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Abstract— Theory and application of stochastic approximation
(SA) has grown within the control systems community since the
earliest days of adaptive control. This paper takes a new look at
the topic, motivated by recent results establishing remarkable
performance of SA with (sufficiently small) constant step-size
α > 0. If averaging is implemented to obtain the final parameter
estimate, then the estimates are asymptotically unbiased with
nearly optimal asymptotic covariance. These results have been
obtained for random linear SA recursions with i.i.d. coefficients.

This paper obtains very different conclusions in the more
common case of geometrically ergodic Markovian disturbance:
(i) The target bias is identified, even in the case of non-linear SA,
and is in general non-zero. The remaining results are established
for linear SA recursions: (ii) the bivariate parameter-disturbance
process is geometrically ergodic in a topological sense; (iii) the
representation for bias has a simpler form in this case, and
cannot be expected to be zero if there is multiplicative noise;
(iv) the asymptotic covariance of the averaged parameters is
within O(α) of optimal. The error term is identified, and may
be massive if mean dynamics are not well conditioned. The
theory is illustrated with application to TD-learning.

Index Terms— Stochastic Approximation, Stochastic Recursive
Algorithms, TD learning.

I. INTRODUCTION

The stochastic approximation (SA) algorithm of Robbins
and Monro is designed to solve the root finding problem

sf(θ∗) = 0, in which sf(θ) := E[f(θ,Φ)] , θ ∈ Rd , (1)

Φ a random variable taking values in a set X, and f : Rd ×
X → Rd. The SA algorithm is the d-dimensional recursion,

θn+1 = θn + αn+1f(θn,Φn+1) , n ≥ 0 (2)

with initial condition θ0 ∈ Rd, a non-negative step-size
sequence {αn}, and Φn

d−→ Φ as n → ∞ (convergence
in distribution). The sequence Φ = {Φk} is often assumed
to be Markovian, which is the setting of the present paper.
Convergence theory is based on comparison of (2) with the
mean flow,

d
dtϑt =

sf(ϑt) . (3)

Much of this theory is based on a vanishing step-size
sequence, with αn = n−ρ a common choice. The constraint
ρ ∈ (1/2, 1] is imposed so that the step-size is square
summable, but

∑
n αn = ∞. Almost sure convergence of

{θn} to θ∗ holds under minimal assumptions on sf and Φ.
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The Markovian assumption is not required—see Chapter 2
of [3] for consistency results under minimal conditions.

Theory for convergence rates remains a research frontier. It
is known that the mean-squared error (MSE) vanishes slowly:
for vanishing gain algorithms, one expects the bound E[∥θn−
θ∗∥2] = O(αn). One approach to speed up convergence while
also optimizing variance is to employ Polyak-Ruppert (PR)
averaging [18], [17]:

θPR
N =

1

N −N0

N∑
k=N0+1

θk , 0 < N0 < N (4)

with N0 > 0 introduced to discard transients.
Subject to conditions on f , Φ and the step-size sequence,

averaging achieves two benefits: the MSE decays at rate
O(N−1), and the asymptotic covariance is minimal. That is,
ΣPR = Σ∗

θ, with

ΣPR := lim
N→∞

NE[(θPR
N − θ∗)(θPR

N − θ∗)⊺] (5a)

Σ∗
θ = [A∗]−1ΣW∗ [A∗⊺]−1 (5b)

in which A∗ = ∂θ sf (θ∗), and ΣW∗ is the “noise covariance
matrix” defined in (18). The matrix Σ∗

θ is minimal in the
matricial sense.

Despite this attractive theory for SA with vanishing step-
size, many practitioners advocate a fixed step-size, αn ≡
α > 0. There is little hope for convergence of {θn} in
this case, but bounds on bias and variance can be obtained
once boundedness of the recursion is established. Similar to
the vanishing step-size case, the MSE is determined by the
step-size, lim supn→∞ E[∥θn − θ∗∥2] = O(α) (see [4] for
sufficient conditions).

Recent research provides a bridge between theory and
practice, through the application of PR averaging in algo-
rithms with fixed step-size [1], [16]. These papers obtain not
only convergence of filtered estimates {θPR

N} to θ∗, but also
establish the optimal O(N−1) convergence rate for the MSE.
These positive results come with a large price: it is assumed
that Φ is an independent and identically distributed (i.i.d.)
sequence. Such strong assumptions are rarely justified.

