Published at 1st Conference on Lifelong Learning Agents, 2022

How DO QUADRATIC REGULARIZERS PREVENT CATASTROPHIC
FORGETTING: THE ROLE OF INTERPOLATION

Ekdeep Singh Lubana, Puja Trivedi, Danai Koutra, & Robert P. Dick
EECS Department

University of Michigan, Ann Arbor

USA

{eslubana, pujat, danaik, dickrp}@umich.edu

ABSTRACT

Catastrophic forgetting undermines the effectiveness of deep neural networks (DNN5s) in scenarios
such as continual learning and lifelong learning. While several methods have been proposed to
tackle this problem, there is limited work explaining why these methods work well. This paper
has the goal of better explaining a popularly used technique for avoiding catastrophic forgetting:
quadratic regularization. We show that quadratic regularizers prevent forgetting of past tasks by
interpolating current and previous values of model parameters at every training iteration. Over
multiple training iterations, this interpolation operation reduces the learning rates of more important
model parameters, thereby minimizing their movement. Our analysis also reveals two drawbacks
of quadratic regularization: (a) dependence of parameter interpolation on training hyperparameters,
which often leads to training instability and (b) assignment of lower importance to deeper layers,
which are generally the place forgetting occurs in DNNs. Via a simple modification to the order
of operations, we show these drawbacks can be easily avoided, resulting in 6.2% higher average
accuracy at 4.5% lower average forgetting. We confirm the robustness of our results by training over
2000 models in different settings. '

1 INTRODUCTION

Learning algorithms are often designed under the assumption of independent and identical data distributions. However,
this assumption is violated in several practical scenarios, such as continual learning and lifelong learning, where data
distributions evolve constantly. In such settings, deep neural networks (DNNs) witness catastrophic forgetting and have
difficulty adapting to new tasks without losing performance on previously learned ones. Several past works have tried
to address this problem. For example, Kirkpatrick et al. (2017); Aljundi et al. (2018); Zenke et al. (2017); Chaudhry
et al. (2018) propose quadratic regularizers that penalize changes in parameters which are important for preserving
performance on past tasks; Chaudhry et al. (2019b); Riemer et al. (2019); Aljundi et al. (2019); Shin et al. (2017)
describe the use of memory buffers or generative models to fine-tune on samples from past tasks while learning new
ones; and Rusu et al. (2016); Li et al. (2019); Yoon et al. (2018) propose dynamic modification of network architecture
to increase model capacity for accommodating new tasks. While these works have shown promising results, a detailed
understanding of their proposed methods is still to be developed. Understanding the reasons due to which existing
methods for preventing catastrophic forgetting work or fail can open the possibility of developing better methods.

With this motivation, in this work, we analyze quadratic regularization, a popular technique for preventing catastrophic
forgetting in DNNSs. Specifically, quadratic regularization based methods penalize changes in model parameters that
are important for maintaining performance on previously learned tasks. For example, if 6,, denotes model parameters
corresponding to the n™ task, T}, then the total training loss under quadratic regularization follows

L=Lx, +;ija£f_)1 (00— 0,47, ()

where Ly, is the n'" task’s loss, A is a regularization constant, 6, is model parameterization at the end of (n — 1)
task, a,,_ is the importance of parameters according to tasks 0 to n — 1, and v(¥) indexes a vector v at location .

Different methods define importance differently. For ex., Aljundi et al. (2018) define importance as the sensitivity of

!Code available at https://github.com/EkdeepSLubana/QRforgetting

Published at 1st Conference on Lifelong Learning Agents, 2022

model output to changes in its parameters, while Kirkpatrick et al. (2017) define importance as the diagonal of Fisher
information matrix.

Beyond continual/lifelong learning and related applications, quadratic regularizers are often used for improving
performance in transfer learning scenarios (Li et al. (2018)). However, despite their clear importance, there is limited
work explaining why quadratic regularizers reduce catastrophic forgetting (see Ramasesh et al. (2021); Yin et al. (2020)
for notable exceptions). To bridge this gap, we analyze parameter updates under quadratic regularization and show it
prevents forgetting by interpolating current values of model parameters and their values at the end of the previous
task’s training (see Equation 3). By unrolling this interpolation operation over multiple iterations, we further show
that, in proportion to their importance, quadratic regularizers change the “effective” learning rate of a parameter
(Equation 4): learning rate of parameters that are more important to previously learned tasks is reduced, disallowing
their change; meanwhile parameters that are less important are allowed to change relatively freely, allowing the model
to accommodate new tasks.

Our analysis exposes two important drawbacks to using quadratic regularization for preventing catastrophic forgetting.
(i) We find improper hyperparameter configurations can result in extrapolation, instead of interpolation, of parameters
(see Section 3). This often leads to unstable training (see Section 3.1). (ii) To satisfy conservation properties associated
with the hierarchical nature of DNNs (Du et al. (2018); Kunin et al. (2021)), generally used importance definitions in
quadratic regularization assign lower importance values to parameters in deeper layers (see Section 3.1). As recently
shown by Ramasesh et al. (2021), forgetting in DNNS is primarily caused by changes to deeper layers’ parameters.
Thus, assignment of lower importance to deeper layers reduces the effectiveness of quadratic regularizers. Interestingly,
both these limitations can be eliminated by breaking the update into two stages, thus making interpolation of parameters
an explicit operation (see Section 4).

Main Contributions: In this work, we analyze quadratic regularization based methods for mitigating catastrophic
forgetting. We train more than 2000 models to verify our analysis. Our main contributions follow.

* Role of Interpolation in Quadratic Regularizers (Section 3). We analyze parameter updates under quadratic
regularization and show that it interpolates current and past values of model parameters to prevent catastrophic
forgetting at a given training iteration. Unrolled over multiple iterations, this interpolation operation reduces the
effective learning rate of parameters that are more important for preserving performance on previously learned tasks.

* Limitations in Quadratic Regularization (Section 3.1). We identify two primary drawbacks in the formulation of
quadratic regularization: (a) due to dependence of the interpolation operation on training hyperparameters, improper
hyperparameter configurations often result in extrapolation of parameters (instead of interpolation), hence resulting
in training instability and (b) assignment of lower importance to parameters in deeper layers, a consequence of the
hierarchical nature of DNNs, makes it difficult for quadratic regularizers to prevent catastrophic forgetting.

* Avoiding Limitations via Explicit Interpolation (Section 4). By making the interpolation operation explicit,
we show training instability issues caused by sensitivity to training hyperparameters can be completely avoided.
Further, we show that redefining importance scores relative to past tasks prevents catastrophic forgetting caused by
inappropriate changes to deeper layer parameters. Overall, using these modifications enable quadratic regularizers to
achieve 6.2% higher average accuracy at 4.5% lower average forgetting.

2 RELATED WORK

Several prior works have proposed solutions to the problem of catastrophic forgetting in DNNs. Due to their higher
relevance to our work, we focus on quadratic regularization based methods in this section. Detailed discussion of other
techniques is provided in the appendix.

Quadratic Regularization Based Methods: Kirkpatrick et al. (2017) developed Elastic Weight Consolidation (EWC),
a quadratic regularization strategy that defines the importance of model parameters using the diagonal of the Fisher
information matrix. Since EWC, several quadratic regularizers have been proposed. For ex., Zenke et al. (2017) describe
Synaptic Intelligence (SI), which defines a parameter’s importance as the contribution of that parameter to reduction in
loss for previous tasks; Ritter et al. (2018) replace EWC’s diagonal Fisher approximation with a block-diagonal Hessian
approximation; Aljundi et al. (2018) describe Memory Aware Synapses (MAS), for which a parameter’s importance is
defined as the sensitivity of model output to change in that parameter; and Chaudhry et al. (2018) describe Riemannian
Walk (RWalk), which defines a parameter’s importance as the sum of the diagonal of the Fisher information matrix and
the contribution of that parameter to reduction in loss for previous tasks.

Understanding Methods for Mitigating Catastrophic Forgetting: A few papers have sought to understand the reasons
behind catastrophic forgetting and the effectiveness of existing methods for alleviating it (Krishnan & Balaprakash

Published at 1st Conference on Lifelong Learning Agents, 2022

(2021); Mirzadeh et al. (2020; 2021); Doan et al. (2021); Knoblauch et al. (2020); Bennani et al. (2020)). We specifically
highlight an important relevant work by Ramasesh et al. (2021), who use Centered Kernel Alignment (CKA) (Kornblith
et al. (2019)) to measure representational similarity between models trained on different numbers of tasks. The authors
demonstrate that catastrophic forgetting primarily arises due to adaptation of deeper layers to new tasks. Solutions that
prevent catastrophic forgetting minimize this adaptation, thus ensuring the model can perform well on both novel and
previously learned tasks. Closely related to our work is also the recent paper by Yin et al. (2020), who analyze quadratic
regularizers by focusing on their asymptotic properties (i.e., convergence and generalization behavior). Similarly,
Benzing (2020) discusses how different importance defintions in popular quadratic regularizers are related to each other
via different approximations of the Fisher information matrix. In contrast to these papers, we focus on the model updates
themselves: our work aims to understand limitations in quadratic regularization methods arising from its gradient
descent dynamics. As we show, an implicit interpolation operation helps QR methods prevent catastrophic forgetting,
and its interplay with training hyperparameters yields clear regimes of training instability in QR methods. We also note
that some prior works have proposed Bayesian perspectives for understanding and improving quadratic regularization
techniques by introducing better importance definitions (Huszar (2018); Kirkpatrick et al. (2017); Ritter et al. (2018)),
however these works often make strong assumptions that are unlikely to hold in practice, such as assuming the model
gradient remains zero for previous tasks (to allow a Laplace or second-order Taylor’s approximation). In contrast, our
work makes no assumptions about the model’s capabilities for solving a prior task, using the exact dynamics equations.

3 THE ROLE OF INTERPOLATION IN QUADRATIC REGULARIZATION

We first establish notations used throughout the paper. 6,, denotes model parameters and L1, denotes a task-specific
loss for the n™™ task; 07 _, denotes model parameters at the end of task n — 1; 1 denotes the learning rate; and A denotes

the regularization constant. We use v(¥) to index a vector v at location k. To match the empirical setup in which
quadratic regularizers generally function, we assume importance scores for regularizing the n' task (denoted o, 1) are
calculated during training of tasks 0 to n — 1. These scores stay constant as the n' task proceeds. The total loss for
learning the n' task follows Equation 1.

