
Compiler-Aware Neural Architecture Search for
On-Mobile Real-time Super-Resolution

Yushu Wu⋆1 , Yifan Gong⋆1 , Pu Zhao1 , Yanyu Li1 , Zheng Zhan1 , Wei
Niu2 , Hao Tang3 , Minghai Qin1 , Bin Ren2 , and Yanzhi Wang1

1 Northeastern University, Boston MA 02115, USA
{wu.yushu,gong.yifa}@northeastern.edu

2 College of William and Mary, Williamsburg VA 23185, USA
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Abstract. Deep learning-based super-resolution (SR) has gained tremen-
dous popularity in recent years because of its high image quality perfor-
mance and wide application scenarios. However, prior methods typically
suffer from large amounts of computations and huge power consump-
tion, causing difficulties for real-time inference, especially on resource-
limited platforms such as mobile devices. To mitigate this, we propose a
compiler-aware SR neural architecture search (NAS) framework that con-
ducts depth search and per-layer width search with adaptive SR blocks.
The inference speed is directly taken into the optimization along with
the SR loss to derive SR models with high image quality while satisfy-
ing the real-time inference requirement. Instead of measuring the speed
on mobile devices at each iteration during the search process, a speed
model incorporated with compiler optimizations is leveraged to predict
the inference latency of the SR block with various width configurations
for faster convergence. With the proposed framework, we achieve real-
time SR inference for implementing 720p resolution with competitive
SR performance (in terms of PSNR and SSIM) on GPU/DSP of mobile
platforms (Samsung Galaxy S21). Codes are available at link.
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1 Introduction

As a classic vision task, single-image-super-resolution (SISR) restores the original
high-resolution (HR) image based on a down-sampled low-resolution (LR) one.
It can be applied in various applications, such as low-resolution media data en-
hancement or video/image upscaling for high resolution display panels. Various
classic [38,24,66,67] and deep learning (DL)-based [20,21,62,81,52] SR methods
have been proposed in the past. Compared with classic interpolation algorithms
to improve image/video resolution, DL-based methods take advantage of learn-
ing mappings from LR to HR images from external datasets. Thus most recent
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SR works emerge in the DL area. However, one major limitation of existing DL-
based SR methods is their high computation and storage overhead to achieve
superior image quality, leading to difficulties to implement real-time SR infer-
ence even on powerful GPUs, not to mention resource limited edge devices. Due
to the ever-increasing popularity of mobile devices and interactive on-mobile ap-
plications (such as live streaming), it is essential to derive lightweight SR models
with both high image quality and low on-mobile inference latency.

There exist several works targeting at efficient SR models, including using
upsampling operator at the end of a network [21,62], adopting channel splitting
[34], using wider activation [81], and combining lightweight residual blocks with
variants of group convolution [52]. Neural architecture search (NAS) is applied to
derive the optimal architecture in many vision tasks. Latest works [15,63,44,16]
try to derive fast, lightweight, and accurate SR networks via NAS. However, their
models are still too large to be implemented on mobile devices. Furthermore,
these methods usually take the parameter numbers and computation counts
(such as multiply-accumulate (MAC) operations) into the optimization for model
efficiency, without considering the actual on-mobile implementation performance
such as the inference latency. The actual mobile deployment of SR mobiles has
rarely been investigated. The most relevant works are the winner of the PIRM
challenge [68], MobiSR [45], and work [85]. But they either require nearly one
second per frame for inference, far beyond real-time, or take a long search time.

Targeting at achieving real-time inference of accurate SR model for 720p
resolution on various resource-limited hardware such as mobile GPU and DSP,
this paper proposes a compiler-aware NAS framework. An adaptive SR block is
introduced to conduct the depth search and per-layer width search. Each con-
volution (CONV) layer is paired with a mask layer in the adaptive SR block for
the width search, while the depth search is reached by choosing a path between
the skip connection and the masked SR block. The mask can be trained along
with the network parameters via gradient descent optimizers, significantly sav-
ing training overhead. Instead of using MACs as the optimization target, the
latency performance is directly incorporated into the objective function with
the usage of a speed model. Our implementation can support real-time SR in-
ference with competitive SR performance on various resource-limited platforms,
including mobile GPU and DSP. The contributions are summarized below:

– We propose a framework to search for the appropriate depth and per-layer
width with adaptive SR blocks.

– We introduce a general compiler-aware speed model to predict the inference
speed on the target device with corresponding compiler optimizations.

– The proposed framework can directly optimize the inference latency, providing
the foundations for achieving real-time SR inference on mobile.

