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Abstract. Cardiac disease, also referred to as cardiovascular disease, is a collection of condi-
tions that affect the heart and blood vessels. Medical professionals typically use a combination
of medical history, physical examination, and various diagnostic tests, such as electrocar-
diograms (ECG/EKG), echocardiograms, and stress tests, to diagnose cardiac diseases. In
response to this issue, we are introducing a mobile application that continuously monitors
electrocardiogram signals and displays both average and instantaneous heart rates. The aim
of this project is to detect and diagnose cardiac diseases so that patients can become in-
formed about their heart health and take appropriate actions based on the results obtained.
To identify diseases from real-time ECG data, we used machine learning (ML) classifiers and
compared them with offline data to validate the classification. The model we used in our ap-
plication is pre-trained on the MIT-BIH Arrhythmia Database, which contains a wide range
of heart conditions. We used Artificial Neural Network (ANN) as a pre-trained model for
multiclass detection as it performed the best among ML models, showing an overall accuracy
of 94%. The performance of the model is evaluated by testing it on the application using
MIT-BIH test Dataset. On the application, the beat-detecting pre-trained model showed an
overall accuracy of 91.178%. The results indicate that the Smart-Health application can ac-
curately classify heart diseases, providing an effective tool for early detection and monitoring
of cardiac conditions.

Keywords: Cardiac disease · Electrocardiograms · Pre-Trained Model · Smart-Health Ap-
plication.

1 Introduction

Cardiovascular diseases (CVDs) are critical and common heart diseases that can be detected using
electrocardiogram (ECG or EKG) signals. The ECG signals are used to diagnose different types
of heart diseases such as heart failure, myocardial infarction (MI), premature ventricular contrac-
tions (PVCs), etc. Analyzing the bio-electrical signals of each heartbeat, cardiologists can detect
abnormalities in the heart, such as irregular heartbeats or abnormal rhythms. However, manual
scrutiny of continuous ECG signals for long durations for each patient is not practical or feasible
[1]. Thus, automated detection using machine learning (ML) models is essential for accurate and
efficient diagnosis of heart disease.

With the integration of IoT technology into heart disease monitoring, wearable devices and
sHealth applications are gaining popularity [2]. These devices and apps use sensors and algorithms
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to collect and analyze ECG signals in real time, providing patients with immediate feedback and
promoting better management of heart disease. In addition to ML algorithms, the integration of
IoT technology and sHealth applications has revolutionized the way we approach cardiovascular
health. KardiaMobile is a compact, portable electrocardiogram (ECG) gadget that allows people
to monitor their heart health and detect potential cardiac problems [3]. It works by recording a
single-channel ECG through two electrodes on the device’s back. It has been shown to be successful
in clinical investigations for identifying atrial fibrillation (AF), with a sensitivity of 96.6% and a
specificity of 94.1% [4]. An ECG check, like KardiaMobile, is a portable electrocardiogram (ECG)
equipment that employs two or more electrodes to record the electrical activity of the heart [5].
The ECG check app transfers the recorded ECG data to a server for processing. Apple Watch is
another device that can monitor the ECG signal and measure heart rate. The ECG feature, which is
available on Apple Watch Series 4 and later, enables users to record an electrocardiogram, a test that
examines the electrical activity of the heart. The watch can detect aberrant cardiac rhythms like
AF and alert the user if one is identified [6]. Previously, our research team developed another smart
health framework using body-worn flexible Inkjet-printed (IJP) sensors, commercial wearables such
as smart wristbands, a scanner on a printed circuit board, and customized smartphone software [7].
The technology to collect and analyze ECG signals, providing patients with real-time feedback and
enabling them to take control of their heart health using wearable devices and smart health apps
has the potential to greatly improve the prevention, management, and treatment of heart diseases.

The use of multi-stage classification has shown significant potential in tackling the complexities
of adjusting Artificial Intelligence (AI) models to novel sensor data or in the evolution of decision-
making methodologies in smart systems [8]. Segmenting the AI model into various stages enhances
its scalability and upgradability, offering a more flexible alternative compared to single-stage clas-
sification that could potentially struggle in adapting to changes. Multi-stage classification allows
for independent modifications, enabling a more flexible and adaptable approach. This approach
has shown great potential in the detection of cardiac diseases, demonstrating its scalability and
upgradability for smart health systems. With the integration of AI into cardiac disease detection,
multi-stage classification has emerged as a valuable tool in improving patient outcomes and pro-
moting heart health. Its benefits include increased accuracy, efficiency, and the ability to adapt to
changing data and circumstances. As such, multi-stage classification has the potential to revolu-
tionize the field of smart health and transform the way we approach cardiac disease detection and
management [9-15].

