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performant on a given dataset, the exact mechanisms they

use for making their predictions disallows for us to consider

them equally useful.

This work: We argue prior literature analyzing connectivity

properties in DNN loss landscapes has ignored the influence

of the exact mechanisms a model implements for perform-

ing a task (see Fig. 1). In fact, due to inherent tendencies

in the training pipelines of modern DNNs towards learning

simple functions (Nakkiran et al., 2019; Valle-Perez et al.,

2018; Rahaman et al., 2019; Shah et al., 2020; Mangalam

& Prabhu, 2019), minimizers identified via training on the

same dataset often exhibit similar biases (Shah et al., 2020;

Nanda et al., 2022). Such similarity in the models’ predic-

tion mechanisms may influence the identifiability of simple

connectivity patterns in the loss landscape, such as the ones

observed in prior work. Importantly, it has remained unclear

if mechanistically dissimilar models, e.g., ones that rely on

background and ones that rely on shape, exhibit connectivity

at all. Beyond a better scientific understanding of DNN loss

landscapes, knowledge of such geometric properties relating

mechanistically dissimilar minimizers can possibly lead to

practical insights for designing post-hoc, sample-efficient

fine-tuning strategies that allow switching to minimizers that

follow our desired predictions mechanisms. Motivated by

questions above, we make the following contributions.

• Defining a notion of mechanistic similarity (§3). We

characterize mechanistic similarity of two models via

systematic interventions on the data-generating process,

claiming similarity if the models are invariant to the same

set of interventions. Our definition is motivated to account

for the specific attributes of an input (e.g., shape vs. back-

ground) a model relies on for making predictions. When

analyzed in the context of spurious attributes, our defini-

tion leads to a characterization of DNN loss landscapes

that is relevant to challenges of robustness (D’Amour

et al., 2020; Teney et al., 2022; Jacobsen et al., 2018).

• Characterizing connectivity properties of mechanisti-

cally (dis)similar models (§5). Our analysis shows that

if two models lack linear connectivity in the landscape

(up to architectural symmetries), they must be mechanisti-

cally dissimilar; that is, existence of loss barriers on the

linear path between two models implies they have learned

different invariances (see Fig. 4, 5). Our results especially

hold implications for naı̈ve fine-tuning of a pretrained

network, which often yields models linearly connected

with the original pretraining solution (Neyshabur et al.,

2020). Specifically, if a model has learned to rely on spu-

rious attributes during pretraining, our results imply mere

fine-tuning on some “clean” dataset may not improve its

robustness. We augment these first steps towards a mech-

anistic characterization of loss landscapes with extensive

empirical verification over a broad variety of settings,

including different datasets, architectures, connectivity

paths, and training strategies.

• Exploiting lack of linear connectivity to efficiently alter

a model’s mechanisms (§6). Based on our analysis,

we propose a method, Connectivity-Based Fine-Tuning

(CBFT), that exploits lack of linear connectivity between

mechanistically dissimilar models to induce models that

differ in specific prediction mechanisms (§6). Extensive

experiments on synthetic datasets show CBFT is more

effective than recent methods (Kirichenko et al., 2022a;b;

Kumar et al., 2022) at reducing a model’s tendency to rely

on spurious attributes for making its predictions.

2. Preliminaries: Mode Connectivity

Intuitively, mode connectivity along a path implies moving

along that path does not witness barriers in error or loss.

We formalize this below, in line with prior work (Frankle

et al., 2020; Garipov et al., 2018; Draxler et al., 2018; En-

tezari et al., 2021; Benton et al., 2021; Pittorino et al., 2022).

Consider a neural network f : Rn × R
d → [K] that takes

n-dimensional inputs x ∈ X ¢ R
n, has parameters ¹ ∈ R

d,

and produces an output f(x; ¹) ∈ [K], where [K] denotes

the set {1, 2, . . . ,K}. We say ¹ “induces the model” f(.; ¹).
A model’s loss on a dataset D ∈ X × [K] for set of parame-

ters ¹ is denoted using L(f(D; ¹)); ¹ is called a minimizer

of the loss on that dataset if L(f(D; ¹)) < ϵ, where ϵ is

some small scalar. Note that we primarily focus on mini-

mizers obtained using SGD. We denote a continuous path

between two sets of parameters ¹1, ¹2 as µθ1→θ2(t), where

µθ1→θ2(0) = ¹1 and µθ1→θ2(1) = ¹2.

Definition 1. (Mode Connectivity.) Minimizers ¹1, ¹2 cor-

responding to a dataset D are called mode connected along

the path µθ1→θ2(t) if moving along the path never yields

barriers. Formally, ∀ t ∈ [0, 1], L(f(D, µθ1→θ2(t))) f
t · L(f(D; ¹0)) + (1− t) · L(f(D; ¹1)).

As mentioned in §1, prior work shows mode connectivity

is exhibited in modern DNNs’ loss landscapes along rather

simple paths. We focus on the following two families:

(i) Linear: µθ1→θ2(t) = (1− t)¹1 + t¹2 and

(ii) Quadratic: µθ1→θ2(t) = (1− t)2¹1 + 2t(1− t)¹12 + t2¹2.

In the above, ¹12 denotes a set of parameters that is explicitly

optimized to identify a quadratic path connecting ¹1 and ¹2;

notably, then, quadratic paths are a function of the data used

for identifying them (see App. C.1 for further discussion).

Entezari et al. (2021) recently hypothesized that accounting

for permutation symmetry* of DNN architectures (Hecht-

Nielsen, 1990) in fact leads to observance of linear connec-

tivity between any two linearly disconnected minimizers

*Note that DNNs exhibit several architectural symmetries and
a more general statement would account for all such symmetries,
as done by (Pittorino et al., 2022). However, symmetries beyond
permutations are unlikely to play a critical role in analysis of mode
connectivity of SGD based minimizers (see App. D for details).
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Linear Nonlinear Linear Nonlinear

Mode Mode Mech. Mech.

Mech. Similar 6 6 6 6

Mech. Dissimilar :∗ 6 : :

Table 2. Summarizing our Findings. 6, : respectively indicate

whether there always exist paths along which mechanistically

(dis)similar models identified using gradient-based optimization

can exhibit the type of connectivity specified in the column title.
∗ denotes there are exceptional, but primarily theoretical, cases

where the connectivity definition can hold (see App. F).

