






Table 1. Results of aerial image segmentation with other segmentation methods.

Methods Impervious

surface

Building Low vegetation Tree Car Mean F1

SegNet [6] 0.551 0.537 0.368 0.308 0.684 0.490

U-Net [7] 0.488 0.518 0.438 0.500 0.702 0.529

RefineNet [8] 0.578 0.587 0.469 0.502 0.746 0.576

LANet [1] 0.641 0.665 0.450 0.511 0.736 0.600

BiSeNetV2 [9] 0.627 0.673 0.458 0.435 0.790 0.597

MACUNet [10] 0.565 0.555 0.445 0.517 0.755 0.567

MA-Net [11] 0.626 0.678 0.479 0.531 0.720 0.607

Proposed 0.599 0.699 0.526 0.548 0.761 0.626

Table 2. Accuracy Implications of Removing Components

Methods mean F1

Ours w/o FWM + Fusion 0.581

Ours w/o SWM + Fusion 0.611

Ours w/o Fusion 0.618

Ours 0.626

3.2. Model Comparison

We compare our model with past segmentation methods

for aerial images in the Potsdam dataset, shown in Table 1.

For a fair comparison, we calculate each method’s accuracy

with the same parameters and the cross-entropy loss func-

tion. Also, we use ResNet-50 pretrained on ImageNet as the

backbone network for all previous methods.

Our spatial-frequency segmentation network has a higher

F1 score than all the alternatives we evaluated. We assess a

variety of methods including those containing multi-scale fu-

sion and attention mechanisms. MA-Net is the most recent

aerial image-based segmentation method and uses attention

mechanisms based on the kernel operation and channel di-

mension. Our spatial-frequency segmentation network fur-

ther improves accuracy by 1.9% in mean F1-score over MA-

Net because our model has the ability to discern fine-grained

spatial regions and discriminate between object classes.

3.3. Ablation Study

We conduct ablation experiments to determine the relative

contributions of the proposed design components. Table 2

shows the results for the Potsdam data set. First, we remove

the Multi-Domain Fusion Module from the network. Instead

of the fusion module, we sum the outputs of the SWM and

FWM and feed the output through a 3×3 convolutional layer.

We observe that our model with the fusion module outper-

forms our model without it. Next, we measure the impact

of removing the SWM module. From Table 2, we observe

that our model with the SWM module outperforms our model

without it.

Finally, we remove the FWM from the network. We ob-

serve that our model with the FWM outperforms our model

without it. This reflects that the Frequency Weighting Module

is necessary for improving the accuracy by using frequency

levels capture richer features and discriminate between object

classes. In summary, each proposed component contributes

substantially to the overall accuracy improvement, although

if it were necessary to eliminate a module to reduce complex-

ity, SWM would be the best first choice.

4. CONCLUSION

This paper describes a novel deep learning framework that

enhances feature representation in both the spatial and fre-

quency domains. Two modules are proposed: 1) the Fre-

quency Weighted Module enhances context information

based on the frequency level of local descriptors to refine

the segmentation details and 2) the Spatial Weighting Module

encodes which pixels of the image are most significant by ag-

gregating spatial context information. Finally, we develop a

Multi-Domain Fusion Module to aggregate features from dif-

ferent domains, which can provide important complementary

information. Each of these modules contributes to accuracy

improvements, and the resulting F1 accuracy exceeds those

of the existing approaches we compared against by 1.9%.
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