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Abstract

We study neural network loss landscapes through
the lens of mode connectivity, the observation
that minimizers of neural networks retrieved via
training on a dataset are connected via simple
paths of low loss. Specifically, we ask the follow-
ing question: are minimizers that rely on differ-
ent mechanisms for making their predictions con-
nected via simple paths of low loss? We provide
a definition of mechanistic similarity as shared
invariances to input transformations and demon-
strate that lack of linear connectivity between two
models implies they use dissimilar mechanisms
for making their predictions. Relevant to prac-
tice, this result helps us demonstrate that naive
fine-tuning on a downstream dataset can fail to
alter a model’s mechanisms, e.g., fine-tuning can
fail to eliminate a model’s reliance on spurious
attributes. Our analysis also motivates a method
for targeted alteration of a model’s mechanisms,
named connectivity-based fine-tuning (CBFT),
which we analyze using several synthetic datasets
for the task of reducing a model’s reliance on spu-
rious attributes. Code is available at: https:
//github.com/EkdeepSLubana/MMC.

1. Introduction

Loss landscapes of modern deep neural networks (DNNs)
have been shown to contain infinitely many global minimiz-
ers that are equally reachable via standard gradient-based
optimization techniques (Kawaguchi, 2016; Du et al., 2018b;
2019; Arora et al., 2018; Nguyen & Hein, 2017; 2018). Re-
cent work finds intriguing geometrical constraints relating
these minimizers (Simsek et al., 2021; Freeman & Bruna,
2016; Nguyen et al., 2018; Nguyen, 2019; Kuditipudi et al.,
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Figure 1. Mechanistic Lens on Mode connectivity.  Con-
sider two sets of parameters that minimize loss using background
OBackeround and object shape fshape as the input attributes for
prediction, respectively. Are such mechanistically dissimilar min-
imizers connected via paths of low loss in the landscape? Does
the dissimilarity of these mechanisms affect the simplicity of their
connectivity paths? Can we exploit this connectivity to switch
between minimizers that use our desired mechanisms?

2019; Nguyen et al., 2021), showing them to be connected
via a single, continuous manifold that emerges as a result
of overparameterization. The existence of such connected
sets of solutions has been heavily corroborated in literature
on mode connectivity (Garipov et al., 2018; Draxler et al.,
2018; Frankle et al., 2020; Entezari et al., 2021; Ainsworth
et al., 2022), which, quite surprisingly, shows that the paths
connecting global minimizers obtained via standard training
pipelines are relatively simple (e.g., linear or quadratic). In
parallel, several papers recently demonstrated that different
models trained on a task can perform radically differently
at test time (D’ Amour et al., 2020; Hermann & Lampinen,
2020; Hendrycks et al., 2021). This behavior can be par-
tially ascribed to models learning to utilize rather dissimilar
attributes of an input for making their predictions (Hermann
et al., 2020; Islam et al., 2021; Scimeca et al., 2021; Taor1i
et al., 2020). For example, in most vision datasets, back-
grounds are correlated with object categories—a sampling
bias (Beery et al., 2018; Xiao et al., 2020). Consequently,
a model can infer the correct label of an object by learning
mechanisms to identify either its background or its shape;
however, only models that rely on shape are likely to gen-
eralize robustly (Geirhos et al., 2018; 2020; Ritter et al.,
2017). Thus, despite models of both types being equally
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performant on a given dataset, the exact mechanisms they
use for making their predictions disallows for us to consider
them equally useful.

This work: We argue prior literature analyzing connectivity
properties in DNN loss landscapes has ignored the influence
of the exact mechanisms a model implements for perform-
ing a task (see Fig. 1). In fact, due to inherent tendencies
in the training pipelines of modern DNNs towards learning
simple functions (Nakkiran et al., 2019; Valle-Perez et al.,
2018; Rahaman et al., 2019; Shah et al., 2020; Mangalam
& Prabhu, 2019), minimizers identified via training on the
same dataset often exhibit similar biases (Shah et al., 2020;
Nanda et al., 2022). Such similarity in the models’ predic-
tion mechanisms may influence the identifiability of simple
connectivity patterns in the loss landscape, such as the ones
observed in prior work. Importantly, it has remained unclear
if mechanistically dissimilar models, e.g., ones that rely on
background and ones that rely on shape, exhibit connectivity
at all. Beyond a better scientific understanding of DNN loss
landscapes, knowledge of such geometric properties relating
mechanistically dissimilar minimizers can possibly lead to
practical insights for designing post-hoc, sample-efficient
fine-tuning strategies that allow switching to minimizers that
follow our desired predictions mechanisms. Motivated by
questions above, we make the following contributions.

* Defining a notion of mechanistic similarity (§3). We
characterize mechanistic similarity of two models via
systematic interventions on the data-generating process,
claiming similarity if the models are invariant to the same
set of interventions. Our definition is motivated to account
for the specific attributes of an input (e.g., shape vs. back-
ground) a model relies on for making predictions. When
analyzed in the context of spurious attributes, our defini-
tion leads to a characterization of DNN loss landscapes
that is relevant to challenges of robustness (D’ Amour
et al., 2020; Teney et al., 2022; Jacobsen et al., 2018).

» Characterizing connectivity properties of mechanisti-
cally (dis)similar models (§5). Our analysis shows that
if two models lack linear connectivity in the landscape
(up to architectural symmetries), they must be mechanisti-
cally dissimilar; that is, existence of loss barriers on the
linear path between two models implies they have learned
different invariances (see Fig. 4, 5). Our results especially
hold implications for naive fine-tuning of a pretrained
network, which often yields models linearly connected
with the original pretraining solution (Neyshabur et al.,
2020). Specifically, if a model has learned to rely on spu-
rious attributes during pretraining, our results imply mere
fine-tuning on some “clean” dataset may not improve its
robustness. We augment these first steps towards a mech-
anistic characterization of loss landscapes with extensive
empirical verification over a broad variety of settings,
including different datasets, architectures, connectivity

paths, and training strategies.

» Exploiting lack of linear connectivity to efficiently alter
a model’s mechanisms (§6). Based on our analysis,
we propose a method, Connectivity-Based Fine-Tuning
(CBFT), that exploits lack of linear connectivity between
mechanistically dissimilar models to induce models that
differ in specific prediction mechanisms (§6). Extensive
experiments on synthetic datasets show CBFT is more
effective than recent methods (Kirichenko et al., 2022a;b;
Kumar et al., 2022) at reducing a model’s tendency to rely
on spurious attributes for making its predictions.

2. Preliminaries: Mode Connectivity

Intuitively, mode connectivity along a path implies moving
along that path does not witness barriers in error or loss.
We formalize this below, in line with prior work (Frankle
et al., 2020; Garipov et al., 2018; Draxler et al., 2018; En-
tezari et al., 2021; Benton et al., 2021; Pittorino et al., 2022).
Consider a neural network f : R” x R¢ — [K] that takes
n-dimensional inputs z € X C R", has parameters 6 € R4,
and produces an output f(z;6) € [K], where [K] denotes
the set {1,2,..., K'}. We say 6 “induces the model” f(.; ).
A model’s loss on a dataset D € X x [K] for set of parame-
ters 6 is denoted using L(f(D;0)); 0 is called a minimizer
of the loss on that dataset if £(f(D;6)) < e, where € is
some small scalar. Note that we primarily focus on mini-
mizers obtained using SGD. We denote a continuous path
between two sets of parameters 61, 02 as vp, 0, (t), where
V0,0, (0) = 01 and 79, 9, (1) = b2.

Definition 1. (Mode Connectivity.) Minimizers 01,05 cor-
responding to a dataset D are called mode connected along
the path g, 0, (t) if moving along the path never yields
barriers. Formally, ¥t € [0,1], L(f(D,v0,-0,(t))) <
t- L(f(D:600)) + (1 — 1) - LIF(D;6))).

As mentioned in §1, prior work shows mode connectivity
is exhibited in modern DNN5s’ loss landscapes along rather
simple paths. We focus on the following two families:

(i) Linear: 7y, _9,(t) = (1 —t)01 + tf2 and

(ii) Quadratic: vy, 0, (t) = (1 — )201 + 2t(1 — t)015 + t205.

In the above, 615 denotes a set of parameters that is explicitly
optimized to identify a quadratic path connecting ¢, and 6;
notably, then, quadratic paths are a function of the data used
for identifying them (see App. C.1 for further discussion).