– Our proposed framework can achieve real-time SR inference (with only tens of
milliseconds per frame) for the implementation of 720p resolution with com-
petitive SR performance (in terms of PSNR and SSIM) on mobile (Samsung
Galaxy S21). Our achievements can facilitate various practical SR applications
with real-time requirements such as live streaming or video communication.
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2 Related Work

SR Works. In recent years, most SR works have shifted their approaches from
classic methods to DL-based methods with significant SR performance improve-
ments. From the pioneering SRCNN [20] to later works with shortcut operator,
dense connection, and attention mechanism [41,48,88,87,17], the up-scaling char-
acteristic have dramatically boosted at the cost of high storage and computation
overhead. Most of the works mentioned above even take seconds to process only
one image on a powerful GPU, let alone mobile devices or video applications.

Efficient SR. Prior SR works are hard to be implemented on resource-limited
platforms due to high computation and storage cost. To obtain more compact
SR models, FSRCNN [21] postpones the position of the upsampling operator.
IDN [35] and IMDN [34] utilize the channel splitting strategy. CARN-M [7]
explores a lightweight SR model by combining efficient residual blocks with group
convolutions. SMSR [70] learns sparse masks to prune redundant computation
for efficient inference. ASSLN [89] and SRPN [90] leverage structure-regularized
pruning and impose regularization on the pruned structure to guarantee the
alignment of the locations of pruned filters across different layers. SR-LUT [40]
uses look-up tables to retrieve the precomputed HR output values for LR input
pixels, with a more significant SR performance degradation. However, these SR
models do not consider the actual mobile deployment, and the sizes of the models
are still too large. The actual SR deployment is rarely investigated. The winner
of the PIRM challenge [68], MobiSR [45], and work [85] explore the on-device SR,
but the models take seconds for a single image, far from real time, or require long
search time. Work [37] considers real-time SR deployed on the powerful mobile
TPU, which is not widely adopted such as mobile CPU/GPU.

NAS for SR. NAS has been shown to outperform heuristic networks in various
applications. Recent SR works start to leverage NAS to find efficient, lightweight,
and accurate SR models. Works [15,16,85] leverage reinforced evolution algo-
rithms to achieve SR as a multi-objective problem. Work [6] uses a hierarchical
search strategy to find the connection with local and global features. LatticeNet
[56] learns the combination of residual blocks with the attention mechanism.
Work [74,32,19] search lightweight architectures at different levels with differ-
entiable architecture search (DARTS) [51]. DARTS based methods introduce
architecture hyper-parameters which are usually continuous rather than binary,
incurring additional bias during selection and optimization. Furthermore, the
above-mentioned methods typically take the number of parameters or MACs
into the objective function, rather than on-mobile latency as discussed in Sec. 3.
Thus they can hardly satisfy the real-time requirement.

Hardware Acceleration. A significant emphasis on optimizing the DNN exe-
cution has emerged in recent years [43,75,36,79,29,60,22,39,25]. There are several
representative DNN acceleration frameworks including Tensorflow-Lite [1], Al-
ibaba MNN [2], Pytorch-Mobile [3], and TVM [13]. These frameworks include
several graph optimization techniques such as layer fusion, and constant folding.
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3 Motivation and Challenges

With the rapid development of mobile devices and real-time applications such
as live streaming, it is essential and desirable to implement real-time SR on
resources-limited mobile devices. However, it is challenging. To maintain or up-
scale the spatial dimensions of feature maps based on large input/output size,
SR models typically consume tens of or hundreds of GMACs (larger than several
GMACs in image classification [54,69]), incurring difficulties for real-time infer-
ence. For example, prior works on mobile SR deployment [45] and [68] achieve
2792ms and 912ms on-mobile inference latency, respectively, far from real-time.