A major goal of the present paper is to show that averaging
cannot in general eliminate bias for the Markovian SA
recursion with constant step-size. We also find that the
covariance matrix (5a) differs from the ideal.
TD-Learning: An illustration of the theory is provided in
Section III-A using an instance of TD-learning in an ideal
setting: the true value function lies within the span of the
two-dimensional function class. The parameter sequence {θn}
evolves in R2, and is convergent to the optimal θ∗ for the
standard setting with vanishing step-size.
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For the fixed step-size algorithm there is bias: θPR
∞ =

limn→∞ θPR
n ̸= θ∗. The extensive literature on the central

limit theorem for SA suggests that the PR averaged estimates
admit the approximation,

θPR
N

dist≈
√
α

N
W∞ + θPR

∞ , W∞ ∼ N(0,ΣPR) (6)

where the asymptotic covariance ΣPR is approximately equal
to Σ∗

θ for small α (see (5b) for the definition).
Fig. 1(a) shows the L2 norm of the estimation error

obtained from PR averaged estimates as a function of α,
and a fixed value of N = 5 × 105. The plot is consistent
with the heuristic (6):
Small step-size: for α < 10−3 the L2-error is approximated
well by an affine function of

√
α. This would be anticipated

by (6) and the theory in this paper, establishing that the bias
∥θPR

∞ − θ∗∥ is of order O(α).
Large step-size: for α > 10−3 the L2-error is approximately
affine as a function α. It appears that the bias dominates
variance in this regime.

The histograms shown in Fig. 1 (b) compare performance
of the algorithm with two choices of step-size. The vanishing
gain algorithm is best in terms of both bias and variance. To
obtain comparable mean and variance with a constant step-
size algorithm would require a very small value of α > 0
and a larger value of N .
Contributions: This brings us to the main contributions of
this paper. The first two concern the nonlinear SA recursion.
(i) Moment bounds are obtained for the fixed step-size
algorithm: there is α0 > 0 and b2.1 < ∞, such that for
0 < α ≤ α0 and each θ0 ∈ Rd,

lim sup
n→∞

E[∥θn − θ∗∥4] ≤ b2.1α2 (7)

(ii) The target bias is of order O(α):

lim sup
N→∞

∥∥∥ 1

N

N−1∑
k=0

E[ sf(θk)]
∥∥∥ = α lim sup

N→∞

∥∥∥ 1

N

N−1∑
k=0

E[Υk]
∥∥∥
(8)

in which the limit supremum on the right hand side is
uniformly bounded in α. The d-dimensional sequence {Υk}
plays a crucial role in this paper, appearing for the first time
in the disturbance decomposition (12).

Contributions (i) and (ii) summarize Thm. 2.1, which
concerns the SA recursion subject to standard assumptions
on f , but strong assumptions on the Markov chain. Strong
assumptions are in general necessary to obtain moment
bounds—see [2] for a counter example based on linear SA
with vanishing gain.

The pair process {θn,Φn+1} is a time homogeneous
Markov chain. Under the assumptions of the paper it is
possible to establish the existence of an invariant measure, but
we have not yet established ergodicity as would be required
to improve the conclusions in (i) and (ii). Sharper results are
obtained for the linear SA recursion,

θn+1 = θn + α[An+1θn − bn+1] (9)

in which (An; bn) is a function of Φn for each n.
The remaining contributions are established for (9): there

is a unique invariant measure for the pair process, which is
geometrically ergodic in a topological sense. This provides
a framework for analysis that brings us to the following
conclusions:

(iii) The bias admits the representation,

lim
n→∞

E[θPR
n ] = lim

n→∞
E[θn] = θ∗+α[A∗]−1

sΥ∗+O(α2) (10)

where A∗ = ∂θ sf(θ∗) and sΥ∗ ∈ Rd is identified in Thm. 2.5.

(iv) For a d× d matrix Z, and Σ∗
θ defined in (5b),

lim
N→∞

NCov (θPR
N ) = Σ∗

θ − αZ +O(α2) (11)

Survey of relevant literature and approach to analysis.
While the present paper was inspired by the recent articles [1],
[16], the contents are more closely related to [6], [7] which
also treat the fixed step-size SA algorithm with Markovian
noise. The main conclusions are L2-bounds on the parameter
error, and geometric ergodicity in the same topological sense
as in the present paper.

The conditions on Φ in [6] are milder—only geometric
ergodicity is imposed—but the assumptions on f are far
stronger. There is no representation for bias.

A bias representation for SA with constant gain first
appeared in the preprint [11] and the extended abstract [10].
Analysis of bias for linear recursions is considered in [7]
subject to a stronger uniform ergodicity assumption on Φ.
The stronger condition is imposed because they seek uniform
bounds on the transient behavior of the algorithm.