A multistage algorithm for automatic ECG data classification combines different procedures
for dimensionality reduction, consensus clustering, and fast supervised classification algorithms [9].
Two multilayer perceptron (MLP) and one self-organizing map (SOM) networks perform better
than using raw data or individual features for classifying six common ECG waveforms with an
average recognition rate of 0.883 within a short training and testing time [10]. A multi-stage deep
learning classification model for automatic arrhythmia classification using ECG waveforms and
Second Order Difference Plot (SODP) features in discriminating five types of heartbeats from the
MIT-BIH Arrhythmia Database [11-12].

A multistage pruning technique to reduce the computational complexity of Convolutional neural
network (CNN) models used in ECG classification for real-time detection of arrhythmias. [13].
The method presented entails a multi-tiered process to ensure precise classification of arrhythmia,
leveraging 12-lead surface ECGs. This comprehensive procedure includes three distinct phases of
noise reduction, an innovative feature extraction approach, and a finely optimized classification
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Fig. 1. The flowchart of the ECG signal processing, analysis, and classification.
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Fig. 2. Block Diagram of Smart-Health Application.

model.[14]. This technique employs features like dynamic amplitude range and autocorrelation
maximum peak to identify and categorize various types of noise. [15].

This work presents a wearable ECG monitoring system that is cost-effective and capable of real-
time monitoring through a smartphone application. The application provides real-time visualization
of the ECG trace and heart rate detection, allowing for monitoring, assessment, and diagnosis. Also,
we used Artificial Neural Network (ANN) as a pre-trained model for the application of disease
detection. The main aspects of the proposed application include:

– It allows users to connect to an embedded system that collects ECG signals from wrists by
electrodes via Bluetooth Low Energy (BLE) and monitor ECG signals on the screen of the
application.

– The users can track their heart rate and rhythm over time, and share ECG recordings with
healthcare providers for remote monitoring and diagnosis.

– The application can detect the Normal and Noisy signals from the ECG data.
– The application allows users to detect diseases from the incoming ECG signals.

2 METHODOLOGY

In this study, we utilized the MIT-BIH database, which follows the AAMI criteria to classify heart-
beat types [16]. The MIT-BIH database consists of five categories of heartbeats, each containing
multiple types of beats. Class N includes normal heartbeats, class SV includes Supraventricular
Ectopic heartbeats, class V includes Ventricular Ectopic beats, class F includes Fusion beats and
class Q includes Unknown beats. To achieve our goal, we accessed the PhysioNet database, an
open-source public data resource, and selected the MIT-BIH arrhythmia database (mitdb) [17]. We
divided the records into training and testing datasets. The offline data is then used in a Machine
Learning model a pre-trained model for training before using real-time data on the Smart-Health
application. The ECG signal processing involves a machine learning algorithm for preprocessing,
analysis, and classification. The flowchart of the ECG signal processing is shown in Figure 1. Then,
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we passed the MIT-BIH test dataset to the application to validate the pre-trained model on the
application.

2.1 ECG data

ECG (electrocardiogram) data is a sort of medical data that captures the electrical activity of the
heart. It is obtained by applying electrodes to the skin of the chest, arms, and legs and connecting
them to a device that records and amplifies the electrical signals produced by the heart.

Signal processing and machine learning techniques are frequently used to analyze ECG data
in order to extract diagnostic data and enhance clinical decision-making. Arrhythmia, myocardial
infarction, and heart failure are just a few of the disorders that are frequently diagnosed and
monitored using ECG data. Additionally, properties including heart rate variability, QT intervals,
and P-wave morphology can be extracted from it. We collected ECG data using an AD8232 chip
(Analog Devices, Wilmington, MA) implemented on our custom ECG data collection device [18].
Electrodes are attached to the wrists of the users and the other part of the electrodes are connected
to Sparkfun nRF 52840 mini that is paired with the application via Bluetooth Low Energy (BLE)
V5.3.