We can adopt NAS or pruning methods to find a lightweight SR model with
fast speed on mobile devices. But there are several challenges: (C1) tremendous
searching overhead with NAS, (C2) misleading magnitude during pruning, (C3)
speed incorporation issues, and (C4) heuristic depth determination.
Tremendous Searching Overhead with NAS. In NAS, the exponentially
growing search space leads to tremendous search overhead. Specifically, the RL-
based [93,91,94] or evolution-based NAS methods [61,64,78] typically need to
sample large amounts of candidate models from the search space and train each
candidate architecture with multiple epochs, incurring long search time and high
computation cost. Besides, differentiable NAS methods [11,8,51] build super-
nets to train multiple architectures simultaneously, causing significant memory
cost and limited discrete search space up-bounded by the available memory. To
mitigate these, there are certain compromised strategies, such as proxy tasks (to
search on CIFAR and target on ImageNet) [61,92,78] and performance estimation
(to predict/estimate the architecture performance with some metrics) [4,65,49].
Misleading Magnitude during Pruning. Pruning can also be adopted to
reduce the model size, which determines the per-layer pruning ratio and pruning
positions. With the assumption that weights with smaller magnitudes are less im-
portant for final accuracy, magnitude-based pruning [30,58,31,86,72,26,47,57,84]
is widely employed to prune weights smaller than a threshold. However, the
assumption is not necessarily true, and weight magnitudes can be misleading.
Magnitude-based pruning is not able to achieve importance shifting during prun-
ing. As detailed in Appendix ??, in iterative magnitude pruning, small weights
pruned first are not able to become large enough to contribute to the accuracy.
Thus layers pruned more at initial will be pruned more and more, causing a non-
recoverable pruning policy. It becomes pure exploitation without exploration.
Speed Incorporation Issues. To achieve real-time inference on mobile, it is
essential to obtain the on-mobile speed performance when searching architec-
tures. However, it is non-trivial to achieve this since testing speed requires an
additional process to interact with the mobile device for a few minutes, which can
hardly be incorporated into a typical model training. To mitigate this, certain
methods [54,69,53] adopt weight number or computation counts as an estimation
of the speed performance. Other methods [73,18,77] first collect on-mobile speed
data and then build lookup tables with the speed data to estimate the speed.
Heuristic Depth Determination. Reducing model depth can avoid all com-
putations in the removed layers, thus significantly accelerating the inference.
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Since previous NAS works do not incorporate a practical speed constraint or
measurement during optimization, their search on model depth is usually heuris-
tic. Designers determine the model depth according to a simple rule that the
model should satisfy an inference budget, without a specific optimization method
[49,50,92,78,8,51]. More efforts are devoted to searching other optimization di-
mensions such as kernel size or width rather than model depth.

4 Our Method

We first introduce the framework, then discuss the components of the framework
in detail. We also specify how it can deal with the challenges in Sec. 3.

4.1 Framework with Adaptive SR Block

In the framework, we perform a compiler-aware architecture depth and per-
layer width search to achieve real-time SR on mobile devices. The search space
contains the width for each CONV layer and the number of stacked SR blocks in
the model, which is too large to be explored with a heuristic method. Therefore,
we propose an adaptive SR block to implement the depth and per-layer width
search, and the model is composed of multiple adaptive SR blocks. Fig. 1 shows
the architecture of the adaptive SR block. It consists of a masked SR block, a
speed model, and an aggregation layer. The adaptive SR block has two inputs
(and outputs) corresponding to the SR features and the accumulated speed,
respectively. It achieves per-layer width search with mask layers in the masked
SR blocks and depth search with aggregation layer to choose a path between the
skip connection and the masked SR block. Besides, to obtain the on-mobile speed
performance, we adopt a speed model to predict the speed of the masked SR
block. The speed model is trained on our own dataset with speed performance
of various block width configurations measured through compiler optimizations
for significant inference acceleration to achieve accurate speed prediction.

4.2 Per-Layer Width Search with Mask Layer for C1 and C2

Width search is performed for each CONV layer in a typical WDSR block [81].
WDSR is chosen as our basic building blocks since it has demonstrated high
efficiency in SR tasks [83,82,14]. Note that our framework is not limited to the
WDSR block and can be easily extended to various residual SR blocks [7,48,35]
in the literature. To satisfy the real-time requirement, we perform a per-layer
width search to automatically select an appropriate number of channels for each
CONV layer in the WDSR block. Specifically, we insert a differentiable mask
layer (a depth-wise 1 × 1 CONV layer) after each CONV layer to serve as the
layer-wise trainable mask, as shown below,

an
l = mn

l ⊙ (wn
l ⊙ an

l−1), (1)

where ⊙ denotes the convolution operation. wn
l ∈ Ro×i×k×k is the weight pa-

rameters in the lth CONV layer of the nth block, with o output channels, i input
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Fig. 1: Architecture of the adaptive SR block search.

channels, and kernels of size k × k. an
l ∈ RB×o×s×s′ represents the output fea-

tures of lth layer (with the trainable mask), with o channels and s × s′ feature
size. B denotes the batch size. mn

l ∈ Ro×1×1×1 is the corresponding weights of
the depth-wise CONV layer (i.e., the mask layer).

We use each element of mn
l as the pruning indicator for the corresponding

output channel of wn
l ⊙an

l−1. Larger elements of mn
l mean that the correspond-

ing channels should be preserved while smaller elements indicate pruning the
channels. Formally, we use a threshold to convert mn

l into a binary mask,

bnl =

{
1,mn

l > thres.