6.1. Connectivity-Based Fine-Tuning (CBFT)

As defined in our work, mechanistic dissimilarity corre-

sponds to lack of shared invariances. Our results in §5

demonstrate that lack of linear connectivity between two

models implies they will be mechanistically dissimilar. A

valid strategy for altering a model’s mechanisms then in-

volves moving the model to a region in the landscape that

does not exhibit linear connectivity to the current minimizer.

Of course, we specifically want the unshared invariance to

correspond to ignoring of the spurious attribute (denoted

C) that we desire to reduce the model’s reliance on. For

this purpose, we follow prior works and assume access to a

minimal dataset DNC that does not contain the attribute C.

Note that this setting is not similar to the often used setup

in domain adaptation, where the original training dataset

(denoted DC here) and the novel dataset, DNC, are assumed

to be pairs of images in different environments.

In the following, we use Di to denote the subset of examples

in dataset D belonging to the ith class in a K-class classifi-

cation problem, µθ→θC
(t) to denote the linear path between

a set of parameters ¹ and the pretraining solution ¹C, and

fr(x; ¹) to denote the model’s representation for an input x
at the penultimate layer. Let NTr denote the Truncated Gaus-

sian Distribution with mean/std of 0.5 that is constrained

to the range [0, 1]. Our method, Connectivity-Based Fine-

Tuning (CBFT), involves minimizing the following loss:

LCBFT = LCE(f(DNC; ¹), y) + LB +
1

K
LI, where

LB = Et∼NTr
|¼B − LCE(f(DC; µθ→θC

(t)), y)| and

LI =

K
�

k=1

�

�

�
Ex∈Dk

C
(fr(x; ¹))− Ex̃∈Dk

NC
(fr(x̃; ¹))

�

�

�

2

2
.

(1)

Here LCE denotes the cross-entropy loss and promotes learn-

ing of correct labels on the minimal dataset DNC, while LB,

LI instantiate the two principles discussed in Fig. 6: LB

denotes a “barrier loss” that randomly samples a point on

the linear path between ¹, ¹C and maximizes the loss at this

point up to an upper bound ¼B (=1 in all our experiments)

and LI denotes an invariance loss that promotes reducing

the distance between class-average representations on DNC

and DC. Overall, LB helps CBFT find a set of parameters

¹ that does not exhibit linear connectivity to ¹C , while LI

helps CBFT pick a solution that is (approximately) invariant

to attribute C. We emphasize that since the cross entropy

loss can be made arbitrarily large, using the hyperparameter

¼B is important. We also note that using class-average repre-

sentations to learn (approximately) invariant representations

has the advantage of not requiring access to simultaneous

pairs of samples in different environments, i.e., ones with

and without the spurious attributes (Li et al., 2018; Sun &

Saenko, 2016).

Evaluating CBFT: We empirically validate the effective-

ness of CBFT by using our synthetic datasets from §4 as a

benchmark. We compare CBFT against naı̈ve fine-tuning,

Last-Layer Re-Training (LLR) (Kirichenko et al., 2022b;a),

and Linear Probe plus Fine-Tuning (LPFT) (Kumar et al.,

2022) (see App. B.2 for implementation details). Results are

reported in Tab. 1. We see that while the baselines perform

well on clean data, they do not yield desired behavior on

counterfactual datasets: e.g., they achieve high accuracy

even if we randomize the image, indicating that they are

more sensitive to the cue. In contrast, we see that beyond

just performing well on clean data, CBFT models show the

desired behaviors: sensitivity to randomization of the image

and invariance to spurious attributes. These results suggest

CBFT successfully alters a model’s mechanisms and pro-

vides further corroboration to the claim that lack of linear

connectivity implies mechanistic dissimilarity between two

models (see Conj. 1). We also provide detailed ablations

for CBFT in App. E and find both losses, LB and LI, are

important for getting the desired results: the barrier loss

helps induce a mechanistically dissimilar model, while the

invariance loss helps select the mechanisms we desire.

7. Related Work

Mode connectivity. Existence of a single, continuous

manifold connecting global minimizers was first identified

theoretically by Freeman & Bruna (2016); Nguyen (2019)

and empirically discovered in concurrent works under the

title of “mode connectivity” by Garipov et al. (2018) and

Draxler et al. (2018). A geometrical characterization of this

manifold was provided by Simsek et al. (2021), who showed

the manifold is primarily composed of affine subspaces.

Connectivity properties of neural networks have been used

for designing and analyzing algorithms for several prac-

tically relevant applications, such as ensembling (Benton

et al., 2021; Izmailov et al., 2018; Wortsman et al., 2021;

2022a), network pruning (Frankle et al., 2020; Entezari

et al., 2021), optimization (Kaddour et al., 2022), adversar-

ial robustness (Zhao et al., 2020), and multi-task/continual

learning (Mirzadeh et al., 2020; Lubana et al., 2021). During

the course of this work, we became aware of the contempo-

rary work by Juneja et al. (2022). Therein, the authors use
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NLP datasets designed by McCoy et al. (2019) to perform

an empirical analysis similar to ours, finding that models

that lack linear connectivity show different generalization

behaviors, relying on different attributes of an input to make

their predictions. Our work further formalizes this result:

we show lack of linear connectivity implies mechanistic dis-

similarity. The results by Juneja et al. thus provide further

corroboration for our claims on a different modality.

Fine-tuning and Model Editing. Fine-tuning is a well-

established practice in deep learning. The most basic fine-

tuning method is to treat the pretrained model as an initial-

ization, and continue training with new data. A variant is to

train only a subset of parameters, such as the final classifica-

tion layer (Kirichenko et al., 2022b;a), possibly fine-tuning

the entire model after that (Kumar et al., 2022; Rosenfeld

et al., 2022). A related application to fine-tuning, model

editing has become quite popular recently and approaches

for the same generally aim to make a targeted change to a

model’s factual knowledge (Mitchell et al., 2022; Santurkar

et al., 2021; Sinitsin et al., 2020). For instance, Sinitsin

et al. (2020) give the example of correcting a model’s pre-

diction error on a particular example without changing its

predictions on other examples. Prior work on model edit-

ing aims to make changes that are “local” in input space,

e.g., only affecting the model’s “understanding” of who the

current prime minister of the UK is. CBFT shares this moti-

vation of “targeted” alteration of a model; however, instead

of altering the model’s factual knowledge, the overarching

goal of CBFT is to make changes to the specific rules or

mechanisms the model implements to make its predictions

(see Dasgupta et al. (2022) for a discussion on distinction

between rule vs. exemplar / factual inference strategies).

