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ABSTRACT

Transformers trained on huge text corpora exhibit a remarkable set of capabili-
ties, e.g., performing simple logical operations. Given the inherent compositional
nature of language, one can expect the model to learn to compose these capa-
bilities, potentially yielding a combinatorial explosion of what operations it can
perform on an input. Motivated by the above, we aim to assess in this paper “how
capable can a transformer become?”. Specifically, we train autoregressive Trans-
former models on a data-generating process that involves compositions of a set of
well-defined monolithic capabilities. Through a series of extensive and system-
atic experiments on this data-generating process, we show that: (1) Autoregressive
Transformers can learn compositional structures from the training data and gen-
eralize to exponentially or even combinatorially many functions; (2) composing
functions by generating intermediate outputs is more effective at generalizing to
unseen compositions, compared to generating no intermediate outputs; (3) the
training data has a significant impact on the model’s ability to compose unseen
combinations of functions; and (4) the attention layers in the latter half of the
model are critical to compositionality.

1 INTRODUCTION

Large scale Transformers pretrained on huge text corpora have revolutionized machine learning in
recent years (Radford et al., 2018; 2019; Brown et al., 2020; Sanh et al., 2021; Wei et al., 2021;
Thoppilan et al., 2022; Touvron et al., 2023). Due to an ever-increasing interest in adopting these
models in our daily lives, evaluating and predicting their capabilities has become increasingly impor-
tant (Bommasani et al., 2021; Ganguli et al., 2022; Shevlane et al., 2023; Rae et al., 2021; Hoffmann
et al., 2022; Tay et al., 2022; Henighan et al., 2020; Hernandez et al., 2021; Sharma & Kaplan, 2020).
Motivated by this, several recent works have performed extensive empirical analyses to better un-
derstand the possibilities and limitations of using these models in practical tasks of interest. For
example, such works show large language models (LLMs) can generate coherent text completions
based on a provided context, perform code generation and debugging, use online APIs and tools in
an automated manner, and even solve multimodal problems such as image captioning (Wei et al.,
2022a; Bubeck et al., 2023; Austin et al., 2021; Chen et al., 2021; Lee et al., 2023; Liang et al., 2022;
Qin et al., 2023; Liu et al., 2023; Merullo et al., 2022; Suzgun et al., 2022; Srivastava et al., 2022).
While this benchmarking of pretrained models is extremely valuable, it often focuses on evaluating
rather “primitive” capabilities; for example, the ability to identify whether a given passage of text is
biased or toxic (Gehman et al., 2020; Liang et al., 2022). However, given the compositional nature
of data these models are trained on (e.g., language), it is possible that a model learns to compose
its primitive capabilities, hence yielding abilities to perform tasks that we never explicitly trained it
for. This can lead to an underestimation of the capabilities the model possesses and what tasks we
can expect it to perform; vice versa, if the model does not learn to compose, we can be certain that
benchmarking for primitive capabilities is sufficient to characterize the model.

1

a
rX

iv
:2

3
1
1
.1

2
9
9
7
v
1
  
[c

s.
L

G
] 

 2
1
 N

o
v
 2

0
2
3





Preprint

model struggles to compose (Sec. 4.2). As we show, the training data non-trivially determines
whether the Transformer generalizes to an exponential (which we call in-order generalization)
or combinatorial (which we call out-of-order generalization) set of functions. Furthermore, by
using the popular linear probing protocol used for understanding Transformer internals (Tenney
et al., 2019; Li et al., 2023a), we show Attention layers in the latter half of the model play a
crucial role in enabling compositional generalization in a Transformer (Sec. 4.4).