0,mn
l ≤ thres.

(element-wise), (2)

where bnl ∈ {0, 1}o×1×1×1 is the binarized mn
l . We initialize mn

l with random
values between 0 and 1, and the adjustable thres is set to 0.5 in our case. The
WDSR block with the proposed mask layers is named as masked SR block.

Thus we are able to obtain a binary mask for each CONV layer. The next
problem is how to make the mask trainable, as the binarization operation is
non-differentiable, leading to difficulties for back-propagation. To solve this, we
integrate Straight Through Estimator (STE) [9] as shown below,

∂L
∂mn

l

=
∂L
∂bnl

, (3)

where we directly pass the gradients through the binarization. The STE method
is originally proposed to avoid the non-differentiable problems in quantization
tasks [55,80]. Without STE, some methods adopt complicated strategies to deal
with the non-differentiable binary masks such as [28,27].

With the binarization and the STE method, we are able to build a trainable
mask to indicate whether the corresponding channel is pruned or not. Our mask
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generation and training are more straightforward and simpler. For example,
proxyless-NAS [12] transforms the real-valued weights to binary gates with a
probability distribution, and adopts complex mask updating procedure (such as
task factorizing). SMSR [70] adopts Gumbel softmax to perform complex sparse
mask CONV. Unlike proxylessNAS or SMSR, we generate binary masks simply
via a threshold and train the masks directly via STE.

4.3 Speed Prediction with Speed Model for C3

To achieve real-time SR inference on mobile devices, we take the inference speed
into the optimization to satisfy a given real-time threshold. It is hard to measure
the practical speed or latency of various structures on mobile devices during
optimization. Traditionally, the inference speed may be estimated roughly with
the number of computations [54,69,53] or a latency lookup table [73,18,77], which
can hardly provide an accurate speed. To solve this problem, we adopt a DNN-
based speed model to predict the inference speed of the block. The input of the
speed model is the width of each CONV layer in the block, and it outputs the
block speed. As shown in Fig. 1, the width of each CONV layer can be obtained
through the mask layer. Thus the speed model can work perfectly with the width
search, dealing with C3 to provide speed performance of various architectures.

To train such a speed model, we first need to build a speed dataset with
block latency of various layer width configurations in the block. Next, we can
train a speed model based on the dataset to predict the speed. We find that the
trained speed model is accurate in predicting the speed of different layer widths
in the block (with 5% error at most). We show the details about the dataset,
speed model, and the prediction accuracy in Sec. 5 and Appendix B.

We highlight that our speed model not only takes the masks as inputs to
predict the speed, but also back-propagates the gradients from the speed loss
(Eq. (10)) to update the masks as detailed in Sec. 4.5, rather than just predicting
performance forwardly such as [71]. That is why we build the speed model based
on DNNs instead of loop-up tables. The trainable masks and the speed model
are combined comprehensively to solve the problem more efficiently.

4.4 Depth Search with Aggregation Layer for C4

Although reducing the per-layer width can accelerate the inference, removing the
whole block can avoid the computations of the whole block, thus providing higher
speedup. Hence, besides width search, we further incorporate depth search to
automatically determine the number of adaptive SR blocks in the model. Note
that although per-layer width search may also converge to zero width, which
eliminates the entire block, we find that in most cases, there are usually a few
channels left in each block to promote the SR performance, leading to difficulties
in removing the whole block. Thus it is necessary to incorporate depth search.

To perform depth search, we have two paths in each adaptive SR block. As
shown in Fig. 1, one path is the skip connection, and the other path is the
masked SR block. In the aggregation layer, there is a parameter like a switch to
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control which path the SR input goes through. If the SR input chooses the skip
path, the masked SR block is skipped, and the latency of this block is just 0,
leading to significant inference acceleration. The aggregation layer plays a key
role in the path selection. It contains two trainable parameters αs and αb. In the
forward pass, it selects the skip path or the masked WDSR block path based on
the relative relationship of αs and αb, as shown below,

βs = 0 and βb = 1, if αs ≤ αb, (4)

βs = 1 and βb = 0, if αs > αb, (5)

where the binarized variables βs and βb denote the path selection (βs=1 means
choosing the skip path and βb=1 means choosing the masked SR block path).
Since the comparison operation is non-differentiable, leading to difficulties for
back-propagation, similarly we adopt STE [9] to make it differentiable as below,

∂L
∂αs

=
∂L
∂βs

,
∂L
∂αb

=
∂L
∂βb

. (6)

In the aggregation layer, the forward computation can be represented below,

an = βs · an−1 + βb · an
L, (7)

vn = vn−1 + βb · vc, (8)

where an is the SR output features of the nth adaptive SR block. an
L is the

SR output features of masked SR block in the nth adaptive SR block, and L is
the maximum number of CONV layers in each block and we have l≤L. vn is
the accumulated speed or latency until the nth adaptive SR block and vc is the
speed of the current block which is predicted by the speed model. By training αs

and αb, the model can learn to switch between the skip path and the SR path
to determine the model depth, thus dealing with C4.