2.2 Application

The Smart-Health application is a mobile application that allows users to manage their health data.
Figure 2 shows the block diagram of the Smart-Health Application.

Signal preprocessing: Signal preprocessing is an important step in analyzing ECG data and
removing any noise or artifacts that may interfere with the accurate signal analysis. In the Smart-
Health application, the ECG signals collected from the embedded system are preprocessed to remove
noise. The frequency range of interest for ECG signals is between 0.5 Hz and 150 Hz [19]. The lower
cutoff frequency of 0.5 Hz is chosen to remove any DC offset or drift in the signal, while the upper
cutoff frequency of 150 Hz is chosen to remove any high-frequency noise or artifacts in the signal.
The ECG signal is filtered on the application using a bandpass filter to remove any noise outside
the frequency range of interest.

Peak detection and Heart Rate calculation: We used the Pan-Tompkins algorithm for peak
detection of ECG signals which is a widely used method. First, we differentiated the filtered signal
to emphasize the QRS complex’s high-frequency components. To accentuate the QRS complex and
reduce the T and P waves, we squared the differentiated signal. Then, we passed the squared signal
to a moving window to produce a smooth envelope where a threshold is applied to detect the
R-peaks. After that, we determined the heart rates from R-Peaks. In addition, we displayed the
Average Heart Rate on the application to provide a more complete picture of the user’s heart status.
For that, we used the Sliding Window approach. We studied 30 heart rate measurements at the
same time using a window size of 30. The same statistic was then computed for the next 30 data
after adjusting the window by one heart rate value. As a result, users may simply monitor their
heart rate and detect any abrupt changes.
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Fig. 3. Snapshots from the application (a) Home (b) Dashboard (c) Available Devices (d) Modules (e)
Incoming Data (f) Real-time plot of ECG trace, Heart Rate and Signal type.

Pre-Trained Model on the application: We used pre-trained machine learning models in the
Smart-Health application to diagnose medical conditions in real-time. We trained the models on
the MIT-BIH dataset and then integrated them into the application.

To use a pre-trained machine learning model in our Android Studio Java application, we followed
these steps :

1. Train and Save the model: First, we trained the model on a suitable dataset and saved it in
a format that can be loaded by TensorFlow Lite. Here, we saved the model as a .h5 file using
the Keras model.save() method.

2. Convert the model to TensorFlow Lite format: Next, we converted the machine learning
model to TensorFlow Lite format using the TensorFlow Lite converter. This produced a .tflite
file that we used in our Android application.

3. Add the model in the android application: We loaded the .tflite file in the assets folder
of the Android Studio project. Alternatively, we could go to the File− >Other− >Tensorflow
Lite Model and import the .tflite file. It will be added in the ml folder on the project.

4. Add dependency: After that, we added the TensorFlow Lite interpreter dependency to the
project’s build.gradle file: implementation ‘org.tensorflow : tensorflow − lite : 2.6.0′.

5. Load the model: Then, we loaded the model from the assets/ml folder and created a Byte-
Buffer object to hold the input data.

6. Get the predicted class: Finally, we passed the ECG signal data through the interpreter to
get the predicted class.

We validated the pre-trained model on the application by passing the offline dataset to it. That
means, instead of real-time data, we passed the offline MIT-BIH test dataset to the application to
find the exact label. Also, it acted like real-time data on the application. With this validation, we
can now go for a clinical trial.

Real-time ECG check: Figure 3 shows some snapshots of the Smart-Health application. Initially,
the user needs to register his or her details on the application. Then, s/he should Log In on the
application. The various devices that can be connected through BLE connection are shown on the
smartphone through the Device Connect button on the Dashboard screen. Then, the application
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Fig. 4. Real-time data collection (a) Normal Signals (b) Noisy Signals.

establishes a BLE connection with the device and is ready to collect data. The user can then
navigate to the Modules section, where they can view the Data or observe the ECG signals on the
Plotter. Users can track their heart rate in Plotter section over an extended period of time in order
to spot any potential problems. Additionally, the Smart-Health application provides users with an
overview of their health through pre-trained model classification. In the Plotter section, there is a
Textbox at the bottom where users can view their ECG signals’ corresponding classification.