Entezari et al. (2021) recently hypothesized that accounting
for permutation symmetry* of DNN architectures (Hecht-
Nielsen, 1990) in fact leads to observance of linear connec-
tivity between any two linearly disconnected minimizers

“Note that DNNs exhibit several architectural symmetries and
a more general statement would account for all such symmetries,
as done by (Pittorino et al., 2022). However, symmetries beyond
permutations are unlikely to play a critical role in analysis of mode
connectivity of SGD based minimizers (see App. D for details).
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obtained using SGD; Entezari et al. (2021); Singh & Jaggi
(2020); Ainsworth et al. (2022) extensively probe and cor-
roborate this claim empirically. To demonstrate the robust-
ness of our results, we also assess whether accounting for
permutation symmetry leads to linear connectivity between
mechanistically dissimilar models. Specifically, we follow
the “activation matching” algorithm used by Ainsworth et al.
(2022) and call these paths Linear (permuted).

3. Defining Mechanistic Similarity

To analyze whether models that rely on different mecha-
nisms for making their predictions exhibit mode connectiv-
ity, we must first define a notion of mechanistic similarity
between two models. For this purpose, we argue two models
are mechanistically similar if they utilize the same attributes
of an input to make their predictions (e.g., shape or back-
ground). This can be assessed by transforming an input to
alter some attribute of interest and thereafter checking if the
two models under consideration make the same predictions
on these transformed inputs. By using transformations that
embody task-relevant vulnerabilities, this definition can be
made practically well-motivated. For example, by choosing
background randomization as an input transformation, we
can assess whether two models rely on the (often) spurious
attribute of background to make their predictions (Fig. 1).

To formalize the intuition above, we describe a generative
model of data that can represent input transformations in
a general manner. Specifically, we follow prior literature
on disentanglement (Locatello et al., 2019; 2020; Gresele
et al., 2020; 2021; Von Kiigelgen et al., 2021) and Indepen-
dent Component Analysis (ICA) (Hyvarinen & Morioka,
2016; 2017; Khemakhem et al., 2020; 2021), and assume
that there is a latent space Z C R™, with z sampled from a
factorizable distribution, P(z) = ], P(z;), such that each
z uniquely maps to samples in the dataset via a generative
process G : Z — X x [K], i.e, (z,y) := G(z). If Gx,
Gy define the components of G producing x and y, the
uniqueness of z amounts to assuming invertibility of Gx (.),
denoted as Q;(I : X — Z. Using the notations above,
we can model input transformations as counterfactuals gen-
erated via systematic interventions on the data-generating
process, similar to Besserve et al. (2018a;b).

Definition 2. (Unit Interventions and Counterfactuals.)
A unit intervention A} . Z; X Z; — Z; on the data-
generating process G is the alteration of the i dimension
of a latent vector z by setting it to a predefined scalar o; €
Z;. Meanwhile, a counterfactual process £ : X X Z, X

- X Z1 — X transforms a sample x by changing its
corresponding latent vector z = g;{l (x) via a set of unit
interventions A = {A]} | and mapping it back to the
input space, i.e., E(x; A) = Gx 0 A% 0. - .0 AL oGy (2).F

"We slightly abuse notation and assume that unit interventions
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Figure 2. Mechanistic Similarity: We define mechanistic similar-
ity of two models based on how they respond to unit interventions
on the data-generating process, i.e., interventions on specific di-
mensions of the latent vector z; e.g., A (shape) and A5 (back-
ground) in the figure. Here, yellow circles represent the prediction
of a given model (column) on a counterfactual image (row). Mod-
els whose predictions are invariant to the same set of interventions
(denoted 61 ~ 6) are termed mechanistically similar.

Broadly, unit interventions describe systematic manipu-
lations of the latent space of a generative process, while
counterfactuals describe mapping of these manipulations to
the observable data space. Note that due to independence
of latent dimensions, our definition of unit interventions
easily composes and can model other notions of interven-
tions (Scholkopf et al., 2021; Peters et al., 2017). Combined
with counterfactuals, unit interventions are thus sufficient to
model any general input transformations in a formal man-
ner and can be used to characterize the input attributes a
network is sensitive to, as shown next.

Definition 3. (Invariance.) We say f(.;0) is invari-
ant to unit intervention A; if counterfactuals generated
by A; do not increase its loss, ie, L(f(D;0)) =
E(MEZzﬁ(f(g(D 'A;X)v 9))

Proposition 1. (Exhaustiveness of Unit Interventions.) If
f(.; 0) is invariant to unit interventions A; and Aj;, it must
be invariant to their composition. Further, lack of invariance
to A; or A; precludes invariance to their composition.

The above statement shows that studying a model’s response
to individual unit interventions is sufficient to characterize
which attributes of the data a model is using for making pre-
dictions: if a model is invariant to a set of unit interventions,
it must be invariant to their composition too; similarly, lack
of invariance to a unit intervention is sufficient to preclude
invariance to all counterfactuals produced by the composi-
tion of that intervention and a set of invariant interventions.
This result thus helps us circumvent the need for assessing
a model’s sensitivity to all possible combinations of inter-
ventions to fully characterize it. We are now ready to define

corresponding to all latent dimensions need not be mentioned in
A: if a dimension is unmentioned, then its value is unmodified.
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Figure 3. Data-Generating Process (left). We augment the natural latents {z, } of a data-generating process with a set of synthetic
latents {25 }. The attributes induced in the input by these synthetic latents are called cues. Conditioning (grey, dotted line) the value of a
synthetic latent on the target label (y), we can induce correlation between its corresponding cue and the desired model output. If the cue is
made easily separable, a DNN will preferentially learn mechanisms to use the cue for making its predictions (Shah et al., 2020) (see also
training curves in App. B). Synthetic Datasets (right). Following the protocol above, we embed synthetic cues in three existing datasets:
(1) CIFAR-10 with 3 x 3 box cues whose locations depend on the target label; (2) CIFAR-100 with 3 x 3 box cues colored according to
the first digit of the object label, and located according to the second digit; and (3) Dominoes (Shah et al., 2020), where CIFAR-10 images
are concatenated with Fashion-MNIST images of the same class. We analyze counterfactual datasets that involve removing the cue (w/o
Cue), keeping it (w/ cue), randomizing it (Rand. cue), or randomizing the natural image (denoted Rand. image). These counterfactuals
help us ascertain the extent to which a model’s prediction relies on natural vs. spurious attributes.

mechanistic similarity.

Definition 4. (Mechanistic Similarity.) Consider a set
of unit interventions A := {A;}, where i € [m]. For
parameters 0, denote the subset of interventions that f(.; )
is invariant to as T(0) C A. Then, f(.;61) and f(.; ) are
called mechanistically similar if Z(61) = Z(02).

Fig. 2 illustrates mechanistic similarity in an intuitive man-
ner. Formally, given a set of independent transformations
(instantiated by use of unit interventions), we say two mod-
els are mechanistically similar if they exhibit invariance to
the same set of interventions. Our definition shares motiva-
tion with the idea of prediction mismatch, which involves as-
sessing the number of distinct examples two models produce
different predictions on, and has been used in prior work
to analyze properties such as calibration and catastrophic
interference (Hooker et al., 2019; Mania et al., 2019; Toneva
et al., 2018; Maini et al., 2022). In contrast, mechanistic
similarity is based on assessment of the number of distinct
interventions on the data-generating process to which two
models are simultaneously invariant. This makes mecha-
nistic similarity more appropriate for problems involving
distribution shifts and robustness, where modeling the data-
generating process is of crucial importance (Kaur et al.,
2022). We next extend the definition of mode connectivity
to account for mechanistic similarity of two models.

Definition 5. (Mechanistic Connectivity.) Consider two
minimizers 01 and 05 of loss L(f(D;0)) on a dataset D.
Let £(D) := {£(D; A% ~Z)}1 | denote a set of counter-
factual datasets designed by applying unit interventions A;

to all points in dataset D, where intervention assignments
«; are chosen uniformly from the respective range of values
Z;. Then, 01 and 05 are called mechanistically connected
along the path ~yy, 0, (t) if; for all counterfactual datasets,
they are minimizers that exhibit mode connectivity.