Our analysis into the mechanics of quadratic regularization is based on a decomposition of the parameter updates.
Specifically, computing the gradient of Equation 1, we see the parameter vector, 6,,, updates as follows:

Gn — an -1 (VQ,I,LT” +)\an—l © (Gn - :1_1)) . (2)
Rearranging Equation 2, we see the k" model parameter updates as follows:
* oL
00 = (1= mal?,) 08 + (mall) 0,%) —n ik 3)

In lation rrent and previous val s
terpolation b/w current and previous values Task Derivative

The above equation illustrates that under quadratic regularization, a new task is learned by moving model parameters
along task-specific derivatives, while forgetting of previously learned tasks is prevented by simultaneously performing
an interpolation operation between current and previous values of model parameters. Essentially, the interpolation
operation minimizes drift of important model parameters, thus ensuring one can retain performance on previously learned
tasks while learning new ones. To understand how mere interpolation of parameters can help mitigate catastrophic
forgetting over multiple iterations, we derive the total change in model parameters between the (n-1)™ and the n' tasks.
Specifically, if the task-specific gradient for the j™ training iteration is denoted as g, then unrolling the parameter
updates in Equation 3 via recursive substitution for 7 iterations yields:

i—1 .
" i—j—1
0P = 0,4 - > {(1 —malf,) 77] g, o
Jj=0

Effective Learning Rate

Equation 4 shows that, based upon its importance, quadratic regularizers change the learning rate of a parameter. In
particular, the effective learning rate at which the k™ parameter updates is calculated by multiplying 1 with exponents
of 1 — n)\aslk_)l. If the parameter’s importance is high, the value of 1 — nAang_)l becomes smaller, consequently
reducing the parameter’s learning rate and restricting its change. If the parameter’s importance is low, the value of
1-— n)\ozflk_)l remains essentially unchanged; consequently, the parameter’s effective learning rate is approximately
equal to n, allowing it to freely change according to task derivatives and enable learning of new tasks.

Overall, Equation 3 and Equation 4 establish the exact mechanisms by which quadratic regularizers help mitigate
catastrophic forgetting. Specifically, Equation 3 shows that in the short-term, quadratic regularizers use a weighted

Published at 1st Conference on Lifelong Learning Agents, 2022

interpolation of model parameters with their previous values to prevent changes to important parameters. Meanwhile,
Equation 4 shows that, in the long-term, quadratic regularizers reduce the learning rate of important parameters, slowing
their change as new tasks are learned. These mechanisms alter a model’s optimization path, allowing unimportant
parameters to adapt and accommodate new tasks, while restricting movement of important parameters to retain
performance on previously learned tasks and prevent catastrophic forgetting. We also note that since the weights used
in parameter interpolation (Equation 3) depend on the product of the learning rate (7)), the regularization constant (),
and the parameter’s importance (a(¥)), essentially these three variables determine the effectiveness of a regularizer.

3.1 LIMITATIONS IN QUADRATIC REGULARIZATION

Having elucidated the role of parameter interpolation in the effectiveness of quadratic regularizers, we now show how
the dependence of this operation on the product nAa*) introduces several drawbacks. We intentionally interleave our
analysis with experimental evidence to show our claims hold well in practice.

Setup: We study four widely used quadratic regularizers: EWC (Kirk-
patrick et al. (2017)), MAS (Aljundi et al. (2018)), SI (Zenke et al. (2017)),
and RWalk (Chaudhry et al. (2018)). Training without any strategy to
mitigate catastrophic forgetting is called plain fine-tuning. We use a 6-

Original =| 54.4 10.0 10.0 10.0

layer CNN trained using SGD at a fixed learning rate (1) of 0.001 on

CIFAR-100 tasks (10 tasks; 10 classes per task). This is similar to ar- All Pos. =] 545 | | 564 | | 61.2 | | 62.8
chitectures used in prior work: Zenke et al. (2017) use a 6-layer model

(4 convolutional+2 dense layers); Chaudhry et al. (2018) use a 5-layer 0.1% Neg. =|[547 565 | 100 ' 100
model (4 convolutional+1 dense layer); Aljundi et al. (2018) use AlexNet . 3 f s
(5 convolutional+3 dense layers). We define training as unstable if loss 104 103 10-2 10-!

proceeds towards infinity, yielding out of precision (NalN) gradients and
parameters. Our experiments in Section 3.1.1 follow the 1 epoch, batch-
size 10 setting advocated by Lopez-Paz & Ranzato (2017), who argue
that for lifelong learning problems, the model should be allowed to see

a sample only once. We highlight that training instabilities elucidated in Figure 1: Case 1: n)\a(k)l < 0. Neg-
this section emerge in the first few training iterations themselves (<10, ,ive importance scoreg lead to unsta-
generally); hence, these results are not sensitive to the number of epochs. pje training. Green, outlined (red) cells
Our analysis in Section 3.1.2 trains model in the stable training regime, imply stable (unstable) training. We ana-
where number of epochs can matter. We thus provide results for both 1 lyze a 6-layer CNN trained using SI on 10
epoch, batch-size 10 and 30 epochs, batch-size 256 setting. We find our [FAR-100 tasks. Original implies both
results follow the same qualitative patterns for both settings. Results are positive and negative scores are allowed,
reported on the following metrics (Chaudhry et al. (2018)): (a) average Ay pos. implies all scores are positive, and
accuracy, defined as average test accuracy achieved by the final model) ;¢ Neg. implies only 0.1% of parameters
over all tasks, and (b) average forgetting, defined as the average amountof ;.o a110wed negative scores. Average ac-
forgetting over all tasks, where an individual task’s forgetting is described curacy is noted inside figure cells (random
as the difference between the maximum and final accuracy achieved on it. accuracy=10%, since any given task has 10
All results are averaged over five seeds; standard deviations are reported classes; plain fine-tuning accuracy=55.2%).
as error bars in figures. For results on other datasets, see appendix. Training is always stable when all scores are

Reg. Constant (A)

positive. However, allowing even a few neg-

3.1.1 EXTRAPOLATION AND TRAINING INSTABILITY ative scores produces unstable training. A
small A mitigates this behavior, but reduces

For the ™ parameter, the interpolation operation at every training iteration ~the regularizer’s effectiveness, resulting in

follows: (1 — nAan_1) © Q%k) + (PDan_1) © 92(2 Since there are Similar performance to plain ﬁne-.tumn‘g.

generally no constraints on the training hyperparameters and since the Results on.other datasets are provided in

scale of importance values can be arbitrarily large or small (e.g., see the appendix.

Figure 3), it is possible for the value of nAa*) to become either negative

or greater than 1. In both cases, the interpolation operation converts into

an extrapolation operation. In this extrapolation regime, we find quadratic regularizers witness unstable training and

severe performance degradation.

Case 1. n/\agbk_)l < 0. For parameters with negative importance, the value of 1 — n)\aff_)l > 1. This pushes the

regularizer to the extrapolation regime for such parameters. To understand the implications of this setting, recall the
learning rate of a parameter is multiplied by exponents of 1 — n)\agi)l (see Equation 4). This implies, for finite gradient,
parameters with negative importance will experience exponentially large updates, resulting in unstable training.

Published at 1st Conference on Lifelong Learning Agents, 2022

—A— Av. Accuracy w/o Clamping @— Av. Accuracy w/ Clamping =>— Violations === A= ﬁ
0

> 64 —& 4 64 64 - L ¢ 64 &—48

o

g

=]

g

<

Z 10 10 10 10
4 007 i x|0a13 1 Aoa2o i Aoz i X
o ' K ’
& 0.0004% 1 P 0.002% 1 ’ 0.001%1 0.002% : /’
< d H -X o
a\o o 0 ______ # ______ T T T 0 0 _______ — ¥ _______ T T 00 _______¥—_>_ I-__ T T o 0 ______ # ______ # ______ ¥_ T

100 102 103 10 10° 102 107! 1 10! 102 1073 1072 107! 1 100 1077 10 1075 107* 1073
A (EWC) A (MAS) A (SD) A (Rwalk)

Figure 2: Case 2: nAagk_)l > 1. Percentage of parameters that violate n)\a(()k) < 1, leading to unstable training.

We use different values of A to train a 6-layer CNN on CIFAR-100 tasks. We include results with and without clamping

of importance scores, which enforces the constraint that n)\aék) < 1 for all parameters. A dotted line marks A at which

'r))\ozﬁlk_)l = 1 for just one parameter—we first expect to see unstable training right after this value. Green (Red) shading
implies we expect training to be stable (unstable) for the corresponding A. As shown, across 1.2 million parameters,
with even a few violations, training becomes unstable: 5 (0.0004% parameters) for EWC, 26 (0.002% parameters)
for MAS, 12 (0.001% parameters) for SI, 31 (0.002% parameters) for RWalk. The use of clamping helps avoid this
instability and yields good performance, indicating the violating parameters were the cause for training instability.
Results on other datasets are provided in the appendix.

To experimentally test this claim, we analyze SI, which allows negative importance scores to be assigned to a parameter.
We use SI to train models for different values of A with a fixed learning rate of 0.001. We compare three cases: (a) the
original method, which allows both positive and negative scores; (b) using absolute values of the assigned importance
scores, thus ensuring all parameters have positive scores; and (c) using absolute values of the importance scores for all
but 0.1% randomly picked, negative importance parameters, hence allowing a very small number of negative scores.
The results are shown in Figure 1 and lead to the following observations. (i) When only positive scores are allowed,
training remains stable and the final model achieves high average accuracy. (ii) The original method, which allow both
positive and negative scores, results in unstable training. In fact, allowing even a few negative scores leads to unstable
training. For a very small value of A\, we note that this behavior is partially mitigated. This can be attributed to the
fact the exponent’s base, 1 — nAagfjl, remains approximately 1 for small \. However, for this setting, the amount
of interpolation is very low and hence the effectiveness of quadratic regularization is reduced, resulting in similar
performance to plain fine-tuning.

The above experiment corroborates our claim that for negative importance scores, training becomes unstable. This
result also shows that importance scores should be positive for all parameters. This raises the question, why does
SI work well? Interestingly, we find that even though in their paper the authors propose SI as a signed method (i.e.,
negative scores are allowed) and derive theoretical results for such a signed importance setting, their implementation
actually uses a rectifier function (ReLLU) to remove negative scores during training (Zenke et al. (2018)). This detail is
not discussed in the paper and is likely why the method works well in practice.