2 RELATED WORK

Capabilities in a Transformer. Transformers pretrained on large-scale, web-crawled datasets
have been shown to exhibit a slew of interesting capabilities, such as primitive arithmetic, ques-
tion answering, commonsense knowledge reasoning, stylistic transformation of a piece of text, and
even multimodal reasoning (Radford et al., 2018; 2019; Brown et al., 2020; Bubeck et al., 2023; Wei
et al., 2022a; 2021; Rae et al., 2021; Chowdhery et al., 2022; Austin et al., 2021; Chen et al., 2021;
Bommasani et al., 2021). However, this generality can come at the cost of a model also learning
capabilities that are undesirable (Bommasani et al., 2021; Tamkin et al., 2021; Chan et al., 2023),
e.g., producing sensitive, biased, or toxic outputs (Weidinger et al., 2021; McGuffie & Newhouse,
2020; Garrido-Muñoz et al., 2021; Lin et al., 2021; Jiang et al., 2021; Abid et al., 2021; Parrish
et al., 2021; Xu et al., 2021; Huang et al., 2019; Sheng et al., 2019; Gehman et al., 2020; Xu et al.,
2020; Tamkin et al., 2021). This has motivated several works focused on understanding capabilities
of a pretrained model, including (i) predicting capabilities of a future model, e.g., via fitting power
laws to data/model scaling results (Rae et al., 2021; Hoffmann et al., 2022; Hernandez et al., 2021;
Sharma & Kaplan, 2020) and (ii) eliciting capabilities of a given model, e.g., via identification of
appropriate prompts or via step-wise inference protocols such as chain-of-thought, to understand
what tasks a the model can be reliably used for (Liang et al., 2022; Suzgun et al., 2022; Lee et al.,
2023). However, we argue that by measuring a model’s performance on benchmark tasks to identify
or predict the existence of a specific set of capabilities is bound to be insufficient for characterizing
what tasks it can perform: given the compositional nature of data that modern neural networks are
trained on, it is possible that they learn how to compose capabilities, hence learning how to perform
several more tasks than we explicitly train or evaluate them on.

Compositionality in neural networks. The ability to compositionally reason has been touted as
a cornerstone of human intelligence (Fodor & Lepore, 2002; Fodor & Pylyshyn, 1988; Fodor, 1975;
Schulz et al., 2016). Accordingly, several works have studied the ability of a neural network to com-
positionally generalize, generally demonstrating a negative result, and correspondingly developing
explicit strategies that help improve the model’s ability to generalize (Liška et al., 2018; Hupkes
et al., 2018; Lake & Baroni, 2018; Csordás et al., 2021b;a; 2022; Ontanón et al., 2021; Lepori et al.,
2023; Lewis et al., 2022; Yun et al., 2022; Okawa et al., 2023; Hosseini et al., 2022). Our work dif-
fers from prior literature in several manners. (i) We do not intend to develop protocols for improving
compositional generalization in a Transformer; instead, our goal is to show that mere autoregressive
training on strings generated using a compositional data-generating process can yield a Transformer
that can compose its capabilities and perform tasks it was never explicitly trained for. To this end,
we define a synthetic task that allows for perfect task specification and hence helps avoid ambiguity
due to prompt misspecification. While similar to the compositional table lookup task used in prior
work (Liška et al., 2018; Csordás et al., 2022), our task involves a much larger set of capabilities to
train and test for (3125 or 4 million, depending on the setup, compared to 128 capabilities in prior
work). (ii) We aim to understand the extent of compositional generalization in a Transformer trained
on our proposed domain, i.e., what kind of compositions does the model fail to perform and when.
We define a framework to precisely characterize these failures modes and use the popular linear
probing protocol for understanding model internals to show the critical role of attention layers in en-
abling compositionality (Li et al., 2023a). (iii) Finally, we analyze the impact of step-wise inference
protocols, wherein intermediate outputs generated by the model are recursively passed to it as inputs,
and which has been used for solving several challenging benchmark tasks recently (Suzgun et al.,
2022; Wei et al., 2022b). While a few prior works have studied, in a similar spirit as ours, whether
a Transformer can learn to compositionally generalize (Csordás et al., 2021a; Ontanón et al., 2021),
we emphasize these works focus on compositionality via a singular forward pass, i.e., the model is
not allowed to recursively process its inputs. We find the use of intermediate outputs significantly
simplifies the problem and, given its popularity in practical scenarios, our results serve as a demon-
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compositional structure of the data forces a model to learn to compose at relatively minimal data
diversity, which indicatively address our primary question: an appropriate prompt could make the
model compose its capabilities, yielding an “explosion of capabilities”. This can arguably make
tractable analysis of capabilities in a pretrained model relatively difficult.
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batch size of 512 and weight decay of 1e-4 for 150 epochs. As is common, we do not use a positional
embedding, since the architecture is not permutation invariant.

