2311.12997v1 [cs.LG] 21 Nov 2023

arxiv

Preprint

How CAPABLE CAN A TRANSFORMER BECOME?
A STUDY ON SYNTHETIC, INTERPRETABLE TASKS

Rahul Ramesh!, Mikail Khona?,

Robert P. Dick®, Hidenori Tanaka*’, Ekdeep Singh Lubana™®
!Computer and Information Science, University of Pennsylvania
ZPhysics, MIT

3Electrical Engineering and Computer Science, University of Michigan
4Physics & Informatics Laboratories, NTT Research

5Center for Brain Science, Harvard University

ABSTRACT

Transformers trained on huge text corpora exhibit a remarkable set of capabili-
ties, e.g., performing simple logical operations. Given the inherent compositional
nature of language, one can expect the model to learn to compose these capa-
bilities, potentially yielding a combinatorial explosion of what operations it can
perform on an input. Motivated by the above, we aim to assess in this paper “how
capable can a transformer become?”. Specifically, we train autoregressive Trans-
former models on a data-generating process that involves compositions of a set of
well-defined monolithic capabilities. Through a series of extensive and system-
atic experiments on this data-generating process, we show that: (1) Autoregressive
Transformers can learn compositional structures from the training data and gen-
eralize to exponentially or even combinatorially many functions; (2) composing
functions by generating intermediate outputs is more effective at generalizing to
unseen compositions, compared to generating no intermediate outputs; (3) the
training data has a significant impact on the model’s ability to compose unseen
combinations of functions; and (4) the attention layers in the latter half of the
model are critical to compositionality.

1 INTRODUCTION

Large scale Transformers pretrained on huge text corpora have revolutionized machine learning in
recent years (Radford et al., 2018; 2019; Brown et al., 2020; Sanh et al., 2021; Wei et al., 2021;
Thoppilan et al., 2022; Touvron et al., 2023). Due to an ever-increasing interest in adopting these
models in our daily lives, evaluating and predicting their capabilities has become increasingly impor-
tant (Bommasani et al., 2021; Ganguli et al., 2022; Shevlane et al., 2023; Rae et al., 2021; Hoffmann
etal., 2022; Tay et al., 2022; Henighan et al., 2020; Hernandez et al., 2021; Sharma & Kaplan, 2020).
Motivated by this, several recent works have performed extensive empirical analyses to better un-
derstand the possibilities and limitations of using these models in practical tasks of interest. For
example, such works show large language models (LLMs) can generate coherent text completions
based on a provided context, perform code generation and debugging, use online APIs and tools in
an automated manner, and even solve multimodal problems such as image captioning (Wei et al.,
2022a; Bubeck et al., 2023; Austin et al., 2021; Chen et al., 2021; Lee et al., 2023; Liang et al., 2022;
Qin et al., 2023; Liu et al., 2023; Merullo et al., 2022; Suzgun et al., 2022; Srivastava et al., 2022).
While this benchmarking of pretrained models is extremely valuable, it often focuses on evaluating
rather “primitive” capabilities; for example, the ability to identify whether a given passage of text is
biased or toxic (Gehman et al., 2020; Liang et al., 2022). However, given the compositional nature
of data these models are trained on (e.g., language), it is possible that a model learns to compose
its primitive capabilities, hence yielding abilities to perform tasks that we never explicitly trained it
for. This can lead to an underestimation of the capabilities the model possesses and what tasks we
can expect it to perform; vice versa, if the model does not learn to compose, we can be certain that
benchmarking for primitive capabilities is sufficient to characterize the model.

Preprint

What is the sum of the digits of the square of the cube of 8. What is the sum of the digits of the square of the cube of 8.
Give the answer step-by-step. Give the answer directly.
@ Cube of 8: @ The sum of the digits of the square of the cube of 8is 1.

8"3=8*8*8=512

Now, find the square of 512:
51272 =512 * 512 = 262,144

Tell my friend that | am going to the mall. Write it in legalese.

To find the sum of the digits of this answer, add up the @ Dear [Friend's Name],
individual digits: | hereby notify you, in accordance with applicable legal
2+6+2+1+4+4=19 standards, that | shall be departing for the shopping
center forthwith.
So, the sum of the digits of the square of the cube of 8 is 19. Sincerely,
v [Your Name] v

Figure 1: Signatures of compositionality. ChatGPT (Bubeck et al., 2023) correctly responds to
prompts that require composition of primitive arithmetic capabilities (sum, cube, square)—we argue
these prompts are unlikely to be in the training data. However, the model does not always compose
reliably (top-right panel). This motivates us to study the extent to which a Transformer can learn to
compose its capabilities by mere pretraining on a compositional domain.

Motivated by the above, our goal in this work is to analyze if a Transformer trained on a composi-
tional data-generating process, without any special modifications to the usual training pipeline, can
learn both relevant primitive capabilities and an ability to compose those capabilities. As shown
by Bubeck et al. (2023), LLMs have already started to exhibit “sparks” of such compositional ca-
pabilities, such as generating text that merges content of varying styles or evaluating mathematical
expressions through the application of a sequence of functions (Fig. 1). However, due to their black-
box nature, it is unclear if an LLM actually learns to compose capabilities or merely memorizes
relevant samples from its training data. Moreover, while interacting with an LLM, it can be difficult
to guarantee that we are utilizing a prompt that will appropriately guide the model to use the capa-
bilities we desire, let alone compose them. Correspondingly, we may end up claiming the model
lacks a certain capability, when in fact we may not be utilizing the appropriate context for eliciting
it (Suzgun et al., 2022; Reynolds & McDonell, 2021; Lu et al., 2023; Wei et al., 2022b).

To circumvent challenges faced with LLMs pretrained on real world data and focus on our specific
motivation, “can a Transformer trained on compositional data learn to compose its capabilities”,
we choose to limit the purview of this work to a well-defined synthetic domain. This is similar in
spirit to several recent works that utilize synthetic datasets generated using objects like first-order
logic machines, context-free grammars, linear regressors, modular arithmetic, and even board games
to establish and understand phenomenology of modern neural networks (Liu et al., 2022; Allen-Zhu
& Li, 2023c;a;b; Garg et al., 2022; Li et al., 2023b; Saparov & He, 2022; Chan et al., 2022; Bhat-
tamishra et al., 2020; Zhou et al., 2023; Nanda et al., 2023a;b; Li et al., 2023a; Lubana et al., 2023;
Jones, 2021). The goal of such works, including ours, is to develop interpretable demonstrations and
mechanistic hypotheses that enable a characterization of the target phenomenology in a controlled
setting. Accordingly, we emphasize we do not intend to develop novel protocols for improving
Transformers’ ability to compositionally generalize, but rather to demonstrate and understand what
drives its existence in the first place. Overall, we make the following contributions in this work:

(1) A minimal synthetic setup for characterizing Transformers’ ability to compose. We pro-
pose a minimal setup involving compositions of predefined functions F (bijections and permu-
tations) that operate on a string of arbitrary tokens (Sec. 3). Motivated by instruction induction
and tuning in LLMs (Honovich et al., 2022; Wei et al., 2021), we instantiate a notion of “task
tokens” which specify what functions are to be applied to the input string. This helps us avoid
any ambiguity in task-specification (Suzgun et al., 2022; Si et al., 2023).

(2) Transformers show explosion of capabilities. We characterize the ability of a Transformer
trained autoregressively on our proposed setup to compositionally generalize, i.e., to apply a
composition of specific functions chosen from F to an input string. As we show, the model can
generalize to exponentially or even combinatorially many functions (Sec. 4.1)—these functions
are entirely “out-of-distribution”, i.e., the model never sees them in its training data and hence
was not explicitly trained to learn them. The crucial component here is the use of stepwise
inference, i.e., allowing the model to recursively process its intermediate outputs (Sec. 4.3).

(3) Characterizing limitations and mechanisms of compositionality in a Transformer. We
formalize a notion of “distance” between the functions seen by the model during pretraining and
the ones it is evaluated on, hence enabling a precise characterization of situations wherein the

Preprint

model struggles to compose (Sec. 4.2). As we show, the training data non-trivially determines
whether the Transformer generalizes to an exponential (which we call in-order generalization)
or combinatorial (which we call out-of-order generalization) set of functions. Furthermore, by
using the popular linear probing protocol used for understanding Transformer internals (Tenney
et al., 2019; Li et al., 2023a), we show Attention layers in the latter half of the model play a
crucial role in enabling compositional generalization in a Transformer (Sec. 4.4).