Specifically, CBFT aims to make a model invariant to fea-

tures that it was not already invariant to (or vice versa),

without changing any of its other learned invariances.

8. Conclusion and Future Work

Depending on the mechanisms they learn for making their

predictions, neural networks trained on a specific data distri-

bution can nonetheless differ vastly in their behavior when

evaluated on other distributions. This realization prompted

us to perform a mechanistic characterization of connectivity

properties in the loss landscape of neural networks. Our

proposed notion of mechanistic similarity instantiates the

idea as shared invariances, and helps extend the prior notion

of mode connectivity to account for mechanistic similarity.

Our analysis reveals several surprising findings (see Tab. 2):

(i) mechanistically dissimilar minimizers can be mode con-

nected via relatively simple, but non-linear, paths; (ii) linear

mode connectivity of two minimizers is intricately related

to the mechanistic similarity of their induced models; (iii)

naı̈ve fine-tuning can fail to eliminate spurious attributes

learned during pretraining; and (iv) finding linearly discon-

nected regions in the landscape enables sample-efficient

alteration of a model’s mechanisms.

Future work can involve use of counterfactual generators

based on modern generative models (Thiagarajan et al.,

2021) to extend our synthetic data experiments and cor-

roborate our claims in naturalistic settings. We also be-

lieve our analysis can be useful to reason about benefits

and limitations of recent averaging-based ensembling meth-

ods (Wortsman et al., 2022b;a; Rame et al., 2022; Arpit et al.,

2022). Specifically, note that our claims do not preclude

possible linear connectivity of mechanistically dissimilar

models: in fact, any two solutions of the linear system of

equations y = Wx can be interpolated regardless of their

prediction mechanisms (hence the ∗ in Tab. 2). However,

as we show in App. F in a simplified setup, these different

mechanisms should be of similar “complexity” to enable

linear connectivity (e.g., mechanisms corresponding to lin-

early separable attributes). In the context of our fine-tuning

results, this implies naı̈ve fine-tuning can work well on a tar-

get distribution only if the desired mechanism is of similar

complexity to the mechanism for identifying the spurious

attribute (which would possibly imply it finds a spurious at-

tribute again); otherwise, a loss barrier must be surmounted

for successful learning on the target distribution. This sug-

gests that pretraining should aim to promote learning of a

variety of expressive prediction mechanisms, which can be

challenging in practice (D’Amour et al., 2020).
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Agrawal, V., Winther, O., Bauer, S., and Schölkopf, B.

On the transfer of disentangled representations in realistic

settings. arXiv preprint. arXiv:2010.14407, 2020.

Draxler, F., Veschgini, K., Salmhofer, M., and Hamprecht,

F. Essentially no barriers in neural network energy land-

scape. In Proc. Int. conf. on machine learning (ICML),

2018.

Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. Gradient

descent finds global minima of deep neural networks. In

Proc. Int. conf. on machine learning (ICML), 2019.

Du, S. S., Hu, W., and Lee, J. D. Algorithmic regular-

ization in learning deep homogeneous models: Layers

are automatically balanced. Adv. in Neural Information

Processing Systems (NeurIPS), 2018a.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient

descent provably optimizes over-parameterized neural

networks. arXiv preprint. arXiv:1810.02054, 2018b.

D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Ali-

panahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein,

J., Hoffman, M. D., et al. Underspecification presents

challenges for credibility in modern machine learning.

Journal of Machine Learning Research (JMLR), 2020.

Entezari, R., Sedghi, H., Saukh, O., and Neyshabur, B. The

role of permutation invariance in linear mode connectivity

of neural networks. arXiv preprint. arXiv:2110.06296,

2021.

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. Linear

mode connectivity and the lottery ticket hypothesis. In

Proc. Int. Conf. on Machine Learning (ICML), 2020.

Freeman, C. D. and Bruna, J. Topology and geometry

of half-rectified network optimization. arXiv preprint.

arXiv:1611.01540, 2016.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P.,

and Wilson, A. G. Loss surfaces, mode connectivity,

and fast ensembling of dnns. Adv. in Neural Information

Processing Systems (NeurIPS), 2018.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wich-

mann, F. A., and Brendel, W. ImageNet-trained CNNs are

biased towards texture; increasing shape bias improves ac-

curacy and robustness. arXiv preprint. arXiv:1811.12231,

2018.

10



Mechanistic Mode Connectivity

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Bren-

del, W., Bethge, M., and Wichmann, F. A. Shortcut learn-

ing in deep neural networks. Nature Machine Intelligence,

2020.

Gresele, L., Rubenstein, P. K., Mehrjou, A., Locatello, F.,

and Schölkopf, B. The incomplete rosetta stone problem:

Identifiability results for multi-view nonlinear ica. In

Uncertainty in Artificial Intelligence (UAI), 2020.
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Appendix

A. Detailed Related Work

Mode connectivity. Existence of a single, continuous manifold connecting global minimizers was first identified theoretically

by Freeman & Bruna (2016); Nguyen (2019) and empirically discovered in concurrent works under the title of “mode

connectivity” by Garipov et al. (2018) and Draxler et al. (2018). A geometrical characterization of this manifold was provided

by Simsek et al. (2021), who showed the manifold is primarily composed of affine subspaces. Connectivity properties

of neural networks have been used for designing and analyzing algorithms for several practically relevant applications,

such as ensembling (Benton et al., 2021; Izmailov et al., 2018; Wortsman et al., 2021; 2022a), network pruning (Frankle

et al., 2020; Entezari et al., 2021), optimization (Kaddour et al., 2022), adversarial robustness (Zhao et al., 2020), and

multi-task/continual learning (Mirzadeh et al., 2020; Lubana et al., 2021). During the course of this work, we became aware

of the contemporary empirical paper by Juneja et al. (2022), who investigate whether minimizers connected via linear paths

follow similar “decision rules”. Their analysis focuses on NLP tasks and does not involve modeling the data-generating

process or counterfactual evaluation; their results can be regarded as use of an alternative strategy to further verify our

claims on a different modality.

Fine-tuning. Fine-tuning is a well-established practice in deep learning. The most basic fine-tuning method is to treat the

pretrained model as an initialization, and continue training with new data. A variant is to train only a subset of parameters,

such as the final classification layer (Kirichenko et al., 2022b;a), possibly fine-tuning the entire model after that (Kumar

et al., 2022; Rosenfeld et al., 2022).

