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Abstract

Existing work in continual learning (CL) focuses on mitigating catastrophic for-
getting, i.e., model performance deterioration on past tasks when learning a new
task. However, the training efficiency of a CL system is under-investigated, which
limits the real-world application of CL systems under resource-limited scenarios.
In this work, we propose a novel framework called Sparse Continual Learning
(SparCL), which is the first study that leverages sparsity to enable cost-effective
continual learning on edge devices. SparCL achieves both training acceleration
and accuracy preservation through the synergy of three aspects: weight sparsity,
data efficiency, and gradient sparsity. Specifically, we propose task-aware dynamic
masking (TDM) to learn a sparse network throughout the entire CL process, dy-
namic data removal (DDR) to remove less informative training data, and dynamic
gradient masking (DGM) to sparsify the gradient updates. Each of them not only
improves efficiency, but also further mitigates catastrophic forgetting. SparCL
consistently improves the training efficiency of existing state-of-the-art (SOTA) CL
methods by at most 23× less training FLOPs, and, surprisingly, further improves
the SOTA accuracy by at most 1.7%. SparCL also outperforms competitive base-
lines obtained from adapting SOTA sparse training methods to the CL setting in
both efficiency and accuracy. We also evaluate the effectiveness of SparCL on a
real mobile phone, further indicating the practical potential of our method.

1 Introduction

The objective of Continual Learning (CL) is to enable an intelligent system to accumulate knowledge
from a sequence of tasks, such that it exhibits satisfying performance on both old and new tasks [32].
Recent methods mostly focus on addressing the catastrophic forgetting [43] problem – learning model
tends to suffer performance deterioration on previously seen tasks. However, in the real world, when
CL applications are deployed in resource-limited platforms [48] such as edge devices, the learning
efficiency, w.r.t. both training speed and memory footprint, are also crucial metrics of interest, yet
they are rarely explored in prior CL works.

Existing CL methods can be categorized into regularization-based [2, 32, 37, 68], rehearsal-based [8,
12, 50, 61], and architecture-based [31, 42, 52, 58, 59, 70]. Both regularization- and rehearsal-based
methods directly train a dense model, which might be over-parameterized even for the union of all
tasks [19, 39]. Though several architecture-based methods [51, 57, 64] start with a sparse sub-network
from the dense model, they still grow the model size progressively to learn emerging tasks. The
aforementioned methods, although striving for greater performance with less forgetting, still introduce
significant memory and computation overhead during the whole CL process.
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Figure 1: Left: Overview of SparCL. SparCL consists of three complementary components: task-aware dynamic
masking (TDM) for weight sparsity, dynamic data removal (DDR) for data efficiency, and dynamic gradient
masking (DGM) for gradient sparsity. Right: SparCL successfully preserves the accuracy and significantly
improves efficiency over DER++ [8], one of the SOTA CL methods, with different sparsity ratios on the Split
Tiny-ImageNet [16] dataset.

Recently, another stream of work, sparse training [4, 20, 35], has emerged as a new training trend to
achieve training acceleration, which embraces the promising training-on-the-edge paradigm. With
sparse training, each iteration takes less time with the reduction in computation achieved by sparsity.
Inspired by these sparse training methods, under the traditional i.i.d. learning setting, we naturally
think about introducing sparse training to the field of CL. A straightforward idea is to directly combine
existing sparse training methods, such as SNIP [35], RigL [20], with a rehearsal buffer under the
CL setting. However, these methods fail to consider key challenges in CL to mitigate catastrophic
forgetting, for example, properly handling transition between tasks. As a result, these sparse training
methods, though enhancing training efficiency, cause significant accuracy drop (see Section 5.2).
Thus, we would like to explore a general strategy, orthogonal to existing CL methods, that not only
leverages the idea of sparse training for efficiency, but also addresses key challenges in CL to preserve
(or even improve) accuracy.

In this work, we propose Sparse Continual Learning (SparCL), a general framework for cost-effective
continual learning, aiming at enabling practical CL on edge devices. As shown in Figure 1 (left),
SparCL achieves both learning acceleration and accuracy preservation through the synergy of three
aspects: weight sparsity, data efficiency, and gradient sparsity. Specifically, to maintain a small
dynamic sparse network during the whole CL process, we develop a novel task-aware dynamic
masking (TDM) strategy to keep only important weights for both the current and past tasks, with
special consideration during task transitions. Moreover, we propose a dynamic data removal (DDR)
scheme, which progressively removes “easy-to-learn” examples from training iterations, which
further accelerates the training process and also improves accuracy of CL by balancing current and
past data and keeping more informative samples in the buffer. Finally, we provide an additional
dynamic gradient masking (DGM) strategy to leverage gradient sparsity for even better efficiency
and knowledge preservation of learned tasks, such that only a subset of sparse weights are updated.
Figure 1 (right) demonstrates that SparCL successfully preserves the accuracy and significantly
improves efficiency over DER++ [8], one of the SOTA CL methods, under different sparsity ratios.

SparCL is simple in concept, compatible with various existing rehearsal-based CL methods, and
efficient under practical scenarios. We conduct comprehensive experiments on multiple CL bench-
marks to evaluate the effectiveness of our method. We show that SparCL works collaboratively with
existing CL methods, greatly accelerates the learning process under different sparsity ratios, and
even sometimes improves upon the state-of-the-art accuracy. We also establish competing baselines
by combining representative sparse training methods with advanced rehearsal-based CL methods.
SparCL again outperforms these baselines in terms of both efficiency and accuracy. Most importantly,
we evaluate our SparCL framework on real edge devices to demonstrate the practical potential of
our method. We are not aware of any prior CL works that explored this area and considered the
constraints of limited resources during training.

In summary, our work makes the following contributions:

• We propose Sparse Continual Learning (SparCL), a general framework for cost-effective continual
learning, which achieves learning acceleration through the synergy of weight sparsity, data effi-
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ciency, and gradient sparsity. To the best of our knowledge, our work is the first to introduce the
idea of sparse training to enable efficient CL on edge devices. Our code is publicly available∗.

• SparCL shows superior performance compared to both conventional CL methods and CL-adapted
sparse training methods on all benchmark datasets, leading to at most 23× less training FLOPs
and, surprisingly, an 1.7% improvement over SOTA accuracy.

