, 1} and X 6= Z
with probability α. Now, suppose P (Y = 1 | X 6= Z) =
1/2 + ε and P (Y = 1 | X = Z) = 1/2, while Q(Y =
1 | X 6= Z) = 1/2 − ε and Q(Y = 1 | X = Z) = 1/2.

Note that PX=1(Y = 1) = (1 + ε)/2 while QX=1(Y =
1) = (1 − ε)/2, so that the interventional distributions are

ε-far from each other. On the other hand, it can be shown

using Fano’s inequality that any algorithm needs to observe

Ω(α−1ε−2) samples to distinguish P and Q.

2.3. Previous Work

Identification of causal effects from the observational dis-

tribution has been studied extensively in the literature.

Here we discuss some of the relevant literature in the non-

parametric setting. When there are no unobservable vari-

ables (and hence the associated ADMG is a DAG), it is

always possible to identify any given intervention from

the observational distribution (Pearl, 2009; Robins, 1986;

Spirtes et al., 2000). However, when there are unobserv-

able variables causal effect identifiability in ADMGs is not

always possible. A series of important works focused on

establishing graphical criterions for identifiability of in-

terventional distributions from the observational distribu-

tion (Tian & Pearl, 2002b; Spirtes et al., 2000; Galles &

Pearl, 1995; Halpern, 2000; Kuroki & Miyakawa, 1999;

Pearl & Robins, 1995). This led to a complete algorithm6,

first by Tian and Pearl for the identifiability of atomic in-

6Complete algorithms output the desired causal effect when-
ever possible or output fail along with a proof of unidentifiability
– thus characterizing a necessary and sufficient graphical condi-
tion for identifiability.
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X Y

(a) Lower bound for when X is a source

X Y

Z

(b) Lower bound for when X has a parent

Figure 2.

terventions (Tian & Pearl, 2002b) (this work is the most

relevant for the present work), and then by Shpitser and

Pearl (algorithm ID) for the identifiability of any given

intervention from the observational distribution (Shpitser

& Pearl, 2006) (see also (Huang & Valtorta, 2008)). Re-

searchers have also investigated implementation aspects of

the identification algorithms. In particular, an implementa-

tion of the algorithm ID has been carried out in the R pack-

age causaleffect in (Tikka & Karvanen, 2017a). This

work was followed by a sequence of works (Tikka & Kar-

vanen, 2017b; 2018) where the authors simplify ID and ob-

tain a succinct representation of the target causal effect by

removing unnecessary variables from the expression. Other

software packages related to causal identifiability are also

publicly available (Tian; Kelleher; Sharma & Kiciman).

Researchers have also investigated non-parametric causal

effect identification from observations on structures other

than ADMGs. Some recent results in this direction in-

clude work reported in (Jaber et al., 2019a) (and (Jaber

et al., 2019b)) where complete algorithms have been es-

tablished for causal effect identifiability (and conditional

causal effect identifiability) with respect to Markov equiv-

alent class diagrams, a more general class of causal

graphs. Maximally oriented partially directed acyclic

graphs (MPDAGs) is yet another generalization of DAGs

with no hidden variables. Very recently complete algo-

rithms for causal identification with respect to MPDAGs

have been established (Perković, 2019). Complete algo-

rithms are also known for dynamic causal networks, a

causal analogue for dynamic Bayesian networks that evolve

over time (Blondel et al., 2016). Causal chain graphs

(CEGs, which are similar to ADMGs) are yet another class

of graphs for which identifiability of interventions has been

investigated and conditions (similar to Pearl’s back-door

criterion) have been established (Thwaites et al., 2010;

Thwaites, 2013).

In a different line of work reported in (Schulman & Sri-

vastava, 2016), the authors introduce the notion of stability

of causal identification: a notion capturing the sensitivity

of causal effects to small perturbations in the input. They

show that the causal identification function is numerically

unstable for the ID algorithm (Shpitser & Pearl, 2006).

They also show that, in contrast for atomic interventions

(i.e., when X is singleton) the identification algorithm of

Tian and Pearl (Tian & Pearl, 2002b) is not too sensitive to

changes in the input whenever Assumption 2.1 of (Tian &

Pearl, 2002b) is true.

Although most of the work on non-parametric causal iden-

tification mentioned above assume the causal graph is

known, the problem of inferring the underlying causal

graph has also been studied in various contexts. Some pa-

pers reporting the work along this line include (Hyttinen

et al., 2015; Hauser & Bühlmann, 2013; Agrawal et al.,

2019; Yang et al., 2018; Kocaoglu et al., 2019). Causal

effect identification is a fundamental topic with a wide

range of practical applications. In particular it has found

applications in a range of applied areas including recom-

mendation systems (Sharma et al., 2015), computational

sciences (Spirtes, 2010), social and behavioral sciences

(Sobel, 2000), econometrics (Heckman & Vytlacil, 2007;

Matzkin, 1993; Lewbel, 2019), and epidemiology (Hernan

& Robins, 2020).