4.5 Training Loss

Multiple adaptive SR blocks can form the SR model, which provides two outputs
including the typical SR outputs and the speed outputs. The training loss is a
combination of a typical SR loss and a speed loss as below,

LSPD = max{0, vN − vT }, (9)

L = LSR + γLSPD, (10)

where vT is the real-time threshold, vN is the accumulated speed of N blocks,
and γ is a parameter to control their relative importance. The objective is to
achieve high SR performance while the speed can satisfy a real-time threshold. To
summarize, with the trainable masks, the speed model, and the aggregation layer
in the adaptive SR block, our search algorithm achieves the following advantages:

– The mask can be trained along with the network parameters via gradient de-
scent optimizers, thus dealing with C1 to save search overhead compared with
previous one-shot pruning [31,23] or NAS methods [93,91] to train multiple
epochs for each candidate architecture with huge searching efforts.
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Fig. 2: The overview of compiler optimizations.

– Compared with magnitude-based threshold pruning, we decouple the train-
able masks from original model parameters, thus enabling exploitation and
overcoming the drawbacks of magnitude-based pruning, dealing with C2.

– We use the speed model for predicting the speed to solve C3, which is differen-
tiable regarding the trainable mask. Thus the mask is trained to find a model
with both high SR performance and fast inference speed.

– We also incorporate depth search though aggregation layers to deal with C4.

5 Compiler Awareness with Speed Model

To satisfy the speed requirement with a given latency threshold on a specific
mobile device, it is required to obtain the actual inference latency on the device.
It is non-trivial to achieve this as the model speed varies with different model
width and depth. It is unrealistic to measure the actual on-mobile speed during
the search, as the search space is quite large, and testing the mobile speed of each
candidate can take a few minutes, which is not compatible with DNN training.

To solve this problem, we adopt a speed model to predict the inference latency
of the masked SR block with various width configurations. With the speed model,
we can obtain the speed prediction as outputs by providing the width of each
CONV layer in the SR block as inputs. It is fully compatible with the trainable
mask, enabling differentiable model speed with respect to the layer width.

To obtain the speed model, we first build a latency dataset with latency data
measured on the hardware platforms incorporated with compiler optimizations.
Then the DNN speed model is trained based on the latency dataset.
Compiler Optimization. To build a latency dataset, we need to measure the
speed of various block configurations on mobile devices. Compiler optimizations
are adopted to accelerate the inference speed during speed testing. It is essential
to incorporate compiler optimizations as they can significantly accelerate the
inference speed. The overview of the compiler optimizations is shown in Fig. 2.
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To fully exploit the parallelism for a higher speedup, the key features of SR
have to be considered. As the objective of SR is to obtain a HR image from its
LR counterpart, each layer has to maintain or upscale the spatial dimensions
of the feature, leading to larger feature map size and more channels compared
with classification tasks. Therefore, the data movements between the memory
and cache are extremely intensive. To reduce the data movements for faster
inference, we adopt two important optimization techniques: 1) operator fusion
and 2) decreasing the amount of data to be copied between CPU and GPU.

Operator fusion is a key optimization technique adopted in many state-of-
the-art DNN execution framework [1,2,3]. However, these frameworks usually
adopt fusion approaches based on certain patterns that are too restrictive to
cover the diversity of operators and layer connections. To address this problem,
we classify the existing operations in the SR model into several groups based
on the mapping between the input and output, and develop rules for different
combinations of the groups in a more aggressive fusion manner. For instance,
CONV operation and depth-to-space operation can be fused together. With layer
fusion, both the memory consumption of the intermediate results and the number
of operators can be reduced. An auto-tuning process is followed to determine the
best-suited configurations of parameters for different mobile CPUs/GPUs and
Domain Specific Language (DSL) based code generation. After that, a high-level
DSL is leveraged to specify the operator in the computational graph of a DNN
model. We show more details about compiler optimization in Appendix C.