• We evaluate SparCL on a real mobile edge device, demonstrating the practical potential of our
method and also encouraging future research on CL on-the-edge. The results indicate that our
framework can achieve at most 3.1× training acceleration.

2 Related work

2.1 Continual Learning

The main focus in continual learning (CL) has been mitigating catastrophic forgetting. Existing
methods can be classified into three major categories. Regularization-based methods [2, 32, 37, 68]
limit updates of important parameters for the prior tasks by adding corresponding regularization terms.
While these methods reduce catastrophic forgetting to some extent, their performance deteriorates
under challenging settings [40], and on more complex benchmarks [50, 61]. Rehearsal-based
methods [13, 14, 25] save examples from previous tasks into a small-sized buffer to train the model
jointly with the current task. Though simple in concept, the idea of rehearsal is very effective in
practice and has been adopted by many state-of-the-art methods [8, 11, 49]. Architecture-based
methods [42, 51, 57, 59, 63] isolate existing model parameters or assign additional parameters for
each task to reduce interference among tasks. As mentioned in Section 1, most of these methods use
a dense model without consideration of efficiency and memory footprint, thus are not applicable to
resource-limited settings. Our work, orthogonal to these methods, serves as a general framework for
making these existing methods efficient and enabling a broader deployment, e.g., CL on edge devices.

A limited number of works explore sparsity in CL, however, for different purposes. Several methods
[41, 42, 53, 57] incorporate the idea of weight pruning [24] to allocate a sparse sub-network for
each task to reduce inter-task interference. Nevertheless, these methods still reduce the full model
sparsity progressively for every task and finally end up with a much denser model. On the contrary,
SparCL maintains a sparse network throughout the whole CL process, introducing great efficiency
and memory benefits both during training and at the output model. A recent work [15] aims at
discovering lottery tickets [21] under CL, but still does not address efficiency. However, the existence
of lottery tickets in CL serves as a strong justification for the outstanding performance of our SparCL.

2.2 Sparse Training

There are two main approaches for sparse training: fixed-mask sparse training and dynamic sparse
training. Fixed-mask sparse training methods [35, 54, 56, 60] first apply pruning, then execute
traditional training on the sparse model with the obtained fixed mask. The pre-fixed structure limits
the accuracy performance, and the first stage still causes huge computation and memory consumption.
To overcome these drawbacks, dynamic mask methods [4, 17, 20, 45, 46] adjust the sparsity topology
during training while maintaining low memory footprint. These methods start with a sparse model
structure from an untrained dense model, then combine sparse topology exploration at the given
sparsity ratio with the sparse model training. Recent work [67] further considers incorporating data
efficiency into sparse training for better training accelerations. However, all prior sparse training
works are focused on the traditional training setting, while CL is a more complicated and difficult
scenario with inherent characteristics not explored by these works. In contrast to prior sparse training
methods, our work explores a new learning paradigm that introduces sparse training into CL for
efficiency and also addresses key challenges in CL, mitigating catastrophic forgetting.

3 Continual Learning Problem Setup

In supervised CL, a model fθ learns from a sequence of tasks D = {D1, . . . ,DT }, where each task
Dt = {(xt,i, yt,i)}nt

i=1 consists of input-label pairs, and each task has a disjoint set of classes. Tasks

∗https://github.com/neu-spiral/SparCL
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Figure 2: Illustration of the SparCL workflow. Three components work synergistically to improve training
efficiency and further mitigate catastrophic forgetting for preserving accuracy.

arrive sequentially, and the model must adapt to them. At the t-th step, the model gains access to
data from the t-th task. However, a small fix-sized rehearsal buffer M is allowed to save data from
prior tasks. At test time, the easiest setting is to assume task identity is known for each coming test
example, named task-incremental learning (Task-IL). If this assumption does not hold, we have the
more difficult class-incremental learning (Class-IL) setting. In this work, we mainly focus on the
more challenging Class-IL setting, and only report Task-IL performance for reference.

The goal of conventional CL is to train a model sequentially that performs well on all tasks at test
time. The main evaluation metric is average test accuracy on all tasks. In real-world resource-
limited scenarios, we should further consider training efficiency of the model. Thus, we measure the
performance of the model more comprehensively by including training FLOPs and memory footprint.

4 Sparse Continual Learning (SparCL)

Our method, Sparse Continual Learning, is a unified framework composed of three complementary
components: task-aware dynamic masking for weight sparsity, dynamic data removal for data
efficiency, and dynamic gradient masking for gradient sparsity. The entire framework is shown in
Figure 2. We will illustrate each component in detail in this section.

4.1 Task-aware Dynamic Masking

To enable cost-effective CL in resource limited scenarios, SparCL is designed to maintain a dynamic
structure when learning a sequence of tasks, such that it not only achieves high efficiency, but also
intelligently adapts to the data stream for better performance. Specifically, we propose a strategy
named task-aware dynamic masking (TDM), which dynamically removes less important weights
and grows back unused weights for stronger representation power periodically by maintaining a
single binary weight mask throughout the CL process. Different from typical sparse training work,
which only leverages the weight magnitude [45] or the gradient w.r.t. data from a single training
task [20, 67], TDM considers also the importance of weights w.r.t. data saved in the rehearsal buffer,
as well as the switch between CL tasks.

Specifically, TDM strategy starts from a randomly initialized binary mask Mθ = M0, with a given
sparsity constraint ∥Mθ∥0/∥θ∥0 = 1− s, where s ∈ [0, 1] is the sparsity ratio. Moreover, it makes
different intra- and inter-task adjustments to keep a dynamic sparse set of weights based on their
continual weight importance (CWI). We summarize the process of task-aware dynamic masking in
Algorithm 1 and elaborate its key components in detail below.