Analysis of the SA recursion (2) commonly begins with its
interpretation as a “noisy” Euler approximation of the mean
flow, with “noise” or “disturbance” ∆n+1 := f(θn,Φn+1)−
sf(θn). The starting point of analysis in this paper is the
decomposition of Métivier and Priouret [13],

∆n+1 = Wn+2 − Tn+2 + Tn+1 − αΥn+2 , (12)

in which {Wn+2} is a martingale difference sequence. This
prior work considered the case of vanishing step-size, and
based on this representation established convergence of the
SA algorithm. The idea has been applied in many other
papers, and in particular leads to a functional Central Limit
Theorem under suitable conditions. The weakest conditions
to-date are found in [2], and this recent prior work is a major
foundation of the present paper. Key lemmas from [2] extend
to the setting of this paper, which form components of the
proof of eqs. (7) and (8).

Finer results, such as the final set of conclusions in eqs. (10)
and (11), require multiple applications of the disturbance
decomposition (12) to general functions of (θn,Φn+1). We
are not aware of repeated application of these martingale
approximations in prior work.

Organization. The remainder of the paper is organized
in three sections. Section II summarizes the assumptions
and notation imposed throughout the paper and presents
contributions (i)–(iv), along with proof outlines for each result.
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Fig. 1: Performance of TD(λ) Learning with λ = 0. (a) L2 norm of estimation error for the fixed step-size algorithm as a
function of α. (b) Histogram of estimation error for vanishing and constant steps-size algorithms for each dimension of θPR.

Section III contains numerical experiments that illustrate the
theory in Section II, including details on the experiments
supporting Fig. 1. Conclusions and open paths for future
research are contained in Section IV. Selected technical results
supporting the main conclusions of the paper are contained
in the Appendix. Full proofs for each of the main results can
be found in the preprint version of this article [12].

II. MAIN RESULTS

A. Preliminaries

It is assumed that Φ := {Φn} in (2) is a geometrically
ergodic Markov chain, whose state space X is a locally
compact and separable metric space. Its transition kernel
is denoted P , and unique invariant measure π, so that sf(θ) =
Eπ[f(θ,Φk)]. The subscript in the expectation defining sf
indicates that it is taken in steady-state: Φk ∼ π.

The following assumptions are in place throughout:

(A1) The SA recursion (2) is considered with αn ≡ α > 0.

(A2i) There is a function L : X → R satisfying ∥f(θ, x)−
f(θ′, x)∥ ≤ L(x)∥θ−θ′∥ and ∥f(0, x)∥ ≤ L(x) for all x ∈ X
and θ, θ′ ∈ Rd.

(A2ii) Φ is an aperiodic Markov chain satisfying (DV3):
For functions V : X → R+, W : X → [1,∞), a small set C,
b > 0 and all x ∈ X,

E
[
exp

(
V (Φk+1)

)
| Φk = x

]
≤ exp

(
V (x)−W (x)+bIC(x)

)
In addition, SW (r) := {x : W (x) ≤ r} is either small or
empty and sup{V (x) : x ∈ SW (r)} <∞.

See [15] for the definition of a small set.

(A3) The scaled vector field sf∞(θ) exists for each θ ∈
Rd: 1

cf(cθ) → sf∞(θ) as c → ∞. Moreover, the ODE@∞,
d
dtϑ

∞
t = sf∞(ϑ∞t ) is globally asymptotically stable.

(A4) lim
n→∞

(
sup

{ L(x)

W (x)
:W (x) ≥ n

})
= 0 .1

(A5) sf : Rd → Rd is continuously differentiable in θ, and the
Jacobian matrix Ā = ∂ sf is uniformly bounded and uniformly
Lipschitz continuous. Moreover, A∗ := Ā(θ∗) is Hurwitz.

The mean flow (3) is exponentially asymptotical stable
under (A3) and (A5) [11] (further results are obtained in
[20] under stronger conditions). Geometric ergodicity of Φ
follows from (A2)—see [9] or [15, Chapter 20.1].

1A relaxation of (A4) may be found in [2].

More notation: For a sequence {γn} and a non-negative
sequence {κn}, we write γn = O(κn) if there is a constant
b < ∞ such that ∥γn∥ ≤ bκn for all n (the first sequence
may be vector valued).

The joint process Ψ := {Ψn = (θn,Φn+1) : n ≥ 0}
is Markovian. When an invariant measure ϖ exists for Ψ,
its second marginal is the invariant measure π for Φ. Any
functions are assumed to be measurable with respect to the
Borel sigma-algebra over their domain.