Essentially, if two minimizers exhibit mechanistic connec-
tivity, then there exists a path such that moving along it
does not yield increase in loss on the counterfactual dataset
described by any pre-defined intervention; that is, all points
on the path induce mechanistically similar models. Mean-
while, if two minimizers induce mechanistically dissimilar
models, moving along any path between them will neces-
sarily involve a change in the mechanisms used for making
predictions. If this change yields increase in loss on an
intermediate point on the path between two minimizers,
then it is harmful for the distribution shift described by the
corresponding intervention. Mechanistic connectivity is de-
fined to succinctly capture this behavior and characterize
the connectivities of mechanistically (dis)similar models.

4. Setup for a Mechanistic Evaluation

Before proceeding further, we discuss how we construct
mechanistically dissimilar models and assess mechanistic
connectivity between them. This allows us to interleave our
formal results with experimental verification and demon-
strate the validity of our claims in context.

Designing mechanistically dissimilar models. To design
models that use different mechanisms for making predic-
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Figure 4. Non-Linear Mode Connectivity of Mechanistically Dissimilar Models. We train ResNet-18 models on our synthetic CIFAR-
10 datasets with and without box-cues (denoted 6c and Oxc, respectively). We evaluate quadratic and linear connectivity paths; quadratic
paths identified using both data with and w/o cues are analyzed. Line colors denote proportion of the training data with synthetic cues.
Plot titles denote evaluation data (see Fig. 3), including data where either the cue is present (w/ Cue), absent (w/o Cue), randomized (Rand.
Cue), or the underlying image is randomized (Rand. Image). As shown, fxc yields the same performance upon randomization of the
cue, while the performance of f¢c decreases substantially; i.e., the two minimizers induce mechanistically dissimilar models. We see: (i)
quadratic paths can be easily identified to mode connect mechanistically dissimilar models; (ii) linear paths cannot be identified, even
after permutations; and (iii) mechanistic connectivity is unfounded. See App. G for similar results on other settings and loss curves.

tions, we design easily manipulable synthetic datasets that
contain multiple viable discriminative attributes. Specif-
ically, our data-generating process is illustrated in Fig. 3
and involves augmenting the natural generative process with
synthetic latent variables that are conditioned on the tar-
get label. We refer to the attributes induced in the input
by such latents as cues. By intentionally designing cues
that are easily separable, we can exploit the simplicity bias
of modern DNNs and force our models to preferentially
utilize these cues over natural attributes for making their
predictions (Shah et al., 2020). Training curves for different
models are shown in App. B and clearly demonstrate that
the process above yields mechanistically dissimilar models:
models trained with high correlation between cue and target
label rely only on the cue for making predictions, showing
invariance to natural attributes; models trained without cues
are invariant to them. Importantly, such low-complexity
cues can be viewed as stand-ins for spurious or shortcut
attributes that are commonplace in realistic settings (Beery
et al., 2018; Geirhos et al., 2020), allowing us to determine
whether minimizers that induce models reliant on spurious
vs. non-spurious attributes are connected in the landscape.

Generating counterfactuals for analyzing mechanistic
connectivity. A primary need for our mechanistic analysis
of mode connectivity is the ability to generate counterfac-

tuals via unit interventions. To that end, we highlight that
the data-generating process defined above is easy to unit-
intervene on. Specifically, since the natural attributes and
the synthetically embedded cue are controlled by indepen-
dent latents, the following counterfactual datasets can be
generated via valid unit intereventions: (i) w/ Cue: identity
intervention that does not alter the cue; (ii) w/o Cue: re-
moves the cue from the image; (iii) Rand. Cue: randomizes
the cue to break its correlation with the target label (e.g.,
uniformly changing location of the box in the CIFAR-10
with box cue dataset); and (iv) Rand. Image: randomizes the
natural attributes by altering the underlying image, while
keeping the cue intact (e.g., replacing plane with cat). These
counterfactuals are especially interesting since they allow
us to assess how much a model relies on natural attributes
found in the source image vs. our synthetically embedded,
spurious cues for making its predictions (see Fig. 3).

5. Mechanistic Analysis of Mode Connectivity

We now demonstrate how mechanistic similarity of two
models affects their connectivity patterns in the landscape.
We start with the following proposition, which is implied by
the results of Nguyen (2019); Simsek et al. (2021), and
shows mechanistically dissimilar models can indeed be
mode connected.
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Figure 5. Analyzing Pre-trained vs. Fine-Tuned Models: Lack of Linear Connectivity implies Mechanistic Dissimilarity. We train
VGG-13 and ResNet-18 models on our synthetic CIFAR-10 dataset with box-cues and perform naive fine-tuning on data without cues
for 100 epochs using different initial learning rates (LR) and a step-decay schedule. Corresponding models are denoted fc and 6pr; line
colors denote proportion of dataset with synthetic cues; titles denote evaluation datasets, similar to Fig. 4. We plot test accuracy as a
function of location on the linear paths (after permutation). Using a large learning rate or enforcing perfect correlation between the cue
and label induces loss barriers along the linear path, i.e., linear mode connectivity does not hold. Simultaneously, the models respond
differently to counterfactuals, i.e, they are mechanistically dissimilar and not connected. For a small/medium learning rate, we notice
Orr remains linear mode connectivity f¢ on data with cues. Simultaneously, we see the corresponding models responding similarly on
counterfactuals and are mechanistically similar. See App. H for similar results on other datasets, models, and loss curves.

Proposition 2. (Mode Connectivity under Mechanistic
Dissimilarity.) Assume 01,05 are minimizers of the loss on
a dataset D and induce mechanistically dissimilar models.
Given sufficient overparameterization, there exists a contin-
uous path along which the minimizers are mode connected.

That is, even if two minimizers of loss on a dataset D induce
models that rely on completely distinct mechanisms, there
necessarily exists a continuous path along which the two
minimizers exhibit mode connectivity.

Note, however, the claim above does not yet address the sim-
plicity of these connectivity paths, which is empirically ob-
served to be surprisingly high for minimizers retrieved from
the same dataset. To investigate whether this property also
holds for mechanistically dissimilar models, we train VGG-
13 and ResNet-18 models on the synthetic datasets described
in §4. We analyze accuracy on counterfactual datasets (see
Fig. 3) along quadratic and linear paths (see Eq. 2), in-
cluding quadratic paths identified using data with/without
cues, linear paths, and linear (permuted) paths. Results for
ResNet-18 are shown in Fig. 4 and remaining are deferred to
App. G. Interestingly, we find minimizers that induce mech-
anistically dissimilar models can be mode connected via
fairly simple paths as well: we see we can identify quadratic,
but not linear, mode connectivity paths for two mechanisti-
cally dissimilar models. In fact, we conjecture that lack of
linear connectivity between two models is intricately related
to their mechanistic similarity.

Conjecture 1. (Lack of Linear Connectivity implies Mech-
anistic Dissimilarity.) If two minimizers 01 and 05 of the
loss L(f(D;0)) on a dataset D cannot be linear mode con-
nected (up to architectural symmetries), their induced mod-
els f(.;01), f(.;02) must be mechanistically dissimilar.

In App. F, we show the claim above holds true for a 1-
hidden layer model on a simplified data-generating process
inspired by our setup. Here, we show extensive empirical
evidence of its validity in more complex settings. In particu-
lar, we follow the experimental protocol of Neyshabur et al.
(2020), who demonstrate that a pretrained model exhibits
linear mode connectivity on the original pretraining dataset
before and after fine-tuning on another target dataset. We
thus train VGG-13 and ResNet-18 models on our synthetic
datasets with (partially) predictive cues and then fine-tune
them on data without cues. Results on CIFAR-10 with box
cues are shown in Fig. 5; App. H has additional results. We
see that when linear mode connectivity does not hold, the
fine-tuned models behave differently on counterfactuals, i.e.,
are mechanistically dissimilar to the pretrained model. For
example, the models before and after fine-tuning using a
large learning rate do not exhibit linear mode connectivity;
correspondingly, the fine-tuned models exhibit clear invari-
ance to cue attributes, while the pretrained models do not.
Similarly, under perfect correlation between labels and cue
attributes, fine-tuned models are not linear mode connected
with their pretrained counterparts, and exhibit different be-
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Table 1. Evaluating CBFT. We train ResNet-18 models on our synthetic CIFAR-10, CIFAR-100, and Dominoes dataset with different
proportions of samples with cue features and fine-tune them using 2500 “clean” samples from a dataset without any cues. Test accuracies
(%) on counterfactual test datasets with No Cue (NC), with Cue (C), Randomized Cue (RC), and Randomized Image (RI) are reported
(mean of three seeds). We compare our method, Connectivity-Based Fine-Tuning (CBFT), with several baselines: Fine-tuning with a
medium/small learning rate (FTwys), LLR (Kirichenko et al., 2022b), and LPFT (Kumar et al., 2022). ~ denotes invariance is desirable,
i.e., accuracy should be similar to that on NC; 1/ indicate higher/lower accuracy is desirable; best results are in bold. We generally see
that all baselines yield large degradations in the absence of cues, and even achieve very high accuracy when the underlying image is
randomized. Meanwhile, CBFT is able to break reliance on cues, inducing representations that are completely invariant to their presence.