Model editing. A related application to fine-tuning, model editing has become quite popular recently and approaches for

the same generally aim to make a targeted change to a model’s factual knowledge (Mitchell et al., 2022; Santurkar et al.,

2021; Sinitsin et al., 2020). For instance, Sinitsin et al. (2020) give the example of correcting a model’s prediction error on a

particular example without changing its predictions on other examples. Prior work on model editing aims to make changes

that are “local” in input space, e.g., only affecting the model’s “understanding” of who the current prime minister of the

UK is. CBFT shares this motivation of “targeted” alteration of a model; however, instead of altering the model’s factual

knowledge, the overarching goal of CBFT is to make changes to the specific rules or mechanisms the model implements to

make its predictions (see Dasgupta et al. (2022) for a discussion on distinction between rule vs. exemplar / factual inference

strategies). Specifically, CBFT aims to make a model invariant to features that it was not already invariant to (or vice versa),

without changing any of its other learned invariances. This difference in goals make model editing approaches inappropriate

for our setup.

Use of synthetic datasets. Our data-generation pipeline was influenced by several past works that use synthetic datasets

for better understanding topics such as transfer learning (Dittadi et al., 2020), domain generalization (Wiles et al., 2021;

Van Steenkiste et al., 2019; Arjovsky et al., 2019), disentanglement (Higgins et al., 2017; Klindt et al., 2020), self/semi

supervised learning (Von Kügelgen et al., 2021; Trivedi et al., 2022a;b; Locatello et al., 2020), and inductive biases of neural

networks (Hermann et al., 2020; Hermann & Lampinen, 2020; Ritter et al., 2017).

B. Training Details and Datasets

When training from scratch (e.g., in Fig. 4), we train models using SGD for 100 epochs with a batch-size of 256, momentum

of 0.9, and weight decay of 10−4. Learning rate starts at 0.1 and is dropped by a factor of 10 at the 40th and 80th epochs. No

data augmentations are used. When fine-tuning to assess linear connectivity in Fig. 5, we train models for a further 100

epochs on data without cues using different initial learning rates, but the same step-decay schedule (decay factor of 0.1 at

decay epochs 40 and 80). For details on training and evaluation of models in Tab. 1, please refer to App. B.2.

B.1. Dataset Visualizations and Training Curves

When using synthetic datasets, if a proportion c of samples is to be assigned the cue feature, we use the first c% samples

of all classes to assign them the respective cues. We do not store the samples beforehand; instead, we use manually

designed PyTorch data-loaders that allow for easy manipulation of samples in an online manner, enabling straightforward

counterfactual evaluations. While the dataset construction was discussed in Fig. 3 and §4, we provide several visualizations

of randomly sampled datapoints from different classes and their counterfactuals in Fig. 7 (CIFAR-10 with box cue), Fig. 8

(CIFAR-100 with box/color cue), and Fig. 9 (Dominoes: CIFAR-10 with concatenated FashionMNIST image cue). Learning
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is necessary so that only interpolations between the parameters is used.

We also note that since training will yield gradients for the model that has parameters µθ→θC (t), we need to explicitly

compute the gradients for ¹ by using the following relationship for some general objective function L:

∇θL(µθ→θC (t)) = (∇θµθ→θC (t))
T ∇γθ→θC

(t)L(µθ→θC (t)) = (1− t)∇γθ→θC
(t)L(µθ→θC (t)).

Thus, one need only compute gradient of an objective with respect to µθ→θC (t) and multiply that by a factor of 1− t to

retrieve the gradient of the objective with respect to ¹. This step has to be carried out explicitly and hence we have to

break the optimization process of CBFT into two steps (see Eq. 1), executing alternating minimization for the barrier and

invariance losses.

C. Quadratic Connectivity Paths and Matching Permutations

C.1. Quadratic Paths

The qudaratic path is defined as follows.

µθ1→θ2(t) = t2¹1 + 2t(1− t)¹12 + (1− t)2¹2. (2)

The set of parameters ¹12 can be thought of as the vertex of a parabola that helps anchor the curve. To identify this set of

parameters, we follow Garipov et al. (2018) and train points uniformly sampled from the quadratic path to achieve zero loss

on a given dataset D, i.e.,

¹12 = argmin
θ

Ex∈D,t∈[0,1](L(f(x; µθ1→θ2)(t))). (3)

Consequently, note that a quadratic path necessarily depends on the dataset used for its identification and it is not mandatory

that it generalize across datasets/distributions. This is precisely what we see in our results in Fig. 4, where we are able to

identify quadratic mode connectivty between two sets of parameters on a given dataset, but those paths do not generalize to

counterfactual datasets.

C.2. Finding Permutations for Linear Connectivity

Given two minimizers ¹1, ¹2, identifying the linear path between them involves merely interpolating the parameters. Entezari

et al. (2021); Ainsworth et al. (2022); Singh & Jaggi (2020) hypothesize that minimizers discovered using SGD can always

be linearly mode connected up to permutations of neurons that align the two models in their activations or weights. That is,

there generally exists a permutation Ã that connects Ã(¹1) with ¹2 in the sense of Def. 1. To empirically analyze this claim

in our work, we identify Ã by maximizing the similarity of activations produced by model with parameters ¹1 and ¹2:

Ã∗ = argmin
π

||f(x;Ã(¹1))− f(x; ¹2)||. (4)

Given that solving the problem above is NP-Hard (Entezari et al., 2021; Ainsworth et al., 2022; Singh & Jaggi, 2020), we

follow the “activation matching” algorithm proposed by Ainsworth et al. (2022) and solve the above problem greedily by

computing representations at each layer of the two models, finding a permutation that matches the representations maximally,

and then repeating the process for the next layer. To this end, we use inputs with a batch-size of 512 and run the matching

process over the entire original datasets (i.e., ones without cues). We note that we did conduct minimal experiments on

finding permutations using data with cues, instead of without, but never found any noticeable differences in the results.

Hence, we decided to use the original data without cues throughout our experiments for finding linear paths. Intuitively, we

suspect the exact choice of dataset does not matter for our experimental setup because we analyze pairs of models which

include one model that is invariant to the cue and one that is not. Since the invariant models produce the same representations

on data with / without cues, the target for permutation matching remains the same.

C.3. Why plot accuracy curves instead of loss ones for mechanistic evaluation of mode connectivity

Due to its differentiability, we focus on loss as our measure of interest for all formal analysis. However, since loss can

increase without bound, visualizing loss curves become difficult for our setup that involves evaluation on counterfactual

datasets, wherein the discriminative attributes are entirely removed (see Fig. 3). We thus follow Frankle et al. (2020) and
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Table 3. Ablating CBFT. We train ResNet-18 models on our synthetic CIFAR-10, CIFAR-100, and Dominoes dataset with different

proportions of samples with cue features and fine-tune them using 2500 “clean” samples from a dataset without any cues. Test accuracies

(%) on counterfactual test datasets with No Cue (NC), with Cue (C), Randomized Cue (RC), and Randomized Image (RI) are reported.