(k)

Case 2. 'r])\aikzl > 1. Note that if ’r/)\agﬁl > 1 for a parameter, the value of 1 — nAc«,,’; < 0 for it. That is, similar to

Case 1, the regularizer is again pushed into the extrapolation regime. Since 1 — n)\ailk_)l is multiplied to the current
parameter value at every iteration (see Equation 3), for a reasonably high value of the parameter (i.e., greater than the
gradient), we see the parameter’s sign will be flipped (changed) every update, resulting in unstable training.

To demonstrate this claim, we train models using different quadratic regularizers and calculate the number of parameters
that violate the inequality n/\agk) < 1 (i.e., after first task) for various regularization constants. As shown in Figure 2,
training is always stable when A is small enough to ensure the inequality is not violated. However, with even a few
violations (<430 out of 1.2 million parameters), training becomes unstable. To confirm that it is indeed these few

violating parameters that cause instability, we also include results with a “clamping” operation, which enforces the

constraint nAagk) < 1 for all parameters by reassigning violating parameters an importance score of 1/x. As can be
seen in the figure, the clamped models do not witness any instability and are able to achieve high performance.

Combined, these results corroborate our claim that if 77)\017(1]2)1 > 1, training becomes unstable. We stress that even
though the clamping operation in the experiments above helps address unstable training, its imposed constraint of

77)\04551) ; = 0 will yield an effective learning rate of 0 for violating parameters (see Equation 10). This implies such

Published at 1st Conference on Lifelong Learning Agents, 2022

Disparate Assignment Balanced Assignment Disparate Assignment Balanced Assignment
1.0 14 ——k—=—A-—--A -
1.0 {Mvmmde et A ®-u@z=g--0-=0==§ mal DL 5= Ju O -=0m=ge==g==0==-0
SNF - “-zt:-.'ﬁ‘ = ~ SRS ~ ~
A - ~ ~
0.8 N *\\\ -@ EWC: Acc (64.5); Fo&m*§~ 0.8 AN A | @ ewc: Acc (66.8); Forg. (0.41) ‘\,.
g ————— T @ MAS: Acc (64.6); Forg. (0.26) L4 g \\\ -@- MAS: Acc (66.5); Forg. (0.10)
O (.6 { 7 EWE: Acc(6p.5); Forg. (2.07) AN -@- Si: Acc (63.2); Forg. (1.83) o = EWC: Acc (63.6); Forg. (4.63) W -@- SI: Acc (65.1); Forg. (1.92)
. = MAS$: Acc (63.9); Forg. (0.56) N, -@- Rwalk: Acc (64.2); Forg. (0.50) 0.6 1 A MAS: Acc (66.0); Forg. (0.23) * -@- Rwalk: Acc (67.0); Forg. (0.18)
== SI: Acc (61.2); Forg. (3.20) =@- Vanilla: Acc (63.9); Forg. (0.24) == SI: Acc (62.8); Forg. (6.30) =@- Vanilla: Acc (66.2); Forg. (0.26)
0.4 = Rwalk: Acc (63.9); Forg. (0.54) =@~ Random: Acc (64.0); Forg. (0.12) = Rwalk: Acc (64.7); Forg. (3.39) -@- Random: Acc (66.2); Forg. (0.21)
T T T T T T T T T T T T 0.4 +—~ T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Layer Layer Layer Layer
(a) 1 epoch. (b) 30 epochs.

Figure 4: Balanced importance scores prevent forgetting more effectively. We use CKA to measure representational
similarity between layers of a model trained only on the first task of CIFAR-100 versus the model trained on all tasks.
Average accuracy (Acc.) and average forgetting (Forg.) are reported in the legend. Balanced variants ensure importance
scores are not biased against deeper layers; they achieve high representational similarity across all layers with minimal
forgetting. In contrast, the other measures have significantly lower CKA similarity in deeper layers and, hence, witness
more forgetting. Results on other datasets are provided in the appendix.

parameters will be frozen at their current value and not allowed to change. Consequently, if an overly large A is used, a
significant portion of the model may remain frozen, disallowing learning of new skills.

Overall, the above two cases complete our analysis of training instability in the extrapolation regime. Experimentally, we
find that as long as the regularizer is in the interpolation regime, training remains stable. In fact, during hyperparameter

tuning, we recommend the constraint 0 < n)\aglk_)l < 1 for all parameters should be used to reject values of 7 and A
that are likely to produce unstable training.

3.1.2 DISPARATE IMPORTANCE ASSIGNMENT

We find that importance definitions used in popular regularizers can assign

(much) lower importance to deeper layers than to earlier layers (e.g., see .
results for EWC in Figure 3). This phenomenon can be explained by
borrowing a result from the field of network pruning, where similar 6x10-6
importance definitions are used for removing unnecessary parameters in ok .

DNNss (Blalock et al. (2020)). Specifically, due to rescale symmetry in . ax10¢ 6
DNNs with ReLU non-linearities, layerwise norms of model parameters : \ \ 'Y
Leee_] L.e-®
—3 —r—
2 3 4 5 0 1 2 3 4

MAS
4x10™

Av. imp.

.00

Av. imp.

A J

5

are conserved across a model (Du et al. (2018); Kunin et al. (2021)). sx10
Tanaka et al. (2020) recently show that to satisfy this property, generally 0 1
used importance definitions assign much lower importance to parameters

in deeper layers than to parameters in earlier layers.

Layer Layer

Figure 3: Average importance is lower for
parameters in deeper layers. We train a
6-layer CNN on the first CIFAR-100 task
and analyze importance definitions used by
popular quadratic regularizers. As shown,

To understand the implications of this disparate importance assignment,
recall that for stable training, the constraint n/\afﬁl < 1 must be satisfied
for all parameters. Thus, assuming stable training and a given value of

7, the regularization constant (\) will be bounded as follows:

1 1 except for SI, importance definitions used
A < Aupper = min | = o (5) in quadratic regularizers result in much
1,1 7] MaXg &, g lower average importance for parameters

Equation 5 shows that under stable training, the valid range for X\ is in deeper layers. Results on other datasets
restricted by the largest importance score assigned to a model parameter. are provided in the appendix.

However, given the disparate importance assignment in popular quadratic

regularizers, will this range be suitable for all parameters in a model? To

understand this, we note for a general parameter Hﬁl, the value of n)\agll

O

Qpna

is bounded as follows:

l l
77)‘042)71 < n)\UPperO‘?(z)q = W (6)
maxy o, 4
If agll < maxy, afﬁl, Equation 6 shows the product n)\affll — 0. Thus, regardless of how large the value of X is, we

find parameters with relatively lower importance will be permitted to change rapidly during training, enabling the model

Published at 1st Conference on Lifelong Learning Agents, 2022

to learn new tasks. Indeed, this is the desired behavior. However, in the context of DNNs, we have shown standard
importance definitions in quadratic regularizers can assign much lower importance to deeper layers (see Figure 3). This
indicates currently used quadratic regularizers will allow a model to change its deeper layers more readily than its
earlier layers. As shown by Ramasesh et al. (2021), forgetting in DNNSs is primarily caused by adaptation of deeper
layers to recent tasks. Thus, by using lower importance scores for parameters in deeper layers, quadratic regularizers
are unable to address the primary source of catastrophic forgetting in DNNs: changes to deeper layers.

Our analysis above also indicates treating deeper layers on the similar scale of importance as earlier layers should allow
a quadratic regularizer to prevent forgetting more easily. To experimentally test this, we design quadratic regularizers
with balanced importance assignments across layers. This is achieved via rescaling layerwise importance scores, such
that the average importance of scores in any layer is the same. We also consider two naive baselines that satisfy this
constraint: (a) Vanilla—assign unit importance to all parameters, and (b) Random—assign uniformly picked, random
importance between [0, 1] to all parameters. Following Ramasesh et al. (2021), we analyze each layer’s contribution to
catastrophic forgetting by using Centered Kernel Alignment (CKA) (Kornblith et al. (2019)) and evaluate similarity of
feature representations between a model trained only on the first task and a model trained on all tasks. If forgetting is
low, features are similar and CKA is high across all layers of the two models. We use the first 3 tasks of our CIFAR-100
setup to perform a hyperparameter search for A. The remaining 7 tasks are used for training and evaluation. We train
models for both 1 epoch with a batch-size of 10 and 30 epochs with a batch-size of 256. Results are shown in Figure 4.
As can be seen, models trained using balanced quadratic regularizers forget the least and have comparable average
accuracy. CKA similarity is high across all layers. In contrast, methods with disparate importance assignment forget
more and show low CKA similarity in deeper layers. The above experiment corroborates our claim that catastrophic
forgetting is better prevented by assigning similar importance to all layers, than by using existing, more complex
importance definitions. Surprisingly, prior work on quadratic regularization generally do not evaluate their methods
against such simple baselines like Vanilla and Random. 2

4 ADDRESSING LIMITATIONS IN QUADRATIC REGULARIZATION

Having established the mechanisms by which quadratic regularizers prevent catastrophic forgetting and the correspond-
ing drawbacks of those mechanisms, we seek a simple way to avoid these problems and still prevent catastrophic
forgetting. To this end, we note our analysis in Section 3.1 shows that two primary conditions should be satisfied to
ensure a quadratic regularizer performs well: (a) the regularizer should function in the interpolation regime and (b)
importance scores be relatively constant across layers. We show these conditions can be easily satisfied by breaking the
quadratic regularizer update (Equation 3) into two operations:

16, — 0, —nVy, Lz, (Task-specific change) and

()6, - (1-R;)©0,+ R; ®6;_, (Interpolation).
Here, the vector R; is defined to control the amount of interpolation at iteration j. Contrasting this update with the
quadratic regularization update in Equation 3, one can see the main difference lies in the order of operations: while
quadratic regularizers perform the task-specific update and the interpolation operation in a single step, our proposed

modification breaks that update into two separate operations. This makes the interpolation operation explicit, instead of
the implicit operation in quadratic regularization. .