Continual weight importance (CWI). For a model fθ parameterized by θ, the CWI of weight w ⊂ θ
is defined as follows:

CWI(w) = |w|+ α|∂L̃(Dt; θ)

∂w
|+ β|∂L(M; θ)

∂w
|, (1)

where Dt denotes the training data from the t-th task, M is the current rehearsal buffer, and α, β are
coefficients to control the influence of current and buffered data, respectively. Moreover, L represents
the cross-entropy loss for classification, while L̃ is the single-head [1] version of the cross-entropy
loss, which only considers classes from the current task by masking out the logits of other classes.
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Algorithm 1: Task-aware Dynamic Masking (TDM)
Input: Model weight θ, number of tasks T , training epochs of the t-th task Kt, binary sparse
mask Mθ, sparsity ratio s, intra-task adjustment ratio pintra, inter-task adjustment ratio
pinter, update interval δk

Initialize: θ, Mθ, s.t. ∥Mθ∥0/∥θ∥0 = 1− s
for t = 1, . . . , T do

for e = 1, . . . ,KT do
if t > 1 then

/* Inter-task adjustment */
Expand Mθ by randomly adding unused weights,

s.t. ∥Mθ∥0/∥θ∥0 = 1− (s− pinter)
if e = δk then

Shrink Mθ by removing the least important weights according to equation 1,
s.t. ∥Mθ∥0/∥θ∥0 = 1− s

end
end
if e mod δk = 0 then

/* Intra-task adjustment */
Shrink Mθ by removing the least important weights according to equation 1,

s.t. ∥Mθ∥0/∥θ∥0 = 1− (s+ pintra)
Expand Mθ by randomly adding unused weights,

s.t. ∥Mθ∥0/∥θ∥0 = 1− s
end
Update θ ⊙Mθ via backpropagation

end
end

Intuitively, CWI ensures we keep (1) weights of larger magnitude for output stability, (2) weights
important for the current task for learning capacity, and (3) weights important for past data to mitigate
catastrophic forgetting. Moreover, inspired by the classification bias in CL [1], we use the single-
head cross-entropy loss when calculating the importance score w.r.t. the current task to make the
importance estimation more accurate.

Intra-task adjustment. When training the t-th task, a natural assumption is that the data distribution
is consistent inside the task. As a result, we would like to update the sparse model in a relatively
stable way while keeping its flexibility. Thus, in Algorithm 1, we choose to update the sparsity mask
Mθ in a shrink-and-expand way every δk epochs. We first remove pintra of the weights of least CWI
to retain learned knowledge so far. Then we randomly select unused weights to recover the learning
capacity for the model and keep the sparsity ratio s unchanged.

Inter-task adjustment. When tasks switch, on the contrary, we assume that the data distribution
shifts immediately. Ideally, we would like the model to keep the knowledge learned from old tasks
as much as possible, and to have enough learning capacity to accommodate the new task. Thus,
instead of the shrink-and-expand strategy for intra-task adjustment, we follow an expand-and-shrink
scheme. Specifically, at the beginning of the (t+1)-th task, we expand the sparse model by randomly
adding a proportion of pinter unused weights. Intuitively, the additional learning capacity facilitates
fast adoption of new knowledge and reduces interference with learned knowledge. We allow our
model to have smaller sparsity (i.e., larger learning capacity) temporarily for the first δk epochs as a
warm-up period, and then remove the pinter weights with least CWI, following the same process in
the intra-task case, to satisfy the sparsity constraint.

4.2 Dynamic Data Removal

In addition to weight sparsity, decreasing the amount of training data can be directly translated into
training time savings. Thus, we would also like to explore data efficiency to reduce the training
workload. Some prior CL works select informative examples to construct the rehearsal buffer [3, 6, 65].
However, their main purpose is not training acceleration; thus, they either introduce excessive
computational cost or consider different problem settings. By considering the features of CL, we
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present a simple yet effective strategy, dynamic data removal (DDR), to reduce training data for
further acceleration.

We measure the importance of each training example by the occurrence of misclassification [55, 67]
during CL. In TDM, the sparse structure of our model updates periodically every δk epochs, so we
align our data removal process with weight mask updates for further efficiency and training stability.
In Section 4.1, we have partitioned the training process for the t-th task into Nt = Kt/δk stages
based on the dynamic mask update. Therefore, we gradually remove training data at the end of i-th
stage, based on the following policy: 1) Calculate the total number of misclassifications fi(xj) for
each training example during the i-th stage. 2) Remove a proportion of ρi training samples with the
least number of misclassifications. Although our main purpose is to keep the “harder” examples to
learn to consolidate the sparse model, we can get further benefits for better CL results. First, the
removal of “easier” examples increases the probability that “harder” examples to be saved to the
rehearsal buffer, given the common strategy, e.g. reservoir sampling [14], to buffer examples. Thus,
we construct a more informative buffer in a implicit way without heavy computation. Moreover, since
the buffer size is much smaller than the training set size of each task, the data from the buffer and the
new task is highly imbalanced; dynamic data removal also relieves this data imbalance issue.

Formally, we set the data removal proportion for each task as ρ ∈ [0, 1], and a cutoff stage, such that:
cutoff∑
i=1

ρi = ρ,

Nk∑
i=cutoff+1

ρi = 0 (2)

The cutoff stage controls the trade-off between efficiency and accuracy: when we set the cutoff stage
earlier, we reduce the training time for all the following stages; however, when the cutoff stage is set
too early, the model might underfit the removed training data. Note that when we set ρi = 0 for all
i = 1, 2, . . . , Nt and cutoff = Nt, we simply recover the vanilla setting without any data efficiency
considerations. In our experiments, we assume ρi = ρ/cutoff, i.e., removing equal proportion of
data at the end of every stage, for simplicity. We also conduct a comprehensive exploration study of
ρ and the selection of the cutoff stage in Section 5.3 and Appendix B.3.

4.3 Dynamic Gradient Masking

With TDM and DDR, we can already achieve weight efficiency and data efficiency during training.
To further boost training efficiency, we explore gradient sparsity and propose dynamic gradient
masking (DGM) for CL. Our method focuses on reducing computational costs by only applying the
most important gradients onto the corresponding unpruned model parameters via a gradient mask.
The gradient mask is also dynamically updated along with the weight mask defined in Section 4.1.
Intuitively, while targeting for better training efficiency, DGM also promotes the preservation of past
knowledge by preventing a fraction of weights from updating.

