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Abstract—IoT devices fundamentally lack built-in security
mechanisms to protect themselves from security attacks. Exist-
ing works on improving IoT security mostly focus on detecting
anomalous behaviors of IoT devices. However, these existing
anomaly detection schemes may trigger an overwhelmingly
large number of false alerts, rendering them unusable in
detecting compromised IoT devices. In this paper we develop
an effective and efficient framework, named CUMAD, to
detect compromised IoT devices. Instead of directly relying
on individual anomalous events, CUMAD aims to accumulate
sufficient evidence in detecting compromised IoT devices, by
integrating an autoencoder-based anomaly detection subsystem
with a sequential probability ratio test (SPRT)-based sequential
hypothesis testing subsystem. CUMAD can effectively reduce
the number of false alerts in detecting compromised IoT
devices, and moreover, it can detect compromised IoT devices
quickly. Our evaluation studies based on the public-domain
N-BaIoT dataset show that CUMAD can on average reduce
the false positive rate from about 3.57% using only the
autoencoder-based anomaly detection scheme to about 0.5%;
in addition, CUMAD can detect compromised IoT devices
quickly, with less than 5 observations on average.

1. Introduction

In recent years Internet of Things (IoT) devices have
been increasingly integrated into our daily lives and our
society, with notable example environments such as smart
homes, healthcare, transportation, and power grid. On one
hand, this rapid development helps to improve the quality
and efficiency of our daily lives. On the other hand, this
same development also poses potentially unprecedented se-
curity and privacy challenges on the Internet, given that
most of these IoT devices are low-cost systems with limited
computation, memory, and energy resources. These devices
often lack proper built-in security mechanisms to protect
themselves and are vulnerable to various security attacks.

Many security attacks targeting or based on IoT devices
have been reported in the past [1]. In response to the growing
problems of IoT security, government agencies such as US
NIST have developed many recommendations that manufac-

turers should adopt to mitigate the security risks associated
with IoT devices [2]. In addition, many research efforts have
been carried out to improve IoT security, including both
proactive approaches to enhancing security mechanisms of
IoT devices and more reactive solutions to monitor IoT
device behaviors to detect rogue or infected IoT devices [3]

Although some of the recommendations, for example,
avoiding default common credentials, are relatively easy
to be incorporated into IoT device manufacturing and cer-
tainly help mitigate IoT security risks, IoT devices are still
fundamentally vulnerable to security attacks. As low-cost
systems, IoT devices are inherently constrained in resources
to support advanced security mechanisms. In addition, from
the perspectives of both manufacturers and users, there
are often conflicting objectives of IoT device usability and
security, which often discourage the adoption of advanced
security mechanisms in IoT devices.

Given these constraints of deploying advanced secu-
rity mechanisms on IoT devices, network-based solutions
have attracted a great amount of research efforts in recent
years [3]. In particular, many machine learning (ML) based
methods have been developed in detecting anomalous net-
work behaviors of IoT devices [3]. (In this paper we use the
term ML to refer to both traditional machine learning algo-
rithms such as SVM and deep learning (DL) algorithms such
as RNN.) However, most existing solutions only targeted the
problem of anomaly detection in IoT devices [4], instead
of detecting compromised IoT devices. Although detecting
individual anomalies is of critical importance in certain
application domains [5], we note that these solutions may
not be directly translated into the detection of compromised
IoT devices. Given the large amount of network traffic,
even a small false positive rate of an anomaly detection
method can often translate into a large number of false
alerts, rendering the detection method unusable in detecting
compromised IoT devices in the real-world deployment.

In this paper we develop an effective and efficient frame-
work to detect compromised IoT devices, named CUMAD
(cumulative anomaly detection). In essence, CUMAD in-
tegrates an autoencoder-based anomaly detection subsystem
with a sequential probability ratio test (SPRT)-based sequen-
tial hypothesis testing subsystem [6], [7]. In CUMAD, the



normal behavior of each IoT device is learnt and modeled
by an autoencoder. During the training of an autoencoder
model, it learns a latent space representation of the training
data. More importantly, due to the nature of autoencoder, it
excels at reconstructing inputs that are similar to the data
used in training the model, but performs poorly when the
new data is very different from the training data, manifested
as large reconstruction errors. Although autoencoder has
been mainly used in dimensionality reduction and feature
learning in the past, in recent years it has also attracted
a great amount of interests in anomaly detection in many
different application domains.