(7

To understand the benefit of making interpolation an explicit operation, notice that in Equation 7, the amount of
interpolation is independent of the training hyperparameters; only the vector I; controls the amount of interpolation.
This allows us to circumvent the need of a regularization coefficient and helps avoid training instabilities arising from
gradient descent dynamics (see Section 3.1.1). Further, we can exploit this independence to define 12; in a manner such
that the desired conditions for effective quadratic regularization are always satisfied. To this end, we define I?; as a
measure of the importance of a parameter for previous tasks relative to its importance for all tasks. Specifically, assume
learning of the n™ task is currently underway. Again using o, to denote importance of parameters according to tasks
0ton — 1 and ar, to denote the importance of parameters according to the n™ task, we define the relative importance

R _ 0‘221 ' ®)

2We note that Kirkpatrick et al. (2017) do have a comparison to distance based regularization, which is similar to our Vanilla
technique, but their results are for a setting where one computes and stores importance scores computed after every task. This yields
a memory complexity that is proportional to the product of model size and number of tasks, ignoring one of the core desiderata of
continual learning that memory requirements should grow at most sub-linearly with the number of tasks (Aljundi (2019)).

of a parameter ch) as

Published at 1st Conference on Lifelong Learning Agents, 2022

Algorithm 1 Quadratic Regularization with Explicit Interpolation Steps

Input: parameterization 6}, and importance «,,_; after learning n — 1 tasks; number of training iterations #iters
and Loss L, for learning the n™ task.

Initialize: 0,, = 0 _,; ar, = 0.

for 7 = 0 to #iters-1 do

0n — 6, —nVo, L1, (Task-specific change)
Update o,
Compute I; = Jan Voo % (Relative importance)
0, = (1—R;)©0,+ (R;) ©0;_, (Interpolation)
end for
an = (ag, + ap-1)/2 (Update importance)

Return: 0,,, o,

Here, the definition of importance of a parameter can be borrowed from any popular quadratic regularizer. Note that
under this formulation, R§k) necessarily ranges from 0 to 1 for all parameters, hence satisfying condition (a) and

ensuring stable training. If R is large (closer to 1), then the k™ parameter is relatively more important for preserving
performance on previous tasks than for the current task. In this case, the parameter’s previous value is weighted more
heavily to prevent its change. If Rg-k) is small (closer to 0), then the k™ parameter is relatively less important for
previous tasks. In this case, the parameter’s current value is weighted more heavily, allowing the parameter to adapt to
a new task. Finally, we note that even if a parameter’s absolute importance is low, its relative importance can be high if
it is unimportant to previous tasks. Thus, using this definition for R;, we can also avoid problems related to assignment

of lower importance scores to deeper layers.

We also add that the use of square root in Equation 8 yields us small-but-significant improvements over use of simple
magnitude (~ 1-2% less forgetting, in general). To understand why, recall importance scores in our paper are computed
in a running average manner. In a small-batch scenario (one of our primary setups), gradient noise is very high,
especially in the early iterations (magnitude of order 100). This noise manifests as gradient spikes that produce large
fluctuations in the current task’s importance scores. Since the previously computed importance scores remain fixed and
since we regularize the model using relative importance to previous tasks’ importance scores, these gradient spikes
bias learning towards the current task. To avoid this behavior, we use a sublinear function (square root) to minimize
sensitivity to fluctuating scores. In fact, we found similar improvements with cube root too (another sublinear function).
Over a few iterations, gradient noise is removed by the running average, thus improving signal to noise ratio and yielding
reliable estimates. Thus, in the later iterations, both square root and magnitude show similar behavior. However, square
root has better ability to avoid forgetting in the early iterations and hence its overall forgetting ends up being smaller.

The overall algorithm for quadratic regularization with explicit interpolation steps is shown in Algorithm 1. Before
proceeding, we highlight that instead of using our explicit update formulation, the dependence on hyperparameters
could also have been removed by scaling down the regularization coefficient in standard quadratic regularizers with the
model learning rate. However, this would still retain the presence of hyperparameters in the overall setup, in contrast
with our explicit update formulation.

4.1 EXPERIMENTAL EVALUATION

We now evaluate the effectiveness of the proposed quadratic regularizers with explicit interpolation steps. We also
provide comparisons with two experience replay-based methods: A-GEM (Chaudhry et al. (2019a)) and ER-Reservoir
(Chaudhry et al. (2019b)). We stress that our objective in reporting this comparison is not to beat the state-of-the-art, but
to evaluate if our modified quadratic regularizers can reduce the gap between regularization and replay based methods,
which can be inappropriate for applications where long-term storage of training data undermines privacy or greatly
increases cost (e.g., in embedded systems).

We use three datasets of different complexities: (i) CIFAR-100, divided into 10 tasks with 10 classes per task and
500 samples per class; (ii) Oxford-Flowers, divided into 17 tasks with 6 classes per task and 72 samples per class (on
average); and (iii) Caltech-256, divided into 32 tasks with 8 classes per task and 95 samples per class (on average). Note
that Oxford-Flowers and Caltech-256 have unbalanced classes and few samples per class, which are characteristics of
several real-world applications. We use a 6-layer CNN for all datasets and train the model using SGD with momentum
for all tasks; results for ResNet-18 are in the appendix. The first 3 tasks for all datasets are reserved to run a grid search
for finding the optimal hyperparameter configuration (learning rate/regularization constant). Since the models are

Published at 1st Conference on Lifelong Learning Agents, 2022

Table 1: Comparison of Average Accuracy (Acc; 1 indicates higher is better) and Average Forgetting (Forg; | indicates
lower is better) for plain and explicit interpolation variants of EWC, MAS, SI, and RWalk, averaged over five seeds (std.
dev. are reported in appendix). Results are also provided with two replay based methods (A-GEM and ER-Reservoir)
and plain fine-tuning (Plain). We consider three datasets: CIFAR-100 (10 tasks); Oxford-Flowers (17 tasks); and
Caltech-256 (32 tasks). For a specific regularizer, the better performing variant is underlined; the best results are in bold.
As shown, variants with explicit interpolation steps consistently outperform their Quadratic Regularization counterparts.
This behavior is most prominent in datasets with unbalanced classes and longer task sequences (Oxford-Flowers and
Caltech-256), where hyperparameter tuning is difficult.

1 Epoch | Plain Quadratic Regularizers | Explicit Interpolation Variants | Replay
CIFAR | Plain | EWC MAS SI RWalk | Van. Rand. | EWC MAS SI RWalk | A-GEM ER
Acc (1) | 553 625 639 612 639 639 64.0 63.8 640 639 638 67.2 68.8

Forg (1) | 9.13 207 056 320 054 024 0.12 0.08 0.06 .07 0.09 1.29 0.69

Flowers | Plain | EWC MAS SI RWalk | Van. Rand. | EWC MAS SI RWalk | A-GEM ER

Acc (D) | 379 413 575 362 449 59.5 585 60.0 59.6 59.9 59.4 68.61 68.9
Forg () | 134 106 3.61 15.1 9.68 1.19 3.61 1.03 0.44 0.99 1.31 4.08 3.45

Cal-256 | Plain | EWC MAS SI RWalk | Van. Rand. | EWC MAS SI RWalk | A-GEM ER
Acc (1) 40.1 41.9 53.7 40.9 43.7 55.1 56.3 56.2 57.3 56.0 55.8 63.9 64.3

=]

Forg (}) | 6.21 5.59 392 5.68 4.69 1.89 1.59 1.41 036 142 1.31 2.89 2.75
30 Epochs | Plain Quadratic Regularizers | Explicit Interpolation Variants | Replay
CIFAR I Plain I EWC MAS SI RWalk ‘ Van. Rand. I EWC MAS SI RWalk I A-GEM ER
Acc (1) 60.7 63.6 66.3 62.8 64.7 662 66.2 66.3 66.0 66.2 66.1 66.4 66.8
Forg (}) 8.01 4.63 0.23 6.30 3.39 0.26 0.21 0.21 0.23 0.25 0.29 3.10 1.64
Flowers I Plain I EWC MAS SI RWalk ‘ Van. Rand. I EWC MAS SI RWalk I A-GEM ER
Acc (1) | 49.9 54.1 60.5 51.1 55.7 603 609 61.3 61.6 61.8 61.7 68.9 69.4
Forg (}) 11.8 9.07 1.19 124 7.19 0.36 1.79 1.07 048 0.62 0.71 4.29 3.01
Cal-256 | Plain | EWC MAS SI RWalk | Van. Rand. | ENC MAS SI RWalk | AGEM ER
Acc (1) | 40.6 50.3 60.1 50.6 53.7 60.0 60.1 60.6 60.9 60.8 60.6 65.7 66.1
Forg (}) 15.8 7.15 099 7.4l 4.69 032 022 0.22 0.18 0.32 0.34 2.86 2.32

trained in the stable training regime (enforced via hyperparameter tuning), we train models for both 1 epoch, batch-size
10 setting advocated by Lopez-Paz & Ranzato (2017) and 30 epochs, batch-size 256 setting where we find all models
achieve 95-100% training accuracy when training on a given task, ensuring convergence (an assumption made by prior
work to derive their regularizer strategies). Further, following prior works (Aljundi et al. (2018); Kirkpatrick et al.
(2017); Zenke et al. (2017)), we use a multi-head setting.

Results are shown in Table 1. We note explicit interpolation variants significantly outperform plain quadratic regularizers.
For ex., in the 1 epoch setting, accuracy improves by 6.2% on average and up to 23%. We further make the
following observations: (i) On unbalanced datasets and long task sequences, explicit interpolation results in substantial
improvements. However, on CIFAR-100, whose tasks correspond to hundreds of parameter updates, plain quadratic
regularizers perform competitively. This indicates when longer task sequences are used for hyperparameter search,
the resulting configuration is able to perform well for subsequent tasks as well. In contrast, on Oxford-Flowers and
Caltech-256, especially in the 1 epoch setting, where the respective tasks have only 43 and 76 parameter updates
(on average), searching for adequate hyperparameters is difficult and plain quadratic regularizers result in up to 10%
forgetting. (ii) With our proposed modifications, quadratic regularizers achieve witness lower forgetting than replay
based methods, but continue to underperform on average accuracy. However, we note that when long-term storage of
training data is prevented by privacy or cost concerns, our modifications allow quadratic regularizers to serve as a useful
and reliable alternative to replay based methods.