Formally, our goal here is to find a subset of unpruned parameters (or, equivalently, a gradient mask
MG) to update over multiple training iterations. For a model fθ parameterized by θ, we have the
corresponding gradient matrix G calculated during each iteration. To prevent the pruned weights
from updating, the weight mask Mθ will be applied onto the gradient matrix G as G⊙Mθ during
backpropagation. Besides the gradients of pruned weights, we in addition consider to remove less
important gradient coefficients for faster training. To achieve this, we introduce the continual gradient
importance (CGI) based on the CWI to measure the importance of weight gradients:

CGI(w) = α|∂L̃(Dt; θ)

∂w
|+ β|∂L(M; θ)

∂w
|. (3)

We remove a proportion q of non-zero gradients from G with less importance measured by CGI
and we have ∥MG∥0/∥θ∥0 = 1− (s+ q). The gradient mask MG is then applied onto the gradient
matrix G. During the entire training process, the gradient mask MG is updated with a fixed interval.

5 Experiment

5.1 Experiment Setting

Datasets. We evaluate our SparCL on two representative CL benchmarks, Split CIFAR-10 [33]
and Split Tiny-ImageNet [16] to verify the efficacy of SparCL. In particular, we follow [8, 68] by
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Table 1: Comparison with CL methods. SparCL consistently improves training efficiency of the corresponding
CL methods while preserves (or even improves) accuracy on both class- and task-incremental settings.

Method Sparsity Buffer size
Split CIFAR-10 Split Tiny-ImageNet

Class-IL (↑) Task-IL (↑) FLOPs Train
×1015 (↓) Class-IL (↑) Task-IL (↑) FLOPs Train

×1016 (↓)

EWC [32] 0.00 – 19.49±0.12 68.29±3.92 8.3 7.58±0.10 19.20±0.31 13.3
LwF [37] 19.61±0.05 63.29±2.35 8.3 8.46±0.22 15.85±0.58 13.3

PackNet [42] 0.50† – - 93.73±0.55 5.0 – 61.88±1.01 7.3
LPS [57] - 94.50±0.47 5.0 – 63.37±0.83 7.3

A-GEM [13]

0.00 200

20.04±0.34 83.88±1.49 11.1 8.07±0.08 22.77±0.03 17.8
iCaRL [50] 49.02±3.20 88.99±2.13 11.1 7.53±0.79 28.19±1.47 17.8
FDR [5] 30.91±2.74 91.01±0.68 13.9 8.70±0.19 40.36±0.68 22.2
ER [14] 44.79±1.86 91.19±0.94 11.1 8.49±0.16 38.17±2.00 17.8
DER++ [8] 64.88±1.17 91.92±0.60 13.9 10.96±1.17 40.87±1.16 22.2

SparCL-ER75 46.89±0.68 92.02±0.72 2.0 8.98±0.38 39.14±0.85 3.2
SparCL-DER++75

0.75 66.30±0.98 94.06±0.45 2.5 12.73±0.40 42.06±0.73 4.0
SparCL-ER90 45.81±1.05 91.49±0.47 0.9 8.67±0.41 38.79±0.39 1.4
SparCL-DER++90

0.90 200 65.79±1.33 93.73±0.24 1.1 12.27±1.06 41.17±1.31 1.8
SparCL-ER95 44.59±0.23 91.07±0.64 0.5 8.43±0.09 38.20±0.46 0.8
SparCL-DER++95

0.95 65.18±1.25 92.97±0.37 0.6 10.76±0.62 40.54±0.98 1.0

A-GEM [13]

0.00 500

22.67±0.57 89.48±1.45 11.1 8.06±0.04 25.33±0.49 17.8
iCaRL [50] 47.55±3.95 88.22±2.62 11.1 9.38±1.53 31.55±3.27 17.8
FDR [5] 28.71±3.23 93.29±0.59 13.9 10.54±0.21 49.88±0.71 22.2
ER [14] 57.74±0.27 93.61±0.27 11.1 9.99±0.29 48.64±0.46 17.8
DER++ [8] 72.70±1.36 93.88±0.50 13.9 19.38±1.41 51.91±0.68 22.2

SparCL-ER75 60.80±0.22 93.82±0.32 2.0 10.48±0.29 50.83±0.69 3.2
SparCL-DER++75

0.75 74.09±0.84 95.19±0.34 2.5 20.75±0.88 52.19±0.43 4.0
SparCL-ER90 59.34±0.97 93.33±0.10 0.9 10.12±0.53 49.46±1.22 1.4
SparCL-DER++90

0.90 500 73.42±0.95 94.82±0.23 1.1 19.62±0.67 51.93±0.36 1.8
SparCL-ER95 57.75±0.45 92.73±0.34 0.5 9.91±0.17 48.57±0.50 0.8
SparCL-DER++95

0.95 72.14±0.78 94.39±0.15 0.6 19.01±1.32 51.26±0.78 1.0
†PackNet and LPS actually have a decreased sparsity after learning every task, we use 0.50 to roughly represent the average sparsity.

splitting CIFAR-10 and Tiny-ImageNet into 5 and 10 tasks, each of which consists of 2 and 20 classes
respectively. Dataset licensing information can be found in Appendix A.

Comparing methods. We select several CL methods including regularization-based (EWC [32],
LwF [37]), architecture-based (PackNet [42], LPS [57]), and rehearsal-based (A-GEM [13],
iCaRL [44], FDR [5], ER [14], DER++ [8]) methods. Note that PackNet and LPS are only compatible
with task-incremental learning. We also adapt representative sparse training methods (SNIP [35],
RigL [20]) to the CL setting by combining them with DER++ (SNIP-DER++, RigL-DER++).

Variants of our method. To show the generality of SparCL, we combine it with DER++ (one of
the SOTA CL methods), and ER (simple and widely-used) as SparCL-DER++ and SparCL-ER,
respectively. We also vary the weight sparsity ratio (0.75, 0.90, 0.95) of SparCL for a comprehensive
evaluation.

Evaluation metrics. We use the average accuracy on all tasks to evaluate the performance of the final
model. Moreover, we measure the training FLOPs [20], and memory footprint [67] (including feature
map pixels and model parameters during training) to demonstrate the efficiency of each method.
Please see Appendix B.1 for detailed definitions of these metrics.

