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Abstract— The theory and application of mean field games
has grown significantly since its origins less than two decades
ago. This paper considers a special class in which the game is
cooperative, and the cost includes a control penalty defined by
Kullback-Leibler divergence, as commonly used in reinforce-
ment learning and other fields. Its use as a control cost or
regularizer is often preferred because this leads to an attractive
solution. This paper considers a particular control paradigm
called Kullback-Leibler Quadratic (KLQ) optimal control, and
arrives at the following conclusions: 1. in application to dis-
tributed control of electric loads, a new modeling technique is
introduced to obtain a simple Markov model for each load (the
‘agent’ in mean field theory). 2. It is argued that the optimality
equations may be solved using Monte-Carlo techniques—a
specialized version of stochastic gradient descent (SGD). 3. The
use of averaging minimizes the asymptotic covariance in the
SGD algorithm; the form of the optimal covariance is identified
for the first time.

I. INTRODUCTION

This paper concerns a specific class of algorithms for
distributed control, whose origins may be traced to Todorov
[28] and Karny [16]. More recent related work concerns
applications to economics [15] and power systems [12], [13].
A common theme is the introduction of Kullback-Leibler
(KL) divergence (i.e., relative entropy) as a control penalty
or regularizer. KL regularization is a theme in reinforcement
learning [2], it was a component in the first version of the
feedback particle filter [20], and is one part of a successful
approach to computational methods in optimal transport [14].

The introduction of KL divergence as a regularizer is
motivated in part from the calculus of KL divergence that
leads to an elegant characterization of the optimizer in these
applications. In the class of problems considered in the
present paper it is shown that this calculus leads to Monte-
Carlo methods for computation, explicit expressions for the
asymptotic covariance (the covariance appearing in the Central
Limit Theorem), and a simple approach to minimize the
covariance.

We consider a finite-horizon optimal control problem with
horizon K ≥ 1, and state trajectory XK

0 = {Xk : 0 ≤ k ≤
K} evolving on a finite state space X. It is assumed that there
is a nominal pmf (probability mass function) p◦ that models
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the “control-free” behavior of XK
0 , and that it is Markovian

with transition matrix P◦:

p◦(x0, . . . , xK) = ν0(x0)
K−1∏
k=0

P◦(xk, xk+1) (1)

in which ν0 is the initial distribution, X0 ∼ ν0. A sequence
of real-valued functions {εk : 1 ≤ k ≤ K} on XK+1 is given,
and the optimization problem to be solved is

J∗(ν0) = min
p

{
D(p‖p◦) +

κ

2

K∑
k=1

[
〈 p, εk 〉

]2}
(2)

where D denotes KL divergence, and κ > 0. The goal is multi-
objective: the optimizer p∗ should not be far from p◦, and
satisfy 〈 p∗, εk 〉 := E[εk(XK

0 )] ≈ 0 for each k (expectation
under p∗).1

In the applications of interest in this paper, the pmf
p is interpreted as an approximation of the histogram of
state trajectories in a large ensemble of cooperating agents—
the usual setting of mean field control. As is typical in
mean field control, the Kullback-Leibler Quadratic (KLQ)
optimization problem (2) does not fall into the class of
Markov Decision Processes (MDPs) because the objective
is a nonlinear function of p. It does fall into the broader
category of mean-field Markov decision theory.

Application to load control The KLQ optimal control
problem (2) was motivated by distributed control of electric
loads [10], [11], and the numerical results concern the special
case of control of a large population of thermostatically
controlled loads (TCLs), such as water heaters or refrigerators.
The internal temperature in these appliances does not suddenly
change when power is turned on or off, so they are natural
energy storage devices. This interpretation leads to techniques
to create virtual energy storage to provide grid services that
are supplied today through ancillary services from generation,
battery systems, capacitor banks, etc.

In this application the aggregate power consumption from
a population of loads is required to approximately track a
reference signal. In the KLQ optimal control formulation, the
random variable εk(XK

0 ) represents tracking error over the
kth sampling interval.

It was believed that any realistic Markovian model would
require an infinite state space, in which Xk includes temper-
ature and power mode at sampling time k (e.g. [19], [21]).
One contribution of the present paper is to obtain a finite state

1In the examples considered, the error process is adapted to the state
process, so that εk is only a function of Xk

0 . In this case we write εk(Xk
0 ).



space through a new approach that we call event triggered
sampling. This avoids inaccuracies introduced by binning as
in most prior work, or the complexity of models in continuous
time [27], [7].