Latency Dataset. To train the speed model, we first measure and collect the
inference speed of the WDSR block under various CONV layer width configura-
tions. After that, a dataset of the WDSR block on-mobile speed with different
configurations can be built. We vary the number of filters in each CONV layer as
the different width configurations. The inference time is measured on the target
device (Samsung Galaxy S21) by stacking 20 WDSR blocks with the same con-
figuration, and the average latency is used as the inference time to mitigate the
overhead of loading data on mobile GPU. As the maximum number of CONV lay-
ers in each masked WDSR block is L, each data point in the dataset can be rep-
resented as a tuple with L+2 elements: {FCONV 1 , · · · ,FCONV L+1 , Tinference},
where FCONV i , for i∈{1, · · · , L}, indicates the number of input channels for
the ith CONV layer, FCONV L+1 is the number of output channels for the last
CONV layer, and Tinference is the inference speed for this configuration mea-
sured in milliseconds. The entire dataset is composed of 2048 data points.

Speed Model. With the latency dataset, the speed model can be trained on the
collected data points. The inference speed estimation is a regression problem,
thus, a network with 6 fully-connected layers combined with ReLU activation is
used as the speed model. During the speed model training, 90% of the data is
used for training and the rest is for validation. After training, the speed model
can predict the inference time of various block configurations with high accuracy.
From our results, the speed model only incurs 5% of deviation for the speed
prediction. The speed model has two advantages: (1) It is compatible with the
width search framework as the trainable mask can be directly fed into the speed
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Scale Method
Params
(K)

MACs
(G)

Latency
(ms)

PSNR SSIM

Set5 Set14 B100 Urban100 Set5 Set14 B100 Urban100

×2

FSRCNN [21] 12 6.0 128.47 37.00 32.63 31.53 29.88 0.9558 0.9088 0.8920 0.9020

MOREMNAS-C [16] 25 5.5 — 37.06 32.75 31.50 29.92 0.9561 0.9094 0.8904 0.9023

TPSR-NOGAN [44] 60 14.0 — 37.38 33.00 31.75 30.61 0.9583 0.9123 0.8942 0.9119

LapSRN [42] 813 29.9 — 37.52 33.08 31.80 30.41 0.9590 0.9130 0.8950 0.9100

CARN-M [7] 412 91.2 1049.92 37.53 33.26 31.92 31.23 0.9583 0.9141 0.8960 0.9193

FALSR-C [15] 408 93.7 — 37.66 33.26 31.96 31.24 0.9586 0.9140 0.8965 0.9187

ESRN-V [63] 324 73.4 — 37.85 33.42 32.10 31.79 0.9600 0.9161 0.8987 0.9248

EDSR [48] 1518 458.0 2031.65 37.99 33.57 32.16 31.98 0.9604 0.9175 0.8994 0.9272

WDSR [81] 1203 274.1 1973.31 38.10 33.72 32.25 32.37 0.9608 0.9182 0.9004 0.9302

SMSR [70] 985 131.6 — 38.00 33.64 32.17 32.19 0.9601 0.9179 0.8990 0.9284

SRPN-L [90] 609 139.9 — 38.10 33.70 32.25 32.26 0.9608 0.9189 0.9005 0.9294

Ours (vT=100ms) 47 11.0 98.90 37.64 33.16 31.91 31.08 0.9591 0.9136 0.8961 0.9170

Ours (vT=70ms) 28 6.6 66.09 37.49 33.05 31.81 30.76 0.9584 0.9123 0.8946 0.9135

Ours (vT=40ms, real-time) 11 2.5 34.92 37.19 32.80 31.60 30.15 0.9572 0.9099 0.8919 0.9054

×4

FSRCNN [21] 12 4.6 98.13 30.71 27.59 26.98 24.62 0.8657 0.7535 0.7150 0.7280

TPSR-NOGAN [44] 61 3.6 55.82 31.10 27.95 27.15 24.97 0.8779 0.7663 0.7214 0.7456

FEQE-P [68] 96 5.6 82.81 31.53 28.21 27.32 25.32 0.8824 0.7714 0.7273 0.7583

CARN-M [7] 412 32.5 374.15 31.92 28.42 27.44 25.62 0.8903 0.7762 0.7304 0.7694

ESRN-V [63] 324 20.7 — 31.99 28.49 27.50 25.87 0.8919 0.7779 0.7331 0.7782

IDN [35] 600 32.3 — 31.99 28.52 27.52 25.92 0.8928 0.7794 0.7339 0.7801

EDSR [48] 1518 114.5 495.90 32.09 28.58 27.57 26.04 0.8938 0.7813 0.7357 0.7849

DHP-20 [46] 790 34.1 — 31.94 28.42 27.47 25.69 — — — —

IMDN [34] 715 40.9 — 32.21 28.58 27.56 26.04 0.8948 0.7811 0.7353 0.7838

WDSR [81] 1203 69.3 533.02 32.27 28.67 27.64 26.26 0.8963 0.7838 0.7383 0.7911

SR-LUT-S [40] 77 — — 29.77 26.99 26.57 23.94 0.8429 0.7372 0.6990 0.6971

SMSR [70] 1006 41.6 — 32.12 28.55 27.55 26.11 0.8932 0.7808 0.7351 0.7868

SRPN-L [90] 623 35.8 — 32.24 28.69 27.63 26.16 0.8958 0.7836 0.7373 0.7875

Ours (vT=100ms) 188 10.8 93.50 32.02 28.50 27.51 25.83 0.8922 0.7778 0.7328 0.7769