Experiment details. For fair comparison, we strictly follow the settings in prior CL work [8, 29]. We
set the per task training epochs to 50 and 100 for Split CIFAR-10 and Tiny-ImageNet, respectively,
with a batch size of 32. For the model architecture, we follow [8, 50] and adopt the ResNet-18 [26]
without any pre-training. We also use the best hyperparameter setting reported in [8, 57] for CL
methods, and in [20, 35] for CL-adapted sparse training methods. For SparCL and its competing
CL-adapted sparse training methods, we adopt a uniform sparsity ratio for all convolutional layers.
Please see Appendix B for further details.

5.2 Main Results

Comparison with CL methods. Table 1 summarizes the results on Split CIFAR-10 and Tiny-
ImageNet, under both class-incremental (Class-IL) and task-incremental (Task-IL) settings. From
Table 1, we can clearly tell that SparCL significantly improves upon ER and DER++, while also
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Table 2: Comparison with CL-adapted sparse training methods. All methods are combined with DER++ with a
500 buffer size. SparCL outperforms all methods in both accuracy and training efficiency, under all sparsity
ratios. All three methods here can save 20% ∼ 51% memory footprint, please see Appendix B.2 for details.

Method Spasity
Split CIFAR-10 Split Tiny-ImageNet

Class-IL (↑) FLOPs Train
×1015 (↓) Class-IL (↑) FLOPs Train

×1016 (↓)

DER++ [8] 0.00 72.70±1.36 13.9 19.38±1.41 22.2

SNIP-DER++ [35] 69.82±0.72 1.6 16.13±0.61 2.5
RigL-DER++ [20] 0.90 69.86±0.59 1.6 18.36±0.49 2.5
SparCL-DER++90 73.42±0.95 1.1 19.62±0.67 1.8

SNIP-DER++ [35] 66.07±0.91 0.9 14.76±0.52 1.5
RigL-DER++ [20] 0.95 66.53±1.13 0.9 15.88±0.63 1.5
SparCL-DER++95 72.14±0.78 0.6 19.01±1.32 1.0

Table 3: Ablation study on Split-CIFAR10 with 0.75 sparsity ratio. All components contributes to the overall
performance, in terms of both accuracy and efficiency (training FLOPs and memory footprint).

TDM DDR DGM Class-IL (↑) FLOPs Train
×1015 (↓)

Memory
Footprint (↓)

✗ ✗ ✗ 72.70 13.9 247MB
✓ ✗ ✗ 73.37 3.6 180MB
✓ ✓ ✗ 73.80 2.8 180MB
✓ ✗ ✓ 73.97 3.3 177MB
✓ ✓ ✓ 74.09 2.5 177MB

outperforming other CL baselines, in terms of training efficiency (measured in FLOPs). With higher
sparsity ratio, SparCL leads to fewer training FLOPs. Notably, SparCL achieves 23× training
efficiency improvement upon DER++ with a sparsity ratio of 0.95. On the other hand, our framework
also improves the average accuracy of ER and DER++ consistently under all cases with a sparsity
ratio of 0.75 and 0.90, and only a slight performance drop when sparsity gets larger as 0.95. In
particular, SparCL-DER++ with 0.75 sparsity ratio sets new SOTA accuracy, with all buffer sizes
under both benchmarks. The outstanding performance of SparCL indicates that our proposed
strategies successfully preserve accuracy by further mitigating catastrophic forgetting with a much
sparser model. Moreover, the improvement that SparCL brings to two different existing CL methods
shows the generalizability of SparCL as a unified framework, i.e., it has the potential to be combined
with a wide array of existing methods.

We also take a closer look at PackNet and LPS, which also leverage the idea of sparsity to split
the model by different tasks, a different motivation from training efficiency. Firstly, they are only
compatible with the Task-IL setting, since they leverage task identity at both training and test time.
Moreover, the model sparsity of these methods reduces with the increasing number of tasks, which
still leads to much larger overall training FLOPs than that of SparCL. This further demonstrates the
importance of keeping a sparse model without permanent expansion throughout the CL process.

Comparison with CL-adapted sparse training methods. Table 2 shows results under the more
difficult Class-IL setting. SparCL outperforms all CL-adapted sparse training methods in both
accuracy and training FLOPs. The performance gap between SparCL-DER++ and other methods
gets larger with a higher sparsity. SNIP- and RigL-DER++ achieve training acceleration at the cost of
compromised accuracy, which suggests that keeping accuracy is a non-trivial challenge for existing
sparse training methods under the CL setting. SNIP generates the static initial mask after network
initialization which does not consider the structure suitability among tasks. Though RigL adopts a
dynamic mask, the lack of task-awareness prevents it from generalizing well to the CL setting.

5.3 Effectiveness of Key Components

Ablation study. We provide a comprehensive ablation study in Table 3 using SparCL-DER++ with
0.75 sparsity on Split CIFAR10. Table 3 demonstrates that all components of our method contribute
to both efficiency and accuracy improvements. Comparing rows 1 and 2, we can see that the majority
of FLOPs decrease results from TDM. Interestingly, TDM leads to an increase in accuracy, indicating
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Figure 3: Comparison between DDR and One-
shot [67] data removal strategy w.r.t. different data
removal proportion ρ. DDR outperforms One-shot
and also achieves better accuracy when ρ ≤ 30%.

Figure 4: Comparison with CL-adapted sparse
training methods in training acceleration rate
and accuracy results. The radius of circles are
measured by memory footprint.

TDM generates a sparse model that is even more suitable for learning all tasks than then full dense
model. Comparing rows 2 and 3, we can see that DDR indeed further accelerates training by removing
less informative examples. As discussed in Section 4.2, when we remove a certain number of samples
(30% here), we achieve a point where we keep as much informative samples as we need, and also
balance the current and buffered data. Comparing rows 2 and 4, DGM reduce both training FLOPs and
memory footprint while improve the performance of the network. Finally, the last row demonstrates
the collaborative performance of all components. We also show the same ablation study with 0.90
sparsity in Appendix B.4 for reference. Details can be found in Appendix B.1.