Contributions and organization The new modeling tech-
nique based on event triggered sampling is described in
Sec. II. The contribution here is the formulation of an exact
and simple Markov model for a system whose dimension is
inherently infinite. The structure of the optimal KLQ solution
is described in Sec. III, where we find a source of potential
complexity: the functions {εk} appearing in (2) must be
estimated along with p∗. Solutions are proposed in Sec. IV
via a tailored version of stochastic gradient descent, based on
the special structure of the optimal KLQ control solution, in
which p∗ is characterized by a Lagrange multiplier λ∗ ∈ RK .

Let {λ̄m} denote the sequence of estimates of λ∗ obtained
using the proposed algorithm. The main result Prop. 4.1
establishes convergence of the scaled mean square error:

lim
m→∞

mE
[(
λ̄m − λ∗

)(
λ̄m − λ∗

)ᵀ]
= Σ∗θ , (3)

Σ∗θ = κ2

N GΣEG , with G = [I + κΣE ]
−1, (4)

where ΣE a covariance matrix associated with (ε1, . . . , εK),
and N ≥ 1 a parameter in the algorithm.

Literature review See [9], [26] for recent theory of
mean field games. Mean-field techniques to approximate the
dynamics of a large population of loads began in the 1980s
[17], and saw rapid development over the past decade, such as
[19], [21], [27], [1]. Much of this work concerns the creation
of real-time regulation services (such as automatic generation
control, or AGC), while with low frequency balancing services
it is valuable to introduce feed-forward control. For example,
load peaks are often highly predictable, and grid assets should
be given advance warning to prepare. This is the motivation
for finite horizon approaches in [3] and the KLQ formulation
that is the focus of this paper.

KLQ optimal control was inspired by the finite-horizon
control technique introduced in [13], which was inspired
by the earlier work [21]. The technical results in the first
two subsections of Sec. III of the present paper are minor
extensions of [10, Proposition 3.1], based on the new error
process defined in (16a).

It may not come as a surprise that the KLQ solution may
be approximated using Monte-Carlo methods. The Z-learning
algorithm of [28] is a reinforcement learning algorithm
designed for this purpose for a similar class of problems, but
this approach is not applicable because it is based on the
interpretation of λ∗ as an eigenvector. No such interpretation
is possible here.

The matrix appearing on the right hand side of (3) coincides
with the covariance matrix of Polyak and Ruppert [25], [22],
[23]. These celebrated papers established convergence of
Zm =

√
m[λ̄m − λ∗] in distribution to a Gaussian N(0,Σ∗θ)

random variable, and show that Σ∗θ is minimal in a matricial
sense. We have not found results establishing convergence
of expectations of the form E[g(Zm)] for functions g that

are unbounded. In particular, the limit (3) is new, based on
recent SA theory from [5].

II. EVENT TRIGGERED SAMPLING

Sampling theory and control design is developed for TCLs.
A standard model is a linear system of the form,

d
dtΘt = −α(Θt −Θa

t ) + βmt +Wt, (5)

in which Θt denotes the temperature and mt the power mode
at time t: mt ∈ {0, 1} represents whether the power is on or
off; βmt equals power consumption at time t. The remaining
terms are: Wt models disturbances (such as usage), Θa

t is the
ambient temperature, α > 0 models leakage due to imperfect
insulation, and β is positive for a TCL providing heating,
and negative otherwise.

We introduce here a new modeling technique that results
in a model in discrete-time and finite-state space without
any approximation. The main idea is to avoid uniform time-
sampling as in all prior work, and instead sample according
to internal events at the load.

Event triggered sampling requires a pre-specified finite
set of temperature values denoted S, and a mapping s : R×
{0, 1} → S. The sampling times are then defined by induction
as follows: τ0 = 0, and for k ≥ 0, at sampling time τk we
observe the temperature and power mode xk = (Θτk ,mτk),
and compute the target temperature sk+1 = s(xk) ∈ S. The
next sampling time is then defined by

τk+1 := min{t ≥ τk : Θt = sk+1} (6)

It is entirely consistent with normal TCL behavior to
assume that the power mode is constant on each interval
[τk, τk+1). The change in power mode at time τk+1 will be
determined through a randomized policy, designed as a small
perturbation of the usual hysteresis control.