For functions g, h : Rd × X → R, we denote

sg(θ) =

∫
g(θ, x)π(dx) , g̃(z) = g(z)−ϖ(g) ,

with ϖ(g) =
∫
g(z)ϖ(dz). We adopt the following L2

notation, and also notation for asymptotic covariances of
vector-valued functions:

⟨g, h⟩L2 = Eϖ[g(Ψ0)h(Ψ0)
⊺] , Σg = ⟨g, g⟩L2 (13)

⟨g, h⟩CLT =
∞∑

k=−∞
Eϖ[g̃(Ψ0)h̃(Ψk)

⊺] , Σg
CLT = ⟨g, g⟩CLT .

The notation is extended to stationary realizations of
vector-valued stochastic processes {Gk,Hk}. In particular,

⟨G,H⟩CLT =
∞∑

k=−∞
Eϖ[G̃0H̃⊺

k ], with {G̃k, H̃k} the zero mean

centered processes.

B. Moment Bounds

Moment bounds are obtained in [2] for vanishing step-size
algorithms by establishing a Lyapunov drift condition for the
function V(θ, x) = (1 + β∥θ∥4)v+(x), with β > 0,

v+(x) = E[exp
(
V (Φk+1) + ε◦W (Φk)

)
| Φk = x] (14)

and ε◦ < 1. It is shown that similar Lyapunov bounds hold in
the setting of this paper, leading to the following conclusions:

Theorem 2.1: Suppose that (A1)-(A5) hold. Then there
exists b2.1 <∞ and α0 > 0 such that for 0 < α ≤ α0,

(i) sup
k,z

1

V(z)E
[
V(Ψk) | Ψ0 = z

]
≤ b2.1

(ii) lim sup
n→∞

E
[
∥θ̃n∥4

]
≤ b2.1α2

(iii) The bound (8) holds for each Ψ0.

Proof (outline): Introducing the suggestive notation

θn+1 = θn + α[ sf(θn) + ∆n+1] (15)
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we define “sampling times” to define the ODE approximation:
for each k, let τk = αk. For a given T > 0, let T0 = 0 and
Tn+1 = min{τk : τk ≥ Tn+T}. Consequently, the sequence
{Tn} satisfies T ≤ Tn+1−Tn ≤ T+α for each n. Let m0:=0
and mn the integer satisfying τmn

= Tn for each n ≥ 1.
No assumptions in [2] preclude {αk} from being constant

on any of the finite intervals {k : mn ≤ k < mn+1}.
Consequently, any of the finite-interval bounds in [2] are
valid here, on choosing αk ≡ α on any such interval. Part
(i) is a direct corollary to [2, Lemma A.18].

[2, Proposition A.22] obtains a uniform L4 bound on
z
(n)
k = 1√

αk
[θk − ϑ

(n)
t ] where {ϑ(n)t : t ≥ τmn} denotes

the solution to the mean flow initialized with ϑ
(n)
τmn

= θmn .
This bound can be extended to constant gain, and we then
obtain (ii) from this and exponential asymptotic stability of
the mean flow (3) following the proof of [2, Lemma A.23 (ii)].

Part (iii) follows from (15) and the decomposition (12). ⊓⊔
The disturbance decomposition (12) was introduced in

[13], beginning with the solution f̂ to Poisson’s equation
with forcing function f : for θ ∈ Rd , x ∈ X,

E[f̂(θ,Φn+1)−f̂(θ,Φn) | Φn = x] = −f(θ, x)+ sf(θ) (16)

The solution f̂ is unique up to an additive constant under the
assumptions imposed on f and Φ.

Proposition 2.2: If (A2) holds then f̂ : Rd×X → Rd exists
solving (16), with Eπ[f̂(θ,Φn)] = 0 for each θ ∈ Rd, and
for a constant bf and all θ, θ′, x:
∥f̂(θ, x)∥ ≤ bf

(
1 + V (x)

)[
1 + ∥θ∥

]
∥f̂(θ, x)− f̂(θ′, x)∥ ≤ bf

(
1 + V (x)

)
∥θ − θ′∥

Proof: (DV3) together with Jensen’s inequality gives

E
[
V (Φk+1) | Φk = x

]
≤ V (x)−W (x) + bIC(x)

The result then follows from [15, Theorem 17.4.2]. ⊓⊔
The terms in (12) admit representations in terms of f̂ :
Lemma 2.3: eq. (12) holds under (A2) with

Wn+2 := f̂(θn,Φn+2)− E[f̂(θn,Φn+2) | Fn+1], (17a)

Tn+1 := f̂(θn,Φn+1), (17b)

Υn+2 :=− 1

α

[
f̂(θn+1,Φn+2)− f̂(θn,Φn+2)

]
(17c)

The sequence {Υn+2} defined in (17c) is most important
in finer analysis of bias and variance in linear stochastic
approximation. The martingale difference sequence dominates
the variance. We denote

ΣW = ⟨W ,W⊺⟩CLT , ΣW∗ = ⟨W∗,W∗⊺⟩CLT ,

with W∗
n+1 := f̂(θ∗,Φn+1)− E[f̂(θ∗,Φn) | Fn]

and Υ∗
n = −ÂnAn−1θ

∗ + Ânbn−1

(18)

where An :=A(Φn) = ∂θf(θ,Φn) and Â denotes the solution
to Poisson’s equation with forcing function A. In the special
case considered in Thm. 2.5 where f is affine in θ, its Jacobian
A is independent of θ.