Instead of focusing on individual anomalous events de-
tected by autoencoder, CUMAD aims to accumulate suf-
ficient evidence to detect if an IoT device has been com-
promised. In CUMAD, the output of the autoencoder-based
anomaly detection subsystem is fed into an SPRT-based
sequential hypothesis testing subsystem. Unlike traditional
probability ratio test methods that require a pre-defined fixed
number of observations to reach a decision, SPRT works
in an online manner and updates as observations arrive
sequentially. SPRT reaches a conclusion whenever sufficient
evidence has been observed. Therefore, SPRT can make
a decision quickly (and consequently, CUMAD can detect
compromised IoT devices quickly).

In this paper we develop the CUMAD framework, and
we also evaluate the performance of CUMAD using a
public-domain IoT dataset N-BaIoT [8], which contains both
benign and (Mirai and Bashlite) attack traffic of IoT devices.
Our evaluation studies show that CUMAD can greatly im-
prove the performance in detecting IoT devices in terms of
false positive rates, for example, compared to the simple
autoencoder-based anomaly detection system, CUMAD on
average reduces the false positive rate from about 3.57% to
0.5%, representing about 7 times performance improvement
in terms of false positive rate of the systems. In addition,
CUMAD can detect a compromised IoT device quickly, with
less than 5 sequential observations on average. We note that
although both autoencoder and SPRT have been proposed
in developing anomaly detection systems before, to our
knowledge, we are the first to integrate the two techniques
to detect compromised IoT devices, instead of being used
separately for anomaly detection. In addition, we are the first
to introduce the notion of cumulative anomaly in detecting
compromised IoT devices (see Section 2 for more details).

The remainder of the paper is organized as follows.
In Section 2 we discuss related work. We present the
background on autoencoder and SPRT in Section 3. We
describe the design of CUMAD in Section 4, and evaluate
its performance in Section 5. We conclude the paper in
Section 6.

2. Related Work

The problem of anomaly detection has been studied in
many different application domains and many techniques
have been proposed, based on statistical inference, data
mining, signal processing, and recently machine learning,

among others. We note that in the literature of anomaly
detection, anomalies have been classified into three cate-
gories: point anomaly, contextual anomaly, and collective
anomaly [5]. However, they are all concerned with the
detection of individual anomalous events, which are dif-
ferent from the cumulative anomaly we consider in this
paper. In cumulative anomaly we are more concerned with
the cause of anomalous events (for example, compromised
IoT device), instead of individual anomalous events. As
a consequence, we need to accumulate sufficient evidence
(individual anomalous events) to reach a conclusion (for
example, if an IoT device is compromised) in cumulative
anomaly detection.

Given the importance of improving IoT security, many
security attack detection techniques have been proposed,
including various ML-based solutions [9]. However, some
of them required the training data of both benign and
attack traffic. They cannot detect new security attacks. Oth-
ers developed anomaly detection based schemes to detect
anomalous traffic originated from IoT devices. However, as
we have discussed in Section 1, they often trigger a large
number of false alerts, rendering them unusable in detecting
compromised IoT devices in the real-world deployment.

In [10], Gelenbe and Nakip developed an online scheme
CDIS to detect compromised IoT devices based on auto-
associative learning. However, the design of CDIS was
tailored to Mirai botnet, and may not be effective to detect
other types of compromised IoT devices. In addition, CDIS
still only targeted individual anomalous events, instead of
cumulative anomaly detection as we perform in this paper.
The authors of [11] developed a federated self-learning
based scheme DÏoT to detect compromised IoT devices,
where local security gateways communicate with remote IoT
Security Service to build a more comprehensive normal traf-
fic model of IoT devices. In order to further reduce the false
alerts generated by the aggregated anomaly detection model,
a window-based scheme was adopted, where anomaly alarm
was triggered only if the fraction of anomalous packets was
greater than a pre-defined threshold value. In [8], Meidan et
al. presented an autoencoder-based anomaly detection sys-
tem N-BaIoT to detect compromised IoT devices. N-BaIoT
also tried to reduce the number of false alerts triggered by
the pure anomaly detection system using a window-based
scheme with a majority vote to reach a decision.