We compare Connectivity-Based Fine-Tuning (CBFT) with two of its ablations (see App. E): (i) −Lbarrier, for which the barrier inducing

loss is removed from the training process and (ii) −LInv., for which the invariance loss is removed. ∼ denotes invariance is desirable, i.e.,

accuracy should be similar to that on NC; ↑/↓ indicate higher/lower accuracy is desirable; best results are in bold. For discussion, please

see App. E.
60% Cue data 70% Cue data 80% Cue data 90% Cue data

C-10 NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓

CBFT 74.1 71.5 73.4 8.75 73.2 69.2 72.3 8.60 70.0 70.0 69.5 9.68 67.9 72.5 68.1 13.1

−Lbarrier 75.8 93 69.3 24.4 75.9 90 72.1 18.6 71.6 89.9 66.3 23.5 67.8 89.6 65.1 20.5

−LInv. 73.4 69.4 68.8 14.2 72.9 65.2 71.3 8.26 69.3 64.8 68.1 9.72 65.8 64.8 65 10.3

C-100 NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓

CBFT 42.7 65.0 36.4 14.6 38.5 66.7 34.7 21.2 34.6 69.3 23.0 27.9 28.5 72.9 23.2 46.0

−Lbarrier 44.7 99.8 17.5 81.6 40.2 99.9 13.7 88.9 34.6 99.9 11.3 95.1 26.5 99.1 13.5 82.2

−LInv. 43.2 59.4 36.5 12.5 35.7 64.2 26 25.5 34.1 70.2 23.5 36.7 24.7 69.2 15.9 45.6

Dom. NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓ NC↑ C∼ RC∼ RI↓

CBFT 72.0 64.9 67.5 9.9 71.5 70.0 59.2 12.1 70.8 69.7 65.9 11.9 67.2 68.7 61.5 14.9

−Lbarrier 77.1 94.9 63.2 32.7 77.4 94.2 65.8 29.2 74.5 93.3 63.5 30.1 67.1 91.9 55.5 32.9

−LInv. 74.2 40.4 41.8 6.93 74.6 28.2 24.9 10.6 71.3 20.1 22.2 6.92 66 21.2 20.9 6.26

use accuracy curves for conveying experimental results in the main paper, since accuracy remains bounded within the

range 0–100% and can hence be visualized on a singular plot. We stress however we do provide loss curves as well in this

appendix; see App. G, H.

D. A Note on Difference Between Permutation and other Architectural Symmetries in the context

of mode connectivity

Note the notion of invariances discussed in this paper is rooted in the data-generating process, i.e., we discuss symmetry

transformations of the data that are learned by the model during the optimization process. However, similar to permutation

symmetry, neural network architectures are known to exhibit several other architectural symmetries (i.e., symmetries that

are not learned, but enforced by design of the architecture) (Kunin et al., 2021). Such architectural symmetries induce

several minimizers that will necessarily be mechanistically similar. For example, resale symmetry, which involves scaling

the weights of a given layer by a positive constant and another layer’s by the inverse of that constant. This operation yields a

different set of parameters that produce the same predictions, hence leading to mechanistically similar minimizers. Such

architectural symmetries have an intriguing interplay with gradient-based optimizers (e.g., SGD) (Kunin et al., 2021; Wan

et al., 2020; Roburin et al., 2022) analogous to Noether’s theorem (Tanaka & Kunin, 2021), leading to implicit regularization

behavior that yields minimizers with specific properties (e.g., rescale symmetry leads to minimizers with balanced layer-wise

norms in the presence of weight decay (Du et al., 2018a; Kunin et al., 2021)). Correspondingly, even though infinite

minimizers can be created by, e.g., rescaling layers of a model, only a minuscule fraction of these minimizers are actually

reachable via gradient-based optimization. As we note in the preliminaries, we focus on minimizers retrieved using SGD.

Thus, such equivalent classes of minimizers induced by other architectural symmetries are not a focus of this paper, as

they are not identifiable via standard training pipelines and have to be synthetically induced by use of the corresponding

architectural symmetry’s operator. This is in contrast with permutation symmetry of neural networks, which does induce

equivalent minimizers that are all reachable via the same training pipeline. For example, consider a model trained using

some gradient-based optimizer. Permuting the neurons of such a model at initialization and running the same training

pipeline will yield a different solution that relates to the original one via the exact same permutation of neurons. Since

we randomly initialize models, both the original and the permuted initializations are equally probable, and hence both

minimizers are equally likely to be identified using the same training pipeline.

E. Ablation Experiments on CBFT

To analyze the role played by the two loss functions involved in the alternating minimization steps of Connectivity-Based

Fine-Tuning (CBFT) (see §6, Eq. 1), we present an ablation study as follows. We analyze two variants of CBFT: (i) −Lbarrier,

for which the barrier inducing loss Et∼NTr
|¼1 −LCE(f(DC; µθ→θC

(t)), y)| has been removed from the training process, and
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Table 4. Training from scratch on minimal clean data. We train ResNet-18 models on the 2500 “clean” samples used in Tab. 1 from the

original CIFAR-10, CIFAR-100, and Dominoes datasets. Test accuracies (%) on counterfactual test datasets with No Cue (NC), with Cue

(C), Randomized Cue (RC), and Randomized Image (RI) are reported. ∼ denotes invariance is desirable, i.e., accuracy should be similar

to that on NC; ↑/↓ indicate higher/lower accuracy is desirable.