We also require solutions to Poisson’s equation for the
full process Ψ. Under conditions on the forcing function

g : Rd × X → Rm, a zero-mean solution is obtained:

ǧ(θ, x) =
∞∑
k=0

E[g̃(θk,Φk+1)|θ0 = θ,Φ1 = x] (19)

where the sum exists for all θ ∈ Rd, x ∈ X. With (19) in hand,
an alternative representation is obtained for the asymptotic
covariances (13) of vector-valued functions:

⟨g, h⟩CLT = ⟨ǧ, h⟩L2
+ ⟨g, ȟ⟩L2

− ⟨g, h⟩L2
(20a)

∥⟨h, h⟩CLT∥F ≤ 2∥h̃∥L2
∥ȟ∥L2

(20b)

C. Sensitivity

The theory of Lyapunov exponents is a promising approach
to establish a form of ergodicity for the bivariate process Ψ.

The sensitivity process is defined by ζ0n = ∂θ0θn, in which
θn is viewed as a smooth function of the initial condition;
this requires common randomness for each initial condition
in (2). It evolves according to the recursion,

ζ0n+1 = ζ0n + αAn+1ζ
0
n , An+1 := ∂θf (θn,Φn+1) (21)

The Lp-Lyapunov exponent λp is the growth rate,

log(λp) := lim
n→∞

1

n
log(E[∥ζ0n∥pF ]1/p)

where ∥ · ∥F denotes the Frobenious norm. If this limit exists
and is negative, then parameter sequences from distinct initial
conditions converge to a steady-state in a topological sense.

Consider the scaled sensitivity process defined by ζn =
exp(nδsα)ζ

0
n, with δs > 0. Multiplying each side of (21) by

exp(δsα) results in the recursion,

ζn+1 = ζn + α
[
Mδ +An+1

]
ζn (22)

where Mδ := α−1[exp(δsα)− 1]I . Associated with the pair
of recursions (2, 22) is the 2d dimensional mean-flow,

d
dtϑt =

sf(ϑt) ,
d
dtzt =

[
MδI + Ā(ϑt)

]
zt

Under the assumptions of Thm. 2.1, the first ODE is globally
exponentially stable with unique equilibrium θ∗. Under (A5)
the matrix A∗ := Ā(θ∗) is Hurwitz, which tells us how we
should choose δs: sufficiently small so that Mδ + A∗ is
Hurwitz for all α ∈ (0, α0]. The bivariate mean flow is then
globally asymptotically stable.

Unfortunately we cannot apply Thm. 2.1 to the joint SA
recursion generating (θn; ζn) because the right hand side of
(22) is not jointly Lipschitz continuous in (θn; ζn).

We turn next to the linear setting in which Ā(θ) ≡ A∗, so
that the required Lipschitz conditions hold.

D. Linear Stochastic Approximation

The linear SA recursion and scaled sensitivity process are
viewed as a single SA recursion: for (θ0; ζ0) ∈ R2d,

θn+1 = θn + α[An+1θn − bn+1] (23a)

ζn+1 = ζn + α
[
Mδ +An+1

]
ζn . (23b)
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The second recursion differs from (22) in two respects. First,
ζn is a d-dimensional vector and not a matrix; if ζ0 = ei

(the ith basis vector), then ζn = exp(nδsα)∂θi
0
θn. Second,

An+1 = A(Φn+1) and bn+1 = b(Φn+1) do not depend upon
θn, giving ζn = exp(nδsα)An · · ·A1ζ0.

The disturbance decomposition also simplifies:

f̂(θn,Φn+1) = Ân+1θn − b̂n+1

Υn+2 = −Ân+2An+1θn + Ân+2bn+1

(24)

Using sf(θ) = A∗(θ−θ∗), with θ∗ = [A∗]−1b̄, the mean flow
for the pair process is linear:

d
dtϑt = A∗(ϑt − θ∗) , d

dtzt =
[
Mδ +A∗]zt

Consequently, (23) satisfies the assumptions of Thm. 2.1.
Theorem 2.4: Suppose that (A1)-(A5) hold, and that δs > 0

is chosen so that Mδ + A∗ is Hurwitz for all α ∈ (0, α0].
Then, there is b2.4 <∞ such that for 0 < α ≤ α0,