| 60% Cue data | 70% Cue data

| 80% Cue data | 90% Cue data

c-10 | NcT ¢~ RC™ RIF |NCT ¢~ RC™ RIF |NCT ¢~ RCY RI* | NCT Cc~ RC™Y ORI

FTw | 757 984 236 834|758 986 277 786|713 977 376 636|672 954 496 466

FTs | 758 987 175 90.1 | 749 988 163 9.1 | 699 984 157 909 | 647 979 153 907

LLR | 71.6 951 363 57.1| 709 958 299 658|651 818 270 532|593 707 246 407

LPFT | 70.6 88.1 210 707 | 69.6 87.3 187 725 | 644 63.8 188 480 | 597 566 198 378

CBFT | 741 715 734 875|732 692 723 860 | 700 700 69.5 9.68 | 679 725 681 13.1

c-100 | NcT ¢~ RC™ RI¥ | NCT €~ RC™ RIF |NCT ¢~ RC™ RI*|NCT ¢~ RCY RI

FT,, | 444 992 128 853|403 996 123 898|336 990 114 905|252 792 979 579

FT, | 43.1 996 103 936|382 997 105 957|325 996 104 970 | 245 394 487 309

LLR | 355 992 121 890|315 986 113 896|253 967 106 894|189 751 9.1 587

LPFT | 351 932 103 823 | 31.1 902 989 785|256 89.6 070 80.8 | 187 286 442 196

CBFT | 427 650 364 14.6 | 385 667 347 212|346 693 230 279|285 729 232 460

Dom. | NCT ¢~ RC™ RI*¥ |NCT ¢~ RC™ RIF|NCT ¢~ RC™ RI*|NCT ¢~ RCY RI

FT, | 774 968 438 561 | 766 96.6 427 587 | 741 957 417 613 | 688 951 400 57.5

FT, | 764 969 37.5 624|768 966 325 665|732 964 308 677|673 952 312 656

LLR | 746 944 398 530|739 932 363 547|708 848 331 466|633 770 312 390

LPFT | 732 925 380 518|727 880 348 509 | 69.4 348 331 391|612 608 312 266

CBFT | 720 649 675 99 | 715 70.0 592 121 | 708 697 659 119 | 672 687 615 149

havior on counterfactuals (even for small initial learning \ (i) Barrier .

. . . . 4

rates). We note this latter, specific instance of success in * : 8

. . . . . 1
altering the pretrained model’s mechanisms via fine-tuning 5
. . . . . 1 o—_
is a result of the model being rendered entirely invariant @a s
. . .« . . o >
to natural attributes during pretraining (see App. B); con- A I
sequently, the model lacks any transferable mechanisms th Attrib e —
for the target data distribution and hence the mechanisms with Attribute , =

necessarily have to change to fit the new dataset.

A practical takeaway of our results above is that naive fine-
tuning can fail to alter the mechanisms learned by a model
during pretraining. While large learning rates can help
overcome this limitation, they are likely to heavily distort
features learned during pretraining (Kumar et al., 2022),
rendering pretraining obsolete and the sample complexity
of fine-tuning similar to that of training from scratch (He
et al., 2019). This indicates that for fine-tuning to be useful,
pretraining must be performed with care to ensure desirbale
mechanisms relevant to downstream tasks are learned. If
incorrect mechanisms, such as ones that rely on spurious
attributes, are learned, mere fine-tuning on some ‘“clean”
dataset will be insufficient to alter the model’s behavior,
as hinted at by results in few recent works (Lovering et al.,
2021; Mireshghallah et al., 2022; Min et al., 2022; Panigrahi
et al., 2023). Intriguingly, this latter strategy of fine-tuning
on a clean dataset forms the basis of several recent methods
on improving DNNs’ robustness (Kirichenko et al., 2022b;a;
Kumar et al., 2022; Rosenfeld et al., 2022): such methods
fine-tune some/all layers of a pretrained model on a minimal
dataset that is known to not contain the spurious attribute we

2] . Linear
Figure 6. Clues for altering a model’s mechanisms. Given a
discriminative attribute C, the loss landscape along the linear path
connecting a model invariant to the attribute (6y¢) versus a model
that relies on the attribute (f¢) generally shows (i) a loss barrier
along the path and (ii) invariance at the endpoint corresponding to
91\70, i.e., E(@Nc, DNC) = ,C(aNc, Dc).

want to reduce the model’s reliance on. In the next section,
we perform a thorough counterfactual evaluation on our
synthetic datasets to assess if such methods can actually
alter a model’s behavior.

6. Altering a Model’s Mechanisms Efficiently

In this section, our goal is to show that our newfound un-
derstanding of DNN loss landscapes from a mechanistic
perspective (see Fig. 6) can be used to devise a sample-
efficient strategy that allows targeted altering of a model’s
mechanisms. We primarily see the results below as further
corroboration of our analysis in §5.
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Linear | Nonlinear | Linear | Nonlinear
Mode Mode Mech. Mech.
Mech. Similar v v v v
Mech. Dissimilar | X* v X X

Table 2. Summarizing our Findings. v/, X respectively indicate
whether there always exist paths along which mechanistically
(dis)similar models identified using gradient-based optimization
can exhibit the type of connectivity specified in the column title.
* denotes there are exceptional, but primarily theoretical, cases
where the connectivity definition can hold (see App. F).

6.1. Connectivity-Based Fine-Tuning (CBFT)

As defined in our work, mechanistic dissimilarity corre-
sponds to lack of shared invariances. Our results in §5
demonstrate that lack of linear connectivity between two
models implies they will be mechanistically dissimilar. A
valid strategy for altering a model’s mechanisms then in-
volves moving the model to a region in the landscape that
does not exhibit linear connectivity to the current minimizer.
Of course, we specifically want the unshared invariance to
correspond to ignoring of the spurious attribute (denoted
C) that we desire to reduce the model’s reliance on. For
this purpose, we follow prior works and assume access to a
minimal dataset Dyc that does not contain the attribute C.
Note that this setting is not similar to the often used setup
in domain adaptation, where the original training dataset
(denoted D¢ here) and the novel dataset, Dy, are assumed
to be pairs of images in different environments.

In the following, we use D’ to denote the subset of examples
in dataset D belonging to the i class in a K -class classifi-
cation problem, 7y, 4. (t) to denote the linear path between
a set of parameters ¢ and the pretraining solution ¢, and
fr(x;0) to denote the model’s representation for an input x
at the penultimate layer. Let NV, denote the Truncated Gaus-
sian Distribution with mean/std of 0.5 that is constrained
to the range [0, 1]. Our method, Connectivity-Based Fine-
Tuning (CBFT), involves minimizing the following loss:

1
Lcprr = Lce(f(Dnes 0),y) + L + Eﬁl, where
ﬁB = EtNNTr‘)\B - *CCE(f(DCa Y6—6c (t))v y)' and (D

K 2
L= |Eremp (F(2:0) = Brepy, (£(3:0))|
k=1

) .

Here Lcg denotes the cross-entropy loss and promotes learn-
ing of correct labels on the minimal dataset Dyc, while Lg,
L; instantiate the two principles discussed in Fig. 6: Lg
denotes a “barrier loss” that randomly samples a point on
the linear path between 6, 6~ and maximizes the loss at this
point up to an upper bound Ag (=1 in all our experiments)
and £; denotes an invariance loss that promotes reducing
the distance between class-average representations on Dyc

and Dc. Overall, L helps CBFT find a set of parameters
6 that does not exhibit linear connectivity to 6¢, while £;
helps CBFT pick a solution that is (approximately) invariant
to attribute C'. We emphasize that since the cross entropy
loss can be made arbitrarily large, using the hyperparameter
Ap is important. We also note that using class-average repre-
sentations to learn (approximately) invariant representations
has the advantage of not requiring access to simultaneous
pairs of samples in different environments, i.e., ones with
and without the spurious attributes (Li et al., 2018; Sun &
Saenko, 2016).