2 RELATED WORK

Capabilities in a Transformer. Transformers pretrained on large-scale, web-crawled datasets
have been shown to exhibit a slew of interesting capabilities, such as primitive arithmetic, ques-
tion answering, commonsense knowledge reasoning, stylistic transformation of a piece of text, and
even multimodal reasoning (Radford et al., 2018; 2019; Brown et al., 2020; Bubeck et al., 2023; Wei
et al., 2022a; 2021; Rae et al., 2021; Chowdhery et al., 2022; Austin et al., 2021; Chen et al., 2021;
Bommasani et al., 2021). However, this generality can come at the cost of a model also learning
capabilities that are undesirable (Bommasani et al., 2021; Tamkin et al., 2021; Chan et al., 2023),
e.g., producing sensitive, biased, or toxic outputs (Weidinger et al., 2021; McGuffie & Newhouse,
2020; Garrido-Muiioz et al., 2021; Lin et al., 2021; Jiang et al., 2021; Abid et al., 2021; Parrish
et al., 2021; Xu et al., 2021; Huang et al., 2019; Sheng et al., 2019; Gehman et al., 2020; Xu et al.,
2020; Tamkin et al., 2021). This has motivated several works focused on understanding capabilities
of a pretrained model, including (i) predicting capabilities of a future model, e.g., via fitting power
laws to data/model scaling results (Rae et al., 2021; Hoffmann et al., 2022; Hernandez et al., 2021;
Sharma & Kaplan, 2020) and (ii) eliciting capabilities of a given model, e.g., via identification of
appropriate prompts or via step-wise inference protocols such as chain-of-thought, to understand
what tasks a the model can be reliably used for (Liang et al., 2022; Suzgun et al., 2022; Lee et al.,
2023). However, we argue that by measuring a model’s performance on benchmark tasks to identify
or predict the existence of a specific set of capabilities is bound to be insufficient for characterizing
what tasks it can perform: given the compositional nature of data that modern neural networks are
trained on, it is possible that they learn how to compose capabilities, hence learning how to perform
several more tasks than we explicitly train or evaluate them on.

Compositionality in neural networks. The ability to compositionally reason has been touted as
a cornerstone of human intelligence (Fodor & Lepore, 2002; Fodor & Pylyshyn, 1988; Fodor, 1975;
Schulz et al., 2016). Accordingly, several works have studied the ability of a neural network to com-
positionally generalize, generally demonstrating a negative result, and correspondingly developing
explicit strategies that help improve the model’s ability to generalize (Liska et al., 2018; Hupkes
et al., 2018; Lake & Baroni, 2018; Csordas et al., 2021b;a; 2022; Ontandn et al., 2021; Lepori et al.,
2023; Lewis et al., 2022; Yun et al., 2022; Okawa et al., 2023; Hosseini et al., 2022). Our work dif-
fers from prior literature in several manners. (i) We do not intend to develop protocols for improving
compositional generalization in a Transformer; instead, our goal is to show that mere autoregressive
training on strings generated using a compositional data-generating process can yield a Transformer
that can compose its capabilities and perform tasks it was never explicitly trained for. To this end,
we define a synthetic task that allows for perfect task specification and hence helps avoid ambiguity
due to prompt misspecification. While similar to the compositional table lookup task used in prior
work (Liska et al., 2018; Csordas et al., 2022), our task involves a much larger set of capabilities to
train and test for (3125 or 4 million, depending on the setup, compared to 128 capabilities in prior
work). (ii) We aim to understand the extent of compositional generalization in a Transformer trained
on our proposed domain, i.e., what kind of compositions does the model fail to perform and when.
We define a framework to precisely characterize these failures modes and use the popular linear
probing protocol for understanding model internals to show the critical role of attention layers in en-
abling compositionality (Li et al., 2023a). (iii) Finally, we analyze the impact of step-wise inference
protocols, wherein intermediate outputs generated by the model are recursively passed to it as inputs,
and which has been used for solving several challenging benchmark tasks recently (Suzgun et al.,
2022; Wei et al., 2022b). While a few prior works have studied, in a similar spirit as ours, whether
a Transformer can learn to compositionally generalize (Csordds et al., 2021a; Ontanén et al., 2021),
we emphasize these works focus on compositionality via a singular forward pass, i.e., the model is
not allowed to recursively process its inputs. We find the use of intermediate outputs significantly
simplifies the problem and, given its popularity in practical scenarios, our results serve as a demon-

Preprint

4 (b). In-order compos“itifon »
of compositions
G). 21 Basis of compositional functiorh O ol offfollw :
FO) oo O(X) 2
4 e 4 g ofiflo ® 3
) B &Y @o(1)o e 4)
B OE S > =
((: ((c). Out-of-order composition)
1 1 1 - = @ @ #of displacements
. . . . Eoffof@o@olw 1
o.o oo(») 1
Do@o@o@o@w o=cet
F“‘ o F“ o ,’ o (x) 4)

Figure 2: Data generating process for in-order and out-of-order compositions. (a) Each of the

L = 5 positions is associated with N = 4 functions fi[l], in addition to an identity function, resulting
in a total of 5 x 4 + 1 = 21 basis functions for composition. (b) The in-order compositions select
functions within the same position while (c) out-of-order compositions allow for selecting functions
across positions. Each position also includes the identity function since it allows us to compute
compositions of fewer than 5 functions. In the examples presented in (c), displaced functions are
surrounded by a black line, and we then count the number of displaced functions.

stration that inference protocols that allow Transformers to recursively refine their outputs can lead
to a wide range of capabilities, especially ones that we never explicitly train the model for.

3 FORMALIZING CAPABILITIES AND COMPOSITIONS

As noted by Hupkes et al. (2020), despite extensive work exploring compositionality in neural net-
works, the term is often used for several related concepts. To avoid ambiguity, we thus present a
definition of a “compositional model” that captures our intended notion and, correspondingly, de-
scribe the data-generating process used in this work to understand Transformers’ ability to compose.

Let F denote a set of predefined automorphisms, i.e., any given function F' from the set defines
a map between points from its input space to the same space. This is motivated by the fact that
the input and output domain of a language model are generally the same. We define an input z
as a combination of two strings [z, z4), where z; € X f is a sequence of L tokens that specify
a series of L functions from F that are to be sequentially applied to a k token sequence specified
by xq € X j(, where | X4| = V. We refer to z; as task tokens and to =, as data tokens. For
example, let zf, be the identifier that denotes that function Fj is to be applied to the data tokens and
14, denote the k™ token from the vocabulary X;. Assume L = 2 and k = 1 and define a sample
T = [xp, TR, Ta,). Then, a model M : XfL x XX — XI that takes z as input is expected to

produce the output F; o F (24,). We use [L] to denote the ordered set {1,2, ..., L}.

A capability is defined in our setup as the ability of a model to accurately represent a function
F e F. We emphasize that we do not expect pretrained models in practice to perfectly imple-
ment an arbitrary function; however, this idealized definition affords us precision by allowing us to
use accuracy over a random set of inputs to claim a model possesses a certain capability. Based
on this definition, we intend to understand the set of capabilities—or the set of functions—that a
Transformer can implement by composing them. We formalize this as follows.

Definition 1 (Compositionality.) We say a model M (.) compositionally generalizes if, for any sub-
set of functions F; € F, where i € [L], M ([xp,, xp,, - xp,,xq]) = Fp o+ 0 Fy o Fy (z4).

In practical scenarios, we would not expect the pretraining data to present a capability in all possible
scenarios that it can be used in. For example, simple arithmetic tasks like multiplication are often
only seen in the context of numbers 1-3 digits in web-crawled data (Razeghi et al., 2022), which
leads to an inability of the model to perform multiplication in higher order numbers. To model this
in our setup, we create a spurious correlation between a subset of the functions from F and the
position of their identifiers in the task tokens x ;. Specifically, we define F () c F as the set of
functions that are allowed at the position / in the task tokens x ; of a datapoint 2. We let |[F()| = N
for all locations [, i.e., F is partitioned into equally sized subsets and |F| = N x L. The notation

Fi(l), where i € [N] and | € [L], is used to denote the i possible function at position . Based on
the above, we define two ways to compose L functions: in-order and out-of-order (see Fig. 2).

Preprint

Definition 2 (In-order vs. out-of-order Compositions.) Consider the composition F = F(ll) o
.o FU2) o FUL) (), where I; € [L]. Denote the ordered set {l1,ls, ... 1.} as order(F). If

order(F) equals the set [L], we say F is an in-order composition; else, we say it is out-of-order.