A depiction of the real-time data collection procedure is presented in Figure 4. The experiment
involved attaching electrodes to the wrists of users and utilizing an embedded system to collect
data. This data was then transmitted to the Smart Health application via Bluetooth connectivity.
The application processed the data and provided real-time information on heart rate and various
heart rhythm patterns. The objective was to evaluate the application’s ability to accurately display
and interpret users’ heart rates and identify different types of heartbeats. From Figure 4(a), we
can see the user’s ECG signal is Normal and the average Heart Rate is 76bpm. By detaching the
electrodes, artificial noise can be created, which results in a noisy signal (Figure 4(b)).

2.3 Pre-Trained Model

Feature extraction: In our research, utilizing the Time Series Feature Extraction Library (TS-
FEL) in Python, we were able to extract a comprehensive set of 175 features from the analyzed
beats. To select the most informative features for classification, we applied analysis of variance
(ANOVA) algorithms. ANOVA, a statistical technique, is utilized to examine variances in mean
values across different groups. This method aids in pinpointing the features that significantly influ-
ence the accurate classification of ECG beats.
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Fig. 5. The structure of single-stage and multi-stage classification is presented.

Classification: We performed heartbeat classification by assigning Normal heartbeats (N) as 0,
Supraventricular Ectopic heartbeat (SV) as 1, Ventricular Ectopic beats (V) as 2, Fusion beats
(F) as 3, and Unknown beats (Q) as 4. In our pursuit of precise classification, we harnessed a
variety of machine learning methodologies, encompassing Decision Tree (DT), Artificial Neural
Network (ANN), Support Vector Machine (SVM), Naive Bayes, and K-Nearest Neighbors (KNN),
in addition to Bagged Tree. Furthermore, we utilized advanced Deep Learning models such as
Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), and Long Short-Term
Memory (LSTM). We tested both single-stage classification and two-stage classification methods
to optimize the accuracy of the results. Figure 5 shows the structure of single and multi-stage
classification.

Single-stage classification: To perform single-stage classification, we first evaluated the effectiveness
of various machine learning and deep learning models. We aimed to select the best-performing model
by training and testing them with 10-fold cross-validation. This allowed us to assess the model’s
ability to generalize to unseen data and avoided overfitting. We also adjusted the parameters of the
models during the training process to optimize their performance. By doing so, we can determine
the ideal combination of hyperparameters that results in the best performance for each model.

Multi-stage classification: In multi-stage classification, we first performed a binary classification to
distinguish normal from abnormal noise. Then, a new classifier is built for the multi-class classifi-
cation. We execute experimental trials using Decision Trees (DT) and Artificial Neural Networks
(ANN), as these have proven to be the top-performing models among machine learning techniques.
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Fig. 6. The P, Q, R, S, and T peaks collectively create a heartbeat.

We also tweak parameters to gauge their performance. We also assessed power consumption, in-
cluding memory usage, CPU usage, and running time to evaluate the efficiency of the classifiers.

Performance: To assess the effectiveness of our model, we employed a range of statistical metrics
such as accuracy, precision, and recall. Furthermore, we evaluated the power consumption, including
memory usage, CPU usage, and running time, of the top-performing machine learning (ML) and
deep learning (DL) algorithms. The Keras Model Profiler, a Tensorflow package, was utilized to
gather information on model parameters and memory requirements. To monitor system utilization,
including CPU, memory, and network usage, we employed the Psutil package.

3 Results

3.1 Pre-Trained Model

Accurately detecting R peaks is crucial in ECG heartbeat recognition. Figure 6 illustrates the P,
Q, R, S, and T peaks, as well as a heartbeat. We utilized the Pan-Tompkins algorithm to detect
the precise position of the R peak, which in turn affects the accurate positioning of the P, Q, S, T,
and T’ peaks. The algorithm identifies the R peak by employing a sliding window that spans two
heartbeats and advances one beat at a time until completion. The peaks detected by the algorithm
are then labeled as P, Q, R, S, and T, as demonstrated in Figure 6, which showcases the interval
from 850 to 1100 at the apex.
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Table 1. Evaluate the performance of machine learning (ML) and deep learning (DL) methods on single-
stage classification tasks by employing various classifier algorithms.