Hidden dimension
Layers 256 5124

1 22.5 46.0
2 33.4 69.1

Table 1: LSTMs fail to compose in the direct prompt format.
We train an LSTM on 250 composition of two functions (one
permutation and one bijection) in the direct prompt format and
tabulate the accuracy (%); the setup is identical to Fig. 6 (Right).

The inputs are passed through
an input embedding layer be-
fore being passed to the LSTM
and the outputs of the LSTM
are also passed through a linear
layer which outputs the logits.
In our experiments, we vary the
number of stacked LSTMs (or
no. of layers) and the dimension
of the internal hidden vector.

Despite our attempt to train multiple different LSTMs with the best set of hyper-parameters, we
observe that they do not show any compositional generalization on all our synthetic setups. This
observation is further evidence for our hypothesis that the attention layers are important for compo-
sitionality.

Hidden layer dimension
Layers 120 256 512 1024

1 16.2 36.2 99.9 99.9
2 60.3 99.3 99.9 99.8
4 18.7 100.0 100.0 9.9

Hidden layer dimension
Layers 120 256 512 1024

1 9.3 10.3 20.1 22.9
2 12.4 21.3 25.3 28.8
4 6.6 13.9 17.6 10.0

Table 2: LSTMs fail to compose in the step-by-step prompt format. We train autoregressive
LSTMs on 50 in-order compositions of 5 bijections from Fb in the step-by-step format and tabulate
the accuracy (%); The setup is identical to Fig. 4. We evaluate the LSTM on the (left) compositions
seen during training and (right) in-order compositions not seen during training. LSTMs fail to
generalize to functions outside of the training data while transformers generalize compositionally in
the same setting.

B.3 ATTENTION MASKS

Detailed setup. We train a 1-layer Transformer on a composition of 50 random in-order composi-
tions of 5 bijections in the step-by-step prompt format. We visualize the attention masks for a fixed
sequence of task tokens, averaged over 1000 different data tokens in Fig. 7(right). We found the
attention masks to be identical across different choices of the task tokens. Each row corresponds to
a causal attention mask for a single token and sums up to 1. At any given row, the attention is over
two elements which we speculate are the task token and the intermediate output of the composition.
The 5 contiguous blocks along the columns correspond to the 5 steps of composition. These prelim-
inary results indicates that it is possible to build a complete mechanistic understanding of Attention
for compositional tasks.

B.4 PROBING THE LAYERS IN TRANSFORMERS OF DIFFERENT SIZES

In this section, we consider an experimental setup that is identical to the linear probe experiments
in Figure 7. We compute the probe accuracies for Transformers with different number of layers in
Fig. 14. Across all Transformers, we observe that accuracy increases in the last few layers of the
transformers. Furthermore, we also observe a sharp increase in accuracy right after the MLPs in the
last few layers of the transformer.

We saw in Figure 7(right) that the attention masks for a 1-layer Transformer seem to select an input
and a task token to operate on at every step of the composition. We hence believe that attention has
a huge role in compositionality and propose the following hypotheses: (1) LSTMs fail to compose
functions not present in the training data. We hypothesize that a lack of attention contributes to this
failure. (2) The probe accuracy after some MLPs see a sharp in increase in accuracy. We hypothesize
that the attention layers play a critical role in selecting the right inputs to pass to the MLP.
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