Consider a model M that perfectly encodes all N x L functions from the set F. If the model can
generalize to in-order compositions of these functions, then its set of capabilities will in fact grow
to exponentially many functions—N % of them to be precise. Further, the ability to compose out-
of-order can increase this set combinatorially, i.e., proportional to (N x L)%, growing even more
quickly compared to the set of in-order compositions. Such an “explosion of capabilities” would
imply perfect knowledge of what all tasks a pretrained model can perform is difficult to characterize
or predict, especially since the pretraining data used for training a model is generally unknown
and hence it is hard to characterize even what “primitive” capabilities the model possesses. In
our experiments, we find that while Transformers can generalize to both in-order and out-of-order
compositions, the pretraining dataset for enabling out-of-order generalization must exhibit sufficient
(albeit not huge) diversity. To empirically characterize this and discuss the failure modes on out-of-
order compositions, we find it useful to define the following notion of displacement.

Definition 3 (Displacement.) Ler D(s, s’) denote the hamming distance between two ordered sets
s and s'. Then, the displacement of a composition F is defined as D(order(F), [L]).

3.1 EXPERIMENTAL SETUP AND DATA-GENERATING PROCESS

Having defined our notion of compositionality
of capabilities in a pretrained model, we now
briefly discuss the experimental setup used in
this work (see App. A for details). Specifi-
cally, our data-generating process yields inputs
consisting of a sequence of 6 data tokens, x,; €
X8, where each token is drawn from a vocabu-
lary of size | X4| = 10. Each of the 6 elements

e.g) bijection: (i}
)l(a Ko Xa,Xa XaXa,

H

g g g

BoBoEoBo-@w

(a) Direct promptmg »

ssssssss

(b). Step by -step promptmg

S XewXeo o Ko Xa Ko Ko XeXe Ko XaXaKaXa Xa, KXo Ko Xe Ko Ko Xe) Koo XaKaXaKa,

step-by-step intermediate outputs

Figure 3: Direct v.s. Step-by-step prompts. The
task (rainbow) and data (blue) tokens can be com-

are drawn uniformly at random, with replace-
ment, from X,;. We consider two families of
functions defined over these data tokens: bijec-
tions and permutations (see Figure 10) Specif-
ically, the set F; (which we refer to as bijec-
tions) consists of all functions that apply a bi-
jection on each of the 6 tokens in an element-wise manner. The number of such functions is the
number of bijections on a single token: there are 10! such functions when | X;| = 10. The second
set is F,, which is the set of all permutations of 6 elements (|F,,| = 6!). The rationale for selecting
these function families is that both F;, and F, are groups with function composition as the group
operator. As a result, the compositions of two functions will also be an element in the group.

pleted in two ways. They are followed by the in-
termediate outputs of the composition in the step-
by-step format (a) or directly by the final result of
the series of compositions in the direct format (b).

We also control the set of task tokens seen during training. For example, we can choose to partition
the set of functions into different subsets and only include in-order compositions in the training data.
We define two subsets of of the function class F3: random and 21 base (see Appendix A.2). The
set random contains a random set of compositions of functions from the set of all possible in-order
compositions. The set of functions 21 base considers compositions of 5 functions, where at least
4 are the identity function. Each of the 5 positions have 4 choices for the function which totals to
21 functions if we include the identity function. This set helps us assess whether mere learning of
“primitive” capabilities is sufficient to yield compositionality in a model. We consider two formats
for representing a sample (see Fig. 3). Both formats start with task tokens x s, that specify the se-
quence of functions to compose, followed by the data tokens x4. The direct prompt format follows
this with the final output of the function composition, while the step-by-step prompt format fol-
lows this with all intermediate outputs of the function composition. We generate 100,000 samples
using the process above for a given prompt format (step-by-step or direct) and with restrictions on
the task tokens (in-order, out-of-order, 21 base, random). The model is then trained on this data
(see Appendix A) in an autoregressive manner using the cross-entropy loss. After training, we eval-
uate whether the model possesses a capability corresponding to a set of composition of functions
(depends on the experiment) by computing the accuracy of the model completion on 1000 different
data tokens. The accuracy of a completion is the average accuracy over the last 6 tokens.

Preprint

4 RESULTS

In this section, we systematically investigate the capabilities of an autoregressive Transformer
trained on synthetic tasks with compositional structure. Broadly, we would like to understand how
this structure in the data manifests in the network. We answer the following questions: (1) Do
Transformers generalize to functions not present in the training data and to what extent do they ex-
hibit in-order and out-of-order generalization? (2) How do properties of the training data influence
in-order and out-of-order generalization? (3) Is there a difference between direct and step-by-step
composition? (4) Do Transformers first learn to compose fewer functions before learning to com-
pose many of them? (5) What is the role of attention and does it help a Transformer compose
different functions? Additional results are presented in Appendix B.

4.1 COMBINATORIAL EXPLOSION AND EXPONENTIAL GROWTH IN CAPABILITIES

Do Transformers only generalize to functions present in the training data or do they reflect compo-
sitional structure present in data? In Fig. 4, we train on data consisting of a small subset of in-order
compositions of functions from the set of bijections F3, in the step-by-step prompt format. We con-
sider the composition of 5 functions in both Figures 4a and 4b. Each position of the composition
can be one of 4 choices, with the 4 choices at different positions being different in Fig. 4a and the
same in Fig. 4b. In addition, any position can also be selected to be identity.

We find that a Transformer can capture the compositional structure in data and generalize to
an exponential and combinatorial set of functions in Fig. 4a, 4b, despite being trained on an
extremely small subset of function compositions. For example, a Transformer trained on just 30-
100 compositions of functions generalizes to 3125 unseen compositions of these functions almost
perfectly. This could explain why language models show signatures of compositionality. In con-
trast, we note LSTMs fail to compositionally generalize in this same setup (Appendix B.2), while
Transformers with different numbers of layers and attention heads show compositional generaliza-
tion (Appendix B.1). This indicates that the inductive bias of the architecture contributes to
compositional generalization and any autoregressive model is not guaranteed to succeed. We
also observe that 21 base—which serves as a null model that only trains on the monolithic capabili-
ties (or functions)—does not compositionally generalize. In summary, compositional generalization
occurs with the step-by-step prompt format, but also requires the right architecture and training data.

100 =

)
T

@
S
1

80—

o
S
|

60—

Train data
21 base + 0 random functions (14%)
21 base + 5 random functions (76%)
21 base + 10 random functions (93%)
25 random functions (75%)-
50 random functions (98%)
100 random functions (100%)

IS
S
1

40— Train data

21 base + 0 random functions (20%)
20 — 21 base + 10 random-functions (76%).
25 random finctions (72%)

50 random functions (100%)

N
3
1

Avg. accuracy over all functions (%

o
1
=}
1

Avg. accuracy on all in-order compositions (%)

T T T T T T T | |
0 2500 5000 7500 10000 12500 15000 17500 20000 0 5000 10000 15000 20000

Number of iterations Number of iterations
(a) (b)

Figure 4: Transformers can generalize to an exponential (a) or combinatorial (b) number of
new functions. We plot the accuracy averaged over all compositions of 5 bijections, where each
position of composition has 4+1 choices, with one of them being the identity function. Each curve
corresponds to training data generated by a different subset of functions and the model is trained us-
ing the step-by-step prompt format. (a) The choice of 5 functions are different at different positions
of composition—there are 21 different functions (1 identity) which can be composed (in-order) in
3125 different ways. (b) The choice of 5 functions are identical across all 4 positions of the compo-
sition which means there are 3125 different ways to compose them; only 1365 of them are unique.
Both figures are evidence that one can train on a small number of compositions of functions (around
31-100) and generalize to exponentially (a) and combinatorially (b) many functions that would be
considered ~out-of-distribution”.