5 CONCLUSION

In this work, we determine the mechanisms using which quadratic regularization based methods prevent catastrophic
forgetting in DNNs. Our primary findings show that in the short-term, these methods interpolate current and past

Published at 1st Conference on Lifelong Learning Agents, 2022

values of model parameters, disallowing change. In the long-term, they change the learning rate of a parameter in
proportion to its importance, reducing the overall movement of more important parameters. Our analysis also shows
two primary pitfalls that limit the effectiveness of quadratic regularization: (i) extrapolation, instead of interpolation, of
parameters due to inappropriate hyperparameters and (ii) lower importance assignment to deeper layers. We propose
an explicit interpolation variant of quadratic regularizers, which is able to circumvent these pitfalls, boasting much
better performance, consistently. In future work, we aim to perform similar analyses of the mechanisms which allow
replay-based techniques to prevent catastrophic forgetting.

ACKNOWLEDGEMENTS

The authors thank Hidenori Tanaka and anonymous reviewers for valuable feedback on the paper. This work was
supported in part by NSF under award CNS-2008151.

REFERENCES
R. Aljundi. Continual Learning in Neural Networks. arXiv preprint, arXiv:1910.02718v2 [cs.LG], 2019.

R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars. Memory Aware Synapses: Learning what (not)
to forget . In Proc. European Conf. on Computer Vision (ECCV), September 2018.

R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio. Gradient Based Sample Selection for Online Continual Learning. In
Proc. Adv. in Neural Information Processing Systems (NeurIPS), volume 32, pp. 11816-11825, 2019.

M. Bennani, T. Doan, and M. Sugiyama. Generalisation Guarantees for Continual Learning with Orthogonal Gradient
Descent. arXiv preprint, arXiv:2006.11942 [cs.LG], 2020.

F. Benzing. Unifying Regularisation Methods for Continual Learning. arXiv preprint, arXiv:2006.06357v2 [cs.LG],
2020.

D. Blalock, J. Ortiz, J. Frankle, and J. Guttag. What is the State of Neural Network Pruning? In Proc. Conf. on Machine
Learning and Systems, 2020.

A. Chaudhry, P. Dokania, T. Ajanthan, and P. Torr. Riemannian Walk for Incremental Learning: Understanding
Forgetting and Intransigence. In Proc. European Conf. on Computer Vision (ECCV), September 2018.

A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny. Efficient Lifelong Learning with A-GEM. In Proc. Int.
Conf. on Learning Representations (ICLR), 2019a.

A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. Dokania, P. Torr, and M. Ranzato. On Tiny Episodic
Memories in Continual Learning. arXiv preprint, arXiv:1902.10486v4 [cs.LG], 2019b.

T. Doan, M. Bennani, B. Mazoure, G. Rabusseau, and P. Alquier. A Theoretical Analysis of Catastrophic Forgetting
through the NTK Overlap Matrix. In Proc. Conf. on Artificial Intelligence and Statistics (AISTATS), volume 24, 2021.

S.Du, W. Hu, and J. Lee. Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically
Balanced. In Proc. Adv. in Neural Information Processing Systems (NeurIPS), volume 31, pp. 384-395, 2018.

M. Farajtabar, N. Azizan, A. Mott, and A. Li. Orthogonal Gradient Descent for Continual Learning. In Proc. Int. Conf.
on Artificial Intelligence and Statistics (AISTATS), volume 108, pp. 3762-3773, 2020.

S. Farquhar and Y. Gal. Towards Robust Evaluations of Continual Learning. arXiv preprint, arXiv:1805.09733v3
[cs.LG], 2019.

F. Huszar. Note on the Quadratic Penalties in Elastic Weight Consolidation. Proc. National Acad. of Sciences (PNAS),
2018.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. Rusu, K. Milan, J. Quan, T. Ramalho,
A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell. Overcoming Catastrophic Forgetting
in Neural Networks. Proc. of the National Academy of Sciences (PNAS), 114:3521-3526, 2017.

J. Knoblauch, H. Husain, and T. Diethe. Optimal Continual Learning has Perfect Memory and is NP-hard. In Proc. Int.
Conf. on Machine Learning (ICML), volume 98, 2020.

10

Published at 1st Conference on Lifelong Learning Agents, 2022

S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. Similarity of Neural Network Representations Revisited. In Proc. Int.
Conf. on Machine Learning (ICML), volume 97, pp. 3519-3529, 2019.

R Krishnan and Prasanna Balaprakash. Formalizing the Generalization-Forgetting Trade-Off in Continual Learning. In
Proc. Adv. in Neural Information Processing Systems (NeurIPS), volume 35, 2021.

D. Kunin, J Sagastuy-Brena, S. Ganguli, D. Yamins, and H. Tanaka. Neural Mechanics: Symmetry and Broken
Conservation Laws in Deep Learning Dynamics. In Proc. Int. Conf. on Learning Representations (ICLR), 2021.

X. Li, Y. Grandvalet, and F. Davoine. Explicit Inductive Bias for Transfer Learning with Convolutional Networks. In
Proc. Int. Conf. on Machine Learning (ICML), volume 70, pp. 3987-3995, 2018.

X. Li, Y. Zhou, T. Wu, R. Socher, and C. Xiong. Learn to Grow: A Continual Structure Learning Framework for
Overcoming Catastrophic Forgetting. In Proc. Int. Conf. on Machine Learning (ICML), volume 97, pp. 3925-3934,
2019.

Z.Li and D. Hoiem. Learning without Forgetting. IEEE Tran. on Pattern Analysis and Machine Intelligence (TPAMI),
40:2935-2947, 2018.

D. Lopez-Paz and M. Ranzato. Gradient Episodic Memory for Continual Learning. In Proc. Adv. in Neural Information
Processing Systems (NeurIPS), volume 30, pp. 6467-6476, 2017.

S. Mirzadeh, M. Farajtabar, R. Pascanu, and H. Ghasemzadeh. Understanding the Role of Training Regimes in Continual
Learning. In Proc. Adv. in Neural Information Processing Systems (NeurIPS), 2020.

S. Mirzadeh, M. Farajtabar, D. Gorur, R. Pascanu, and H. Ghasemzadeh. Linear Mode Connectivity in Multitask and
Continual Learning. In Proc. Int. Conf. on Learning Representations (ICLR), 2021. URL https://openreview.net/
forum?id=Fmg_fQYUejf.

V. Ramasesh, E. Dyer, and M. Raghu. Anatomy of Catastrophic Forgetting: Hidden Representations and Task Semantics.
In Proc. Int. Conf. on Learning Representations (ICLR), 2021.

M. Riemer, I. Cases, R. Ajemian, M. Liu, L. Rish, Y. Tu, , and G. Tesauro. Learning to Learn without Forgetting By
Maximizing Transfer and Minimizing Interference. In Proc. Int. Conf. on Learning Representations (ICLR), 2019.

H. Ritter, A. Botev, and D. Barber. Online Structured Laplace Approximations For Overcoming Catastrophic Forgetting.
In Proc. Adv. in Neural Information Processing Systems (NeurIPS), volume 31, pp. 3738-3748, 2018.

A. Rusu, N. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and R. Hadsell.
Progressive Neural Networks. arXiv preprint, arXiv:1606.04671v3 [cs.LG], 2016.

G. Saha and K. Roy. Gradient Project Memory for Continual Learning. In Proc. Int. Conf. on Learning Representations
(ICLR), 2021.

H. Shin, J. Lee, J. Kim, and J. Kim. Continual Learning with Deep Generative Replay. In Proc. Adv. in Neural
Information Processing Systems (NeurIPS), volume 30, pp. 2990-2999, 2017.

H. Tanaka, D. Kunin, D. Yamins, and S. Ganguli. Pruning Neural Networks Without Any Data by Iteratively Conserving
Synaptic Flow. In Proc. Adv. in Neural Information Processing Systems (NeurIPS), volume 33, 2020.

M. Titsias, J. Schwarz, A. Matthews, R. Pascanu, and Y. Teh. Functional Regularisation for Continual Learning with
Gaussian Processes. In Proc. Int. Conf. on Learning Representations (ICLR), 2020.

D. Yin, M. Farajtabar, A. Li, N. Levine, and A. Mott. Optimization and Generalization of Regularization-Based
Continual Learning: a Loss Approximation Viewpoint. arXiv preprint, arXiv:2006.10974v3 [cs.LG], 2020.

J. Yoon, E. Yang, J. Lee, and S. Hwang. Lifelong Learning with Dynamically Expandable Networks. In Proc. Int. Conf.
on Learning Representations (ICLR), 2018.

F. Zenke, B. Poole, and S. Ganguli. Continual Learning Through Synaptic Intelligence. In Proc. Int. Conf. on Machine
Learning (ICML), volume 70, pp. 3987-3995, 2017.

F. Zenke, B. Poole, and S. Ganguli. Implementation code for Synaptic Intelligence (Zenke et al., 2017). https:
//github.com/ganguli-lab/pathint/blob/master/pathint/protocols.py#L.37, 2018. Github link.

11

Published at 1st Conference on Lifelong Learning Agents, 2022

A APPENDIX

The appendix is organized as follows:

* Appendix B contains a more detailed related work on strategies to prevent catastrophic forgetting.

* Appendix C provides derivation for the relationship between parameters of n™ and (n — 1) task (Equation 5
from main paper).

» Appendix D explains our experimental setup, including details on the datasets used in our experiments,
the model architecture, dataset preprocessing, training/evaluation protocol, and the hyperparameter tuning
protocol.

* Appendix E provides more results for experiments conducted in Section 3.1 of main paper.
(k)
< 0.

n—1
">

Section E.1: Extrapolation Regime Case 1: nA«

Section E.2: Extrapolation Regime Case 2: n\«
Section E.3: Disparate Importance Assignment.

* Appendix F provides more results for experiments conducted in Section 4.1 of main paper.
Section F.1: Compares plain and explicit interpolation quadratic regularization variants on ResNet-18.
Section F.2: Contains a detailed version of Table 1 with standard deviations of the results.

B RELATED WORK

Regularization Based Methods: We note that beyond quadratic regularization, prior works have also described
functional regularization strategies based on knowledge distillation (Li & Hoiem (2018)) and Bayesian modeling
(Titsias et al. (2020)). In this work, we specifically focus on quadratic regularization techniques.