NC↑ C∼ RC∼ RI↓

C-10 47.5 47.4 47.5 9.69
C-100 16.5 16.4 16.4 1.19
Dom. 48.5 31 31 10.8

(ii) −LInv., for which the invariance loss

�

�K
k=1

�

�

�
Ex∈Dk

C
(fr(x; ¹))− Ex̃∈Dk

NC
(fr(x̃; ¹))

�

�

�

2
�

has been removed. Results

are shown in Tab. 3. We find that without the barrier loss, the trained model is unable to break its reliance on spurious

cues, even though it generally achieves the best performance on data without cues (NC in table). Meanwhile, without the

invariance loss, the trained model indeed loses sensitivity to spurious cues and shows poor performance when the underlying

image is randomized, as we desire. However, in few instances the model can become anti-correlated with the spurious

cue (e.g., see results on Dominoes). This is expected since the barrier loss’s goal is to move the model to a region in the

landscape that follows different mechanisms (with respect to the pre-trained model) by inducing a loss barrier; without the

invariance loss, the model can learn to induce this barrier by merely becoming anti-correlated with the spurious cue. The

invariance loss helps prevent this pitfall, selecting a mechanistically dissimilar region in the landscape that is uncorrelated,

instead of being anti-correlated with the spurious cue. Overall, these results provide further corroboration to our claims in

§6: preventing linear connectivity helps induce mechanistic dissimilarity and an invariance penalty helps select the exact

mechanisms we want the models to differ in. Overall, this ablation study help us infer that while the two losses involved in

CBFT have their individual benefits, it is only when they are combined that they give the best results.

E.1. Comparison with Training from Scratch

We compare CBFT against training from scratch on the minimal clean dataset that we assume access to during the training

process for all baselines and CBFT in Tab. 1. Specifically, we train ResNet-18 models for 100 epochs using an initial

learning rate of 0.1 and a cosine decay schedule. Results are reported in Tab. 4 and we see training from scratch significantly

underperforms all baselines and CBFT. This is expected since our setup assumes access to only a minimal clean dataset for

inducing invariance to spurious attributes. Since training from scratch is not a sample efficient strategy, it cannot perform

well in this setting. We also highlight that using as initialization a model pretrained on an unclean dataset, i.e., one that

contains spurious attributes, will make this overall process equal to naı̈ve fine-tuning on the clean dataset; we already provide

results for naı̈ve fine-tuning in Tab. 1.

F. Deferred Proofs

F.1. Exhaustiveness of Unit Interventions

Proposition 1. (Exhaustiveness of Unit Interventions.) If f(.; ¹) is invariant to unit interventions Ai and Aj , it must be

invariant to their composition; conversely, lack of invariance to either Ai or Aj precludes invariance to their composition.

Proof. Assume the set of parameters ¹ induces a model that exhibits invariance to the intervention Ai. Independently,

consider another intervention Aj . Then, f(E(x; {Ai,Aj}); ¹) = f(GX ◦ Ai ◦ Aj ◦ G−1
X (x); ¹) = f(GX ◦ Ai ◦

G−1
X (E(x;Aj)); ¹) = f(E(E(x;Aj);Ai); ¹) = f(E(x;Aj); ¹), where the last equality happens due to the assumed

invariance of Ai. Now, if ¹ exhibits invariance to Aj as well, we have f(E(x; {Ai,Aj}); ¹) = f(E(x;Aj); ¹) = f(x; ¹),
i.e., the model induced by ¹ is invariant to the composition of Ai and Aj . Meanwhile, if ¹ is invariant Ai but not to Aj ,

we have f(E(x; {Ai,Aj}); ¹) = f(E(x;Aj); ¹) ̸= f(x; ¹), i.e., ¹ induces a model that lack invariance to the simultaneous

operation (i.e., composition) of Ai and Aj .

Note that the derivation above did not rely on the fact that the interventions are “unit” in the sense that they act on

independent dimensions. However, if one considers general interventions that can act on multiple dimensions of the latent

space simultaneously, then a given intervention can undo the effects of another. For example, assume a model is not

invariant to unit interventions on a dimension that rotates an object, but are invariant to unit interventions on all other latent

dimensions. Then, if two general interventions involve operation on this latent dimension, they can make an object rotate
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by equal and opposite angles, while changing some other dimensions of the latent state that the model is invariant to. In

this case, the interventions end up undoing each other’s effect, and the overall state change does not yield any influence on

the model output. By assuming unit interventions that enforce transformations on specific dimensions, we circumvent this

failure mode.

F.2. Mode Connectivity of Mechanistically Dissimilar Models

We first repeat the following result from prior work (paraphrased per our notations and setup).

Lemma 1. (Simsek et al., 2021). Consider an L-layer network f(.; ¹), whose activation function ϕ satisfies ϕ(0) ̸= 0,

ϕ(n) ̸= 0 for infinitely many odd and even values of n, where ϕ(n) denotes the nth derivative of ϕ. Let r∗1 , r
∗
2 , . . . , r

∗
L be

the minimum number of neurons needed in layers 1 to L for achieving zero error (cross-entropy or mean-square error) on

a dataset D and call a network overparameterized if for all layers l, it contains number of neurons rl > r∗l . Then, under

overparameterization, there always exists a continuous, zero-loss path that connects two minimizers.

The result above involves showing permutation symmetry of neural networks yields a single continuous manifold of zero loss,

and then proving all parameters that yield zero-loss lie on this manifold. We highlight the amount of overparameterization

needed for the claim’s validity is rather mild, i.e., just one additional neuron per layer. Also note that while the proof

makes assumptions on the analyticity of the activation function used, this constraint is only mandatory for ease of

theoretical analysis. Moreover, continuous approximations to ReLU exist which satisfy these assumptions. For example,

ϕ(x) = ϕsoftplus(x) + ϕsigmoid(4x), where ϕsoftplus(x) = ln(1 + exp(x)) and ϕsigmoid(x) = 1/1+exp(−x). Similar result was

also shown by Nguyen (2019), who demonstrates networks with a pyramidal structure, i.e., networks for which the width of

any given layer is less than or equal to its preceding layers.

Our claim on mode connectivity of mechanistically dissimilar models now follows as a corollary.

Proposition 2. (Mode Connectivity of Mechanistically Dissimilar Models.) Assume ¹1, ¹2 are minimizers of the loss on a

dataset D and induce mechanistically dissimilar models. Given sufficient overparameterization, there exists a continuous

path along which the minimizers are mode connected.

Proof. By definition, L(f(D; ¹)) = 0 for ¹ ∈ ¹1, ¹2. Since the distribution of data plays no role in the proof of Lemma 1,

the result must hold for two minimizers that rely on entirely disparate mechanisms (e.g., background vs. shape) for achieving

zero-loss on a dataset D. The claim then directly follows as a corollary of Lemma 1, assuming the model is overparameterized

in the sense defined there and the loss is either cross-entropy or mean-square error.

F.3. Lack of Linear Connectivity and Mechanistic Dissimilarity

Conjecture 1. (Lack of Linear Connectivity implies Mechanistic Dissimilarity.) If two minimizers ¹1 and ¹2 of the loss

L(f(D; ¹)) on a dataset D cannot be linear mode-connected (up to permutations of neurons), their corresponding models

f(.; ¹1), f(.; ¹2) must be mechanistically dissimilar.