Preprint

21 base + 21 base + 10 in-order +
21 base functions 10 in-order functions 100 out-of-order functions
o Y 10 10| 10| 10 10 S ﬂﬂm
- - % 11 |10 10 10 - 84 67 61 57
~ Nl 13 10 10 ~ 9279 m
) o) N 14 | 11) 98 82
= 100
< < 100 < 100 83
0 w 100 w 100 - 80
0 1 2 3 4 5 01 2 3 4 5 0 1 2 3 4 5 60
21 base +
100 out-of-order functions 100 out-of-order functions

3232 30 31 31 30

° mﬁm 55 49 42 40

No. of identity functions in out-of-order composition

- S 38 37 35 33 33 - 8 E 56 | 50 20
o~ ~ o~ 92 E
™ © o 98 79 L4 Accuracy
< < <« 100/81
o 100 o 100 w100

0o 1 2 3 4 5 0O 1 2 3 4 5 0o 1 2 3 4 5

No. of displacements in out-of-order compostion

Figure 5: The training data determines if a Transformer generalizes to an exponential (in-order
generalization) or combinatorial (out-of-order generalization) number of functions. Each sub-
plot uses a different subset of functions (from F;) to generate the training data and we evaluate
them on combinatorial set of functions generated from 20+1 functions (one of them being identity).
The x-axis varies the number of displacements and the y-axis varies the number of compositions—
equivalently the number of functions that are not identity. We make the following observations: (1)
A Transformer trained on just 31 functions (top-middle) generalize to nearly exponentially many
or 3125 compositions of functions. (2) All the above configurations do not generalize perfectly to
the entire combinatorial set. They however partially generalize to nearly 4 million compositions of
functions. The generalization is worse if we increase the number of compositions or displacements
(see Fig. 2 for pictorial description of displacements).

4.2 IN-ORDER VS. OUT-OF-ORDER GENERALIZATION

How do biases in the training data influence a Transformer’s ability to compose? Are Transformers
capable of in-order and out-of-order generalization and does it depend on the nature of training data?
For the functions in Fig. 4a, the number of in-order compositions is 5> = 3125 and the number of
out-of-order compositions is a whopping (21)® = 4084101; essentially all of these functions are
different from the ones seen in the training data. Like in Sec. 4.1, we only consider Transformers
trained with the step-by-step prompt format on functions from the set of bijections ;. In Fig. 5,
we consider the training data to have functions from 21 base, some in-order and some out-of-order
compositions. We fail to see in-order or out-of-order generalization unless the data also includes
in-order or out-of-order compositions respectively. However, a small number of in-order (10
of them) or out-of-order compositions (100 of them) in the training data is enough for in-
order generalization and limited out-of-order generalization. All scenarios in Fig. 5 do not fully
generalize to out-of-order compositions. This indicates that out-of-order compositions may require
a lot more data compared to in-order compositions.

4.3 DIRECT VS. STEP-BY-STEP COMPOSITIONS

Both Sec. 4.1, 4.2 use step-by-step compositions, but do these results also hold for direct prompting?
Fig. 6 (Left) and Fig. 15 answer this in the negative. Specifically, in Fig. 6 (Left), we consider a
setup identical to Fig. 4a and train on a different number of random functions. Transformers fail to
generalize to new in-order compositions with direct prompting when we consider compositions
of bijections from F;,. We observe this failure even if we train of 2000 of the 3125 possible in-order
compositions of functions, i.e., even if the data has high diversity. In contrast, in Fig. 4a, mere 100
compositions in the step-by-step format suffices to generalize to all possible in-order compositions.

Preprint

o
(=]

N

o

IS)
1

Train data
—— 100 functions (9%)
80— — 500 functions (21%)
—— 1000 functions (38%)
2000 functions (66%)

[/

80—

60 — 60 =1

40—

L L
| A

0

40—

Train data

20 —— 50 functions (41%)
—— 100 functions (87%)
—— 250 functions (99%)

Avg. accuracy over all 625 functions (%)

Avg. accuracy over all 3125 functions (%)

T T T T T T T I T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
Number of iterations Number of iterations

Figure 6: Compositional generalization is less frequently seen in the direct prompt format com-
pared to the step-by-step prompt format. (Left.) We train a Transformer on 20+1 bijections with
5 compositions with 4 choices at each position. The model fails to generalize to all 3125 composi-
tions even if it trained on 2000 such functions. (Right.) We train a Transformer on a composition
of two functions, with one function being one of 25 bijections and the other function being one of
25 permutations (totalling to 625) compositions. The model is able to compose previously unseen
combinations of functions when trained on 250 of these functions in this scenario.

On the other hand, we see in-order generalization if a Transformer is trained on a composition
of a a permutation function from 7, and a bijection function from F;. In Fig. 6 (Right), we
train on compositions of two functions, where one position is one of 25 bijections, and the other
is one of 25 permutations. We vary the number of compositions seen in the training data and find
that 250 compositions in the training data is enough for the model to generalize to all 625 possible
compositions of the two functions. We note that bijection and permutations operate on orthogonal
features of the input: bijections operate on the value of the token while permutations operate on the
position of the token. We speculate that this is important for compositional generalization in the di-
rect format. Direct formatted prompts occur less frequently compared to step-by-step compositions
and this could be indicative of why chain-of-thought is a popular prompting strategy (Wei et al.,
2022b). A precise answer for when direct prompts can succeed remains unclear though.

Why is out-of-order generalization harder for direct prompting? We believe that direct prompts
are unlikely to generalize to the out-of-order compositions or at least require more samples. For
example, consider functions F' and G and consider a Transformer that computes the function G o F'.
Since G o F' is computed using a single forward pass through a Transformer for direct prompts, G
must occur in a layer after ' (shown in Fig. 11b). As a result, the model cannot generalize to F' o G
since f occurs after GG in its layers. Hence, a Transformer may have to learn copies of F' and G at
multiple layers in order to generalize to both F'o G and G o F.

4.4 ANALYZING TRAINED TRANSFORMERS

Linear probe accuracy. In Fig. 7 (Left), we use a linear probe to analyze the importance of attention
layers and contrast them with the MLP layers. Follwing Geva et al. (2022), we fix the parameters of
probe to the last linear layer, i.e., the unembedding layer of the trained model. We use a Transformer
trained on 100 random in-order compositions of 5 functions identical to the model in Fig. 4a.
See Figure 14 for more linear probe experiments on Transformers of different sizes.

Attention Visualization. In Fig. 7 (Right), we plot the attention map for a predefined composition
of functions from the set F3. Specifically, we take a pretrained 1-layer Transformer, which, as we
show in Appendix, is able to solve at least the in-order generalization task. Then, keeping the Task
tokens to be fixed corresponding to the predefined composition, we sample 1000 data tokens and
compute the attention map for the 1-layer model. The average of these maps is reported in the
figure: we clearly see that all data tokens attend to the Task token that specifies the current function
that needs to be applied and the data token that the function is to be applied to. This provides further
credence to our claim that attention is playing a non-trivial role in enabling compositionality.

Training dynamics. In Fig. 8, we consider a fine-grained version of Fig. 4a to understand if a
Transformer can generalize to composition of fewer functions before it generalizes compositions of
many functions. We find that the answer depends on the nature of the training data. If the training
data consists of 21 base and very few in-order compositions, then a Transformer generalizes to
fewer compositions (more identities) first before generalizing to compositions of multiple functions.

Preprint

10071 @ After attention layer

X After MLP layer
80—

60—

40

20—

Linear probe accuracy (%)

I I | I 1
4 6 8 10

Transformer Layer

N =—f

Figure 7: (Left.) We see a sharp increases in accuracy after MLP layers in the last few layers
of the Transformer. We compute the linear probe accuracy—averaged over in-order compositions
of functions—after the MLP and attention layers at every layer of the model. (Right.) Attention is
primarily paid to the relevant data and task token. We plot the causal attention mask of a 1-layer
Transformer trained using the step-by-step format on compositions of 5 in-order bijections (setup
of Fig. 4). Keeping the prompt fixed to specify a specific composition of functions, we average the
attention maps for 1000 samples. We clearly see a given data token attends to the specific task and
data token relevant to producing the right output.

On the other hand, if the model is trained on 25 random in-order compositions, then it is better at
generalizing to more complex compositions of these functions; this trend is lost when we train on
50 random in-order compositions.

21 base + 0 random functions 21 base + 5 random functions

21 base + 10 random functions
100 ~ - —

100 100

50—

Woaay et s

50

50

0

T T T
5000 10000 15000 20000

25 random functions

0

1
0

T T T
5000 10000 15000 20000

50 random functions

0
0

T T T
5000 10000 15000 20000

100 -

50—

0

100

50—

0

Y r——

100 =5

50—

100 random functions

1
0

I I |
5000 10000 15000 20000

Avg. accuracy over compositions of k functions (%)

0

I I 1
5000 10000 15000 20000

Number of iterations

0

0

I I I
5000 10000 15000 20000

No. of compositions

5

o =2 N W H

Figure 8: A Transformer trained on a random subset of functions generalizes first to a compo-
sition of more functions before it generalizes to a composition of few of them. Each line is the
average accuracy over all composition of % functions and each subplot is a Transformer trained on
a different subset of functions. The 21 base is trained on the individual functions and these Trans-
formers learn to compose a smaller set of functions (more functions in composition are identity)
before learning to compose many of them. The opposite is true when the model is trained on a
random subset of 25 compositions of functions.