Evaluating CBFT: We empirically validate the effective-
ness of CBFT by using our synthetic datasets from §4 as a
benchmark. We compare CBFT against naive fine-tuning,
Last-Layer Re-Training (LLR) (Kirichenko et al., 2022b;a),
and Linear Probe plus Fine-Tuning (LPFT) (Kumar et al.,
2022) (see App. B.2 for implementation details). Results are
reported in Tab. 1. We see that while the baselines perform
well on clean data, they do not yield desired behavior on
counterfactual datasets: e.g., they achieve high accuracy
even if we randomize the image, indicating that they are
more sensitive to the cue. In contrast, we see that beyond
just performing well on clean data, CBFT models show the
desired behaviors: sensitivity to randomization of the image
and invariance to spurious attributes. These results suggest
CBFT successfully alters a model’s mechanisms and pro-
vides further corroboration to the claim that lack of linear
connectivity implies mechanistic dissimilarity between two
models (see Conj. 1). We also provide detailed ablations
for CBFT in App. E and find both losses, L5 and L;, are
important for getting the desired results: the barrier loss
helps induce a mechanistically dissimilar model, while the
invariance loss helps select the mechanisms we desire.

7. Related Work

Mode connectivity. Existence of a single, continuous
manifold connecting global minimizers was first identified
theoretically by Freeman & Bruna (2016); Nguyen (2019)
and empirically discovered in concurrent works under the
title of “mode connectivity” by Garipov et al. (2018) and
Draxler et al. (2018). A geometrical characterization of this
manifold was provided by Simsek et al. (2021), who showed
the manifold is primarily composed of affine subspaces.
Connectivity properties of neural networks have been used
for designing and analyzing algorithms for several prac-
tically relevant applications, such as ensembling (Benton
et al., 2021; Izmailov et al., 2018; Wortsman et al., 2021;
2022a), network pruning (Frankle et al., 2020; Entezari
et al., 2021), optimization (Kaddour et al., 2022), adversar-
ial robustness (Zhao et al., 2020), and multi-task/continual
learning (Mirzadeh et al., 2020; Lubana et al., 2021). During
the course of this work, we became aware of the contempo-
rary work by Juneja et al. (2022). Therein, the authors use
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NLP datasets designed by McCoy et al. (2019) to perform
an empirical analysis similar to ours, finding that models
that lack linear connectivity show different generalization
behaviors, relying on different attributes of an input to make
their predictions. Our work further formalizes this result:
we show lack of linear connectivity implies mechanistic dis-
similarity. The results by Juneja et al. thus provide further
corroboration for our claims on a different modality.

Fine-tuning and Model Editing. Fine-tuning is a well-
established practice in deep learning. The most basic fine-
tuning method is to treat the pretrained model as an initial-
ization, and continue training with new data. A variant is to
train only a subset of parameters, such as the final classifica-
tion layer (Kirichenko et al., 2022b;a), possibly fine-tuning
the entire model after that (Kumar et al., 2022; Rosenfeld
et al., 2022). A related application to fine-tuning, model
editing has become quite popular recently and approaches
for the same generally aim to make a targeted change to a
model’s factual knowledge (Mitchell et al., 2022; Santurkar
et al., 2021; Sinitsin et al., 2020). For instance, Sinitsin
et al. (2020) give the example of correcting a model’s pre-
diction error on a particular example without changing its
predictions on other examples. Prior work on model edit-
ing aims to make changes that are “local” in input space,
e.g., only affecting the model’s “understanding” of who the
current prime minister of the UK is. CBFT shares this moti-
vation of “targeted” alteration of a model; however, instead
of altering the model’s factual knowledge, the overarching
goal of CBFT is to make changes to the specific rules or
mechanisms the model implements to make its predictions
(see Dasgupta et al. (2022) for a discussion on distinction
between rule vs. exemplar / factual inference strategies).
Specifically, CBFT aims to make a model invariant to fea-
tures that it was not already invariant to (or vice versa),
without changing any of its other learned invariances.

8. Conclusion and Future Work

Depending on the mechanisms they learn for making their
predictions, neural networks trained on a specific data distri-
bution can nonetheless differ vastly in their behavior when
evaluated on other distributions. This realization prompted
us to perform a mechanistic characterization of connectivity
properties in the loss landscape of neural networks. Our
proposed notion of mechanistic similarity instantiates the
idea as shared invariances, and helps extend the prior notion
of mode connectivity to account for mechanistic similarity.
Our analysis reveals several surprising findings (see Tab. 2):
(i) mechanistically dissimilar minimizers can be mode con-
nected via relatively simple, but non-linear, paths; (ii) linear
mode connectivity of two minimizers is intricately related
to the mechanistic similarity of their induced models; (iii)
naive fine-tuning can fail to eliminate spurious attributes

learned during pretraining; and (iv) finding linearly discon-
nected regions in the landscape enables sample-efficient
alteration of a model’s mechanisms.

Future work can involve use of counterfactual generators
based on modern generative models (Thiagarajan et al.,
2021) to extend our synthetic data experiments and cor-
roborate our claims in naturalistic settings. We also be-
lieve our analysis can be useful to reason about benefits
and limitations of recent averaging-based ensembling meth-
ods (Wortsman et al., 2022b;a; Rame et al., 2022; Arpit et al.,
2022). Specifically, note that our claims do not preclude
possible linear connectivity of mechanistically dissimilar
models: in fact, any two solutions of the linear system of
equations y = Wx can be interpolated regardless of their
prediction mechanisms (hence the * in Tab. 2). However,
as we show in App. F in a simplified setup, these different
mechanisms should be of similar “complexity” to enable
linear connectivity (e.g., mechanisms corresponding to lin-
early separable attributes). In the context of our fine-tuning
results, this implies naive fine-tuning can work well on a tar-
get distribution only if the desired mechanism is of similar
complexity to the mechanism for identifying the spurious
attribute (which would possibly imply it finds a spurious at-
tribute again); otherwise, a loss barrier must be surmounted
for successful learning on the target distribution. This sug-
gests that pretraining should aim to promote learning of a
variety of expressive prediction mechanisms, which can be
challenging in practice (D’ Amour et al., 2020).
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Appendix
A. Detailed Related Work

Mode connectivity. Existence of a single, continuous manifold connecting global minimizers was first identified theoretically
by Freeman & Bruna (2016); Nguyen (2019) and empirically discovered in concurrent works under the title of “mode
connectivity” by Garipov et al. (2018) and Draxler et al. (2018). A geometrical characterization of this manifold was provided
by Simsek et al. (2021), who showed the manifold is primarily composed of affine subspaces. Connectivity properties
of neural networks have been used for designing and analyzing algorithms for several practically relevant applications,
such as ensembling (Benton et al., 2021; Izmailov et al., 2018; Wortsman et al., 2021; 2022a), network pruning (Frankle
et al., 2020; Entezari et al., 2021), optimization (Kaddour et al., 2022), adversarial robustness (Zhao et al., 2020), and
multi-task/continual learning (Mirzadeh et al., 2020; Lubana et al., 2021). During the course of this work, we became aware
of the contemporary empirical paper by Juneja et al. (2022), who investigate whether minimizers connected via linear paths
follow similar “decision rules”. Their analysis focuses on NLP tasks and does not involve modeling the data-generating
process or counterfactual evaluation; their results can be regarded as use of an alternative strategy to further verify our
claims on a different modality.

Fine-tuning. Fine-tuning is a well-established practice in deep learning. The most basic fine-tuning method is to treat the
pretrained model as an initialization, and continue training with new data. A variant is to train only a subset of parameters,
such as the final classification layer (Kirichenko et al., 2022b;a), possibly fine-tuning the entire model after that (Kumar
et al., 2022; Rosenfeld et al., 2022).

Model editing. A related application to fine-tuning, model editing has become quite popular recently and approaches for
the same generally aim to make a targeted change to a model’s factual knowledge (Mitchell et al., 2022; Santurkar et al.,
2021; Sinitsin et al., 2020). For instance, Sinitsin et al. (2020) give the example of correcting a model’s prediction error on a
particular example without changing its predictions on other examples. Prior work on model editing aims to make changes
that are “local” in input space, e.g., only affecting the model’s “understanding” of who the current prime minister of the
UK is. CBFT shares this motivation of “targeted” alteration of a model; however, instead of altering the model’s factual
knowledge, the overarching goal of CBFT is to make changes to the specific rules or mechanisms the model implements to
make its predictions (see Dasgupta et al. (2022) for a discussion on distinction between rule vs. exemplar / factual inference
strategies). Specifically, CBFT aims to make a model invariant to features that it was not already invariant to (or vice versa),
without changing any of its other learned invariances. This difference in goals make model editing approaches inappropriate
for our setup.