As we show next, the conjecture above can be proven in a simplified setting.

Model Setup: We consider a binary classification task on a dataset D = {xi, yi}
M
i=1, where xi ∈ R

D, y ∈ Y = {0, 1},

and M is the number of samples. The model is a 1-hidden layer, fully connected network defined as follows: f(x;W ) =
1
N
1
Tϕ(WTx). Here, W ∈ R

D×N denotes the hidden layer with N neurons, 1 ∈ R
N is an all ones vector, and ϕ(.) is the

ReLU activation function. The model is trained to minimize a loss L (f(D;W )) = 1
M

�M
i=1 l (yi, f(xi;W )), where l(., .)

denotes a sample-wise loss function whose global minimizer yields yi = f(xi;W ) for all xi ∈ D. This property is satisfied

by several loss functions, e.g., mean-square error, L-1 loss, etc. We assume the models are overparamterized such that all

minimizers are global and interpolating, i.e., they achieve zero loss (Kawaguchi, 2016; Kawaguchi & Kaelbling, 2020;

Nguyen et al., 2018; Nguyen & Mondelli, 2020; Arora et al., 2019). This implies if W∗ is a minimizer, ∀i ∈ [M ], yi =
f(xi;W∗) =

1
N
1
Tϕ(WT

∗ xi).

We next describe the data-generating process that we will focus on in the following discussion.

Data-Generating Process: We consider a data-generating process with multiple predictive attributes of different complexity,

inspired by the one proposed by Shah et al. (2020).

Consider a non-negative even integer K. Define the sets S0(K) and S1(K) that respectively include odd and even integers

between [−K
2 ,

K
2 ]. We use sign(.) to denote the sign function, which outputs 1 if x > 0, 0 if x = 0, and −1 if x < 0.
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Lemma 2. (Alignment Constraint for Linear Mode Connectivity.) If minimizers Wα and Wβ exhibit linear mode

connectivity on dataset D, then the models f(.;Wα), f(.;Wβ) are matching in activation patterns on the dataset. That is,

for all x ∈ D, we have ϕ′(WT
α x) = ϕ′(WT

β x).

Proof. Note that linear mode connectivity is a translation invariance property of the loss in the parameter space. Since we

assume interpolating minimizers, this invariance extends to model predictions. Consequently, the derivative of the model

prediction along the linear path µWα→Wβ
(t) = W (t) = Wα + t(Wβ − Wα) is zero; that is, ∂

∂t
f(x;W (t)) = 0. This

implies,
∂

∂t
1
Tϕ(W (t)Tx) = ϕ′(W (t)Tx)T (Wβ −Wα)

Tx = 0. (7)

Substituting t = 1 in Eq. 7, we get,

ϕ′(WT
β x)T (WT

α x) = ϕ′(WT
β x)T (WT

β x) = 1
T (ϕ′(WT

β x)» ϕ(WT
β x)) = 1

Tϕ(WT
α x). (8)

This implies,

(ϕ′(WT
α x)− ϕ′(WT

β x))T (WT
α x) = 0. (9)

Next, we define the following vector.

1(α+ β−) =

"

1, if WT
α x > 0 and WT

β x f 0;

0, otherwise.
(10)

Define the vector 1(α− β+) in a similar manner. Then, it is easy to see that

ϕ′(WT
α x)− ϕ′(WT

β x) = 1(α+ β−) − 1(α− β+). (11)

Substituting the above relationship in Eq. 9 gives

1
T
(α+ β−)(W

T
α x) = 1

T
(α− β+)(W

T
α x). (12)

Note that in the above equation, the left-hand side is a sum of positive reals, while the right-hand side is a sum of negative

reals. That is, the equality cannot hold unless both are equal to zero for all x ∈ D. This implies 1(α+ β−) = 1(α− β+) = 0.

That is, there is no neuron in model f(.;Wα) that is active while the corresponding index neuron in f(.;Wβ) is inactive.

Consequently, for linear mode connectivity to hold, the neurons at the same index in the two models should activate/inactivate

together for any given sample, hence producing the same set of activation patterns. This completes the proof.

Corollary 1. Small Wasserstein-1 distance between activation patterns of two models implies they can be linear mode

connected.

The activation pattern of a model for a given sample is a vector of binary variables. Thus, the difference between two activa-

tion patterns ϕ′(WT
α x) and ϕ′(WT

β x) can be computed by simply comparing their means 1
N
|1Tϕ′(WT

α x)− 1
Tϕ′(WT

β x)|,

which is in fact the Wasserstein-1 distance between two Bernoulli distributions for which p = 1
N
|1Tϕ′(WTx)|. This value

p can be regarded as the probability a neuron in the model is activated. Correspondingly, when the Wasserstein-1 distance

between two activation patterns is low, we can expect that there exists a permutation of neurons that allows the two models

to be linear mode connected. The W-1 distance can thus be regarded as a proxy for assessing whether two models can be

linear mode connected. Further, we highlight that even though this result is derived for a specific model architecture, it

is actually quite general: any two models with zero W-1 distance must be linear mode connectable (up to permutations)

because their activation patterns will necessarily be the same.

Remark 1. (Lemma 2 highlights why neurons must be permuted for linear mode connectivity.) The lemma above shows

that if two models produce the same activation patterns, the models are “effectively linear” with respect to each other.

This enables linear interpolation of the two models without increasing error. We also highlight that if two models produce

activation patterns that are a permutation of each other (e.g., this can happen if their initializations were permutations of

each other), then un-permuting them will make the models linear mode connected. Thus, Lemma 2 is inherently a neuronal

alignment constraint and can be regarded as a precise condition under which the conjecture by Entezari et al. (2021) holds.

Even though the result above was shown for a two-layer model, it is easy to see that a more general statement is true: if two

minimizers induce models that produce the same activation patterns, then there exists a permutation of neurons under which

the two models can be linear mode connected.
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Table 5. Illustrating Simplicity Bias. We train models on a dataset with predictive attributes of complexities 0 and 4. Column titles

indicate which attributes were allowed to remain predictive during training, i.e., were not randomized via interventions: e.g., K1 = 0

implies only the linearly separable attribute is predictive in the training data. Rows report difference in loss on a test dataset DK1
which

contains attributes of complexity K1 and another test dataset DK2
which contains attributes of complexity K2. Results are computed

up to 4 digits of precision and averaged over 3 seeds. We see models trained on data with both predictive attributes behave similarly to

models trained on K = 0 attribute only; that is, they are invariant to the more complex attribute for which K = 4.