5 CONCLUSION

Given several recent works focused on prediction or elicitation of capabilities in pretrained models,
we ask whether the very motivation guiding these works is tractable: can we possibly characterize
all capabilities of a model, specifically a Transformer, pretrained on a compositional data domain?
To address this question, we proposed a synthetic, but well-defined, data domain and formalized
the notion of a capability as representing a function defined over the domain. Breaking compo-
sitional generalization into two relevant scenarios (in-order vs. out-of-order), we showed that the

Preprint

compositional structure of the data forces a model to learn to compose at relatively minimal data
diversity, which indicatively address our primary question: an appropriate prompt could make the
model compose its capabilities, yielding an “explosion of capabilities”. This can arguably make
tractable analysis of capabilities in a pretrained model relatively difficult.

ACKNOWLEDGEMENTS

RR thanks Kento Nishi, Gautam Reddy and Eric Bigelow for their discussions at the early stages of
this project. RR was supported by grants from the National Science Foundation (IIS-2145164, CCF-
2212519) and the Office of Naval Research (N00014-22-1-2255). ESL was partially supported by
the National Science Foundation (IIS-2008151).

AUTHOR CONTRIBUTIONS

ESL and RR conceived the initial project direction and defined the problem setup with with inputs
from HT and MK. The experiments were led by RR with inputs from ESL, HT and MK. The writing
of the introduction and related work was led by ESL with help from HT and RR. RR, ESL and HT
extensively collaborated on the methods section. The results and appendix were led by RR. The
expository figures were created by HT and RR. HT and RPD acted as advisors in the work.

REFERENCES

Abubakar Abid, Maheen Farooqi, and James Zou. Persistent anti-muslim bias in large language
models. In Proceedings of the 2021 AAAI/ACM Conference on Al, Ethics, and Society, pp. 298—
306, 2021.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction. arXiv preprint arXiv:2309.14316, 2023a.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipulation.
arXiv preprint arXiv:2309.14402, 2023b.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar. arXiv
preprint arXiv:2305.13673, 2023c.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
to recognize formal languages. arXiv preprint arXiv:2009.11264, 2020.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint. arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Alan Chan, Rebecca Salganik, Alva Markelius, Chris Pang, Nitarshan Rajkumar, Dmitrii Krashenin-
nikov, Lauro Langosco, Zhonghao He, Yawen Duan, Micah Carroll, et al. Harms from increas-
ingly agentic algorithmic systems. arXiv preprint arXiv:2302.10329, 2023.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learn-
ing in transformers. Advances in Neural Information Processing Systems, 35:18878—-18891, 2022.

10

Preprint

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Rébert Csordés, Kazuki Irie, and Jiirgen Schmidhuber. The devil is in the detail: Simple tricks
improve systematic generalization of transformers. arXiv preprint arXiv:2108.12284, 2021a.

Rébert Csordas, Kazuki Irie, and Jiirgen Schmidhuber. The neural data router: Adaptive control flow
in transformers improves systematic generalization. arXiv preprint arXiv:2110.07732, 2021b.

Rébert Csordds, Kazuki Irie, and Jiirgen Schmidhuber. Ctl++: Evaluating generalization on never-
seen compositional patterns of known functions, and compatibility of neural representations.
arXiv preprint arXiv:2210.06350, 2022.

Jerry A Fodor. The language of thought, volume 5. Harvard university press, 1975.
Jerry A Fodor and Ernest Lepore. The compositionality papers. Oxford University Press, 2002.

Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A critical analy-
sis. Cognition, 28(1-2):3-71, 1988.

Deep Ganguli, Danny Hernandez, Liane Lovitt, Amanda Askell, Yuntao Bai, Anna Chen, Tom
Conerly, Nova Dassarma, Dawn Drain, Nelson Elhage, et al. Predictability and surprise in large
generative models. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and
Transparency, pp. 1747-1764, 2022.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583-30598, 2022.

Ismael Garrido-Muioz, Arturo Montejo-Raez, Fernando Martinez-Santiago, and L Alfonso Urefa-
Lépez. A survey on bias in deep nlp. Applied Sciences, 11(7):3184, 2021.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. Real-
toxicityprompts: Evaluating neural toxic degeneration in language models. arXiv preprint
arXiv:2009.11462, 2020.

Mor Geva, Avi Caciularu, Guy Dar, Paul Roit, Shoval Sadde, Micah Shlain, Bar Tamir, and Yoav
Goldberg. Lm-debugger: An interactive tool for inspection and intervention in transformer-based
language models. arXiv preprint arXiv:2204.12130, 2022.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Or Honovich, Uri Shaham, Samuel R Bowman, and Omer Levy. Instruction induction: From few
examples to natural language task descriptions. arXiv preprint arXiv:2205.10782, 2022.

Arian Hosseini, Ankit Vani, Dzmitry Bahdanau, Alessandro Sordoni, and Aaron Courville. On the
compositional generalization gap of in-context learning. arXiv preprint arXiv:2211.08473, 2022.

11

Preprint

Po-Sen Huang, Huan Zhang, Ray Jiang, Robert Stanforth, Johannes Welbl, Jack Rae, Vishal Maini,
Dani Yogatama, and Pushmeet Kohli. Reducing sentiment bias in language models via counter-
factual evaluation. arXiv preprint arXiv:1911.03064, 2019.

Dieuwke Hupkes, Anand Singh, Kris Korrel, German Kruszewski, and Elia Bruni. Learning com-
positionally through attentive guidance. arXiv preprint arXiv:1805.09657, 2018.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed:
How do neural networks generalise? Journal of Artificial Intelligence Research, 67:757-795,
2020.

Liwei Jiang, Jena D Hwang, Chandra Bhagavatula, Ronan Le Bras, Jenny Liang, Jesse Dodge,
Keisuke Sakaguchi, Maxwell Forbes, Jon Borchardt, Saadia Gabriel, et al. Can machines learn
morality? the delphi experiment. arXiv e-prints, pp. arXiv-2110, 2021.

Andy L Jones. Scaling scaling laws with board games. arXiv preprint arXiv:2104.03113, 2021.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning,
pp. 2873-2882. PMLR, 2018.

Tony Lee, Michihiro Yasunaga, Chenlin Meng, Yifan Mai, Joon Sung Park, Agrim Gupta, Yunzhi
Zhang, Deepak Narayanan, Hannah Benita Teufel, Marco Bellagente, et al. Holistic evaluation of
text-to-image models. arXiv preprint arXiv:2311.04287, 2023.

Michael A Lepori, Thomas Serre, and Ellie Pavlick. Break it down: Evidence for structural compo-
sitionality in neural networks. arXiv preprint arXiv:2301.10884, 2023.

Martha Lewis, Qinan Yu, Jack Merullo, and Ellie Pavlick. Does clip bind concepts? probing com-
positionality in large image models. arXiv preprint arXiv:2212.10537, 2022.

Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfis-

ter, and Martin Wattenberg. Emergent World Representations: Exploring a Se-
quence Model Trained on a Synthetic Task, 2023a. Comment: ICLR 2023
oral (notable-top-5%): https://openreview.net/forum?id=DeG07_TcZvT ; code:

https://github.com/likenneth/othello_world.

Yingcong Li, Kartik Sreenivasan, Angeliki Giannou, Dimitris Papailiopoulos, and Samet Oymak.
Dissecting chain-of-thought: A study on compositional in-context learning of mlps. arXiv
preprint arXiv:2305.18869, 2023b.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110, 2022.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulga: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Adam Liska, German Kruszewski, and Marco Baroni. Memorize or generalize? searching for a
compositional rnn in a haystack. arXiv preprint arXiv:1802.06467, 2018.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023.

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych.
Are emergent abilities in large language models just in-context learning? arXiv preprint
arXiv:2309.01809, 2023.

Ekdeep Singh Lubana, Eric J Bigelow, Robert P Dick, David Krueger, and Hidenori Tanaka. Mech-
anistic mode connectivity. In International Conference on Machine Learning, pp. 22965-23004.
PMLR, 2023.