(i) sup
k,z,ζ

E
[
(1 + ∥ζk∥4)V(Ψk) | Ψ0 = z, ζ0 = ζ

]
(1 + ∥ζ∥4)V(z) ≤ b2.4

(ii) There is a unique invariant measure ϖ for Ψ, and
constant ϱ2.4 < 1 for which the following conclusions hold:
if G : Rd × X → R satisfies the bounds,

|G(θ, x)| ≤ bGV1/4(θ, x)

|G(θ, x)−G(θ′, x)| ≤ bGv
1/4
+ (x)∥θ − θ′∥

for some bG <∞ and all z = (x, u) ∈ Rd × X, then

Eϖ[|G̃(θ0,Φ1)|2] ≤ b2.4bG (25)

where G̃ = G−ϖ(G), and for each initial condition,

|E[G̃(Ψk) | Ψ0 = z]| ≤ bGb
2.4ϱk2.4V1/2(z) , k ≥ 0 (26)

Proof (outline): Part (i) follows from Thm. 2.1. The proof
of (ii) begins with establishing λp ≤ exp(−δsα) with p = 4,
which in particular implies the existence of ϖ [6]. ⊓⊔

The Lyapunov exponent bound λ4 ≤ exp(−δsα) in
Thm. 2.4 is a consequence of the following.

Theorem 2.5: The following hold under the assumptions
of Thm. 2.4, for each 0 < α ≤ α0:
(i) The bias approximation (10) holds with sΥ∗ = sΥ(θ∗),
where sΥ(θ) := Eπ[Υn+1] = −Eπ[Ân+1(Anθ + bn)].
(ii) The representation (11) for the covariance of the PR
averaged estimates holds, in which Z = [A∗]−1Z0[A∗]−1⊺,

Z0 = ΣΥ∗,W∗

CLT +
(
ΣΥ∗,W∗

CLT

)⊺
+

1

α

[
ΣW∗ − ΣW

]
(27)

The right hand side is uniformly bounded in α. The cross

covariance term is ΣΥ∗,W∗

CLT =
∞∑

k=−∞
Eϖ[Υ∗

0W∗
k
⊺], in which

{Υ∗
k,W∗

k} is defined in (18).
Proof (outline): Key to each step is the combination of (23a)
and Lemma 2.3, giving

θn = θ∗ + [A∗]−1
[
−∆n+1 +

1
α [θn+1 − θn]

]
(28)

The proof of (i) begins by taking expectations of each side
of (28) in steady state. Applying Lemma 2.3 and Prop. A.2
gives the result in (10).

The proof of (ii) is based on the following steps:

1. ΣG
CLT = ⟨G,G⟩CLT is finite, and uniformly bounded over

0 < α ≤ α0, for stochastic processes of the form Gk+ℓ =
Mk+ℓθk + γk+ℓ, with ℓ ≥ 1, and Mk+ℓ, γk+ℓ functions of
(Φk+1; . . . ; Φk+ℓ) satisfying growth conditions that hold for
the functions of interest—see Prop. A.3.

2. lim
N→∞

NCov (θPR
N ) = ΣG0

CLT, with Gk = G0
k := θk.

3. A telescoping sequence has zero asymptotic covariance.
Hence, ΣG0

CLT = ΣG1

CLT, with G1
k = ∆k and G0

k = θk as above.

4. The final step is to show that ΣG1

CLT = ΣW∗ +αZ0+O(α2),
with Z0 given in (27). Lemma 2.3 gives ΣG1

CLT = ⟨W −
αΥk,W−αΥk⟩CLT, implying something similar to the desired
approximation. The final result follows from this combined
with Propositions A.2 and A.3. ⊓⊔

III. NUMERICAL EXPERIMENTS

A. TD learning

We now return to TD learning to explain how the theory
in this paper may be applied to inform algorithm design.

Consider the scalar linear system with i.i.d. Gaussian
disturbance,

Xn+1 = FXn +Wn+1 , |F | < 1 , Wn ∼ N(0, σ2
W ) (29)

along with the quadratic cost function c(x) = x2. The
discounted-cost value function with γ ∈ (0, 1) is finite valued,

J(x) =

∞∑
k=0

γkE[c(Xk)|X0 = x] , x ∈ R , (30)

The goal of TD-learning is to estimate this value function
within a specified function class.