Single-stage Classification
Classifier Accuracy % Precision % Recall %

DT(10) 89 90 88

ANN(64) 94 92 93

SVM 78 78 79

Naive Bayes 81 83 82

KNN 75 75 74

Bagged tree 84 85 83

RNN 92 91 91

CNN 94 93 92

LSTM 90 89 87

In the machine learning domain, the Decision Tree (DT) classifier achieved an accuracy of
89%, with precision and recall rates of 90% and 88%, respectively. The Artificial Neural Network
(ANN) exhibited an overall accuracy of 94%, accompanied by precision and recall scores of 92%
and 93%. In the realm of deep learning, the Convolutional Neural Network (CNN) demonstrated
superior performance, obtaining an accuracy of 94% and precision and recall values of 93% and
92%, respectively. Table 1 presents a comparative analysis of the performance of various machine
learning (ML) and deep learning (DL) techniques in single-stage classification tasks.

Table 2 provides a summary of power consumption for single-stage classification using ANN and
DT algorithms with varying parameters, such as the number of layers and maximum depth. For the
ANN models, we explore performance across a range of layer counts, from 1 to 256, with 64 layers
as the standard configuration. Both the 128-layer and 256-layer ANN classifiers achieved 100%
accuracy without significant changes in memory, CPU usage, or runtime. Beyond 128 layers, the
accuracy and power consumption decreased, while the runtime became faster. For the DT models,
we analyzed performance by varying the maximum depth parameter from 1 to 25, with 10 as the
standard setting. The classifiers with a maximum depth of 25 and 24 achieved 100% accuracy, again
without noticeable changes in memory, CPU usage, or runtime. Beyond a maximum depth of 24,
the accuracy and memory usage decreased, while CPU usage and runtime remained consistent.

Table 3 shows a summary of power consumption for multi-stage classification using ANN and
DT algorithms with varying parameters and arrangements. For multi-stage ANN&ANN classifiers,
we achieved 100% accuracy with 256 to 64 layers without much change in memory usage, but
accuracy decreased after 64 layers in the first stage. In multi-stage DT&DT classifiers, we achieved
100% accuracy with 25 to 20 max depths without much change in memory usage in the first stage,
and accuracy dropped off after 24 max depths in the second stage. Overall CPU usage and run
times remained the same when max depths were reduced.

3.2 Application

The experiment involved validating the application’s functionality by simulating real-time data
reception from the embedded system. Instead of using actual real-time data, we utilized an offline
test dataset that contained labeled cardiac disease data. This allowed us to assess the application’s
ability to accurately display the corresponding heart rhythms based on the provided labels.
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Table 2. Power consumption for single-stage classification using ANN and DT algorithms with varying
parameters.

Single-stage Classification
Parameter Accuracy % Memory usage (MiB) CPU usage % Run time(s)

ANN(Layers)

256 100 431 4 20

128 100 431 4 18

64 94 429 3.5 12

32 82 427 3.5 9

16 67 424 3.0 9

8 52 423 3.0 7

4 49 420 2.0 7

2 33 417 2.0 5

1 23 417 2.0 3

DT(MaxDepth)

25 100 375 1.0 1

24 100 375 1.0 1

23 99 375 1.0 1

20 98 375 1.0 1

15 94 375 1.0 1

10 89 360 1.0 1

6 80 352 1.0 1

2 79 348 1.0 1

1 75 347 1.0 1
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Table 3. Overview of the power consumption for multi-stage classification using ANN and DT algorithms
with different parameters and arrangements.

Multi-stage Classification
Parameter Accuracy% Memory usage (MiB) CPU usage % Run time(s)

First stage; Second stage First stage; Second stage

ANN(Layers)

256 100 ; 100 342 ; 389 17 42

128 100 ; 99 340 ; 387 16.5 35

64 100 ; 94 336 ; 387 7.5 20

32 98 ; 84 329 ; 375 14 15

16 95 ; 74 325 ; 368 13.7 11

8 87 ; 67 321 ; 365 13 11

4 74 ; 53 321 ; 357 12 10

2 68 ; 39 318 ; 357 11.5 7

1 67 ; 27 315 ; 351 16 5

DT(MaxDepth)