12

Preprint

Kris McGuffie and Alex Newhouse. The radicalization risks of gpt-3 and advanced neural language
models. arXiv preprint arXiv:2009.06807, 2020.

Jack Merullo, Louis Castricato, Carsten Eickhoff, and Ellie Pavlick. Linearly mapping from image
to text space. arXiv preprint arXiv:2209.15162, 2022.

Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023a.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models. arXiv preprint arXiv:2309.00941, 2023b.

Maya Okawa, Ekdeep Singh Lubana, Robert P Dick, and Hidenori Tanaka. Compositional abil-
ities emerge multiplicatively: Exploring diffusion models on a synthetic task. arXiv preprint
arXiv:2310.09336, 2023.

Santiago Ontanén, Joshua Ainslie, Vaclav Cvicek, and Zachary Fisher. Making transformers solve
compositional tasks. arXiv preprint arXiv:2108.04378, 2021.

Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Thomp-
son, Phu Mon Htut, and Samuel R Bowman. Bbq: A hand-built bias benchmark for question
answering. arXiv preprint arXiv:2110.08193, 2021.

Ofir Press and Lior Wolf. Using the output embedding to improve language models. arXiv preprint
arXiv:1608.05859, 2016.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining term
frequencies on few-shot reasoning. arXiv preprint arXiv:2202.07206, 2022.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1-7, 2021.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, An-
toine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training
enables zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. arXiv preprint arXiv:2210.01240, 2022.

Eric Schulz, Josh Tenenbaum, David K Duvenaud, Maarten Speekenbrink, and Samuel J Gershman.
Probing the compositionality of intuitive functions. Advances in neural information processing
systems, 29, 2016.

Utkarsh Sharma and Jared Kaplan. A neural scaling law from the dimension of the data manifold.
arXiv preprint arXiv:2004.10802, 2020.

Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. The woman worked as a
babysitter: On biases in language generation. arXiv preprint arXiv:1909.01326, 2019.

13

Preprint

Toby Shevlane, Sebastian Farquhar, Ben Garfinkel, Mary Phuong, Jess Whittlestone, Jade Leung,
Daniel Kokotajlo, Nahema Marchal, Markus Anderljung, Noam Kolt, et al. Model evaluation for
extreme risks. arXiv preprint arXiv:2305.15324, 2023.

Chenglei Si, Dan Friedman, Nitish Joshi, Shi Feng, Danqi Chen, and He He. Measuring inductive bi-
ases of in-context learning with underspecified demonstrations. arXiv preprint arXiv:2305.13299,
2023.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Alex Tamkin, Miles Brundage, Jack Clark, and Deep Ganguli. Understanding the capabilities,
limitations, and societal impact of large language models. arXiv preprint arXiv:2102.02503,
2021.

Yi Tay, Jason Wei, Hyung Won Chung, Vinh Q Tran, David R So, Siamak Shakeri, Xavier Garcia,
Huaixiu Steven Zheng, Jinfeng Rao, Aakanksha Chowdhery, et al. Transcending scaling laws
with 0.1% extra compute. arXiv preprint arXiv:2210.11399, 2022.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950, 2019.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,

Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022b.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang,
Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of harm
from language models. arXiv preprint arXiv:2112.04359, 2021.

Albert Xu, Eshaan Pathak, Eric Wallace, Suchin Gururangan, Maarten Sap, and Dan Klein. Detox-
ifying language models risks marginalizing minority voices. arXiv preprint arXiv:2104.06390,
2021.

Jing Xu, Da Ju, Margaret Li, Y-Lan Boureau, Jason Weston, and Emily Dinan. Recipes for safety in
open-domain chatbots. arXiv preprint arXiv:2010.07079, 2020.

Tian Yun, Usha Bhalla, Ellie Pavlick, and Chen Sun. Do vision-language pretrained models learn
composable primitive concepts? arXiv preprint arXiv:2203.17271, 2022.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
arXiv preprint arXiv:2310.16028, 2023.

14

Preprint

A EXPERIMENTAL DETAILS

A.1 TRAINING METHODOLOGY

Transformer architecture We train variants
of nanoGPT' with 12 layers, 12 attention heads
and an embedding dimension of size 120. Each
transformer block contains a causal attention
layer, layer-norms, residual connections and an
MLP (see Fig. 9). The MLP contains two
fully-connected layers sandwiched by a GELU
layer (Hendrycks & Gimpel, 2016) The first
fully-connected layers has a hidden layer with
size 4 times the embedding dimension (480)
and the second hidden layer has a size equal to
the embedding dimension (120).

Embedding

N layers

The input tokens are converted to one-hot vec- .

tors before being passed through to the Trans-

former. The model makes use of no dropout

and no biases in the Layer norm layers. We use

weight-tying (Press & Wolf, 2016) in the Trans-

former which uses shared weights for the input

and the output embedding layers. Finally, we

make use of mixed-precision (bf16 in torch) to Figure 9: We use nanoGPT as the Transformer ar-

speedup training. chitecture in all our experiments. The core Trans-
former block is a layer norm, a causal attention

Loss and Optimizer Models are trained us- block, followed by another layer norm and a 2-

ing an autoregressive objective to predict the layer multi-layer perceptron (MLP). The Trans-

next token using the Cross-entropy loss. Give a former block has two residual connections.

sequence of tokens of ¢ tokens denoted by 7 4.

Let p,,(y | 1.¢) denote the probability distribution over the next token as predicted by a model with

weights w. For a sequence z1.7 of length 7', the autoregressive objective is

o

Learnable
Position Encoding

Embedding

T-1

L(w) = Z logpw (y = 141 | T1:0) -
t=1

Trained is performed for 100 epochs with a cosine-annealed scheduled with warmup. We use an
initial learning rate of 3e-4 annealed eventually to 6e-5. We use AdamW as the optimizer (51 = 0.9
and B2 = 0.95) with a weight decay le-3 and a batch-size of 512. We also make use of gradient
clipping with a magnitude of 1.

A.2 DATA GENERATING PROCESS

Data and task tokens. Both data and task tokens are converted to one-hot vectors before being
fed to the Transformer. The set of data tokens is denoted by X4 and the vocabulary | X 4] is of size
10 in all our experiments. The data tokens in the input x4 € X§ is a sequence of 6 tokens and is
the input to the function composition. The 6 tokens are sampled uniformly at random from X with
replacement.

There are two sets of functions considered in this work. The set of functions F; (which we refer to
as bijections) applies a lookup table in an element-wise fashion to each of the 6 tokens in x4. The set
of functions in F,, permute the 6 tokens in x4. The family of functions in /3 and JF,, are described
in Fig. 10. Each function from ,, and X} has its own task token in X .

The input starts with a sequence of L task tokens xy € X L. The number of compositions is L = 2
in experiments like Figs. 15, 6 (Right) while most other experiments use L = 5 compositions.

"https://github.com/karpathy/nanoGPT

15

Preprint

Sampling task tokens The task tokens can be sampled such that they satisfy certain properties.
For example, let us consider the composition of two functions — one from the set /; C F, and
another from F, C F} (which is the setting in Fig. 6 (Right)). We can restrict the training data to
compositions from the set F» o F; which are in-order compositions (see Fig. 2). Alternately, we can
also choose to include out-of-order composition which include compositions from F; o Fj, Fo 0 Fa
and F; o F». In Fig. 6 (Right), we restrict our training and evaluation to in-order compositions
of functions and we observe that training on a subset of the elements from F3 o JF; suffices to
compositionally generalize all functions in the set.

Two other commonly used subsets of functions are 21 base and random. Consider
Fi,Fo,...,F5 C Fp. The set random considers %k functions from the set F5 o F4 0 --- o Fy
which are drawn uniformly at random.

21 base is used to test if the compositionality is seen when the Transformer is trained on the individ-
ual functions from F; for all ¢ € [5]. In the training data, all compositions have 4 of the 5 functions
to be the identity function I, i.e it considers compositions of the form IoJoFzolol or [oFyo0---ol.
There are a total of 1 + Z?:l F; such functions; the 1 is when all 5 functions in the composi-
tion are identity. The model is never trained on the composition of two or more functions, and at
least compositions of 3 functions are necessary to generalize to all in-order compositions Fig. 19.