With linear function approximation Jθ = θ⊺ψ, and basis
ψ : X → Rd, the TD(λ)-learning recursion is

θn+1 = θn + αn+1Dn+1ζn+1

Dn+1 = −Jθn(Xn) + c(Xn) + γJθn(Xn+1)

in which the “eligibility vectors” {ζn} are defined by passing
{ψ(Xn)} through a first-order low-pass filter:

ζn+1 = λγζn + ψ(Xn+1) , n ≥ 0, with λ ∈ [0, 1]. (31)

The value function (30) is quadratic in the state:

J(x) = θ∗1 + θ∗2x
2 , θ∗ :=

[
θ∗1 θ∗2

]⊺ ∈ R2 , (32)

which motivates the choice, ψ(x) = (x2, 1)⊺.
The discounted objective (30) was estimated using TD(λ)

for M = 200 independent runs using two different choices
of step-size: αn ≡ α = 10−2 and αn = min{α, n−0.8}.
Histograms for the estimation error corresponding to both
choices of αn are shown for each component of θPR. The
histograms corresponding to the algorithm with vanishing
step-size are centered at 0 and show less spread than the
histograms for the algorithm with constant step-size.

The impact of the bias formula (10) is evident. In particular,
the histogram for estimates of θ∗2 is centered far from 0. See
the extended abstract [10] for other examples showing how
to calculate Υ, and showing how bias increases dramatically
with Markovian memory.
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B. Impact of memory

The next experiment will investigate the impact of long
memory in linear SA through the recursion,

f(θn,Φn+1) = An+1θn − b+Wn+1

where An+1 = −1 +Wn+1 ,

Wn+1 = βWn +
√

1− β2Nn+1

(33)

and {Nn} is i.i.d. and Gaussian N(0, 1). It follows that
A∗ = −1 and θ∗ = −b.

The sequence {Wn} resembles the eligibility vector ap-
pearing in the TD-algorithms of reinforcement learning (31)
[19], [14].

The scaling by
√
1− β2 in (33) is introduced to ensure that

the steady-state variance of Wn is unity, but the asymptotic
variance is large when β ∼ 1: ΣW

CLT = (1+ β)/(1− β), using

ΣW
CLT =

∞∑
n=−∞

E[W0Wn] = −E[W2
0 ] + 2

∞∑
n=0

E[W0Wn]

A proof of the following conclusions can be found in the
extended version of this article [12].

Proposition 3.1: Consider the linear SA recursion in which
{Wn} evolves according to the linear recursion (33), with
0 ≤ β < 1, and N a standard i.i.d. Gaussian sequence,
Nn ∼ N(0, 1) for each n. The following conclusions hold:
(i) Provided an invariant probability measure ϖ ∼ (θn,Φn)
exists, the bias is

Eϖ[θ0] = θ∗ − αEϖ[Υ2] (34a)

with Eϖ

[
Υ2] = − β

1− β
[1 + θ∗] (34b)

− 1

1− β
Eϖ

[
W2

[
(W1 − 1)[θ0 − θ∗]

]
(34c)

(ii) The optimal asymptotic covariance (5b) is the scalar

Σ∗
θ = [1 + θ∗]2ΣW

CLT (34d)

Fig. 2: Comparison of empirical bias and variance obtained
from PR-averaging as functions of α for the recursion (33).

The SA recursion (33) was implemented for β = 0.9,
θ∗ = 10 and several choices of step-size: αn ≡ α for constant
step-size and αn = 1

2n
−ρ for vanishing step-size. Five values

of α were tested for the fixed step-size algorithm, and five
values of ρ for the vanishing step-size case:

α ∈ {5× 10−4, 2.8× 10−3, 1.58× 10−2, 8.89× 10−2, 0.5}
ρ ∈ {0.4000, 0.5375, 0.6750, 0.8125, 0.9}

The estimates for the fixed step-size algorithm remained
bounded in n for the range of α tested. The same was true
for the vanishing step-size algorithm, as predicted by theory
[2]. In application of PR-averaging (4), the value N0 = 0.2N
was chosen in all ten cases. With the given numerical values,
applying (34d) gives the approximation for the vanishing gain
algorithm, (N −N0)E[(θ

PR
N − θ∗)2] ≈ Σ∗

θ ≈ 2.3× 103

Fig. 2 shows the estimates of mean and variance obtained
in each case. The plot does not reveal much information
for the fixed step-size algorithms because most values of α
gave poor results. The singular winner over all fixed step-size
gains was α⋆ = 2.8×10−3, resulting in Eϖ[θ0] ≈ 10.29 and
(N − N0)Cov ϖ[θ0] ≈ 0.7 ∗ Σ∗

θ. The other four performed
far worse.

Each of the experiments using a vanishing gain resulted in
variance of approximately equal to what was obtained using
α⋆ and with smaller bias.
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Fig. 3: Evolution of estimates with and without PR averaging
from four experiments.