An important observation we note is that all existing works

on non-parametric causal identifiability research assume

infinite sample access to the observational distribution. To

the best of our knowledge, the present work is the first that

establishes sample and time complexity bounds on non-

parametric causal effect identifiability. In this respect, the

closest related work is (Acharya et al., 2018) which looked

at the problem of goodness-of-fit testing of causal models

in a non-parametric setting; however, they assumed access

to experimental data, not just observational data. (Jung

et al., 2020) gave a weighting-based estimator for expected

causal effects under certain graphical conditions.

3. Preliminaries

Notation. We use capital (bold capital) letters to denote

variables (sets of variables), e.g., A is a variable and B is a

set of variables. We use small (bold small) letters to denote

values taken by the corresponding variables (sets of vari-

ables), e.g., a is the value of A and b is the value of the set

of variables B. For a vector v and a subset of coordinates

S, we use the notation vS to denote the restriction of v to

the coordinates in S and vi to denote the i-th coordinate of

v. For two sets of variables A and B and assignments of

values a to A and b to B, a ◦ b (also a,b) denotes the

assignment to A ∪B in the natural way.

The variables in this paper take values in a finite set Σ.
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We use the total variation distance to measure the dis-

tances between distributions. For two distributions P and

Q over the same finite sample space [D], their total vari-

ation distance is denoted by dTV(P,Q) and is given by

dTV(P,Q) := 1
2

∑

i∈[D] |P (i) − Q(i)|. The KL distance

between them is defined as
∑

i P (i) ln P (i)
Q(i) . Pinsker’s in-

equality says dTV(P,Q) 6
√

2KL(P,Q).

Bayesian Networks. Bayesian networks are popu-

lar probabilistic graphical models for describing high-

dimensional distributions.

Definition 3.1. A Bayesian Network P is a distribu-

tion that can be specified by a tuple 〈V, G, {Pr[Vi |
pa(Vi)] : Vi ∈ V,pa(Vi) ∈ Σ|Pa(Vi)|}〉 where: (i)

V = (V1, . . . , Vn) is a set of variables over alphabet Σ,

(ii) G is a directed acyclic graph with n nodes correspond-

ing to the elements of V, and (iii) Pr[Vi | pa(Vi)] is the

conditional distribution of variable Vi given that its par-

ents Pa(Vi) in G take the values pa(Vi).

The Bayesian Network P = 〈V, G, {Pr[Vi | pa(Vi)]}〉
defines a probability distribution over Σ|V|, as follows. For

all v ∈ Σ|V|,

P (v) =
∏

Vi∈V

Pr[vi | Pa(Vi) = vPa(Vi)].

In this distribution, each variable Vi is independent of its

non-descendants given its parents in G.

Causality. We describe Pearl’s (1995) notion of causal-

ity. Central to his formalism is the notion of an inter-

vention. Given an observable variable set V and a subset

X ⊂ V, an intervention do(x) is the process of fixing the

set of variables X to the values x. The interventional dis-

tribution Px is the distribution on V after setting X to x.

Formally:

Definition 3.2 (Causal Bayes Net). A causal Bayes net P
is a collection of interventional distributions that can be

defined in terms of a tuple 〈V,U, G, {Pr[Vi | π(Vi)] :
Vi ∈ V,π(Vi) ∈ Σ|Π(Vi)|}, {Pr[U]}〉, where (i) V =
(V1, . . . , Vn) and U are the tuples of observable and hid-

den variables respectively, (ii) G is a directed acyclic graph

on V ∪U, (iii) Pr[Vi | π(Vi)] is the conditional probabil-

ity distributions of Vi ∈ V given that its parents Π(Vi) ∈
V ∪U take the values π(Vi), and (iv) Pr[U] is the distri-

bution of the hidden variables U. G is said to be the causal

graph corresponding to P .

Such a causal Bayes net P defines a unique interventional

distribution Px for every subset X ⊆ V (including X = ∅)

and assignment x ∈ Σ|X|, as follows. For all v ∈ Σ|V|:

Px(v) =











∑

u

∏

Vi∈V\X Pr[vi | Π(Vi) = vΠ(Vi)] ·Pr[u]

if v is consistent with x

0 otherwise.