. Set of Permutations %,
Generating a sequence of tokens A se- 4 !

quence starts with a sequence of two task to-
kens z; = [zp,, xp,] followed by a sequence
of data tokens x4. The sequence can either
be presented in the step-by-step format (Fig-
ure 11a) where the intermediate outputs are also
included in the sequence. For example, the se- .
quence in the step-by-step format would look
like [;CFl,xFZ,xd, Fl(l‘d), Fg(Fl(xd))]. The
direct format (Figure 11b) does not include the
intermediate outputs of the composition in the
sequence and an example of such a sequence is
(5, TRy, a, Fa(Fi(zg))].

Set of Bijections #,
g Xy Xy

The step-l?y-st'ep and directﬁ formats are 51_150 Figure 10: A permutation from F,, permutes the 6
discussed in Fig. 3. The training data consists tokens in the input z4. A bijection from J;, applies

of 100,000 sequences for all experiments inone a lookup table to each of the 6 tokens individually.
of the two formats.

hi((g1(f2(x))) hi((g1(f2(x)))
EESLEESEERE

g
| |

i
[f2]gr] [x[f2(0)] [F2] @] h2 [x [fo () [@n(Fa00)]

(a) b)

Figure 11: Step-by-step composition v.s. Direct composition. We test two possible routes for
compositions. (a) Step-by-step prompting, which allows for generating intermediate outputs. (b)
Direct prompting, where the model must compose the functions without the intermediate outputs.

Evaluating compositions When evaluating trained models, we evaluate on 1000 different inputs
for every composition of functions. Since Fig. 5 requires us to evaluate on a combinatorial set of
functions, we sampled 1000 functions (or the total number of functions, whichever was lower) for

16

Preprint

each cell which can be identified by the displacement and number of compositions, and we compute
the accuracy averaged over those functions to populate the cell. The accuracy of a completion is
calculated by averaging the accuracy of the last six tokens. We see that qualitative trends do not
change when we use different metrics Figure 20.

Computing linear probe accuracy We consider the outputs after every attention block and every
MLP block (including the residual stream in both cases). We then pass these outputs through the
final embedding layer and a softmax layer to get predictions over the next token. We use these
predictions to compute the accuracy at that layer. The accuracy is averaged over 1000 different
input data tokens and for 200 different compositions of functions.

B ADDITIONAL EXPERIMENTS

B.1 SWEEPING HYPER-PARAMETERS OF THE TRANSFORMER

Accuracy of a 1-layer Transformer

We vary the number of layers, the number of at- 100
tention heads. and the embedding dimension of

the nanoGPT model in Fig. 13. We consider the < 7
setup identical to Fig. 4; all models are trained 3 60
on 50 random in-order compositions of 5 bi- g
jections. We report accuracy averaged over all g 407
3125 in-order compositions. 20

We make the folllwing observations: (1) Most
surprisingly, the accuracy reduces as the num-
ber of layers become huge for this composi-

tional task; we expect that this is due to is- Fjgure 12: Transformers requires at least 2-
sues with optimization of a large depth model. 3 Jayers for compositional generalization with
(2) The accuracy does not change with the num- the direct prompt format. We vary the number
ber of attention heads for a 1-layer Transformer. of Jayers in the Transformer and train on direct

(3) The accuracy increases as we increase the composition in a setup identical to Fig. 6 (Right).
embedding dimension and the model under fits

the training data when the embedding dimension is too small.

o

T T T T T
2 4 6 8 10 12

Number of layers

) ' Accuracy of a 1-layer Transformer Accuracy of a 1-layer Rransformer
Accuracy of Transformer with 1 Attention-head 1004 1004
1004 W‘—O—o—\/\/ \
~ 804 _. 80
__ 804 S X
S > 60+ % 60+
3 60 8 &
g g g
3 a0+ g 40 g 407
2 < <
20 20 20
0L T I i 0 T T T T T T 0 T T T T T
0 20 40 60 2 4 6 8 10 12 0 25 50 75 100 125
Number of layers Number of heads Embedding dimension

Figure 13: We see compositionality in Transformers even if we change the number of layers
and attention heads. Compositionality is seen even in a 1-layer Transformer when trained with
the step-by-step prompt format on 50 in-order compositions of bijections. However the ability to
compose degrades as we increase the number of layers in the Transformer.

B.2 LSTMS DO NOT LEARN TO COMPOSE

We report results on autoregressively trained LSTMs using the step-by-step prompt format in Table 2
and using the direct prompt format from Table 1. LSTMs fail to generalize outside of the training
data while Transformers generalize compositionally in both these scenarios. This points to an
inductive bias that helps Transformers trained with an autoregressive objective generalize.

The LSTMs are trained using the same data using the autoregressive objective defined in Ap-
pendix A. We use the AdamW optimizer with learning rate equal to 3e-4 (8, = 0.9 and 35 = 0.95),

17

Preprint

batch size of 512 and weight decay of 1e-4 for 150 epochs. As is common, we do not use a positional
embedding, since the architecture is not permutation invariant.

The inputs are passed through Hidden dimension

an input embedding layer be- Layers | 256 5124
fore being passed to the LSTM

and the outputs of the LSTM 1 ‘ 225 46.0
are also passed through a linear 2 334 69.1

layer which outputs the logits.

In our experiments, we vary the Table 1: LSTMs fail to compose in the direct prompt format.
number of stacked LSTMs (or We train an LSTM on 250 composition of two functions (one
no. of layers) and the dimension permutation and one bijection) in the direct prompt format and
of the internal hidden vector. tabulate the accuracy (%); the setup is identical to Fig. 6 (Right).

Despite our attempt to train multiple different LSTMs with the best set of hyper-parameters, we
observe that they do not show any compositional generalization on all our synthetic setups. This
observation is further evidence for our hypothesis that the attention layers are important for compo-
sitionality.

Hidden layer dimension Hidden layer dimension

Layers | 120 256 512 1024 Layers | 120 256 512 1024
1 162 362 999 999 1 93 103 20.1 229
2 60.3 993 999 998 2 124 213 253 288
4 18.7 100.0 100.0 9.9 4 6.6 139 17.6 10.0

Table 2: LSTMs fail to compose in the step-by-step prompt format. We train autoregressive
LSTMs on 50 in-order compositions of 5 bijections from F;, in the step-by-step format and tabulate
the accuracy (%); The setup is identical to Fig. 4. We evaluate the LSTM on the (left) compositions
seen during training and (right) in-order compositions not seen during training. LSTMs fail to
generalize to functions outside of the training data while transformers generalize compositionally in
the same setting.

B.3 ATTENTION MASKS

Detailed setup. We train a 1-layer Transformer on a composition of 50 random in-order composi-
tions of 5 bijections in the step-by-step prompt format. We visualize the attention masks for a fixed
sequence of task tokens, averaged over 1000 different data tokens in Fig. 7(right). We found the
attention masks to be identical across different choices of the task tokens. Each row corresponds to
a causal attention mask for a single token and sums up to 1. At any given row, the attention is over
two elements which we speculate are the task token and the intermediate output of the composition.
The 5 contiguous blocks along the columns correspond to the 5 steps of composition. These prelim-
inary results indicates that it is possible to build a complete mechanistic understanding of Attention
for compositional tasks.

B.4 PROBING THE LAYERS IN TRANSFORMERS OF DIFFERENT SIZES

In this section, we consider an experimental setup that is identical to the linear probe experiments
in Figure 7. We compute the probe accuracies for Transformers with different number of layers in
Fig. 14. Across all Transformers, we observe that accuracy increases in the last few layers of the
transformers. Furthermore, we also observe a sharp increase in accuracy right after the MLPs in the
last few layers of the transformer.

We saw in Figure 7(right) that the attention masks for a 1-layer Transformer seem to select an input
and a task token to operate on at every step of the composition. We hence believe that attention has
a huge role in compositionality and propose the following hypotheses: (1) LSTMs fail to compose
functions not present in the training data. We hypothesize that a lack of attention contributes to this
failure. (2) The probe accuracy after some MLPs see a sharp in increase in accuracy. We hypothesize
that the attention layers play a critical role in selecting the right inputs to pass to the MLP.