3. Background on Autoencoder and SPRT

In this section we provide the necessary background on
autoencoder and sequential probability ratio test (SPRT) for
understanding the development of the proposed CUMAD
framework. We refer interested readers to [6] and [7], re-
spectively, for the detailed treatment on these two topics.

3.1. Autoencoder

Autoencoder is an unsupervised neutral network that
aims to reconstruct the input at the output. Figure 1 il-
lustrates a simple standard (undercomplete) autoencoder.



Figure 1. Illustration of Autoencoder.

An autoencoder can be considered as consisting of two
components: an encoder f and an decoder g. Given input
data x, the encoder function f maps x to a latent-space
representation, or code h, that is h = f(x). Using the
corresponding code h as the input, the decoder function g
tries to reconstruct the original input x at its output x′, that
is, x′ = g(h). Combining both the encoder function and de-
coder function together, we have x′ = g(f(x)). Let L(x,x′)
be the reconstruction error, that is, the difference between
x and x′. The autoenceder aims to minimize L(x,x′). We
note that there are different definitions of L(x,x′) and one
of the most common definitions is the mean squared errors
(MSE). We note that in the example autoencoder of Figure 1,
both the encoder and decoder have only one hidden layer.
This is only for illustration purpose. In reality they can have
many hidden layers, depending on the specific application
requirement.

Autoencoders have been traditionally used in applica-
tions of dimensionality reduction and feature learning, by
focusing on the compressed code of an autoencoder, which
holds the latent-space representation of the original data.
On the other hand, autoencoders also possess a few desired
properties, making them an attractive candidate for anomaly
detection. For example, an autoencoder is able to extract the
salient features of the original data to remove dependency
in the original data. More importantly, an autoencoder can
only learn the properties or distributions of the data that it
has seen during the training stage, that is, the data points
in the training dataset. It excels at reconstructing data that
are similar to the training data, but performs poorly on data
that are very different from the training data, in terms of the
reconstruction error L(x,x′).

This is an appealing property of autoencoders in the
application of anomaly detection. For example, in the con-
text of detecting compromised IoT devices, we can estab-
lish the normal behavioral model of an IoT device using
an autoencoder by training it with benign network traffic
before the device has been compromised. We can continue
monitoring the IoT device by passing the corresponding
network traffic of the device into the trained model. If
the reconstruction error is no greater than a pre-specified

threshold, we consider the corresponding network traffic to
be benign. When the reconstruction error is greater than the
threshold, we claim that the network traffic is anomalous.

3.2. Sequential Probability Ratio Test

Sequential probability ratio test (SPRT) is a simple yet
powerful statistical tool that has found applications in many
different domains, in particular, fault detection or quality
control [7]. SPRT is a variant of the traditional probability
ratio test for testing under what distribution (or with what
distribution parameters), it is more likely to have the ob-
served sequence of samples. Unlike traditional probability
ratio test that requires a pre-defined fixed number of samples
to carry out the test, SPRT works in an online fashion; it up-
dates the corresponding statistical measure as samples arrive
sequentially, and can conclude when sufficient samples have
arrived to reach a decision. In its simplest form, SPRT is a
statistical method to test a simple null hypothesis against a
simple alternative hypothesis. In the following we will more
formally describe the operation of SPRT.

Let y denote a Bernoulli random variable with an un-
known parameter θ, and let yi, for i = 1, 2, . . . denote
the corresponding successive observations of y. SPRT can
be used to test a simple null hypothesis H0 that θ = θ0
against a simple alternative hypothesis H1 that θ = θ1, more
specifically,

Pr(yi = 1|H0) = 1− Pr(yi = 0|H0) = θ0

Pr(yi = 1|H1) = 1− Pr(yi = 0|H1) = θ1.

As observations yi for i = 1, 2, . . . , n arrive one by one,
SPRT maintains a probability ratio measure, namely,

Pr(y1,y2, . . . ,yn|H1)

Pr(y1,y2, . . . ,yn|H0)

to test under which hypothesis (H1 or H0) it is more likely
to observe the sequence of samples yi, for i = 1, 2, . . . , n.
In order to simplify exposition and computation, in the
following we will compute the logarithm of the probability
ratio and denote it as Λn:

Λn = ln
Pr(y1,y2, . . . ,yn|H1)

Pr(y1,y2, . . . ,yn|H0)
.