Replay Based Methods: Another successful approach to mitigate catastrophic forgetting is based on the idea of
experience replay in biological systems. Such methods maintain a memory buffer of samples from previous tasks and
fine-tune the model on this buffer while learning new tasks (Chaudhry et al. (2019b); Riemer et al. (2019); Aljundi et al.
(2019)). Shin et al. (2017) train a generative model to learn previous tasks’ data distributions and generate synthetic
samples for experience replay while learning new tasks. Recent works have also used a gradient episodic memory
(Lopez-Paz & Ranzato (2017); Chaudhry et al. (2019a)) and orthogonal gradient updates (Farajtabar et al. (2020); Saha
& Roy (2021)) to avoid catastrophic forgetting.

Expansion Based Methods: To mitigate catastrophic forgetting, prior works have also proposed to increase model
capacity by allocating more neurons. For example, Rusu et al. (2016) add a small network to the original model every
time a new task is learned. The original model remains fixed and the added network is fine-tuned. Similarly, Li et al.
(2019) optimize the model architecture via neural architecture search. This “optimized” architecture is then fine-tuned
for the next task. Yoon et al. (2018) design dynamically expandable networks, which split neurons on the arrival of new
tasks to increase model capacity. While such methods do not suffer from catastrophic forgetting, they can significantly
increase memory consumption, making them infeasible for scenarios with long sequences of tasks.

C DERIVATION OF RELATIONSHIP BETWEEN PARAMETERS OF n™ AND (n — 1)™ TASK

Preliminaries: We restate notations used throughout the paper for ease of understanding. 6,, denotes model parameters
and L7, denotes a task-specific loss for the n'" task; 6% _; denotes model parameters at the end of task n — 1; 6,,[i]
denotes model parameterization at the i iteration; n denotes the overall model learning rate; and A denotes the
regularization constant. We use v(*) to index a vector v at location k. To match the empirical setup in which quadratic
regularizers generally function, we assume importance scores for regularizing the n' task (denoted cv,,_1) are calculated
during training of tasks 0 to n — 1. These scores stay constant as the n™ task proceeds.

Derivation: Equation 4 of the main paper describes the relationship between model parameters before and after training
for the n' task. Specifically, the following relationship is noted:

i—1 .
" i—j—1
=08 -3 (1= malt) o ®
=0

Effective Learning Rate

12

Published at 1st Conference on Lifelong Learning Agents, 2022

To derive the above result, we can unroll the model updates under quadratic regularization. Recall, the model updates as
follows (Equation 2 from main paper):

Onli +1] = 05[] = 1 (Vo1 L1, + Aan—1 © (0ni] — 05,_1)) -

’ 10
After rearranging: 0,[i + 1] = (1 —nAan_1) © Ou[i] + (NAan_1) ©® 0,y — 1V, LT, (1

Recall, the gradient of task-specific loss at iteration j is denoted as g; = Vy, ;1Lr, . Then, Equation 10 can be used to
show the following:

Hn[l] = (1 - n/\anfl) © Hn[o] + (77)\047%1) O] 9;71 — 190
= (1 —nlen=1) ®0;_1 + (ndem=1) ® 051 — ngo
=0

1 — 190 (11)
0
— 0] =0, = > [= man) 7| @,
j=0

where the second equality follows from the fact ,,[0] = 6 _; (the model for n™ task is initialized according to (n — 1)
task’s final parameterization).

Unrolling for further iterations, we have:
0n[2] = (1 = nAan—1) © Ou[1] + (NAan—1) © 0}, _1 — 11
= (1= nA\an—1) © (051 —n90) + (MAn—1) © by — N1
= (1 —nden=1) © 0, + WAer=1) ©0;,_1 — 1 (1 —nAan_1) © go — N1

=0, —n(1—nXan-1) ® go — 191 (12)
1
— 02 =05 = Y |1 = man)] 0,
j=0
Assume, for the i iteration, following holds true:
1—1
0. = 0%, — [(1 A1) n} ® ;. (13)
=0
Then, for the (i + 1)™ iteration, we have:
Onli + 1] = (1 = nAan—1) © O [i] + (NAan—1) © 0,1 — g
i—1 o
=(1-nlap-1)O | 0;_1 — Z [(1 —Aay_) ! n} ©gj | + Man—1) ®0;_1 —ng;
=0
i—1 _ _
= (1= p2a=D) © 01y o+ (der=D) © 01 = 3 (1= mhan) T 0y —ne
j=0
i—1 } A
=051~ Z [(1 — Aag_1) ! 77} © gj —ngi
=0

i
= Ouli+ 1 =05 = [(1=man) g 0,
§=0
Hence, assuming Equation 13 holds true for the 7 iteration, we see it holds true for the (i + 1)" iteration as well. Since

the relationship is true for + = 1 (see Equation 11) and ¢ = 2 (see Equation 12), thus, by principle of induction, the
relationship holds true for all 7. This completes the derivation.

D EXPERIMENTAL SETUP

We provide further details on our experimental setup in this section.

13

Published at 1st Conference on Lifelong Learning Agents, 2022

Table 2: Hyperparamaters found using grid search for different methods/datasets for the 1 epoch, 10 batch-size setting.

Dataset \ Plain Quadratic Regularizers Explicit Interpolation Variants Replay-Based
CIFAR | EWC MAS SI RWalk | Van. Rand | EWC MAS SI RWalk | A-GEM ER
LR (n) 0.001 0.001 0.001 0.003 0.001 0.001 | 0.001 0.001 0.001 0.001 0.001 0.001
Reg (\) ‘ 10° 1072 1072 107% 102 102 - - - - ‘ - -
Flowers | EWC MAS SI RWalk | Van. Rand | EWC MAS SI RWalk | A-GEM ER

\
\
| |
0003 0003 0003 0003 ‘0.003 0.003 ‘ 0003 0003 0003 0003 ‘ 0003 0.003
\ \

LR ()

Reg(\) | 102 107% 107% 107° 10® 10t

Cal-256 | EWC ~ MAS SI RWalk | Van. Rand | EWC MAS SI RWalk | A-GEM ER
LR(n) | 0001 0001 0001 0001 | 0003 0003 | 0.001 0001 0001 0.001 0.003 0.003
Reg(N) | 10® 107% 107% 107° 102 102 - - - - -

Table 3: Hyperparamaters found using grid search for different methods/datasets for 30 epochs, 256 batch-size setting.

Dataset
CIFAR \ EWC MAS SI RWalk \ Van. Rand

Plain Quadratic Regularizers Explicit Interpolation Variants Replay-Based

EWC MAS SI RWalk | A-GEM ER

LR () | 0001 0001 0001 0003 | 0.001 0001 | 0.001 0001 0001 0.001 0.001 0.001
Reg (\) 10 10°2 107 1073 102 102 - - - - - -
Flowers | EWC ~ MAS SI RWalk | Van. Rand | EWC MAS SI RWalk | A-GEM ER

\
\
\ \
0.003 0003 0003 0003 ‘0.003 0.003 ‘ 0.003 0003 0003 0.003 ‘ 0.003 0003
\ \

LR ()

Reg(\) | 102 1072 107! 1073 102 10t

Cal-256 | EWC ~ MAS SI RWalk | Van. Rand | EWC MAS SI RWalk | A-GEM ER
LR(n) | 0001 0001 0001 0001 | 0.003 0003 | 0001 0001 0001 0.001 0.003 0.003
Reg (\) 10 1072 1072 107* 102 102 - - - - -

D.1 DATASETS

We use CIFAR-100, Oxford-Flowers, and Caltech-256 datasets in our work.

CIFAR-100: CIFAR-100 is a standardly used datasets for evaluating continual/lifelong learning algorithms and has
100 classes overall. We divide the dataset into 10 tasks for all experiments in the paper. Each task corresponds
to 10 sequential classes. Any given class has 500 train samples and 100 test samples. The dataset is available at
https://www.cs.toronto.edu/~kriz/cifar.html.

Oxford-Flowers: Oxford-Flowers is a collection of 102 classes of flowers and is divided into a train/val/test split by
default. We divide the dataset into 17 tasks and 6 classes per task. Similar to CIFAR-100, we use sequential classes
for Oxford-Flowers as well. Designed for few-shot learning, the dataset has very few training samples per class. We
thus use both the train and validation splits to perform training, while the test split is used for testing. The dataset is
unbalanced, with different number of samples for different classes. On average, each class has 72 training and 20 test
samples. The dataset is available at https://www.robots.ox.ac.uk/~vgg/data/flowers/.

Caltech-256: Caltech-256 is a standard classification benchmark with 256 classes. We divide the dataset into 32
tasks with 8 classes per task. Similar to CIFAR-100, we use sequential classes for Caltech-256 as well. The dataset is
unbalanced, with different number of samples for different classes. On average, each class has 95 training and 27 test
samples. The dataset is available at http://www.vision.caltech.edu/Image_Datasets/Caltech256/.

D.2 TRAINING SETUP

In this section, we report our training setup in more detail.

Model: We use a 6-layer CNN with a VGG-16 like architecture. Specifically, the model is configured as [64 conv, 64
conv, Maxpool, 128 conv, 128 conv, Maxpool, 256 conv, 256 conv, Maxpool], where “N conv” indicates a convolutional
layer with N number of 3x 3 filters and “Maxpool” indicates a Maxpool layer with kernel size 2x?2 and stride 2. Each
convolutional layer is followed by a ReLLU activation layer.

Since quadratic regularizers focus on finding a model parameterization useful for next task while staying close to the
previous parameterization, it is important the initial parameterization have high discriminative abilities. Thus, we follow
prior works on quadratic regularization (Aljundi et al. (2018); Zenke et al. (2017)) and pretrain our model on CIFAR-10.

14

Published at 1st Conference on Lifelong Learning Agents, 2022

Classifier Heads: Following the setup proposed by original works on quadratic regularization and also the other
relevant baselines evaluated in our experiments, we use a multi-head setting for all experiments (Kirkpatrick et al.
(2017); Aljundi et al. (2018); Zenke et al. (2017); Chaudhry et al. (2018; 2019a); Lopez-Paz & Ranzato (2017)).

We do highlight that in a multi-head setting, with simple datasets (such as, MNIST) and only a few classes per task
so that even random performance is quite high (e.g., only 2 classes per task or 50% random performance), most
continual/lifelong learning algorithms can perform well (as pointed out by Farquhar & Gal (2019)). However, by using
datasets of varying complexity, with both balanced/unbalanced classes, large/few number of samples per class, and
enough classes per task so that random performance is sufficiently low (10-16%), our experimental setup circumvents
these issues.