We use P to denote the observational distribution (X = ∅).
For a subset F ⊆ V, Px|F denotes the marginal of Px on

F. For an assignment f to F, we also use the notation

Px(f) as shorthand for the probability mass of Px|F at f .

As mentioned in the introduction, we often consider a

causal graph G as an ADMG by implicitly representing

hidden variables using bidirected edges. In an ADMG,

we imagine that there is a hidden variable subdividing each

such bidirected edge that is a parent of the two endpoints

of the edge. Thus, the edge set of an ADMG is the union of

the directed edges E→ and the bidirected edges E↔. Given

such an ADMG G, for any S ⊆ V, S denotes the comple-

ment set V \ S, Pa(S) denotes the parents of S according

to the directed edges of G, i.e., Pa(S) = ∪X∈S{Y ∈ V :
(Y,X) ∈ E→}. We also define: Pa

+(S) = Pa(S) ∪ S

and Pa
−(S) = Pa(S) \ S. The bidirected edges are used

to define c-components:

Definition 3.3 (c-component). For a given ADMG G, S ⊆
V is a c-component of G, if S is a maximal set such that

between any two vertices of S, there exists a path that uses

only the bidirected edges E↔.

Since a c-component forms an equivalence relation, the set

of all c-components forms a partition of V, the observable

vertices of G. Let S1 ∪ S2 ∪ · · · ∪ Sℓ denote the partition

of V into the c-components of G.

Definition 3.4. For a subset S ⊆ V, the Q-factor for S is

defined as the following function over Σ|V|:

QS(v) = Pv
S
(vS).

Clearly, for every vs, QS is a distribution over Σ|S|.

For Y ⊆ V, the induced subgraph G[Y] is the subgraph

obtained by removing the vertices V \Y and their corre-

sponding edges from G.

The following lemma is used heavily in this work.

Lemma 3.5 (Corollary 1 of (Tian, 2002)). Let P be a

causal Bayes net on G = (V, E→ ∪ E↔). Let S1, . . . ,Sℓ

be the c-components of G. Then for any v we have:

(i) P (v) =
∏ℓ

i=1 QSi
(v).

(ii) Let V1, V2, · · · , Vn be a topological order over V with

respect to the directed edges. Then, for any j ∈ [ℓ],
QSj

(v) is computable from P (v) and is given by:

QSj
(v) =

∏

i:Vi∈Sj

P (vi | v1, . . . , vi−1).
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(iii) Furthermore, each factor P (vi | v1, . . . , vi−1) can be

expressed as:

P (vi | v1, . . . , vi−1) = P (vi | vPa+(Ti)∩[i−1])

where Ti is the c-component of G[V1, . . . , Vi] that

contains Vi.

Note that Lemma 3.5 implies that each QSj
(v) is a function

of the coordinates of v corresponding to Pa
+(Sj). The

next result, due to Tian and Pearl, uses the identifiability

criterion encoded in Assumption 2.1.

Theorem 3.6 (Theorem 3 of (Tian & Pearl, 2002b)). Let P
be a causal Bayes net over G = (V, E→ ∪ E↔) and X ∈
V be a variable. Let S1, . . . ,Sℓ be the c-components of G
and assume X ∈ S1 without loss of generality. Suppose

G satisfies Assumption 2.1 (identifiability with respect to

X). Then for any setting x to X and any assignment w

to V \ {X}, the interventional distribution Px(w) is given

by:

Px(w) = PwV\S1
(wS1\{X}) ·

ℓ
∏

j=2

PwV\(Sj∪{X})◦x(wSj
)

=
∑

x′∈Σ

QS1
(w ◦ x′) ·

ℓ
∏

j=2

QSj
(w ◦ x)

4. Efficient Estimation

Let P be a causal Bayes net over a causal graph G =
(V, E→ ∪E↔). G is an ADMG with observable variables

V1, . . . , Vn. Without loss of generality, let V1, . . . , Vn be a

topological order according to the directed edges of G. Be-

fore we proceed to our algorithms for interventional distri-

butions, we will first present an algorithm for learning the

observational distribution P (V). Our approach is to then

view the causal Bayes net as a regular Bayes net over ob-

servable variables and use the learning algorithm for Bayes

nets. From Lemma 3.5, we can write the observational dis-

tribution P (V) as:

P (V) =

n
∏

i=1

P (Vi | Zi) (1)

where Zi ⊆ {V1, . . . , Vi−1} is the set of ‘effective par-

ents’ of Vi of size at most kd+ k. Here k is the maximum

c-component size and d is the maximum in-degree. There-

fore the observational distribution P can also be viewed

as the distribution of a (regular) Bayes net with no hidden

variables but with in-degree at most kd + k. The problem

of properly learning a Bayes net is well-studied (Canonne

et al., 2017), starting from Dasgupta’s (1997) early work.