Large bias can be anticipated for the fixed step-size
algorithms by consideration of (34c). For small α we obtain an
approximation by ignoring the second term in this expression:

Eϖ[θ0] = θ∗−αEϖ

[
Υ2] ≈ θ∗+

β

1− β
[1+θ∗]α = θ∗+99α

For α⋆ we have θ∗ + 99α⋆ ≈ 10.28, so this approximation
nearly matches the approximation Eϖ[θ0] ≈ 10.29 obtained
through simulation.

See the plot on the upper left hand side of Fig. 2 for a
comparison of this approximation with the empirical mean.
For the smallest value of α tested, the parameter estimates
are far from steady-state by the end of the run. In this case
we typically observe negative bias.

The cause of the negative bias for α = 5×10−4 is explained
by the fact that θi0 is drawn from N(0, 25) (so zero mean,
while θ∗ = 10).

Fig. 3 shows sample paths with and without averaging for
two selected values of fixed step-size, and two values of ρ
for vanishing step-size, with initialization θ0 = 0 in each
case. The plots using PR-averaging were obtained via (4)
with N0 = ⌊0.8N⌋ for each N . It is clear why α = 5×10−4

fails, and α = 2.8× 10−3 performs much better.
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IV. CONCLUSIONS

There are many other open paths for research:

⋄ How far does theory extend to nonlinear SA, subject to
(A1)–(A5)? It is hoped that the moment bounds in Thm. 2.1
will imply some variant of the Lyapunov exponent bound to
enable a Markovian analysis similar to our treatment of the
linear case.

⋄ In prior work methods were developed to ensure sΥ = 0 for
quasi-stochastic approximation [8], [11]. It may be possible
to obtain the same conclusion under the assumptions of this
paper, but only through algorithm design. See [7] for an
approach to eliminate sΥ based on running two algorithms
with differing step-sizes.

⋄ It is known that Lp bounds on parameter estimates can be
obtain under milder assumptions on Φ, provided the algorithm
is re-started when the parameter estimate exits a prescribed
set [5]. A parallel theory for algorithms with constant step-
size may allow us to obtain the bias bounds of this paper
subject to geometric ergodicity as in [6].
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Appendix
To prove Thm. 2.5, we are interested in general functions

of the joint state process G : Rd ×X → Rd that are affine in
θ, and of the form

G(Ψk) =MG(Φk+1)θk + uG(Φk+1) , (35)

Ḡ(θk) = ĎMGθk + ūG (36)

Unfortunately, simple covariance bounds for such functions
are ill-behaved for small α:

Lemma A.1: If the assumptions of Thm. 2.4 hold for the
entries of the vector-valued function G, then ∥ΣG

CLT∥F ≤
bA.1/α.
Proof: The upper bound ∥ΣG

CLT∥F ≤ 2∥G̃∥L2∥Ǧ∥L2 holds,
precisely as in the scalar case (20b). Part (ii) of Thm. 2.4
gives ∥G̃∥L2

≤ b2.4bG. The bound (26) combined with (19)
implies ∥Ǧ∥L2 ≤ O(1/α). ⊓⊔

We require bounds on ΣG
CLT that are uniform in α, and

for this we must consider stochastic processes of the form
{Gk+ℓ = Mk+ℓθk + γk+ℓ}. The result that follows enables
a reduction to a more tractable process. See [12] for proofs
of the results that follow.

Proposition A.2: Consider the stochastic process Gk+ℓ =
Mk+ℓθk + γk+ℓ, with Mk+ℓ = M(Φk+ℓ

k+1) and γk+ℓ =

γ(Φk+ℓ
k+1). Suppose that M : Xℓ → Rd×d and γ : Xℓ → Rd

satisfy for some bG <∞ and all xℓ1 ∈ Xℓ,

E[∥M(Φk+ℓ
k+1)∥4F + ∥γ(Φk+ℓ

k+1)∥4 | Φk = x] ≤ bGv+(x)

Then,
(i) Gk+ℓ = D◦

k+ℓθk +M◦(Φk+1)θk + u◦(Φk+1), in which
{WG

k+ℓ = D◦
k+ℓθk} is a martingale difference sequence with

E[∥WG
k+ℓ∥4F | Ψk = z] ≤ V(z)

∥M◦(x)∥F + ∥u◦(x)∥ ≤ bA.2v
1/4
+ (x)

(ii) Its expectation in steady state is

Eϖ[Gk] = Eϖ[G∗
k ] +O(α)

where G∗
k+ℓ = Mk+ℓθ

∗ + γk+ℓ.
Proposition A.3: Suppose that the stochastic process Gk+ℓ

satisfies the assumptions of Prop. A.2 with ℓ > 1. Then,
ΣG

CLT = O(1).
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