Assume that yi’s are independent (and identically dis-
tributed), we have

Λn = ln

∏n
1 Pr(yi|H1)∏n
1 Pr(yi|H0)

=
n∑

i=1

ln
Pr(yi|H1)

Pr(yi|H0)
=

n∑
i=1

zi

(1)
where zi = lnPr(yi|H1)

Pr(yi|H0)
, which can be considered as

the step in the random walk represented by Λ. When the
observation is one (yi = 1), the constant ln θ1

θ0
is added

to the preceding value of Λ. When the observation is zero
(yi = 0), the constant ln 1−θ1

1−θ0
is added.

Now we are ready to describe the operation of SPRT for
testing H0 against H1. As a sample yi arrives, depending on
the value of the sample, the statistical measure Λn is updated



according to Eq. (1). The measure Λn is then compared
against two user-defined thresholds A and B (A < B) to
check if SPRT can reach a decision or more samples are
needed:

Λn ≤ A =⇒ accept H0 and terminate test,
Λn ≥ B =⇒ accept H1 and terminate test, (2)

A < Λn < B =⇒ take an additional observation.

The two thresholds A and B in the operation of SPRT
can be approximated using the user-desired false positive
rate α and false negative rate β [7]:

A ≈ ln
β

1− α
, B ≈ ln

1− β

α
. (3)

As a simple and powerful statistical tool, SPRT pos-
sesses a few critical and desired properties that lead to the
wide-spread application of the technique in many different
domains. First, the false positive and false negative rates of
SPRT can be specified by user-desired error rates, which
in turn control the thresholds of the model. Second, it has
been proved that, among all sequential and non-sequential
probability ratio testing algorithms, SPRT minimizes the
expected number of observations to reach a decision with
no greater errors. Put in another way, on average SPRT can
reach a conclusion quickly compared to other probability
ratio testing algorithms.

In the context of anomaly detection, we can consider
yi = 1 as an anomalous sample, and yi = 0 as a normal
sample. Instead of simply relying on a single sample to
conclude the nature of the sample’s origin (being normal
or abnormal), SPRT continues observing additional samples
yi+1,yi+2, . . . until sufficient evidence is collected to reach
a conclusion. In essence, SPRT infers the distribution or
the parameters of the distribution of a random process,
based on sequential observations of samples drawn from the
random process. This matches our objectives of CUMAD
well, where we would like to accumulate sufficient evidence
to detect if an IoT device is compromised, instead of an
individual anomalous sample.

4. Design of CUMAD

In this section we will first discuss the considered net-
work model, where CUMAD will be deployed, and then we
will present the design of the CUMAD framework.

4.1. Network Model

Figure 2 illustrates the conceptual network model, where
CUMAD is deployed. As shown in the figure, in order for
CUMAD to carry out its task to detect compromised IoT
devices in a network, CUMAD needs to have access to the
network traffic associated with the IoT devices in the net-
work. Depending on the deployment scenarios of CUMAD
in the network and the corresponding network architecture,
there can be a few different ways for CUMAD to obtain the
corresponding network traffic of IoT devices. In essence,

Figure 2. Conceptual network model.

CUMAD as a network-based solution can be deployed in a
similar way as network-based intrusion detection systems.

In the current design of CUMAD, (statistical) features
from raw network traffic will be extracted and fed to
CUMAD for detecting compromised IoT devices. Each in-
put data point fed to CUMAD comprises these extracted
features, and can be summarized at different levels of
granularity of network traffic, such as packets, flows, and
time windows. These features will capture the network
behavioral characteristics of the corresponding IoT devices.
In Section 5 we will discuss the network traffic features
contained in the public-domain N-BaIoT dataset when we
perform evaluation studies on CUMAD [8].

4.2. CUMAD: Cumulative Anomaly Detection

Figure 3 illustrates the high-level architecture of the
CUMAD framework. CUMAD consists of two main com-
ponents: an anomaly detection component (ADC) and a cu-
mulative anomaly component (CAC). Assuming the model
has been properly trained (will be discussed shortly), given
an input data point with the corresponding features, the
main responsibility of ADC is to classify an input data
point as either normal or anomalous. After the classification
of the input data point, the result is passed to the second
component (CAC), which will maintain a cumulative view
of the network traffic behavior of the corresponding IoT
device, by sequentially merging the individual classification
results into the view. When sufficient evidence on an IoT
device has been collected to indicate that it has been com-
promised, an alert will be generated. In the following we will
describe each component in details, both in model training
and deployment to detect compromised IoT devices.