Preprocessing: Following general evaluation protocols (Ramasesh et al. (2021)), we do not use data augmentation in
our experiments. All samples are preprocessed to have a mean of [0.5, 0.5, 0.5] and standard deviation of [0.5, 0.5, 0.5]
using the dataloader.

Training/Evaluation Protocol: All datasets are trained using SGD with momentum of 0.9. Other relevant hyperparam-
eters are determined using a grid search (see below). We train for only 1 epoch per task, with a batch-size of 10, as is
expected in streaming data settings Lopez-Paz & Ranzato (2017). The first 3 tasks are reserved for hyperparameter
search and the remaining tasks are used to train the model. Only the final model is evaluated on the test splits for all
datasets.

Hyperparameters: We follow prior work (Chaudhry et al. (2019a)) and use the first 3 tasks for all datasets to search
for training hyperparameters when needed (e.g., for all experiments in Section 6). We use grid-search for finding the
hyperparameters, with the following grids:

* Learning rate (n): [0.1, 0.03, 0.01, 0.003, 0.001];

» Regularization constant (\): [107°, 1074, 1073, 1072, 1071, 1, 101, 102, 103, 10%].

Note our grid for A is much wider than prior works (Lopez-Paz & Ranzato (2017); Chaudhry et al. (2019a)), which
showed quadratic reguarlization approaches fail to achieve high performance. Our work demonstrates the high sensitivity
of quadratic regularizers to hyperparameters. We thus note the use of a limited range of hyperparameters in prior works
may also have been a factor in poor performance for quadratic regularizers.

The hyperparameters for different methods and datasets are reported in Table 2 and Table 3. For A-GEM and
ER-Reservoir, we use a memory buffer of 500 samples.

E MORE RESULTS ON EXPERIMENTS FROM SECTION 3.1

Section 3.1 of the main paper uses models trained on CIFAR-100 to demonstrate training instability issues caused by
hyperparamter sensitivity and the impact of biased importance definitions on the effectiveness of popular quadratic
regularizers. In this section, we repeat experiments from Section 3.1 on Oxford-Flowers and Caltech-256. Note that all
results in the paper and in this section have been averaged over five seeds.

k
E.1 Caskl:paal®, <o.

For parameters with negative importance, the quadratic regularizer enters the extrapolation regime and witnesses
unstable training (see Case 1 in Section 3.1.1 of main paper). In Figure 5, we show this behavior holds true for all
datasets considered in this work.

15

Published at 1st Conference on Lifelong Learning Agents, 2022

Oxford-Flowers Caltech-256
Original =|35.4| 167 16.7 167 Original =|40.3(f41.1] 125 125
All Pos. =|385]|[40.7|[39.8] 16.7 All Pos. =|41.6||41.2||42.1]||47.9
0.1% Neg. =|380((358]| 16.7 167 0.1% Neg. =|41.1((40.8]]|41.9 125
1 1 1 1 1 1 1 1
1074 1073 1072 107! 1074 1073 1072 107!

Reg. Constant (A) Reg. Constant (A)

(a) Oxford-Flowers (b) Caltech-256

Figure 5: Impact of negative importance scores. Green, outlined cells indicate stable training; red cells indicate stable
training. Original implies both positive/negative scores are allowed, A/l Pos. implies all scores are positive, and 0.1%
Neg. implies only 0.1%, randomly picked parameters have negative scores. Average accuracy is mentioned in figure
cells. Random accuracy is 10% for CIFAR-100, 16.7% for Oxford-Flowers, and 10% for Caltech-256. Plain fine-tuning
accuracy is 55.3% for CIFAR-100, 37.9% for Oxford-Flowers, and 40.1% for Caltech-256. For all positive scores,
training is always stable. Including even a few negative importance parameters often produces unstable training and
training is rarely stable when both any number of negative importance parameters are allowed. Using a small A mitigates
this behavior, but reduces the regularizer’s effectiveness, resulting in similar performance to plain fine-tuning.

E.2 CASE2: n/\aﬁf_)l >1

When nAaffjl > 1 for a parameter, the weights for interpolation becomes negative (1 — 17)\04521 < 0). This pushes the

quadratic regularizer to the extrapolation regime, resulting in unstable training (see Case 2 in Section 3.1.1 of main
paper). In Figure 2 (CIFAR-100), Figure 6 (Oxford-Flowers), and Figure 7 (Caltech-256), we show this behavior holds

true for all datasets considered in this work.

—A— Av. Accuracy w/o Clamping @— Av. Accuracy w/ Clamping = Violations =-- A= ﬁ
0

g 62 o < 62 -A/‘/\“ 62 4 P o 62 P
H
[
O
g A/‘/_‘ A/‘—/_‘
5
Z 10 10 10 4 10
) 3 N ;)
g 0.6+ i X[10 i M o.204 1 [P S
& : Lo : P/
© e s 0.003% 0.0002%
& 0.004% | - .0.0003%~" X /
< 0.0 a3 = 0.0 1< 0.0 P 0.0 < et

T T T T T T T T T T T T T T T T T T T

100 102 10° 10 105 10 102 107! 1 100 10 10 102 10! 1 10 10-5 10~ 1073
A(SD) A (Rwalk)

A (EWC) A (MAS)

Figure 6: Oxford-Flowers: Number of violations of the inequality n)\agi)l < 1. The minimum number of violations at
which we first see unstable training is noted as the lower limit on Y-axis of the plots (stable shaded green; unstable
shaded red). As seen, across 1.2 million parameters, even a small number of violations result in unstable training: 35
(0.004% parameters) for EWC, 4 (0.0003% parameters) for MAS, 8 (0.0006% parameters) for SI, and 17 (0.001%

parameters) for RWalk.

16

Published at 1st Conference on Lifelong Learning Agents, 2022

—&— Av. Accuracy w/o Clamping

Av. Accuracy w/ Clamping

—— Violations

= i

2 62 ° .| 62 ° | 62 ° o 62 o
©
5
g
<

>
Z 10 10 10 10 -

) : : : : : . : : : : . : : : : : : : :
4 0.6 i 1.0 4 i A o.204 i X
£ 1)|([1 i/
e 0.004%) \9.0003"/:{,/ 0.003%!1 - 0.0002% /
< 00 = 0.0 s 0.0 % X e 0.0 X bt

T T T . . . T T . T T T T T T T
10t 102 103 104 10° 1073 1072 107! 1 10! 107* 103 1072 107! 1 10-¢ 1073 1074 1073
A (EWC) A (MAS) A (SI) A (Rwalk)

Figure 7: Caltech-256: Number of violations of the inequality n)\agbk_)l < 1. The minimum number of violations at
which we first see unstable training is noted as the lower limit on Y-axis of the plots (stable shaded green; unstable
shaded red). As seen, across 1.2 million parameters, even a small number of violations result in unstable training: 1
(0.0001% parameters) for EWC, 4 (0.0003% parameters) for MAS, 3 (0.0004% parameters) for SI, and 6 (0.0005%
parameters) for RWalk.

E.3 DISPARATE IMPORTANCE ASSIGNMENT

Due to use of biased importance definitions, parameters in deeper layers are often assigned much lower importance
than parameters in earlier layers Section 3.1.2 of main paper). Thus, even if a valid training configuration (i.e., one that
results in stable training) is used, the use of biased importance scores is unable to stop deeper layers from adapting to
recent tasks. Since forgetting of previously learned tasks is majorly caused by changes in deeper layers, this disparate
importance assignment renders quadratic regularizers ineffective. In Figure 3 (CIFAR-100), Figure 8 (Oxford-Flowers),
and Figure 9 (Caltech-256), we show this disparate importance assignment is observed for all datasets considered in
this work.

@] @] s 1
£ 2x10744 e \ £ £ \
S \ o s} \ o \
g \ E o N 5 \
E E) E : E
o \ o o o \
— —_———0 \ -9 - — g
Toaoed, meemeng Sysl WIWTOTTReL 2] Mot WIS, 2] SoT¥oe-eny
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Layer Layer Layer Layer
(a) EWC. (b) MAS. (c) SL. (d) Rwalk.
Figure 8: Oxford-Flowers: Average importance of parameters in a layer.
g g 501 g g ¢
& & \ & 14 8 & 3x10° \
g ax10-qf, S ' S \ g \
E \ E \ E \ PO N E \
o \ o o= — <) \ VT ~ =) \ _o-—g--o
Toxio ol e-e--g-e-g <5l VT9TTITTRN 25l T 0 Seaed YT TTTR
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Layer Layer Layer Layer
(a) EWC. (b) MAS. (c) SL (d) RWalk.

Figure 9: Caltech-256: Average importance of parameters in a layer.

Balanced Importance Scores Prevent Forgetting More Effectively: In the main paper, we propose two regularizers that
assign either unit importance score to all parameters (called Vanilla) or use uniformly picked, random importance score
for all parameters (called Random). By treating all layers on a similar importance scale, we show these regularizers
address problems pertaining to biased importance assignment in popular regularizes (see Figure 4 of main paper). In
particular, following Ramasesh et al. (2021), we use CKA (Kornblith et al. (2019)) to measure representational similarity
and estimate the contribution of a layer towards catastrophic forgetting. We find features across all layers of the model
trained only on first task of a dataset and the model trained on all tasks of that dataset show high representational
similarity for both Vanilla and Random. Here, we demonstrate this conclusion holds well for other datasets as well (see

Figure 10).

17

Published at 1st Conference on Lifelong Learning Agents, 2022

Table 4: Hyperparamaters found using grid search for different methods and datasets.