In this work, we will use the following learning result de-

scribed in (Bhattacharyya et al., 2020).

Theorem 4.1 ((Bhattacharyya et al., 2020)). There is an

algorithm that on input parameters ε, δ ∈ (0, 1) and sam-

ples from an unknown Bayes net P over Σn on a known

DAG G on vertex set [n] and maximum in-degree d, takes

m = O(log 1
δ |Σ|

d+1n log(n|Σ|d+1)/ε2) samples, runs in

time O(mn|Σ|d+1), and produces a Bayes net P̂ on G such

that dTV(P, P̂ ) 6 ε with probability > 1− δ.

From the above discussion we get the following corollary.

Corollary 4.2. There is an algorithm that on input pa-

rameters ε, δ ∈ (0, 1), and samples from the observed

distribution P of an unknown causal Bayes net over

Σn on a known ADMG G on vertex set [n] with max-

imum in-degree d and maximum c-component size k,

takes m = Õ( n
ε2 |Σ|

kd+k+1 log 1
δ ) samples, runs in time

O(mn|Σ|kd+k+1) and outputs a Bayes net P̂ on a DAG G′

such that dTV(P, P̂ ) 6 ε with probability > 1− δ.

In the next subsection we design our evaluation and gener-

ation algorithms.

4.1. Evaluation and Sampling of Px

In this section we will prove Theorem 2.3 for learning Px.

Let the index of X ∈ V be t in the topological ordering

i.e. X = Vt. Let S1 be the c-component containing X .

According to Equation (1), the observational distribution

P (V) factorizes as a Bayes net into factors of the form

P (Vi | Zi) where Zi are the effective dependants of Vi.

We note that the interventional distribution Px can be rep-

resented as a marginal distribution of a different Bayes net

Dx(V) based on the following observation that uses The-

orem 3.6. To obtain this representation of Px, consider

the Bayes net factorization of P (V). Replace all the fac-

tors P (Vi | Zi) satisfying Vi /∈ S1 and X ∈ Zi by

P (Vi | Zi \ {X}, X = x). In other words, each of these

factors now does not use the variable X and instead uses the

constant X = x (which is the intervention) as parent. All

the other factors, including P (Vt | Zt), remain the same as

in P (V). The marginal distribution of Dx on V \ {X} is

exactly Px. This is illustrated in Figure 3a and Figure 3b.

More formally, let W := V \ {X} and w be an arbitrary

assignment to it and let X = Vt. Using Theorem 3.6, Px

can be factorized as follows:

Px(w) =

(

∑

x′∈Σ

(

∏

Vi∈S1

P ((w ◦ x′)Vi
| (w ◦ x′)Zi

)

))

∏

Vi /∈S1

P (wVi
| (w ◦ x)Zi

) (2)

where Zi is the effective parents of Vi from Equation (1).

So, we start with the factorization of Equation (1) for the

assignment w ◦x, then replace all occurrences of x with x′
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S1 Pa
−(S1) V \Pa

+(S1)

(a) The Bayes net P (V).

•

•X •

•

•

•

•

•

•
X = x

S1 Pa
−(S1) V \Pa

+(S1)

(b) The Bayes net Dx(V). Variables in V\S1 which originally de-
pended on the variable X in P now instead depend on the constant
X = x.

Figure 3.

in Zi ∪ {Vi} of P (Vi | Zi) for every Vi ∈ S1 and taking a

summation over all possible values of x′ ∈ Σ.

In a view to learn Px, we learn the Bayes net distribution:

Dx(V) =
∏

Vi∈S1∨
X/∈Zi

P (Vi | Zi)
∏

Vi /∈S1∧
X∈Zi

P (Vi | Zi \ {X}, x).

(3)

So, we start with the factorization of Equation (1) and re-

place all occurrences of the variable X with the constant

x which appear in the factors outside of S1. Dx is a well-

defined distribution as
∑

v
Dx(v) = 1 by marginalizing

out variables one after another in the reverse topological

order, starting from the sink nodes. Learning Dx suffices

since its marginal on V \ {X} is exactly Px(W):

Px(W) =
∑

x′∈Σ

Dx(W ◦ x′).

We rewrite Equation (3) as:

Dx(V) =
∏

Vi

Dx(Vi | Z
′
i) (4)

where Z
′
i = Zi and Dx(Vi | Z

′
i) = P (Vi | Z

′
i) for Vi ∈

S1 ∨ X /∈ Zi; and Z
′
i = Zi \ {X} and Dx(Vi | Z

′
i) =

P (Vi | Z
′
i, X = x) otherwise.