Complexity of Train Attribute K1 = 0 K1 = 4 K1 = 0, 4

Complexity of Test Attribute K2 = 0 K2 = 4 K2 = 0 K2 = 4 K2 = 0 K2 = 4

|L(f(DK1
;W ))− L(f(DK2

;W ))| 0.0 22.79 26.31 0.0 0.0 18.84

Next, we rephrase the result on simplicity bias of neural networks by Shah et al. (2020); Valle-Perez et al. (2018); Nakkiran

et al. (2019); Scimeca et al. (2021) using the notations defined in this paper.

Lemma 3. (Simplicity Bias.) Assume a data-generating process G produces n perfectly predictive attributes with respective

complexities [K] = {K1,K2, . . . ,Kn}. Let m be the index of the latent corresponding to the simplest attribute, i.e.,

m := argmin [K]. If W is a minimizer identified using gradient descent on a dataset that contains IID samples retrieved

from G, then the corresponding model f(.;W ) will be invariant to unit interventions on all but the latents of the simplest

predictive attribute, i.e., I(W ) = {Ai : i ̸= m}.

Thus, even if a dataset contains multiple predictive attributes, minimizers identified using gradient descent induce models

that only utilize the simplest attributes for making their predictions.

Now consider a setting where two models make their predictions using different simplest predictive attributes from a dataset

containing multiple predictive attributes. Then, if two such models rely on attributes of different complexities, we can be

certain they produce different activation patterns.

Lemma 4. (Disparate Complexity of Mechanisms Disallows Matching in Activations). Consider an IID sampled dataset

Dα,β from a data-generating process that produces predictive attributes TKα
(.), TKβ

(.), where, without loss of generality,

Kα > Kβ . Let Wα denote a minimizer of the loss L(f(Dα,β ;W )) and assume its induced model relies on TKα
(.) for

making its predictions; similarly define Wβ . Then, there exists no permutation Ã ∈ ΣN such that f(.;Wα) and f(.;Ã(Wβ))
are matching in activation patterns on Dα,β .

Proof. The claim follows via contradiction. Assume a permutation Ã exists such that the two models are matching in

activation patterns on Dα,β . Denote the weights of the ith neuron in Wα via W i
α. Then W i

α, Ã(Wβ)
i are the weights of the

neurons matched via Ã. Since using the attribute TKα
(.) for predicting the label corresponds to inference of 2Kα piece-wise

spline functions, the probability the ith neuron with weights W i
α will be activated for an IID sampled input x from the

data-generating process is 1
2Kα

. However, since Kα ̸= Kβ , the neuron with weights Ã(Wβ)
i does not activate with the

same probability. That is, there exist samples for which W i
α is activated, but Ã(Wβ)

i is not. This contradicts our assumption

that there exists a permutation that allows matching in activation patterns for the two models.

Combining the results above, we have the following theorem.

Theorem 1. (Disparity in Simplest Attributes Precludes Matching). Consider a dataset D that contains multiple predictive

attributes. Assume two minimizers of the loss L(f(D;W )) induce mechanistically dissimilar models that identify attributes

of different complexity to make their predictions. Then, their exists no permutations of neurons for which the models exhibit

linear mode connectivity.

Proof. The result follows directly from the application of Lemmas 2, 3, 4. Specifically, Lemma 2 shows matching in

activation patterns is required for two models to exhibit linear mode connectivity (up to permutations). Lemma 3 shows

one need only analyze mechanistic dissimilarity with respect to the simplest attributes to compare the activation patterns

between two models. Lemma 4 shows if two models use attributes of different complexity to make their predictions, they

cannot match in activation patterns.

Let us now revisit Conjecture 1 for our simplified setup. In Theorem 1, we have shown models with dissimilar mechanisms

of different complexity must also produce different activation patterns. Correspondingly, via Lemma 2, we have these

models cannot be linear mode connected. This verifies our claim for the simplified setup for a 1-hidden layer model if the
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complexity have a large Wasserstein-1 distance between their activation patterns; consequently, they cannot be linear mode

connected, even after permutation of neurons. Meanwhile, models reliant on the same mechanisms have a small Wasserstein

distance and can indeed be linear mode connected. For example, ¹K=0 and ¹K=0,4 learn the same mechanisms due to

simplicity bias and can be linearly connected (see Tab. 5), but they do not exhibit linear connectivity with ¹K=4; meanwhile,

¹K=4 and ¹′K=4 can be linearly connected. Note however the latter case of more complex, i.e., K = 4 attribute required

permutations to match the neurons for linear connectivity, while the former case of linearly separable attribute did not. This

behavior emerges due to the fact that all neurons learn to be always active for the K = 0 predictive attribute–see Soudry

et al. (2018); Shah et al. (2020) for proof.

G. Further Results: Non-Linear Connectivity of Mechanistically Dissimilar Minimizers

We train VGG-13 and ResNet-18 models on our synthetic CIFAR-10 / CIFAR-100 / Dominoes datasets with cues (see

Figs. 7, 8, and 9) and the original datasets themselves. Parameters of the corresponding models are denoted ¹C and ¹NC. We

identify connectivity paths along pairs of parameters, specifically evaluating quadratic paths identified using data without

cues (denoted Quadratic w/o Cues), quadratic path identified using data with cue (denoted Quadratic w/ Cue), linear path

(denoted Linear), and linear path after permuting ¹C to maximally match ¹NC’s activations (denoted Linear Permuted). In the

following, plot titles denote evaluation dataset, including datasets where either the cue is present (denoted w/ Cue), absent

(denoted w/o Cue), randomized (denoted Rand. Cue), or the underlying image is randomized but the cue remains the same

(denoted Rand. Image). Line colors denote the proportion of dataset that has synthetic cues.

Our results show the minimzier ¹NC yields the same performance upon randomization of the cue, while the performance of

¹C degrades substantially–i.e., the two modes are mechanistically dissimilar due to lack of shared invariances (see Def. 4).

Nonetheless, we can identify quadratic (but not linear) paths that mode-connect these mechanistically dissimilar minimizers,

hence corroborating Prop. 2 across several datasets and model architectures, showing mechanistically dissimilar modes can

also be mode connected via relatively simple paths as well. However, different points on the connectivity paths respond

differently to counterfactuals, indicating lack of mechanistic connectivity.
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