Dataset Plain Quadratic Regularizers Explicit Interpolation Variants
CIFAR EWC MAS SI RWalk EWC MAS SI RWalk
LR (1) 0.003 0.003 0.003 0.003 0.01 0.01 0.01 0.01
Reg(\) | 10* 10 107* 10°° - - - -

| |
| |

Flowers | EWC MAS SI RWalk | EWC MAS SI RWalk
| |

LR (n) 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.03
Reg(\) | 10° 10 1072 107° - - - -
Cal-256 EWC MAS SI RWalk EWC MAS SI RWalk
LR (1) 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.03
Reg(\) | 10° 10 1072 107° - - - -
Disparate Asslgnment Balanced Assignment Dlsparate Asslgnment Balanced Assignment
1.0 == o~ — = = 1.0 ——h O ==0==:9= -
i == = = el S S M U
=~A ~
\\§ @ EWC: Acc (S1.6); Forg. (2.68) ~ 0.8 x' ‘ @ EWC: Acc (59.9); Forg. (2.02) A]
§ \ @ MAS: Acc (58.3); Forg. (0.68) o g \ “@- MAS: Acc (61.9); Forg. (0.48)
O 0.6 { & EWC:Acc (41.4); Forg. (10.56) . -@- Si: Acc (50.3); Forg. (3.45) @] == EWC: Acc (54.1); Forg. (9.07) \ @ SI: Acc (59.4); Forg. (3.71)
== MAS: Acc (57.6); Forg. (3.61) -@- RWalk: Acc (54.6); Forg. (1.85) 0.6 { =& MAS: Acc (60.5); Forg. (1.67) N, -@- RWalk: Acc (61.0); Forg. (1.45)
0.4 == SI: Acc (36.2); Forg. (15.08) ~@- Vanilla: Acc (59.6); Forg. (1.19) = SI: Acc (51.1); Forg. (12.39) A 1 @ Vanilla: Acc (60.3); Forg. (0.36)
. = RWalk: Acc (45.0); Forg. (9.68) ~@- Random: Acc (58.5); Forg. (3.61) =~ RWalk: Acc (48.6); Forg. (9.68) -@- Random: Acc (60.9); Forg. (1.79)
T T T T T T T T T T T T 0.4 T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Layer Layer Layer Layer
(a) Oxford-Flowers (1 epoch) (b) Oxford-Flowers (30 epochs)
Disparate A55|gnment Balanced Assignment 1.0 Disparate Assignment Balanced Assignment
1. == - - . L ¥ Y] =E=k==gs -~ - -
s == = _’i* sregemeees e N M Lot S
= b S N S
0.8 -@- EWC: Acc (51.6); Forg. (2.68) “\ 0.8 = \\\ -@- EWC: Acc (57.6); Forg. (4.95)
g @ MAS: Acc (58.3); Forg. (0.68)) g \x‘ -® MAS: Acc (60.4); Forg. (0.45)
O 0.6 { <& EWC: Acc (41.4); Forg. (10.56) \ @~ SI: Acc (50.3); Forg. (3.45) o == EWC: Acc (50.3); Forg. (7.15) @~ SI: Acc (57.5); Forg. (4.51)
= MAS: Acc (57.6); Forg. (3.61) -@- RWalk: Acc (54.6); Forg. (1.85) 0.6 1 A MAS: Acc (60.1); Forg. (0.99) -@- RWalk: Acc (59.0); Forg. (2.38)
4 = SI: Acc (36.2); Forg. (15.08) ~@- Vanilla: Acc (59.6); Forg. (1.19) = Sl: Acc (50.6); Forg. (7.41) ~®- Vanilla: Acc (60.0); Forg. (0.32)
0. == RWalk: Acc (45.0); Forg. (9.68) =@- Random: Acc (58.5); Forg. (3.61) == RWalk: Acc (53.7); Forg. (4.69) =@- Random: Acc (60.1); Forg. (0.22)
T T T T T T T T T T T T 0.4 T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Layer Layer Layer Layer
(c) Caltech-256 (1 epoch) (d) Caltech-256 (30 epochs)

Figure 10: Representational similarity, as measured using CKA, between a model trained only on the first task of a
dataset versus the model trained on all tasks of that dataset. Average accuracy (Acc.) and average forgetting (Forg.) are
reported in the legend. Unlike other methods, Vanilla and Random are not biased against deeper layers, achieving high
representational similarity across all layers with minimal forgetting. Meanwhile, the other measures suffer significant
drift in similarity for deeper layers and, hence, more forgetting.

F MORE RESULTS ON EXPERIMENTS FROM SECTION 4.1

F.1 QUADRATIC REGULARIZATION ON RESNET-18

In the main paper, we only provide results comparing quadratic regularization variants on a 6-layer CNN. Here, we
give comparisons for a ResNet-18 model. Following prior works, we use one-third the number of filters in each layer
(Mirzadeh et al. (2021)). Hyperparameters are again determined via a grid-search on first 3 tasks and listed in Table 4.
The hyperparameter search space and other training configurations are the same as before (discussed in Appendix D).
The final results are provided in Table 6. As can be seen, the conclusions drawn on 6-layer CNN hold well with the
ResNet-18 model too. We note the results for plain fine-tuning can sometimes be better than EWC. This happens
because grid-search leads to a small learning rate for plain fine-tuning, but a relatively larger learning rate for EWC.

18

Published at 1st Conference on Lifelong Learning Agents, 2022

Table 5: Detailed version of Table 1 from main paper: Comparison of Average Accuracy (Acc; 1 indicates higher is
better) and Average Forgetting (Forg; | indicates lower is better) for plain and explicit interpolation variants EWC, MAS,
SI, and RWalk. We consider three datasets: CIFAR-100 (10 tasks); Oxford-Flowers (17 tasks); and Caltech-256 (32
tasks). For a specific regularizer, the better performing variant is in bold. As shown, variants with explicit interpolation
steps consistently outperform their Quadratic Regularization counterparts. This behavior is most prominent in datasets
with unbalanced classes and longer task sequences (Oxford-Flowers and Caltech-256), where hyperparameter tuning is
difficult.

1 epoch | Plain Quadratic Regularizers | Explicit Interpolation Variants
CIFAR | Plain | EWC MAS SI RWalk | EWC MAS SI RWalk
Acc (1) 553+16 | 625£06 639+£08 612+£23 63.9+03 63.8 + 0.4 64.0 + 0.2 63.9 + 0.3 63.8 09
Forg (1) 913+16 | 207£1.0 056£02 320£03 0.54+0.1 0.08 +0.02 0.06 =0.05 0.07 = 0.04 0.09 £ 0.03
Flowers | Plain | EWC MAS SI RWalk | EWC MAS SI RWalk
Acc (1) 379 £ 2.1 4134+05 575+24 362+23 449+21 60.0 + 0.8 59.6 + 1.1 59.9 + 0.9 594 + 1.1
Forg (1) 134 £25 10.6 £1.0 3.61+07 151+£19 9.68+23 1.03 + 0.5 0.44 £+ 0.2 0.99 + 0.2 131+ 0.3
Cal-256 | Plain | EWC MAS SI RWalk | EWC MAS ST RWalk
Acc (1) 40.1+£0.9 419+£05 5374+05 409+£05 437407 56.2 + 0.3 573+ 0.6 56.0 + 0.6 558 £ 0.5
Forg ({) 6.21 £0.5 559 +£0.1 392+04 568+0.1 4.69+0.1 1.41+£0.2 0.36 + 0.1 142+ 0.2 1.31 £ 0.1
30 epochs | Plain Quadratic Regularizers | Explicit Interpolation Variants

CIFAR | Plain | EWC MAS ST Rwalk | EWC MAS ST RWalk
Acc (1) 607+ 14 | 63.6+08 66.3 £0.2 628+ 16 647+09 66.3 + 0.3 66.0 = 0.2 66.2 + 0.3 66.1 = 0.3
Forg (J) 8.01 £1.2 463+10 023+0.07 630+£07 339+1.1 021 £0.06 0.23+0.07 0.25+0.04 0.29 £ 0.07
Flowers | Plain | EWC MAS SI RWalk | EWC MAS SI RWalk
Acc (1) 499 + 1.7 54.14+09 60.5 + 0.6 51.1£+£14 557415 61.3 + 0.7 61.6 + 0.6 61.8 + 0.7 61.7 0.8
Forg (1) 11.8 + 1.9 9.07 0.8 1.19 £ 0.7 1244+20 7.19+13 0.21 + 0.4 0.48 + 0.5 0.62 £+ 0.7 0.71 £ 0.5
Cal-256 | Plain | EWC MAS SI RWalk | EWC MAS SI RWalk
Acc (1) 40.6 = 1.2 50.3 £ 0.9 60.1 £ 0.4 50.6 £08 5374038 60.6 + 1.0 60.9 + 0.8 60.8 + 0.8 60.6 + 0.7
Forg ({) 158+ 1.5 7.15+0.8 0.99 +£ 0.4 741 £ 1.1 46906 0.22 £+ 0.6 0.18 + 0.4 0.32 + 0.6 0.34 £ 0.6

Table 6: Results on ResNet-18: Comparison of Average Accuracy (Acc; 1 indicates higher is better) and Average
Forgetting (Forg; | indicates lower is better) for plain and explicit interpolation variants EWC, MAS, SI, and RWalk. We
consider three datasets: CIFAR-100 (10 tasks); Oxford-Flowers (17 tasks); and Caltech-256 (32 tasks). For a specific
regularizer, the better performing variant is in bold. As shown, variants with explicit interpolation steps consistently
outperform their Quadratic Regularization counterparts. This behavior is most prominent in datasets with unbalanced
classes and longer task sequences (Oxford-Flowers and Caltech-256), where hyperparameter tuning is difficult.

Dataset Plain Quadratic Regularizers Explicit Interpolation Variants

CIFAR Plain EWC MAS SI RWalk EWC MAS SI RWalk
Acc (1) 40.1 £ 0.6 39.6+14 585+05 305+18 586+03 | 57.6+04 5744+03 572406 573+05
Forg (1) 193 £0.2 332449 1.7+ 04 394£13 42+£02 1.7£03 1.7£0.6 1.9+£03 1.6 £0.2

I I I
I I I

Flowers | Plain | EWC MAS SI RWalk | EWC MAS SI RWalk
I I I

Acc (1) 321+ 1.7 273+£34 414+15 246+16 41.6+0.6 534+14 526+18 525+18 531+17
Forg (4) 9.6 £ 1.3 321434 169+13 347+15 154 +1.0 71+1.2 79 +1.2 51+09 84+ 1.8
Cal-256 Plain EWC MAS SI RWalk EWC MAS SI RWalk

Acc (1) 357 £ 1.1 246+09 464+14 229405 56826 527+15 529+13 500+14 528+1.7
Forg () 13.7+15 327+12 129+16 31.7+1.0 121 +£23 347 £03 3.8+03 32+0.7 3.8+0.7

F.2 QUADRATIC REGULARIZATION ON 6-LAYER CNN
In the main paper, we provided results comparing plain quadratic regularizers with their explicit interpolation variants.

Due to space constraints, we did not provide standard deviations. This information, along with the average results, is
shown in Table 5.

19