Ours (vT=70ms) 116 6.7 64.95 31.88 28.43 27.46 25.69 0.8905 0.7760 0.7312 0.7715

Ours (vT=40ms,real-time) 66 3.7 36.46 31.73 28.28 27.34 25.44 0.8878 0.7725 0.7281 0.7620

∗ Some latency results are not reported as the models are not open-source or contain operators that cannot run on mobile GPU.

† The latency results are measured on the GPU of Samsung Galaxy S21.

Table 1: Comparison with SOTA efficient SR models for implementing 720p.

model. (2) It makes the model speed differentiable with respect to the masks,
and back-propagates gradients to update the masks, thus the model can update
the model speed by adjusting the layer width though back-propagation.

6 Experiments

6.1 Experimental Settings

SR Datasets. All SR models are trained on the training set of DIV2K [5] with
800 training images. For evaluation, four benchmark datasets Set5 [10], Set14
[76], B100 [59], and Urban100 [33] are used for test. The PSNR and SSIM are
calculated on the luminance channel (a.k.a. Y channel) in the YCbCr color space.
Evaluation Platforms and Running Configurations. The training codes
are implemented with PyTorch. 8 GPUs are used to conduct the search, which
usually finishes in 10 hours. The latency is measured on the GPU of an off-the-
shelf Samsung Galaxy S21 smartphone, which has the Qualcomm Snapdragon
888 mobile platform with a Qualcomm Kryo 680 Octa-core CPU and a Qual-
comm Adreno 660 GPU. Each test takes 50 runs on different inputs with 8
threads on CPU, and all pipelines on GPU. The average time is reported.
Training Details. 48× 48 RGB image patches are randomly sampled from LR
images for each input minibatch. We use the architecture of WDSR with 16
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Fig. 3: Visual Comparisons with other methods on Urban100/B100 for ×4 SR.

blocks as the backbone of our NAS process. Considering the huge input size of
SR (normally nHD–640×360 inputs or higher resolution for ×2 task), a compact
version of the WDSR block is chosen to fit the mobile GPU, where the largest
filer number for each CONV layer is 32, 146, and 28, respectively. The backbone
is initialized with the parameters of the pretrained WDSR model. Traditional
MAE loss is used to measure the differences between the SR image and the
ground-truth as the SR loss. The parameter γ in the training loss denoted as
Eq. (10) is set to 0.01. The first 20 epochs are used for the NAS process, and the
following 30 epochs for fine-tuning the searched model. ADAM optimizers with
β1=0.9, β2=0.999, and ϵ=1 × 10−8 are used for both model optimization and
fine-tuning process. The learning rate is initialized as 1 × 10−4 and reduced by
half at 10, 16 epochs and at 20, 25 epochs in the NAS and fine-tuning process,
respectively. The details of the searched architecture are in Appendix D.
Baseline Methods. We compare with some traditional human-designed SR
models such as FSRCNN and EDSR. Besides, some baselines optimizing the
speed or hardware with NAS approaches are also covered. For example, TPSR-
NOGAN, FALSR-C, ESRN-V optimize the SR efficiency to facilitate the deploy-
ment on end devices. Moreover, we compare with some methods exploring the
sparsity in SR models such as DHP, SMSR, and SRPN-L for efficient inference.

6.2 Experimental Results

Comparison with Baselines on SR Performance. The comparisons of the
models obtained by the proposed framework with state-of-the-art efficient SR
works are shown in Table 1. Two commonly used metrics (PSNR and SSIM) are
adopted to evaluate image quality. The evaluations are conducted on ×2 and
×4 scales. For a fair comparison, we start from different low-resolution inputs
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Fig. 4: Comparison of ×2 SR results
between searched models and heuristic
models on Set5 with latency measured
on the GPU of Samsung Galaxy S21.