Exploration on DDR. To understand the influence of the data removal proportion ρ, and the cutoff
stage for each task, we show corresponding experiment results in Figure 3 and Appendix B.3,
respectively. In Figure 3, we fix cutoff = 4, i.e., gradually removing equal number of examples
every 5 epochs until epoch 20, and vary ρ from 10% to 90%. We also compare DDR with One-shot
removal strategy [67], which removes all examples at once at cutoff. DDR outperforms One-shot
consistently with different ρ in average accuracy. Also note that since DDR removes the examples
gradually before the cutoff stage, DDR is more efficient than One-shot. When ρ ≤ 30%, we also
observe increased accuracy of DDR compared with the baseline without removing any data. When
ρ ≥ 40%, the accuracy gets increasingly lower for both strategies. The intuition is that when DDR
removes a proper amount of data, it removes redundant information while keeps the most informative
examples. Moreover, as discussed in Section 4.2, it balances the current and buffered data, while
also leave informative samples in the buffer. When DDR removes too much data, it will also lose
informative examples, thus the model has not learned these examples well before removal.

Exploration on DGM. We test the efficacy of DGM at different sparsity levels. Detailed exploratory
experiments are shown in Appendix B.5 for reference. The results indicate that by setting the
proportion q within an appropriate range, DGM can consistently improve the accuracy performance
regardless of the change of weight sparsity.

5.4 Mobile Device Results

The training acceleration results are measured on the CPU of an off-the-shelf Samsung Galaxy S20
smartphone, which has the Qualcomm Snapdragon 865 mobile platform with a Qualcomm Kryo 585
Octa-core CPU. We run each test on a batch of 32 images to denote the training speed. The detail of
on-mobile compiler-level optimizations for training acceleration can be found in Appendix C.1.

The acceleration results are shown in Figure 4. SparCL can achieve approximately 3.1× and 2.3×
training acceleration with 0.95 sparsity and 0.90 sparsity, respectively. Besides, our framework can
also save 51% and 48% memory footprint when the sparsity is 0.95 and 0.90. Furthermore, the
obtained sparse models save the storage consumption by using compressed sparse row (CSR) storage
and can be accelerated to speed up the inference on-the-edge. We provide on-mobile inference
acceleration results in Appendix C.2.
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6 Conclusion

This paper presents a unified framework named SparCL for efficient CL that achieves both learning
acceleration and accuracy preservation. It comprises three complementary strategies: task-aware
dynamic masking for weight sparsity, dynamic data removal for data efficiency, and dynamic gradient
masking for gradient sparsity. Extensive experiments on standard CL benchmarks and real-world edge
device evaluations demonstrate that our method significantly improves upon existing CL methods and
outperforms CL-adapted sparse training methods. We discuss the limitations and potential negative
social impacts of our method in Sections 7 and 8, respectively.

7 Limitations

One limitation of our method is that we assume a rehearsal buffer is available throughout the CL
process. Although the assumption is widely-accepted, there are still situations that a rehearsal buffer
is not allowed. However, as a framework targeting for efficiency, our work has the potential to
accelerate all types of CL methods. For example, simply removing the terms related to rehearsal
buffer in equation 1 and equation 3 could serve as a naive variation of our method that is compatible
with other non-rehearsal methods. It is interesting to further improve SparCL to be more generic for
all kinds of CL methods. Moreover, the benchmarks we use are limited to vision domain. Although
using vision-based benchmarks has been a common practice in the CL community, we believe
evaluating our method, as well as other CL methods, on datasets from other domains such as NLP will
lead to a more comprehensive and reliable conclusion. We will keep track of newer CL benchmarks
from different domains and further improve our work correspondingly.

8 Potential Negative Societal Impact

Although SparCL is a general framework to enhance efficiency for various CL methods, we still
need to be aware of its potential negative societal impact. For example, we need to be very careful
about the trade-off between accuracy and efficiency when using SparCL. If one would like to pursue
efficiency by setting the sparsity ratio too high, then even SparCL will result in significant accuracy
drop, since the over-sparsified model does not have enough representation power. Thus, we should
pay much attention when applying SparCL on accuracy-sensitive applications such as healthcare [66].
Another example is that, SparCL as a powerful tool to make CL methods efficient, can also strengthen
models for malicious applications [7]. Therefore, we encourage the community to come up with
more strategies and regulations to prevent malicious use of artificial intelligence.
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A Dataset Licensing Information

• CIFAR-10 [33] is licensed under the MIT license.

• The licensing information of Tiny-ImageNet [34] is not available. However, the data is
available for free to researchers for non-commercial use.

B Additional Experiment Details and Results

We set α = 0.5, β = 1 in equation 1 and equation 3. We also set δk = 5, pinter = 0.01,
pintra = 0.005. We also match different weight sparsity with gradient sparsity for best performance.
We sample 20% data from Split CIFAR-10 training set for validation, and we use grid-search on
this validation set to help us select the mentioned best hyperparameters. We use the same set of
hyperparameters for both datasets. For accurate evaluation, we repeat each experiments 3 times
using different random seeds and report the average performance. During our experiments, we adopt
unstructured sparsity type and uniform sparsity ratio (0.75, 0.90, 0.95) for all convolutional layers in
the models.

B.1 Evaluation Metrics Explanation

Training FLOPs The FLOPs of a single forward pass is calculated by taking the sum of the number
of multiplications and additions in each layer l for a given layer sparsity sl. Each iteration in the
training process is composed of two phases, i.e., the forward propagation and backward propagation.

The goal of the forward pass is to calculate the loss of the current set of parameters on a given batch
of data. It can be formulated as al = σ(zl) = σ(wl ∗ al−1 + bl) for each layer l in the model. Here,
w, b, and z represent the weights, biases, and output before activation, respectively; σ(.) denotes the
activation function; a is the activations; ∗ means convolution operation. The formulation indicates
that the layer activations are calculated in sequence using the previous activations and the parameters
of the layer. Activation of layers are stored in memory for the backward pass.

As for the backward propogation, the objective is to back-propagate the error signal while calculating
the gradients of the parameters. The two main calculation steps can be represented as:

δl = δl+1 ∗ rotate180°(wl)⊙ σ′(zl), (4)
Gl = al−1 ∗ δl, (5)

where δl is the error associated with the layer l, Gl denotes the gradients, ⊙ represents Hadamard
product, σ′(.) denotes the derivative of activation, and rotate180°(.) means rotating the matrix by 180°
is the matrix transpose operation. During the backward pass, each layer l calculates two quantities,
i.e., the gradient of the activations of the previous layer and the gradient of its parameters. Thus, the
backward passes are counted as twice the computation expenses of the forward pass [20]. We omit the
FLOPs needed for batch normalization and cross entropy. In our work, the total FLOPs introduced by
TDM, DDR, and DGM on split CIFAR-10 is approximately 4.5× 109 which is less than 0.0001% of
total training FLOPs. For split Tiny-ImageNet, the total FLOPs of them is approximately 1.8× 1010,
which is also less than 0.0001% of total training FLOPs. Therefore, the computation introduced by
TDM, DDR, and DGM is negligible.