18

Preprint

% 1-layer Transformer 100 2-layer Transformer 100 4-layer Transformer] 6-layer Transformer

0 T 0 T T 0 O —TTT1T1
1 1 2 1 2 3 4 1234586
8-layer Transformer 10-layer Transformer 12-layer Transformer 16-layer Transformer
1004 1004 1004 1004
&
3
8 /71— T 71717 77— 7171
8 3 5 7 1 3 5 7 9 1 4 7 10 1 5 9 13
O
@© 20-layer Transformer 24-layer Transformer 28-layer Transformer 32-layer Transformer
o 1004 100 100 100
Q
[
o
©
] 0= 1 0 — T I 0 | L 0 | L
5 1 6 11 16 1 7 13 19 1 8 15 22 1 9 17 25
40-layer Transformer 48-layer Transformer 60-layer Transformer
100 100 100
e After attention layer
= After MLP layer
0 T 1 1 0 L 0 T 1
1 11 21 31 1 13 25 37 1 16 31 46

Transformer Layer

Figure 14: We use a linear probe to study the accuracy at different layers on Transformers of
different sizes. Most architectures see an increasing in accuracy in the latter half of the Transformer.
The increase in accuracy is more gradual for Transformers with more layers. The accuracy increases
sharply after an attention layer across all architectures.

B.5 ANOTHER FAILURE WITH THE DIRECT FORMAT WITH BIJECTIONS

100
Train data
80— —— 250 functions (44%)
——— 500 functions (88%)
60 =

1L
/

T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500 20000
Number of iterations

Avg. accuracy over all 625 functions (%)

Figure 15: Transformers fail to generalize to compositions of even 2 bijections, when trained
with the direct prompt format. The curve depicts the accuracy over all 625 in-order compositions
of two bijections (25 choices for each bijection) when trained on different subsets of in-order com-
positions. The model is trained with direct composition. Even if we train on 500 such compositions,
the model fails to generalize to the remaining 125 compositions. This is additional evidence that the
model is incapable composing bijections through direct composition.

In Fig. 6 (Left) we show that Transformers do not learn to compose 5 bijections and only generalize
to compositions in the training data. Figure 15 augments this result and shows that a similar failure
occurs even when we consider the composition of just two bijections. Hence the model may not
compose some function in the direct prompt format and the step-by-step format with an autoregres-
sive objective is far more amenable to compositions.

19

Preprint

B.6 ADDITIONAL EXPERIMENTS WITH TRAINING DATA FROM RANDOM AND 21 BASE

In this section, we conduct a collection of analyses for a model trained on in-order compositions of 5
bijections in the step-by-step prompt format. We (1) Compare how 21 base and randomgeneralize
to other in-order compositions; (2) Test if the compositions are systematic; (3) Look at alternate
evaluation metrics (4) Change the number of random functions in the training data; (5) Limit the
maximum number of compositions in the training data and evaluate compositional generalization.

Acc. on composition of 5 functions Acc. on composition of 4 functions Acc. on composition of 3 functions

100 Mv 100 M 100 P
A < /s
50 50 / 50|/
/ Training data
0 T T T 0 T T T 0 T T T 21 base + 0 random functions
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000 —— 21 base + 5 random functions

21 base + 10 random functions
25 random functions
50 random functions

—— 100 random functions

Acc. on composition of 2 functions Acc. on composition of 1 functions Acc. on composition of 0 functions
100 = — 100 100 = == = =

Avg. accuracy

50 50 50

0 0
1 I 1 1 1 I 1 | 1 1 I
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000

Number of iterations

Figure 16: How do different training datasets generalize to compositions of many and few
functions? This is a fine-grained version of Fig. 4a. Model trained on 50 random compositions
generalizes poorly compositions of small number of functions while a model trained on the 21
base generalizes poorly to composition of 4 or 5 functions.

21 base + 21 base + 21 base +
0 random functions 5 random functions 10 random functions

° S 67 B o 91 93 89 93

- - s} 7 ~ 98 91 96 81

o ~ 86 ~ 92 8 94 95
C
S o o 80ffl 93 90 95 92 — 100
D
g <« 79 78 79 < 93 93 93 92 L a0
€
[e]
o 0o 1 2 3 0 1 2 3 0o 1 2 3 60
< 25 random functions 50 random functions 100 random functions
“ 40
° 5 781 o 98 99 97 99 o 100 100 100 100
S - 83 84PE¥83 -~ 99 99 97 98 ~— 100 100 100 100 20
©
2« so G079 o~ 99 98 98 99 «~ 100 100 100 100
'_

= 78 77 ® 99 99 98 96 o 100100 100 100 Aceuracy

< 83@88 88 ~ 99 99 99 99 < 100 100 100 100
0 1 2 3 0o 1 2 3 0o 1 2 3

Function identifier

Figure 17: Systematicity. We consider trained models from Fig. 4a and analyze the accuracy of
each of the 20 functions (monolithic capabilities) when averaged all instances in which it was used
compositionally. We breakdown the results to see if certain functions are more accurate when used
in compositions compared to others and find that models seem to learn all functions equally well.

20

Preprint

No. of random functions
5 (30.6)
10 (43.7)
15 (68.2)
20 (86.0)
25 (92.8)
30 (96.5)
35 (92.1)
40 (96.1)
45 (99.8)
50 (99.9)
50 (100.0)
55 (100.0)
60 (95.3)
65 (99.1)

T T T T T
0 2000 4000 6000 8000 10000 70 (100.0)
Number of iterations

a*
g{p
|
¢

Avg. accuracy over 3125 functions (%)

Figure 18: Training with different numbers of random functions. We train on a different number
of random functions ranging from 5-70 in steps of 5. These plots are the accuracies averaged over
all in-order compositions of 5 bijections over the course of training.

5 compositions in training data 4 compositions in training data
100 = 100 ==
80 = 80 =
:\0\ 60 = No. of functions 60— No. of functions
» 40— — 25 40 = — 25
5 — 50 — 50
£ 20 — 100 20— — 100
S o- —— 200 0 = —— 200
=
& | | | | | | I | I |
o 0 5000 10000 15000 20000 0 5000 10000 15000 20000
T 3 compositions in training data 2 compositions in training data
S
Q100 = 100 = No. of functions
o -_— 5
> 80 = 80 =
8 — 10
S 60— 60 = — 20
Q
S 40— 0. 40 =
% —_— 25
z 27 — 100 20 =
0 — — 200 0 -
| |
0 5000 10000 15000 20000 0 5000 10000 15000 20000

Number of iterations

Figure 19: Limiting maximum number of compositions in the training data. The figure plots
the accuracy on all in-order compositions against the number of training iterations. Each sub-plot
considers compositions of size exactly 2, 3, 4, 5, respectively in the training data. The model is able
to generalize to most in-order compositions only if the training data consists of compositions of size
at least 3 (bottom-right).

21

Preprint

Free generation - Avg. accurac Free generation - Exact match accuracy Guided generation - Avg. accuracy
100 = 100 =] . o 100 Lt
i w\'!) odll \ > No. of compositions

. 15— 75 = @ 4 4 75 = | -_—5
S : iy —
> 50 = 50 = e 50 — 3
© _—2
5 25— 25 =
3 25 = 1
g ¢ 0
< 0= 0=

| 1 I | | | 1 | I | I I | | I

0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000

Number of iterations
Free generation - Avg. accuracy Free generation - Exact match accuracy Guided generation - Avg. accuracy
100 == 100 == 100 ==
‘ No. of compositions

 15= 75 = 75 = [—
S\i 50 50 4
§ 50 = B 2
5 25 = 25 =
3 : E : :‘ : :x 25 = 1
o
< o= 0= 0

| | 1

0 10000 20000 0 10000 20000 0 10000 20000

Number of iterations

Figure 20: Evaluation metric. We consider 3 different metrics for evaluating the models. The left
column considers the average accuracy when the model generates The choice of metric doesn’t
change qualitative trends. Each sub-plot considers compositions of only size 2, 3, 4, 5, respec-
tively. In each plot, we vary the number of such functions that are present int he training data. One
exception is when we train on compositions of size 2. In this case, the guided generation accuracy
is high, but the free generation accuracy is not.

B.7 WORD EMBEDDINGS
We study the token embeddings of the Transformer models and observe that they are similar for
models with different number of layers and attention heads. We notice a block diagonal structure

that separates task tokens from the data tokens. We also observe another block diagonal structure
within the task tokens which occurs when we train only on in-order compositions.

-1.00

-0.75

Token

0.00

-0.25

Task token

-0.50

-0.75

-1.00

Token Task token

Figure 21: Word embedding correlations present a block-diagonal structure that separates
data tokens from task tokens. We plot the inner product between all pairs of word embeddings of
the tokens. The task tokens are orthogonal to the set of input tokens. Different functions in the same

level, i.e. {Fi(l) ,fil for a fixed [, form a block-diagonal in this matrix. We observe similar word
embeddings in Transformers of different sizes.

22