However, statistics of the TCL play a role in the formulation
of the optimal control problem. For example, a dead-beat
control solution is defined so that the following identity holds
for each k:

E
[∫ τk+1

τk

βmt dt
]

= E
[∫ τk+1

τk

rt dt
]

(7)

where βmt is power consumption at time t, and r is the
reference signal. The right hand side must be computed or
approximated to obtain the functions {εk} appearing in (2).

Prop. 2.1 that follows does not require a detailed model.
The critical assumptions are summarized here:
(A1) Decision only at sampling times: Θt is continuous, and
mt is right continuous, with jumps only at sampling times:

mt = mτk τk ≤ t < τk+1

Denote Sk = Θτk and Uk = mτk , and the pair process
{Xk = (Sk, Uk) : k ≥ 0}. Provided the sampling times are
finite valued, the temperature dynamics are deterministic:

Sk+1 = s(Xk) , k ≥ 0 (8)

Consequently, regardless of the statistics of the TCL, {Xk}
is the state process for a controlled Markov chain. This is a



tremendous benefit in terms of computational complexity: If
sampling is performed uniformly in time then the state space
is infinite.

It is assumed that the power mode is determined by a
randomized policy, defined as a sequence of conditional pmfs
{φk} so that for k ≥ 0,

P{Uk+1 = u′ | Fk;Xk
0 = xk0} = φk+1(u′|xk0) (9)

where Fk := σ(Xi, τi : i ≤ k) and xk0 := (x0, . . . , xk). The
policy is called Markov if φk depends only on the most
recent state:

P{Uk+1 = u′ | Fk; Xk = xk} = φk+1(u′|xk) (10)

It is called a stationary Markov policy if φk+1(u′|xk0) =
φ(u′|xk) (the function φ does not depend on k).

The dynamics of X are determined by both the policy and
the target map s which defines the function

T (x, s′) = I{s′ = s(x)} (11)

The state process is Markovian when the policy is Markov:
Proposition 2.1: Consider the model (5) in which the

statistics of the disturbance W are arbitrary. Suppose that
φ is any stationary Markov policy for which each sampling
time is finite-valued with probability one. If in addition
(A1) holds, then X is a Markov chain on the state space
X = S× {0, 1}. Its transition matrix is expressed for x ∈ X
and x′ = (s′, u′) ∈ X by

Pφ(x, x′) = T (x, s′)φ(u′|x) . (12)

Consequently, for any function h : X→ R and any k,

E[h(Xk+1) | Fk;Xk = x] =
∑
x′∈X

Pφ(x, x′)h(x′)

=
∑
u′=0,1

h(s(x), u′)φ(u′|x)
(13)

For analysis we require further assumptions:

(A2) Semi-Markov model: τk+1 − τk is conditionally
independent of Fk given Xk, with conditional distribution
independent of k, with conditional distribution functions
denoted for δ ≥ 0 and x ∈ X by

F∆(δ|x) := P[τk+1 − τk ≤ δ|Fk; Xk = x] (14)

The inter-sampling times are bounded a.s.: there is ∆̄max <∞
such that F∆(∆̄max|x) = 1 for each x.

The conditional mean sampling interval is denoted

∆̄(x) = E[τk+1 − τk|Fk; Xk = x] (15)

In applications to distributed control, implicit in assumption
(A2) is that the population is homogeneous. If each individual
is modeled as the TCL ODE (5), this requires that the
parameters (α,β) are common across the population, and for
N loads we require the stochastic processes {Θa,i,W i

t : 1 ≤
i ≤ N} to be identically distributed. Additional assumptions
are required to obtain a mean field limit, such as independence,
but this isn’t required in this paper since all of our analysis
concerns the mean field limit. Relaxation of homogeneity is

surely possible by borrowing techniques from analysis of the
coupled oscillator model of Kuramoto [30].

The semi-Markov property holds for the SDE model,

dΘt = −[αΘt + βmt]dt+ dΘa
t + dWt

in which the joint process (Θa
t , dWt) is a deterministic

process plus Brownian motion. Such strong statistical as-
sumptions are not necessary.

III. OPTIMAL CONTROL

The goal of KLQ optimal control is a form of feed-forward
control: we have a reference signal r : R+ → R, and our
goal is to obtain an open-loop control strategy so that the
power approximately tracks the reference signal. This is
formalized through the introduction of the conditional mean
error sequence defined in (16) below. In power systems
language, this may be part of a day-ahead scheduling problem
(part of economic dispatch). Alternatively, it may be part of
a model predictive control (MPC) architecture, in which case
the mean of τK may be less than one hour.