We use a KL local subadditivity result for Bayes nets

from (Canonne et al., 2017). For a Bayes net R, a vertex

i and an assignment a to its parents, let Π[i,a] denote the

event that the parents of a variable i is a and let R(i | a)
denote the conditional distribution of variable i when its

parents are a.

Theorem 4.3 ((Canonne et al., 2017)). Let R,S be two

Bayes nets over a common graph. Then

KL(R,S) 6
∑

i

∑

a

R(Π[i,a]) KL(R(i | a), S(i | a))

We also need the following result for learning the local dis-

tributions in KL distance.

Theorem 4.4 ((Kamath et al., 2015)). Let D be an un-

known distribution over Σ. Suppose we take z samples

from D and define the add-1 empirical distribution D′(i) =
(zi + 1)/(z + |Σ|) where zi is the number of occurrences

of item i ∈ Σ. Then E[KL(D,D′)] 6 (|Σ| − 1)/(z + 1).

We are trying to learn Dx but we have only sample access

to P . The following lemma relates the p.m.f.s of Dx and P
which we use later.

Lemma 4.5. Let w be an assignment to V\{X} and let x′

and x be two assignments to X . Suppose P be α-strongly

positive w.r.t. Pa
+(S1). Then the following holds:

1. P (w ◦ x) > αkDx(w ◦ x
′)

2. P (w ◦ x) > αk

|Σ|Dx(w)

3. P (w) > αk

|Σ|Dx(w)
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Algorithm 1 Learning Dx

Input: Samples from P , parameters m, t
Output: A Bayes net D̂x according to the factorization of Equation (4)

Get m samples from P
for every vertex Vi ∈ S1 do

for every fixing Zi = a, where Zi are the effective parents of Vi do

D̂x(Vi | Z
′
i = a) ← the add-1 empirical distribution (see Theorem 4.4) at node i in the subset of samples where

Zi = a

end for

end for

for every vertex Vi ∈ V \ S1 do

for every fixing Zi \ {X} = a, where Zi are the effective parents of Vi do

if X ∈ Zi then

Ni,a ← the number of samples with Zi \ {X} = a and X = x
if Ni,a > t then

D̂x(Vi | Zi\{X} = a)← the add-1 empirical distribution at node i in the subset of samples where Zi\X = a

and X = x
else

D̂x(Vi | Zi \ {X} = a)← the uniform distribution over Σ
end if

else

Ni,a ← the number of samples with Zi = a

if Ni,a > t then

D̂x(Vi | Zi = a)← the add-1 empirical distribution at node i in the subset of samples where Zi = a

else

D̂x(Vi | Zi = a)← the uniform distribution over Σ
end if

end if

end for

end for

Proof. Let v = w ◦ x and v
′ = w ◦ x′ .

P (w ◦ x)

Dx(w ◦ x′)
=

∏

i P (vi | vZi
)

∏

Vi∈S1
P (v′i | v

′
Zi
)
∏

Vi /∈S1
P (vi | vZi

)

=

∏

Vi∈S1
P (vi | vZi

)
∏

Vi∈S1
P (v′i | v

′
Zi
)

>
∏

Vi∈S1

P (vi | vZi
)

>
∏

Vi∈S1

P (vi,vZi
)

> αk

The first line uses Equation (1) and Equation (3). The

fourth line follows from P (A | B) > P (A | B)P (B) =
P (AB) for any two events A and B. The last line fol-

lows since for Vi ∈ S1, {Vi} ∪ Zi ⊆ Pa
+(S1) and P is

α-strongly positive w.r.t. the later.

Part 2 follows by marginalization of Part 1 over all possible

x′ ∈ Σ. Part 3 trivially follows from Part 2. �

Finally we give Algorithm 1 along with Lemma 4.6 for

learning Dx as a Bayes net according to the factorization

of Equation (4). Its proof can be found in Appendix A.

Lemma 4.6. Let Dx(V) be the Bayes net as defined

in Equation (4). Then Algorithm 1 takes Õ
(

n|Σ|2kd

αkε2

)

sam-

ples and Õ
(

n2|Σ|4kd

αkε2

)

time and returns a Bayes net D̂x(V)

such that dTV(Dx, D̂x) 6 ε with probability at least 3/4.

We repeat Algorithm 1 independently O(log 1
δ ) times to

achieve (1 − δ) success probability. This gives us Theo-

rem 2.3. See Appendix A for the details.
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