Use of synthetic datasets. Our data-generation pipeline was influenced by several past works that use synthetic datasets
for better understanding topics such as transfer learning (Dittadi et al., 2020), domain generalization (Wiles et al., 2021;
Van Steenkiste et al., 2019; Arjovsky et al., 2019), disentanglement (Higgins et al., 2017; Klindt et al., 2020), self/semi
supervised learning (Von Kiigelgen et al., 2021; Trivedi et al., 2022a;b; Locatello et al., 2020), and inductive biases of neural
networks (Hermann et al., 2020; Hermann & Lampinen, 2020; Ritter et al., 2017).

B. Training Details and Datasets

When training from scratch (e.g., in Fig. 4), we train models using SGD for 100 epochs with a batch-size of 256, momentum
of 0.9, and weight decay of 10~*. Learning rate starts at 0.1 and is dropped by a factor of 10 at the 40™ and 80" epochs. No
data augmentations are used. When fine-tuning to assess linear connectivity in Fig. 5, we train models for a further 100
epochs on data without cues using different initial learning rates, but the same step-decay schedule (decay factor of 0.1 at
decay epochs 40 and 80). For details on training and evaluation of models in Tab. 1, please refer to App. B.2.

B.1. Dataset Visualizations and Training Curves

When using synthetic datasets, if a proportion c of samples is to be assigned the cue feature, we use the first c% samples
of all classes to assign them the respective cues. We do not store the samples beforehand; instead, we use manually
designed PyTorch data-loaders that allow for easy manipulation of samples in an online manner, enabling straightforward
counterfactual evaluations. While the dataset construction was discussed in Fig. 3 and §4, we provide several visualizations
of randomly sampled datapoints from different classes and their counterfactuals in Fig. 7 (CIFAR-10 with box cue), Fig. 8
(CIFAR-100 with box/color cue), and Fig. 9 (Dominoes: CIFAR-10 with concatenated FashionMNIST image cue). Learning
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curves with train/test accuracies for VGG / ResNet-18 models trained on different proportions of samples with cue features
for these datasets are reported in Figs. 10a and 11a (CIFAR-10 with box cue), Fig. 10b, 11b (CIFAR-100 with box/color
cue), and Fig. 10c, 11c (Dominoes). We note that our data-generation pipeline was heavily influenced by several past
works that use synthetic datasets for better understanding topics such as transfer learning (Dittadi et al., 2020), domain
generalization (Wiles et al., 2021; Van Steenkiste et al., 2019; Arjovsky et al., 2019), disentanglement (Higgins et al., 2017;
Klindt et al., 2020), self/semi supervised learning (Von Kiigelgen et al., 2021; Trivedi et al., 2022a;b; Locatello et al., 2020),
and inductive biases of neural networks (Hermann et al., 2020; Hermann & Lampinen, 2020; Ritter et al., 2017).
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Figure 10. Learning curves for VGG-13 models.
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Figure 11. Learning curves for ResNet-18 models.

B.2. Training details for Tab. 1

We train models using SGD on the synthetic data with cue features (47500 samples), reserving remaining 2,500 training
samples as “clean” data. We emphasize that since the underlying images (i.e., ones without cues) are independent in the
two sets, this setup is different from domain generalization methods that use simultaneous pairs of images in different
environments to learn invariant representations.

Depending on the method, the fine-tuning setup involves different hyperparameters. For consistency, we follow Kirichenko
et al. (2022b) and Kumar et al. (2022) in using a cosine schedule for fine-tuning on clean data.

Naive Fine-Tuning. We use different initial learning rates, including medium (0.01) and small (0.001). For a large learning
rate, we note that while fine-tuning on a minimal set induces good invariance properties, the performance on the original,
without cue data (called NC in tables) is often rather poor (hence we omit those results to save space). This behavior is
expected since use of a large learning rate renders the fine-tuning pipeline essentially equivalent to training from scratch,
degrading its sample efficiency (He et al., 2019; Kumar et al., 2022).

LLRT (Kirichenko et al., 2022b). We freeze the model parameters at their current state, remove the final linear layer, and
replace it with a randomly initialized one. The layer is fine-tuned on clean data for 100 epochs with a cosine decay schedule
that starts at a LR of 30.

LPFT (Kumar et al., 2022). First, we follow the protocol above for LLRT to produce a new linear layer. Thereafter, the
entire model is fine-tuned on clean data for 20 epochs with initial learning rates of 0.01, 0.001, and 0.0001. The best
retrieved results on validation data are reported.

CBFT. We run CBFT for 20 epochs, using an initial learning rate of 0.01 with a cosine decay schedule (similar to the
baselines). The method turns out to be fairly robust to the exact values of A;; we fix it to 1 for all experiments without any
explicit tuning therefore. We use a truncated Gaussian distribution center at 0.5 because this helps induce a loss barrier at
the center of the linear path between the parameters we are trying to identify and the original, pretraining ones. Truncation
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is necessary so that only interpolations between the parameters is used.

We also note that since training will yield gradients for the model that has parameters yg_.¢., (£), we need to explicitly
compute the gradients for 6 by using the following relationship for some general objective function £:

VoL (Vom0 (1)) = (Vovo—oc ()T Voo )L (1000 (1) = 1 =)V, . ) L(T9-00 (1))

Thus, one need only compute gradient of an objective with respect to vg_,¢,. (¢) and multiply that by a factor of 1 — ¢ to
retrieve the gradient of the objective with respect to 6. This step has to be carried out explicitly and hence we have to
break the optimization process of CBFT into two steps (see Eq. 1), executing alternating minimization for the barrier and
invariance losses.

C. Quadratic Connectivity Paths and Matching Permutations
C.1. Quadratic Paths

The qudaratic path is defined as follows.
Yo, -0, (1) = 1201 + 2t(1 — t)012 + (1 — 1)%6s. 2)

The set of parameters 615 can be thought of as the vertex of a parabola that helps anchor the curve. To identify this set of
parameters, we follow Garipov et al. (2018) and train points uniformly sampled from the quadratic path to achieve zero loss
on a given dataset D, i.e.,

012 = argénin Evep tefo1] (L0f (2570, —0.))))- 3

Consequently, note that a quadratic path necessarily depends on the dataset used for its identification and it is not mandatory
that it generalize across datasets/distributions. This is precisely what we see in our results in Fig. 4, where we are able to
identify quadratic mode connectivty between two sets of parameters on a given dataset, but those paths do not generalize to
counterfactual datasets.

C.2. Finding Permutations for Linear Connectivity

Given two minimizers 61, 62, identifying the linear path between them involves merely interpolating the parameters. Entezari
et al. (2021); Ainsworth et al. (2022); Singh & Jaggi (2020) hypothesize that minimizers discovered using SGD can always
be linearly mode connected up to permutations of neurons that align the two models in their activations or weights. That is,
there generally exists a permutation 7 that connects 7(6;) with 65 in the sense of Def. 1. To empirically analyze this claim
in our work, we identify 7 by maximizing the similarity of activations produced by model with parameters ¢; and 65:

7% = argmin|| f(z; 7(01)) — f(x;02)]]- )

Given that solving the problem above is NP-Hard (Entezari et al., 2021; Ainsworth et al., 2022; Singh & Jaggi, 2020), we
follow the “activation matching” algorithm proposed by Ainsworth et al. (2022) and solve the above problem greedily by
computing representations at each layer of the two models, finding a permutation that matches the representations maximally,
and then repeating the process for the next layer. To this end, we use inputs with a batch-size of 512 and run the matching
process over the entire original datasets (i.e., ones without cues). We note that we did conduct minimal experiments on
finding permutations using data with cues, instead of without, but never found any noticeable differences in the results.
Hence, we decided to use the original data without cues throughout our experiments for finding linear paths. Intuitively, we
suspect the exact choice of dataset does not matter for our experimental setup because we analyze pairs of models which
include one model that is invariant to the cue and one that is not. Since the invariant models produce the same representations
on data with / without cues, the target for permutation matching remains the same.