Memory Footprints Following works [10, 67], the definition of memory footprints contain two parts:
1) activations (feature map pixels) during training phase, and 2) model parameters during training
phase. For experiments, activations, model weights, and gradients are stored in 32-bit floating-point
format for training. The memory footprint results are calculated with an approximate summation of
them.

B.2 Details of Memory Footprint

The memory footprint is composed of three parts: activations, model weights, and gradients. They
are all represented as bw-bit numbers for training.

The number of activations in the model is the sum of the activations in each layer. Suppose that the
output feature of the l-th layer with a batch size of B is represented as al ∈ RB×Ol×Hl×Wl , where
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Ol is the number of channels and Hl ×Wl is the feature size. The total number of activations of the
model is thus B

∑
l OlHlWl.

As for the model weights, our SparCL training a sparse model with a sparsity ratio s ∈ [0, 1] from
scratch. The sparse model is obtained from a dense model with a total of N weights. A higher value
of s indicates fewer non-zero weights in the sparse model. Compressed sparse row (CSR) format is
commonly used for sparse storage, which greatly reduces the number of indices need to be stored for
sparse matrices. As our SparCL adopt only one sparsity type and we use a low-bit format to store the
indices, we omit the indices storage here. Therefore, the memory footprint for model representation
is (1− s)Nbw.

Similar calculations can be applied for the gradient matrix. Besides the sparsity ratio s, additional q
gradients are masked out from the gradient matrix, resulting a sparsity ratio s + q. Therefore, the
storage of gradients can be approximated as (1− (s+ q))Nbw.

Combining the activations, model representation, and gradients, the total memory footprint in SparCL
can be represented as (2B

∑
l OlHlWl + (1− s)N + (1− (s+ q))N)bw.

DDR requires store indices for the easier examples during the training process. The number of
training examples for Split CIFAR-10 and Split Tiny-ImageNet on each task is 10000. In our work,
we only need about 3KB (remove 30% training data) for indices storage (in the int8 format) and the
memory cost is negligible compared with the total memory footprint.

B.3 Effect of Cutoff Stage

Table A1: Effect of cutoff.
cutoff 1 2 3 4 5 6 7 8 9

Class-IL (↑) 71.54 72.38 72.74 73.20 73.10 73.32 73.27 73.08 73.23

To evaluate the effect of the cutoff stage, we use the same setting as in Figure 3 by setting the
sparsity ratio to 0.90. We keep the data removal proportion ρ = 30%, and only change cutoff.
Table A1 shows the relationship between cutoff and the Class-IL average accuracy. Note that
from the perspective of efficiency, we would like the cutoff stage as early as possible, so that the
remaining epochs will have less examples. However, from Table A1, we can see that if we set it too
early, i.e., cutoff ≤ 3, the accuracy drop is significant. This indicate that even for the “easy-to-learn”
examples, removing them too early results in underfitting. As a balance point between accuracy and
efficiency, we choose cutoff = 4 in our final version.

B.4 Supplementary Ablation Study

Table A2: Ablation study on Split-CIFAR10 with 0.90 sparsity.

TDM DDR DGM Class-IL (↑) FLOPs Train
×1015 (↓) Memory Footprint (↓)

✗ ✗ ✗ 72.70 13.9 247MB
✓ ✗ ✗ 72.98 1.6 166MB
✓ ✓ ✗ 73.20 1.2 166MB
✓ ✗ ✓ 73.30 1.5 165MB
✓ ✓ ✓ 73.42 1.1 165MB

Similar to Table 3, we show ablation study with 0.90 sparsity ratio in Table A2. Under a larger
sparsity ratio, the conclusion that all components contribute to the final performance still holds.
However, we can observe that the accuracy increase that comes from DDR and DGM is less than
what we show in Table 3. We assume that larger sparsity ratio makes it more difficult for the model
to retain good accuracy in CL. Similar results has also been observed in [67] under the usual i.i.d.
learning setting.
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Table A3: Ablation study of the gradient sparsity ratio on Split-CIFAR10.

weight sparsity gradient sparsity Class-IL (↑) FLOPs Train
×1015 (↓) Memory Footprint (↓)

0.75 0.78 74.08 3.4 178MB
0.75 0.80 73.97 3.3 177MB
0.75 0.82 73.79 3.3 177MB
0.75 0.84 73.26 3.2 176MB

0.90 0.91 73.33 1.6 166MB
0.90 0.92 73.30 1.5 165MB
0.90 0.93 72.64 1.5 165MB

B.5 Exploration on DGM

We conduct further experiments to demonstrate the influence of gradient sparsity, and the results are
shown in Table A4. There are two sets of the experiments with different weight sparsity settings:
0.75 and 0.90. Within each set of the experiments (the weight sparsity is fixed), we vary the gradient
sparsity values. From the results we can see that increasing the gradient sparsity can decrease the
FLOPs and memory footprint. However, the accuracy performance degrades more obvious when the
gradient sparsity is too much for the weight sparsity. The results indicate that suitable gradient sparsity
setting can bring further efficiency to the training process while boosting the accuracy performance.
In the main results, the gradient sparsity is set as 0.80 for 0.75 weight sparsity, and set as 0.92 for
0.90 weight sparsity.

C On-Mobile Compiler Optimizations and Inference Results

C.1 Compiler Optimizations

Each iteration in the training process is composed of two phases, i.e., the forward propagation and
backward propagation. Prior works [18, 23, 27, 28, 30, 36, 38, 69] have proved that sparse weight
matrices (tensors) can provide inference acceleration via reducing the number of multiplications in
convolution operation. Therefore, the forward propagation phase, which is the same as inference,
can be accelerated by the sparsity inherently. As for backward pass, both of the calculation steps are
based on convolution, i.e., matrix multiplication. Equation 4 uses sparse weight matrix (tensor) as
the operand, thus can be accelerated in the same way as the forward propagation. Equation 5 allows
a sparse output result since the gradient matrix is also sparse. Thus, both two steps have reduced
computations, which are roughly proportional to the sparsity ratio, providing the acceleration for the
backward propagation phase.