We note that different types of IoT devices perform dras-
tically different functionalities, and in addition, we would
like to detect which IoT device is compromised, we need to
develop a separate CUMAD model for each IoT device and
monitor their network traffic behaviors separately using their
corresponding CUMAD models. Therefore, the following
discussions are for one IoT device. We note that, although
there are vastly diverse types of IoT devices on the Internet,
autoencoder is a powerful neural network that is capable
of learning different models. Therefore, we are able to
build diverse autoencoder models, one for each IoT device,
despite their vastly different network traffic behaviors of



Figure 3. Illustration of CUMAD architecture.

these IoT devices. In addition, IoT devices also provide us
with unique opportunities in establishing the models of nor-
mal behaviors, compared to traditional computer systems.
In particular, each IoT device only performs a few well-
defined simple functionalities in an autonomous or semi-
autonomous fashion, with very limited user interactions after
the initial device configuration and setup. This makes it
simpler to establish a model of normal behaviors in carrying
out anomaly detection.

4.2.1. Model Training and Setup. Before CUMAD can be
used to monitor network traffic to detect compromised IoT
devices, we need to train a CUMAD system for each IoT
device so that it can learn the normal model of the device.
During the training stage of a deployed CUMAD system,
it is critical that we should only feed normal (benign)
network traffic of the device to the system. This can be
done, for example, when an IoT device is first deployed
in the network. In order to minimize false positives during
the detection stage, it is also important that CUMAD has a
reasonably complete view of all the normal network traffic
behavior of the device.

The training of the autoencoder module in ADC (see
Figure 3) follows the basic standard steps in ML train-
ing [12]. Given a set D of normal input data points to
the autoencoder of ADC , we partition it into two subsets:
the training set Dt and the validation set Dv. We use
Dt to train the model and use Dv to obtain the optimal
value of the hyperparameters including learning rate and
epochs to optimize the performance of the final model in
terms of reconstruction errors. After the optimal values of
these hyperparameters are obtained, we perform the final
training of the model using D. After the training is complete,
the autoencoder obtains the latent-space representation of
the normal network traffic behavior of the corresponding
IoT device, which can capture the salient properties of the
device’s network traffic.

As discussed above, the premise of using an autoencoder
as an anomaly detection mechanism is that, although it can
effectively reconstruct data points that are similar to the data
points that it has seen previously during the training stage,
it in general performs poorly to reconstruct data points that
substantially differ from the training data. This is manifested
in large reconstruction errors. Therefore, we will use the
reconstruction error as the anomaly score, and when the

anomaly score is greater than the pre-defined threshold, we
classify the corresponding input data point as an anomalous
sample.

Clearly, the choice of the anomaly score threshold Tas

will greatly affect the performance of the resulting CUMAD
system. In the current design, we choose Tas in the follow-
ing manner. Let µD and σD denote the average and standard
deviation of the mean squared errors for data points in the
dataset D, respectively, then Tas = µD+σD. This threshold
value is maintained by the Detector module in ADC (see
Figure 3).

The training of the autoencoder and the choice of Tas

also provide us with some hints on the parameters of SPRT
in CAC. In particular, based on the value of Tas we can
compute the proportion of input data points in D that will be
(mistakenly) classified as being anomalous, and we can treat
this proportion as the value for θ0, that is, the probability
that we will have an anomalous sample when the device is
not compromised. In addition to the parameter θ0, we also
need to set up a few other parameters for SPRT to work,
including θ1, α, and β. θ1 is the probability that an input
data point is anomalous when the hypothesis H1 is true,
that is, when the IoT device is compromised. During the
time when a compromised IoT device is used to launch a
security attack, this probability should be much higher than
θ0. Although in general we cannot obtain the precise value
of θ1, a value sufficiently greater than θ0 should work. We
note that imprecise values of θ1 (and θ0) may result in a
larger number of samples for SPRT to reach a decision.