C.3. Why plot accuracy curves instead of loss ones for mechanistic evaluation of mode connectivity

Due to its differentiability, we focus on loss as our measure of interest for all formal analysis. However, since loss can
increase without bound, visualizing loss curves become difficult for our setup that involves evaluation on counterfactual
datasets, wherein the discriminative attributes are entirely removed (see Fig. 3). We thus follow Frankle et al. (2020) and
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Table 3. Ablating CBFT. We train ResNet-18 models on our synthetic CIFAR-10, CIFAR-100, and Dominoes dataset with different
proportions of samples with cue features and fine-tune them using 2500 “clean” samples from a dataset without any cues. Test accuracies
(%) on counterfactual test datasets with No Cue (NC), with Cue (C), Randomized Cue (RC), and Randomized Image (RI) are reported.
We compare Connectivity-Based Fine-Tuning (CBFT) with two of its ablations (see App. E): (i) —Lparier, for which the barrier inducing
loss is removed from the training process and (ii) — L., for which the invariance loss is removed. ~ denotes invariance is desirable, i.e.,
accuracy should be similar to that on NC; 1/ indicate higher/lower accuracy is desirable; best results are in bold. For discussion, please
see App. E. |

60% Cue data | 70% Cue data | 80% Cue data | 90% Cue data

c-10 |NCT ¢~ RCY RIF [ NCT €~ RCY RIY [NCT CY RCY RIY | NCT €~ RC™ R

CBFT 741 715 734 875 | 732 692 723 860 | 700 70.0 695 9.68 | 679 725 681 13.1
—Lparrier | 758 93 693 244 | 759 90 72.1 186 | 71.6 899 663 235 | 678 89.6 651 205
— Ly, 734 694 688 142 | 729 652 713 826 | 693 648 681 972 | 658 64.8 65 10.3

Cc-100 | NcT ¢~ RC™ RI*¥ |NCT ¢~ RC™ RI¥ [NCT ¢~ RC™ RIF|[NCT Cc~ RC™ R

CBFT 427 650 364 146 | 385 66.7 347 21.2| 346 693 230 279 | 285 729 232 460
—Lpamier | 447 99.8 175 816 | 402 999 137 889 | 346 999 113 951 | 265 99.1 135 822
— Ly, 432 594 365 125 | 357 642 26 255 | 341 702 235 367|247 692 159 456

Dom. |NCT ¢~ RC™ RI*¥|NCT ¢~ RC™ RI¥|[NCT ¢~ RC™ RIF|NCT Cc~ RC™ R

CBFT 720 649 675 99 | 715 700 592 121 | 70.8 69.7 659 119 | 67.2 68.7 615 149
—Lparier | 77.1 949 632 327 | 774 942 658 292 | 745 933 635 30.1| 67.1 919 555 329
— Ly, 742 404 418 693 | 746 282 249 106 | 713 20.1 222 692 | 66 212 209 6.26

use accuracy curves for conveying experimental results in the main paper, since accuracy remains bounded within the
range 0-100% and can hence be visualized on a singular plot. We stress however we do provide loss curves as well in this
appendix; see App. G, H.

D. A Note on Difference Between Permutation and other Architectural Symmetries in the context
of mode connectivity

Note the notion of invariances discussed in this paper is rooted in the data-generating process, i.e., we discuss symmetry
transformations of the data that are learned by the model during the optimization process. However, similar to permutation
symmetry, neural network architectures are known to exhibit several other architectural symmetries (i.e., symmetries that
are not learned, but enforced by design of the architecture) (Kunin et al., 2021). Such architectural symmetries induce
several minimizers that will necessarily be mechanistically similar. For example, resale symmetry, which involves scaling
the weights of a given layer by a positive constant and another layer’s by the inverse of that constant. This operation yields a
different set of parameters that produce the same predictions, hence leading to mechanistically similar minimizers. Such
architectural symmetries have an intriguing interplay with gradient-based optimizers (e.g., SGD) (Kunin et al., 2021; Wan
et al., 2020; Roburin et al., 2022) analogous to Noether’s theorem (Tanaka & Kunin, 2021), leading to implicit regularization
behavior that yields minimizers with specific properties (e.g., rescale symmetry leads to minimizers with balanced layer-wise
norms in the presence of weight decay (Du et al., 2018a; Kunin et al., 2021)). Correspondingly, even though infinite
minimizers can be created by, e.g., rescaling layers of a model, only a minuscule fraction of these minimizers are actually
reachable via gradient-based optimization. As we note in the preliminaries, we focus on minimizers retrieved using SGD.
Thus, such equivalent classes of minimizers induced by other architectural symmetries are not a focus of this paper, as
they are not identifiable via standard training pipelines and have to be synthetically induced by use of the corresponding
architectural symmetry’s operator. This is in contrast with permutation symmetry of neural networks, which does induce
equivalent minimizers that are all reachable via the same training pipeline. For example, consider a model trained using
some gradient-based optimizer. Permuting the neurons of such a model at initialization and running the same training
pipeline will yield a different solution that relates to the original one via the exact same permutation of neurons. Since
we randomly initialize models, both the original and the permuted initializations are equally probable, and hence both
minimizers are equally likely to be identified using the same training pipeline.

E. Ablation Experiments on CBFT

To analyze the role played by the two loss functions involved in the alternating minimization steps of Connectivity-Based
Fine-Tuning (CBFT) (see §6, Eq. 1), we present an ablation study as follows. We analyze two variants of CBFT: (i) — Lparrier>
for which the barrier inducing loss E¢nr, [A1 — Leg(f(Dc; Yo—oc (t)), y)| has been removed from the training process, and
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Table 4. Training from scratch on minimal clean data. We train ResNet-18 models on the 2500 “clean” samples used in Tab. 1 from the
original CIFAR-10, CIFAR-100, and Dominoes datasets. Test accuracies (%) on counterfactual test datasets with No Cue (NC), with Cue
(C), Randomized Cue (RC), and Randomized Image (RI) are reported. ~ denotes invariance is desirable, i.e., accuracy should be similar
to that on NC; 1/] indicate higher/lower accuracy is desirable.

|NC" Cc~ RC™ RI

C-10 | 475 474 475 9.69
C-100 | 16,5 164 164 1.19
Dom. | 48.5 31 31 108

2
(il) — L., for which the invariance loss Zle H]Ewepé- (fr(@;0)) = Ezepp, (fr (T 6))” has been removed. Results

are shown in Tab. 3. We find that without the barrier loss, the trained model is unable to break its reliance on spurious
cues, even though it generally achieves the best performance on data without cues (NC in table). Meanwhile, without the
invariance loss, the trained model indeed loses sensitivity to spurious cues and shows poor performance when the underlying
image is randomized, as we desire. However, in few instances the model can become anti-correlated with the spurious
cue (e.g., see results on Dominoes). This is expected since the barrier loss’s goal is to move the model to a region in the
landscape that follows different mechanisms (with respect to the pre-trained model) by inducing a loss barrier; without the
invariance loss, the model can learn to induce this barrier by merely becoming anti-correlated with the spurious cue. The
invariance loss helps prevent this pitfall, selecting a mechanistically dissimilar region in the landscape that is uncorrelated,
instead of being anti-correlated with the spurious cue. Overall, these results provide further corroboration to our claims in
§6: preventing linear connectivity helps induce mechanistic dissimilarity and an invariance penalty helps select the exact
mechanisms we want the models to differ in. Overall, this ablation study help us infer that while the two losses involved in
CBFT have their individual benefits, it is only when they are combined that they give the best results.

E.1. Comparison with Training from Scratch

We compare CBFT against training from scratch on the minimal clean dataset that we assume access to during the training
process for all baselines and CBFT in Tab. 1. Specifically, we train ResNet-18 models for 100 epochs using an initial
learning rate of 0.1 and a cosine decay schedule. Results are reported in Tab. 4 and we see training from scratch significantly
underperforms all baselines and CBFT. This is expected since our setup assumes access to only a minimal clean dataset for
inducing invariance to spurious attributes. Since training from scratch is not a sample efficient strategy, it cannot perform
well in this setting. We also highlight that using as initialization a model pretrained on an unclean dataset, i.e., one that
contains spurious attributes, will make this overall process equal to naive fine-tuning on the clean dataset; we already provide
results for naive fine-tuning in Tab. 1.

F. Deferred Proofs

F.1. Exhaustiveness of Unit Interventions

Proposition 1. (Exhaustiveness of Unit Interventions.) If f(.;0) is invariant to unit interventions A; and A;, it must be
invariant to their composition; conversely, lack of invariance to either A; or A; precludes invariance to their composition.