Compiler optimizations are used to accelerate the inference in prior works [22, 47, 62]. In this work,
we extend the compiler optimization techniques for accelerating the forward and backward pass
during training on the edge devices. Our compiler optimizations are general, support both sparse
model training and inference accelerations on mobile platforms. The optimizations include 1) the
supports for sparse models; 2) an auto-tuning process to determine the best-suited configurations of
parameters for different mobile CPUs. The details of our compiler optimizations are presented as
follows.

C.1.1 Supports for Sparse Models

Our framework supports sparse model training and inference accelerations with unstructured pruning.
For the sparse (pruned) model, the framework first compacts the model storage with a compression
format called Compressed Sparse Row (CSR) format, and then performs computation reordering to
reduce the branches within each thread and eliminates the load imbalance among threads.

A row reordering optimization is also included to further improve the regularity of the weight matrix.
After this reordering, the continuous rows with identical or similar numbers of non-zero weights
are processed by multi-threads simultaneously, thus eliminating thread divergence and achieving
load balance. Each thread processes more than one rows, thus eliminating branches and improving
instruction-level parallelism. Moreover, a similar optimization flow (i.e., model compaction and
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computation reorder and other optimizations) is employed to support all compiler optimizations for
sparsity as PatDNN [47].

C.1.2 Auto-Tuning for Different Mobile CPUs

During DNN sparse training and inference execution, there are many tuning parameters, e.g., matrix
tiling sizes, loop unrolling factors, and data placement on memory, that influence the performance.
It is hard to determine the best-suited configuration of these parameters manually. To alleviate
this problem, our compiler incorporates an auto-tuning approach for sparse (pruned) models. The
Genetic Algorithm is leveraged to explore the best-suited configurations automatically. It starts the
parameter search process with an arbitrary number of chromosomes and explores the parallelism
better. Acceleration codes for different DNN models and different mobile CPUs can be generated
efficiently and quickly through this auto-tuning process.

C.2 Inference Acceleration Results On Mobile
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Accelation Results of ResNet-18 on  Split CIFAR-10
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Figure 5: Inference results of sparse models obtained from SparCL under different sparsity ratio compared with
dense models obtained from traditional CL methods (sparsity ratio 0.00).

Besides accelerating the training process, SparCL also possesses the advantages of providing a sparse
model as the output for faster inference. To demonstrate this, we show the inference acceleration
results of SparCL with different sparsity ratio settings on mobile in Figure 5. The inference time is
measured on the CPU of an off-the-shelf Samsung Galaxy S20 smartphone. Each test takes 50 runs
on different inputs with 8 threads on CPU. As different runs do not vary greatly, only the average
time is reported. From the results we can see that the obtained sparse model from SparCL can
significantly accelerate the inference on both Split-CIFAR-10 and Tiny-ImageNet dataset compared
to the model obtained by traditional CL training. For ResNet-18 on Split-CIFAR-10, the model
obtained by traditional CL training, which is a dense model, takes 18.53ms for inference. The model
provided by SparCL can achieve an inference time of 14.01ms, 8.30ms, and 5.85ms with sparsity
ratio of 0.75, 0.90, and 0.95, respectively. The inference latency of the dense ResNet-18 obtained by
traditional CL training on Tiny-ImageNet is 39.64 ms. While the sparse models provided by SparCL
with sparsity ratio settings as 0.75, 0.90, and 0.95 reach inference speed of 33.06ms, 20.37ms, and
15.49ms, respectively, on Tiny-ImageNet.

D Comparison with Buffer Selection Methods

In this section, we compare DDR and GSS [3] or Loss-Aware Reservoir Sampling (LARS) [9].

DDR aims at removing training examples for efficiency, while GSS and LARS put the focus on
selecting more informative examples that are saved in the buffer. Technically, DDR removes less
informative training examples at certain epochs (and thus indirectly affects samples saved in the
buffer), while GSS and LARS directly replaces less informative buffered examples in the buffer. Thus,
the original GSS and LARS are not directly comparable to DDR. However, we can actually use the
example importance criteria used in GSS and LARS to remove less informative training examples as
well. We replace the misclassification rate in DDR by the gradient-based (GSS) and loss-based criteria
(LARS) objectives and get two variants of our approach, DDR-GSS and DDR-LARS, respectively.
For fair comparison, we fix all other parameters used in DDR the same for all methods (sparisity
0.75, remove 30% training data, with TDM only). Since all variants of DDR already remove training
examples for efficiency, we mainly focus on their accuracy performance here. The final results on
Split-CIFAR10 is shown in the table below:
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Table A4: Comparison with Buffer Selection Methods.
Method Importance Accuracy

DDR Misclassification 73.80
DDR-GSS Gradient 73.45

DDR-LARS Loss 73.67

E Exploration on Pruning Pattern

In this work, we conduct uniform pruning (i.e., each layer has the same pruning ratio) across different
CONV layers as mentioned before in experimental details. The usage of uniform pruning ratio
is to match the single-instruction multiple-data (SIMD) [47] architecture of embedded CPU/GPU
processors for efficient hardware accelerations.

To observe the pruning pattern, we also experimented with setting an overall pruning ratio as 95% for
the entire network, allowing each layer to have different pruning ratios by ranking CWI for the whole
model. According to the results, earlier CONV layers tend to have a smaller pruning ratio, which is
only around 25%− 30%, while the pruning ratios for the latter CONV layers can reach 99%. The
results are reasonable, as latter layers are more redundant with a larger amount of parameters. In
addition, the weights in earlier layers might be more important for keeping high accuracy, but take a
large portion of the computation. Therefore, though slightly improving the accuracy performance
to 72.45% compared to the uniform pruning ratio setting, allowing different pruning ratios across
different layers yields worse acceleration (drop to 2.2× compared with 3.1× when adopting the
uniform pruning ratio) on the hardware. As our purpose is to facilitate the efficiency of the CL-system,
we adopt the uniform pruning ratio setting.
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