25 100 ; 100 384 ; 375 1.0 1

24 100 ; 100 383 ; 375 1.0 1

23 100 ; 99 383 ; 374 1.0 1

20 100 ; 94 382 ; 374 1.0 1

15 98 ; 88 383 ; 375 1.0 1

10 95 ; 79 382 ; 375 1.0 1

6 91 ; 53 383 ; 374 1.0 1

2 83 ; 42 383 ; 374 1.0 1

1 74 ; 36 382 ; 373 1.0 1
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As we don’t have any offline dataset containing the Noisy signal, we couldn’t validate our pre-
trained model 1 which is a binary classifier and classifies ECG signals into Noisy and Not Noisy
signals (fig 1). But it can detect the Noisy and Not Noisy signals in our application perfectly.
We validated our pre-trained model 2 using the MIT-BIH test dataset. It contains 21892 samples
and 18118 of them are Normal beats, 556 beats are Supraventricular Ectopic(SV), 1448 beats are
Ventricular Ectopic(V), 160 bears are Fusion(F) and the rest 1610 beats are Unknown.

Table 4. Evaluate the performance of Artificial Neural Network (ANN) algorithm on Smart-Health Appli-
cation using the offline dataset.

MIT-BIH test Dataset Number of Samples Accuracy %

Set 1 5000 93.30
Set 2 5000 92.66
Set 3 5000 93.14
Set 4 5000 92.86
Set 5 1892 83.93

Total 21892 91.178

We have separated the MIT-BIH test dataset into five distinct sets. Each set was passed to the
Smart-Health application, which contained a pre-trained model designed to classify heart diseases.
We used Artificial Neural Network (ANN) as a pre-trained model 2 because it exhibited an overall
accuracy of 94% which showed the best performance among ML models. The pre-trained model
classified each set based on the available ECG signals. After classification, the labels obtained from
the Smart-Health application were compared with the MIT-BIH offline dataset. The accuracy was
calculated for each set by comparing the obtained labels from the Smart-Health application with the
ground truth labels from the offline dataset. The average accuracy across all five sets was computed
to evaluate the performance of the pre-trained model on the MIT-BIH test dataset.

Table 4 provides the accuracy of five distinct sets over the application. The overall accuracy of
the pre-trained ANN model was 91.178%.

The Smart-Health application detected 16955 Normal beats, 486 SV beats, 1247 V beats, 127
F beats and 1371 Unknown beats correctly. Figure 7 demonstrates the beats of the MIT-BIH test
dataset and the corresponding accurate beats obtained from the Smart-Health application.

Arrhythmia refers to any abnormality in the rhythm of the heart’s electrical activity. SVs, Vs,
and fusion beats are all types of arrhythmias that can occur in the heart. Figure 8 shows some
snapshots of the Smart-Health application after the detection of Normal, Noisy, and Arrhythmic
beats. In some cases, arrhythmias can be serious and lead to heart failure, stroke, or sudden cardiac
death.

4 Future Work

It is incredibly challenging to collect data when walking, jogging, or engaging in any other action
because of the complex system setup. There are some IoT gadgets in the package that could be
improved in the future, at which point we could quickly attach those devices to the body and collect
data. We are developing a custom wearable ECG data collection hardware, that can significantly
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Fig. 7. Comparison of beat classification between the MIT-BIH test dataset and Smart-Health application.

Fig. 8. Signal Detection (a) Normal (b) Noisy (c) Arrhythmic.
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simplify the data collection process. Also, the accuracy of the ANN model on the application can
be improved. We will also try other algorithms which had a lower accuracy on offline datasets but
can perform well with real-time data.

At present, the Smart-Health application can detect some types of cardiovascular diseases,
including Arrhythmia, and show ECG signals and instantaneous Heart Rate. As we have passed
the MIT-BIH test dataset through the application to detect heart diseases and found quite a good
accuracy, our next goals are:

– Plot study of the application with cardiac patients at a cardiac clinic.
– Improve our algorithms and find the best pre-trained model for the Smart-Health application

to detect diseases.

5 Conclusion

In this study, we presented Smart-Health, a smartphone application that can continuously monitor
ECG data, display Heart Rate and detect cardiac diseases using a pre-trained machine-learning
model. The MIT-BIH test dataset was used to evaluate our model, and the findings suggest that
our application can accurately detect various heart conditions. Patients can use this application to
check their heart health in real time and take appropriate steps depending on the results. Overall,
the Smart-Health application has the potential to be a valuable tool for the early detection and
monitoring of cardiac problems. The Smart-Health application can aid in the prevention and control
of cardiovascular illnesses, resulting in better health outcomes and a higher quality of life for patients
by empowering them to actively participate in their own health management.
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