Search Method Latency
(ms)

Set 5 Urban100
Width
Search

Depth
Search

PSNR SSIM PSNR SSIM

✗ ✗ 150.92 37.62 0.9589 31.03 0.9164

✗ ✓ 111.58 37.65 0.9591 31.10 0.9172

✓ ✗ 108.38 37.65 0.9591 31.02 0.9161

✓ ✓ 98.90 37.64 0.9591 31.08 0.9170

Table 2: Comparison of different search
schema for ×2 scales. The performance
is evaluated on Set5 and Urban100
datasets

but the high-resolution outputs are 720p (1280×720). To make a comprehensive
study, the latency threshold vT is set to different values. Specifically, as real-time
execution typically requires at least 25 frames/sec (FPS), the latency threshold
vT is set as 40ms to obtain SR models for real-time inference.

For ×2 scale, the model obtained with latency threshold vT=100ms outper-
forms TPSR-NOGAN, LAPSRN, and CARN-M in terms of PSNR and SSIM
with fewer parameters and MACs. Compared with FALSR-C, ESRN-V, EDSR,
WDSR, SMSR, and SRON-L, our model greatly reduces the model size and com-
putations with a competitive image quality performance. By setting vT as 70ms,
our model has similar parameters and MACs as MOREMNAS-C, but achieves
higher PSNR and SSIM performance. Similar results can be obtained on the ×4
scale. Furthermore, for both scales, by setting vT as 40ms, we obtain extremely
lightweight models and the models still maintain satisfying PSNR and SSIM per-
formance on all four datasets. Although SR-LUT uses look-up tables for efficient
SR inference, it suffers from more significant SR performance degradation.

The visual comparisons with other SR methods for ×4 up-scaling task are
shown in Fig. 3. Our model can recover the details comparable or even better
than other methods by using fewer parameters and computations.
Comparison with Baselines on Speed Performance. In general, our method
can achieve real-time SR inference (higher than 25 FPS) for implementing 720p
resolution up-scaling with competitive image quality in terms of PSNR and SSIM
on mobile platforms (Samsung Galaxy S21). Compared with [70] which also ex-
plore the sparsity of SR models, our method can achieve more significant model
size and computation reduction (our 11GMACs v.s. 131.6GFLOPs [70] for ×2
scale), leading to faster speed (our 11.3ms v.s. 52ms [70] on Nvidia A100 GPU).
Comparison with Heuristic Models. We compare our searched models with
heuristic models, which are obtained by evenly reducing the depth and width
from the WDSR model. Since we do not search per-layer width in heuristic
models, the width is the same among all blocks in one heuristic model. For a
fair comparison, the same compiler optimization framework is adopted for both
searched models and heuristic models. As shown in Fig. 4, we can see that the
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NAS approach can achieve faster inference than the heuristic models under the
same PSNR, demonstrating the effectiveness of the search approach.
Compiler Optimization Performance. To demonstrate the effectiveness of
our compiler optimizations, we implement CARN-M [7], FSRCNN [21], and
our searched model with the open-source MNN framework. By comparing their
PSNR and FPS performance, we find that our model can achieve higher FPS
and PSNR than the baseline models, with detailed results in Appendix E. We
also compare with the compilation of [36] detailed in Appendix F.
Performance on Various Devices. Our main results are trained and tested
on the mobile GPU. We highlight that our method can be easily applied to all
kinds of devices with their corresponding speed models. To demonstrate this, we
perform compiler optimizations for the DSP on the mobile device and train the
corresponding speed model. With the new speed model, we use our method to
search an SR model for the DSP, which can achieve 37.34 PSNR on Set5 with
32.51 ms inference speed for ×2 up-scaling task, detailed in Appendix G.

6.3 Ablation Study

For the ablation study, we investigate the influence of depth search and per-
layer width search separately for ×2 scale task. Multiple runs are taken for each
search method with different latency threshold vT so that the searched models
have similar PSNR and SSIM on Set5 to provide a clear comparison. From the
results in Table 2, we can see that both depth search only and width search only
can greatly reduce the latency with better image quality than non-search case.
Specifically, as a missing piece in many prior SR NAS works, depth search pro-
vides better PSNR and SSIM performance than width search on Urban100 with
a slightly higher latency, which shows the importance of this search dimension.
By combining depth search and width search, we could reach faster inference
with similar PSNR and SSIM than conducting either search alone.

7 Conclusion

We propose a compiler-aware NAS framework to achieve real-time SR on mobile
devices. An adaptive WDSR block is introduced to conduct depth search and
per-layer width search. The latency is directly taken into the optimization objec-
tive with the leverage of a speed model incorporated with compiler optimizations.
With the framework, we achieve real-time SR inference for the implementation
of 720p with competitive SR performance on mobile.
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