The parameters α and β are the user-desired false posi-
tive rate and false negative rate, respectively. They normally
have small values for all practical applications, for example,
in the range 0.01 to 0.05. The initial value of Λn in
Eq. (1) is set to 0 during the setup stage of the system.
The functionality of the Alert module is to generate proper
alert to inform system administrators of the detection of a
compromised IoT device. Other actions can also be taken
based on the local security policies, for example, informing
proper agents to isolate the compromised IoT device.

4.2.2. Detection. After the model has been trained and the
required parameters have been set for the CUMAD system,
it can be used to monitor network traffic to detect if the
corresponding IoT device has been compromised. In the
following we describe the basic steps of a CUMAD system



Algorithm 1 CUMAD procedures in detection.
1: Let x be an input data point
2: procedure AUTOENCODER(x)
3: x′ ← g(f(x)) ▷ Reconstruct x in autoencoder
4: s← L(x,x′) ▷ Compute anomaly score
5: procedure DETECTOR(s)
6: if s > Tas then
7: return 1 ▷ Anomalous input data point
8: else
9: return 0 ▷ Normal input data point

10: procedure SPRT(o)
11: o: output of Detector
12: ▷ Update Λn based on Eq. (1) ◁
13: if (o == 1) then
14: ▷ anomalous ◁
15: Λn+ = ln θ1

θ0
16: else
17: ▷ normal ◁
18: Λn+ = ln 1−θ1

1−θ0
19: ▷ If decision can be made based on Eq. (2) ◁
20: if (Λn ≥ B) then
21: Device is compromised.
22: Test terminates for the IoT device
23: Calling Alert module to generate alert
24: else if (Λn ≤ A) then
25: Device is normal. Test is reset for the device
26: Λn ← 0
27: Test continues with new observations
28: else
29: Test continues with an additional observation

in carrying out the detection task (see Algorithm 1).
The input data point x is fed into the trained autoencoder

model of CUMAD (lines 2 to 4 in Algorithm 1). The
autoencoder will try to reconstruct the input and create the
output x′. The anomaly score s is then computed (it is the
mean squared error in the current design). The anomaly
score is then passed to the Detector module of ADC, which
maintains an anomaly score threshold to distinguish between
normal and anomalous data points (lines 5 to 9 in the
algorithm). If the anomaly score is greater than the threshold
Tas, an anomalous data point is identified, and an output
value 1 is generated in the Detector to indicate the detection
of the anomalous data point. Otherwise, an output value 0
is generated to indicate a normal data point.

The output of the Detector module is then passed to
the SPRT module to determine if sufficient evidence has
been accumulated to make a decision regarding the nature
of the IoT device (compromised or normal; line 10 of the
algorithm). SPRT updates the probability ratio measure Λn

according to Eq. (1), as the 0 (normal data point) and 1
(anomalous data point) output sequence of the Detector
module arrives (lines 13 to 18). After the value of Λn is
updated for each input data point, SPRT compares the value
of Λn with the two boundaries A and B to determine if a
decision can be made (lines 20 to 29). When the value of Λn

hits or crosses the upper bound B, SPRT will conclude that

the alternative hypothesis H1 is true, that is, the IoT device
has been compromised. In this case, SPRT will inform the
Alert module the detection of an compromised IoT device.
Proper alert will be generated and corresponding system
administrators will be informed. In addition, from this time
on, it is not necessary to monitor the IoT device anymore,
until proper actions have been taken to clean up or remove
the device.

When the value of Λn is equal to or smaller than the
lower bound A, SPRT reaches the conclusion that H0 is
true, that is, the IoT device is not compromised. From
the viewpoint of detecting compromised IoT devices, this
conclusion is less interesting in that we cannot terminate
the monitoring of the device as we have done when a
compromised IoT device is detected. A normal IoT device
may become compromised at a later time. Therefore, in this
case, we will reset the state of SPRT to restart the monitoring
of the IoT device, in particular, we will reset the value of
Λn to zero. If a decision cannot be reached at this time (line
28), SPRT will simply wait for additional input data points
and repeat the same procedure.

5. Evaluation Studies

In this section we perform evaluation studies to in-
vestigate the performance of CUMAD using the public-
domain N-BaIoT dataset [8]. In order to better understand
the evaluation studies, we will first describe the dataset, in
particular, the features of the data points contained in the
dataset. We will also compare the performance of CUMAD
with that of the N-BaIoT scheme (which is the name for
both the dataset and the corresponding scheme on detecting
compromised IoT devices) [8].