Proof. Assume the set of parameters 6 induces a model that exhibits invariance to the intervention .4;. Independently,
consider another intervention A;. Then, f(E(z;{A;, A;});60) = f(Gx o Ai o Aj 0 G (2);0) = f(Gx o A; o
G (E(x; A));0) = FIEE(x;A5); A:);0) = f(E(x;.A;);0), where the last equality happens due to the assumed
invariance of A;. Now, if 6 exhibits invariance to A; as well, we have f(E(x; {Ai, A;j});0) = f(E(z; A));0) = f(x:0),
i.e., the model induced by @ is invariant to the composition of .A; and .A;. Meanwhile, if 6 is invariant .4; but not to A;,
we have f(E(z; {Ai, A;j});0) = f(E(x;A;));0) # f(x;6), ie., 0 induces a model that lack invariance to the simultaneous
operation (i.e., composition) of .A; and A;.

Note that the derivation above did not rely on the fact that the interventions are “unit” in the sense that they act on
independent dimensions. However, if one considers general interventions that can act on multiple dimensions of the latent
space simultaneously, then a given intervention can undo the effects of another. For example, assume a model is not
invariant to unit interventions on a dimension that rotates an object, but are invariant to unit interventions on all other latent
dimensions. Then, if two general interventions involve operation on this latent dimension, they can make an object rotate
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by equal and opposite angles, while changing some other dimensions of the latent state that the model is invariant to. In
this case, the interventions end up undoing each other’s effect, and the overall state change does not yield any influence on
the model output. By assuming unit interventions that enforce transformations on specific dimensions, we circumvent this
failure mode. O

F.2. Mode Connectivity of Mechanistically Dissimilar Models

We first repeat the following result from prior work (paraphrased per our notations and setup).

Lemma 1. (Simsek et al., 2021). Consider an L-layer network f(.;0), whose activation function ¢ satisfies ¢(0) # 0,
") = 0 for infinitely many odd and even values of n, where ¢'™) denotes the n'* derivative of ¢. Let ry,r5, ..., 1] be
the minimum number of neurons needed in layers 1 to L for achieving zero error (cross-entropy or mean-square error) on
a dataset D and call a network overparameterized if for all layers [, it contains number of neurons r; > r;. Then, under
overparameterization, there always exists a continuous, zero-loss path that connects two minimizers.

The result above involves showing permutation symmetry of neural networks yields a single continuous manifold of zero loss,
and then proving all parameters that yield zero-loss lie on this manifold. We highlight the amount of overparameterization
needed for the claim’s validity is rather mild, i.e., just one additional neuron per layer. Also note that while the proof
makes assumptions on the analyticity of the activation function used, this constraint is only mandatory for ease of
theoretical analysis. Moreover, continuous approximations to ReLU exist which satisfy these assumptions. For example,
A(x) = Dsofiplus (T) + Dsigmoid (42), Where dgofpius () = In(1 + exp(z)) and @sigmoia () = 1/1+exp(—=). Similar result was
also shown by Nguyen (2019), who demonstrates networks with a pyramidal structure, i.e., networks for which the width of
any given layer is less than or equal to its preceding layers.

Our claim on mode connectivity of mechanistically dissimilar models now follows as a corollary.

Proposition 2. (Mode Connectivity of Mechanistically Dissimilar Models.) Assume 01,05 are minimizers of the loss on a
dataset D and induce mechanistically dissimilar models. Given sufficient overparameterization, there exists a continuous
path along which the minimizers are mode connected.

Proof. By definition, L(f(D;60)) = 0 for 6 € 61, 0. Since the distribution of data plays no role in the proof of Lemma 1,
the result must hold for two minimizers that rely on entirely disparate mechanisms (e.g., background vs. shape) for achieving
zero-loss on a dataset D. The claim then directly follows as a corollary of Lemma 1, assuming the model is overparameterized
in the sense defined there and the loss is either cross-entropy or mean-square error. O

F.3. Lack of Linear Connectivity and Mechanistic Dissimilarity

Conjecture 1. (Lack of Linear Connectivity implies Mechanistic Dissimilarity.) If two minimizers 01 and 05 of the loss
L(f(D;0)) on a dataset D cannot be linear mode-connected (up to permutations of neurons), their corresponding models
f(501), f(.;02) must be mechanistically dissimilar.

As we show next, the conjecture above can be proven in a simplified setting.

Model Setup: We consider a binary classification task on a dataset D = {z;,v;}M,, where z; € RP, y € Y = {0,1},
and M is the number of samples. The model is a 1-hidden layer, fully connected network defined as follows: f(x; W) =
+17p(WTz). Here, W € RP*N denotes the hidden layer with N neurons, 1 € R¥ is an all ones vector, and ¢(.) is the

ReLU activation function. The model is trained to minimize a loss £ (f(D; W)) = 45 Zf\il U(ys, f(zi; W), where [(., .)
denotes a sample-wise loss function whose global minimizer yields y; = f(x;; W) for all z; € D. This property is satisfied
by several loss functions, e.g., mean-square error, L-1 loss, etc. We assume the models are overparamterized such that all
minimizers are global and interpolating, i.e., they achieve zero loss (Kawaguchi, 2016; Kawaguchi & Kaelbling, 2020;
Nguyen et al., 2018; Nguyen & Mondelli, 2020; Arora et al., 2019). This implies if W, is a minimizer, Vi € [M],y; =
flxis W) = 1T (W] ay).

We next describe the data-generating process that we will focus on in the following discussion.

Data-Generating Process: We consider a data-generating process with multiple predictive attributes of different complexity,
inspired by the one proposed by Shah et al. (2020).

Consider a non-negative even integer K. Define the sets So(K ) and S; (K') that respectively include odd and even integers

between [— 4, ] We use sign(.) to denote the sign function, which outputs 1if z > 0, 0if z = 0, and —1 if z < 0.
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Unif(.S) denotes a uniform distribution over the set S. We define a randomized process sk, such that s (0) ~ Unif(Sp(K)),
sk (1) ~ Unif(S; (K)). Correspondingly, given a margin hyperparameter § € [0, 0.5], we define the randomized function
Tk(z):{0,1} — R as follows.

\/—‘/% (2 — esign(2)), where ¢ ~ Unif([0,24]), if K =0,
Tk(z) = ;{% (sx(z)+e), where € ~ Unif([—4,4]), if K > 1, |sg(z)| # &, )
;{% (sk(z) — esign(z)), where e ~ Unif([0,4]), if K > 1,]sx(2)| = &.

Note that T (z) produces a zero-mean output with variance 1/p. The margin ¢ allows us to draw infinite samples from
the function. More importantly, Tk (2) is invertible, i.e., given its output, we can infer z. Correspondingly, if z~ defines the
target label y, inverting the attribute Tk (2) will allow us to solve a classification task defined on this attribute. However, this
inversion process requires inference of K piece-wise linear splines to model the optimal decision boundaries (see Fig. 12).
The scalar K can thus can be considered a measure of the complexity of the attribute, inline with prior work on simplicity
bias in neural networks (Nakkiran et al., 2019; Shah et al., 2020; Valle-Perez et al., 2018; Scimeca et al., 2021; Hu et al.,
2020). For example, if K = 0, the attribute is linearly separable and of least complexity. This notion of complexity is
particularly natural for studying neural networks with ReLU activations because each neuron in such a model represents a
spline function and several such neurons can approximate complex decision boundaries by representing them with such
piece-wise spline functions (Balestriero et al., 2018; Balestriero & Baraniuk, 2018; Balestriero, 2017; Wang et al., 2018).

The overall data-generating process G(Z) transforms the n-

dimensional random variable Z from the latent space z; X 2o X - -+ X

zn, € {0,1}" to produce samples with n attributes of different com- z=0
plexities Tk, (21), Tx, (22), ., T, (2n) and appends D — n noisy ~ [EE——_—
attributes, sampled from a symmetric, zero-mean distribution } with _;, Y

variance %; e.g., the Gaussian distribution AV (0, }/v/D) or uniform

Ty(2)

z=1
0.5 1.0

distribution U (7‘/ 3/D,+/ 3/D>. Correspondingly, generation of a T,(2)

A » 4
sample (x, y) can be represented as follows: .. 2=0 AR 1=0 L

A L4 A L4
(@) = 9(2) = iy (20) Tra2a)s - Tacn G v vamnl', - Y S