5.1. Dataset, Features, and CUMAD System Setup

TABLE 1. N-BAIOT FEATURE EXTRACTION AGGREGATIONS.

Aggregation level # features Pkt attributes and measures

Source IP 3 # pkts, Mean/Variance of pkt sizes1

Source MAC-IP 3 # pkts, Mean/Variance of pkt sizes1

Channel
10 # pkts, Mean/Variance of pkt sizes1, Mean/Variance/Count of IATs,

Magnitude/Radius/Covariance/Correlation Coefficient of pkt sizes2

Socket
7 # pkts, Mean/Variance of pkt sizes1,

Magnitude/Radius/Covariance/Correlation Coefficient of pkt sizes2

1 Outgoing packets only
2 Both incoming and outgoing packets

N-BaIoT contains both benign and (Mirai and Bash-
lite) attack traffic of 9 commercial IoT devices, including
two doorbells (Danmini and Ennio), an Ecobee thermostat,
three baby monitors (different models from Provision and
Philips), two SimpleHome security cameras, and a Samsung
webcam. Benign IoT device traffic was collected imme-
diately after the corresponding IoT device was connected
to the experimental testbed. Care was taken to ensure that
various representative normal operations and behaviors of
IoT devices were collected into the benign dataset.



TABLE 2. PERFORMANCE RESULTS

Device
CUMAD N-BaIoT

Mean Size Accuracy Recall F1 Score Window Size Accuracy Recall F1 Score

Danmini Doorbell 5.19 0.979 1.000 0.979 82 0.995 1.000 0.995

Ecobee Thermostat 4.18 0.988 1.000 0.988 20 0.995 1.000 0.995

Philips B120N10 Baby Monitor 5.62 0.955 0.994 0.957 65 0.982 0.992 0.983

Provision PT 737E Security Cam 4.21 0.992 1.000 0.992 32 1.000 1.000 1.000

Provision PT 838 Security Cam 4.79 0.957 1.000 0.958 43 0.978 1.000 0.978

SimpleHome XCS7 1002 WHT Security Cam 4.08 0.995 0.999 0.995 23 0.998 0.998 0.998

SimpleHome XCS7 1003 WHT Security Cam 4.11 0.993 1.000 0.993 25 0.995 1.000 0.995

These IoT devices were later infected with Mirai and
Bashlite malware in the controlled environment, and the
attack traffic was also collected and added into the dataset.
The dataset does not contain Mirai attack data for two of
the devices (Ennio Doorbell and Samsung Webcam). We
exclude these two IoT devices from our evaluation studies,
therefore, we have 7 IoT devices in our evaluation studies.
In our evaluation studies, we use the benign traffic and the
scan attack traffic from the remaining 7 IoT devices. We
equally partition the benign data of an IoT device into three
datasets: the training dataset Dt, the validation dataset Dv,
and the remaining 1/3 of benign data is merged with the
same number of attack data points to form the balanced test
dataset Dtst.

In the N-BaIoT dataset, each data point corresponds
to an arrived packet, and contains 115 statistical features,
which together represent a behavioral snapshot that de-
scribes the context of the corresponding packet when it
arrives at the data collection point. The snapshot contains
the source and destination device information, the proto-
col information, among others. More specifically, the 115
features were extracted in the following manner. For each
arriving packet, a total of 23 features were collected at dif-
ferent levels of aggregation (see Table 1), including features
aggregated at source IP address level, at source MAC and IP
addresses level, at level of channel (source and destination
IP addresses), and at socket level (source and destination
IP addresses and port numbers). These 23 features were
extracted in a sliding window fashion, over 5 time windows
of 100ms, 500ms, 1.5sec, 10sec, and 1min, respectively,
generating a total of 115 features for each data point.

We use the Keras sequential model as the foundation
for our development of the autoencoder [12]. The model’s
input dimension is set to match the number of features in
the dataset (that is, 115). To ensure effective compression,
we implement three hidden layers within the encoder. These
layers progressively reduce the dimensions to 87, 58, 38, and
29, respectively, with the last one (29) being the dimension
of the output layer of the encoder, that is, the dimension
of the obtained code. Conversely, the decoder component
mirrors the dimensions of the encoder layers in the reverse
order, starting from 38. By employing compression and
decompression in the encoder and decoder layers, we ef-
fectively eliminate redundant information from the features

of the input data points. To optimize training performance,
we utilize the Adam optimizer, and the mean square error
is used as the reconstruction error (objective function of the
model).

SPRT requires four user-defined parameters in order
to compute the upper and lower bounds A and B (see
Eq. (3)), as well as the step function for computing Λn

following each observation (see Eq. (1)). The desired values
for both the false positive rate and the false negative rate
(represented by α and β, respectively) are typically very
small. In this study we set both α and β to 0.01. Ideally, the
parameter θ indicates the true probability of an observation
being classified as an anomaly, from either a benign or
compromised IoT device. We determine the values for θ0
and θ1 through our preliminary studies, and set them to 0.2
and 0.8, respectively.

5.2. Performance Results

Table 2 shows the performance of CUMAD in detecting
IoT devices, in terms of accuracy, recall, and F1 score [12].
From the table we can see that CUMAD achieves superior
performance in all three metrics. For example, for 5 of the
IoT devices, CUMAD is able to detect all the compromised
cases (see the column of Recall). CUMAD is also able
to detect vast majority of the compromised cases for the
remaining two of the IoT devices, with recall scores of
0.999 and 0.994. Considering both detection precision of
attack and benign traffic, we can see that CUMAD also
performs very well, with an accuracy score ranging from
0.955 to 0.995 for all 7 IoT devices. The F1 scores, which
is a weighted average of the precision and recall scores
of a model, also confirm that CUMAD performs well in
detecting compromised cases.

Figure 4 shows the false positive rates of an autoencoder-
based anomaly detection scheme and CUMAD. As shown in
the figure, the false positive rates of the autoencoder-based
anomaly detection scheme for the 7 IoT devices range from
0.77% to 11.22%, while the false positive rates of CUMAD
range from 0.014% to 2.067%. On average the autoencoder-
based anomaly detection scheme has about 3.57% false
positive rate, while the false positive rate of CUMAD is
about 0.5%, which represents about 7 times performance
improvement in terms of false positive rate for CUMAD
over the autoencoder-based anomaly detection scheme.



Figure 4. False positive rates.

For performance comparison, we also include in the
table the performance results of the N-BaIoT scheme, with
the same evaluation studies setup. We can see from the table
that CUMAD and N-BaIoT performs comparably in terms of
all three performance metrics. However, N-BaIoT works on
a fixed window size. Table 2 shows that N-BaIoT requires a
relatively large window size, ranging from 20 to 82 (column
with name Window Size). In contrast, CUMAD works in an
online fashion and does not requires such a fixed window
size. Table 2 shows the average number of observations
required for CUMAD to reach a detection (column with
name Mean Size); we can see from the table that it takes
on average less than 5 observations for CUMAD to make
a detection of a compromised case, much quicker than N-
BaIoT. In order to have a better understanding of the number
of observations for CUMAD to make a detection of a com-
promised case, Figure 5 shows the cumulative distribution
function (CDF) of required observations for CUMAD to
make a detection for all the 7 IoT devices. We can see from
the figure that the vast majority of detection requires less
than 10 observations for all 7 IoT devices.

Figure 5. # of observations for detection in CUMAD.

In summary, compared to simple anomaly detection
schemes such as the ones only based on autoencoders,
CUMAD can greatly reduce the false positive rates, making
CUMAD much more attractive than simple anomaly detec-
tion schemes in the real-world deployment. Compared with
window-based schemes such as N-BaIoT, CUMAD requires

much less observations to reach a detection, and thus can
detect compromised IoT devices much quicker.

6. Conclusions

In this paper we have developed CUMAD, a cumulative
anomaly detection framework for detecting compromised
IoT devices. CUMAD employs an unsupervised neural net-
work autoencoder to classify whether an individual input
data point is anomalous or normal. CUMAD also incor-
porates a statistical tool sequential probability ratio test
(SPRT) to accumulate sufficient evidence to detect if an
IoT device is compromised, instead of directly relying on
individual anomalous input data points. CUMAD can greatly
improve the performance in detecting compromised IoT
devices in terms of false positive rate compared to the
methods only relying on individual anomalous input data
points. In addition, as a sequential method, CUMAD can
quickly detect compromised IoT devices. Evaluation studies
based on public-domain IoT dataset N-BaIoT confirmed the
superior performance of CUMAD.
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