A. Kullback-Leibler Quadratic objective and solution

Recall the KLQ optimal control problem (2). The minimum
is over all pmfs on XK+1, subject to the constraint that its
first marginal is ν0. The optimizer p∗ will then define a
randomized policy of the form (9) via Bayes’ rule. That is,
from the optimal pmf p∗ we define φ∗k+1 by the conditional
probability p∗(uk+1|xk0), k ≥ 1. In a distributed control
architecture, each agent will apply the same policy based on
local observations of xk0 .

The nominal model defined by the pmf p◦ is Markovian,
in which the transition matrix P◦ appearing in (1) is assumed
of the form (12), with stationary Markov policy denoted φ◦.
An approach to constructing the nominal policy is described
in the Appendix.

It remains to define {εk}. For this we choose the condi-
tional mean tracking error over the kth sampling interval:

εk(xk0) := U(xk)−Rk(xk0)

= E
[∫ τk+1

τk

{βmt − rt} dt | Xk
0 = xk0

] (16a)

where U(xk) = βuk∆̄(xk) for xk = (sk, uk),

Rk(xk0) :=
[∫ τk+1

τk

rt dt | Xk
0 = xk0

] (16b)

The expectations in (16) have two interpretations: they hold
for an individual load, and also for a mean-field limit when
each load uses the same policy.

The KLQ objective is designed to balance two objectives:
|〈p, εk〉| should be small for each k (small tracking error), and
also p ≈ p◦ (low control cost). A deadbeat control solution
ignores the second objective, resulting in 〈p, εk〉 = 0 for each
k, provided this is feasible.

The following result and Prop. 3.2 that follows are minor
extensions of [10, Proposition 3.1]. The results presented here
differ because of the more exotic cost structure involving
{εk}, which arises from the new Markovian model.



Proposition 3.1: For each κ > 0 there is a vector λ∗ ∈ RK
such that the unique optimizer p∗ is of the form

p∗(x) = p◦(x) exp
( K∑
k=1

λ∗kεk(xk0)− Γ∗(x0)
)
, (17a)

in which λ∗, Γ∗ and J∗ are characterized in the following:

(i) The vector λ∗ ∈ RK is the solution to

〈p∗, εk〉 = − 1
κλ
∗
k , 1 ≤ k ≤ K (17b)

(ii) Γ∗ is the normalizing constant:

Γ∗(x0) = log E◦
[
exp
( K∑
k=1

λ∗kεk(Xk
0 )
)∣∣X0 = x0

]
(17c)

(iii) The value function (2) may be expressed

J∗(ν0) = −〈ν0, Γ
∗〉 − 1

2κ‖λ∗‖2 (17d)

The proposition raises many questions. First, (17d) suggests
that J∗(ν0) depends linearly on ν0. This is not the case
since λ∗ depends on ν0, as seen in the fixed point equation
(17b). This fixed point equation has a solution, since it is the
stationary point equation for a convex optimization problem.
This is explained below (18), followed by representations of
p∗ and φ∗k+1 in several special cases.

B. Largrangian relaxations

The optimization problem (2) is alternatively expressed as
follows, with auxiliary variable γ ∈ RK :

J∗(ν0) = min
p

{
D(p‖p◦) +

κ

2
‖γ‖2

}
s.t. γk = 〈 p, εk 〉 ,

for 1 ≤ k ≤ K. This is regarded as the primal. Letting λk
denote the Lagrange multiplier for the kth constraint, we
arrive at the following Lagrangian L and dual function ϕ∗:

L(p, γ, λ) = D(p‖p◦) +
κ

2
‖γ‖2

+
K∑
k=1

λk[γk − 〈 p, εk 〉]
(18a)

ϕ∗(λ) = min
p,γ
L(p, γ, λ) , λ ∈ RK , (18b)

where the minimum in (18b) is over all pmfs p with first
marginal ν0, and all γ ∈ RK .

Prop. 3.2 that follows implies that (17b) is the first-order
condition for optimality of the dual. The result is a minor
extension of Prop. 3.1 and Lemma 3.3 of [10].

Proposition 3.2: The dual function ϕ∗ is concave and
coercive, with partial derivatives

∂

∂λk
ϕ∗(λ) = − 1

κ
λk − 〈 pλ, εk 〉 (19a)

∂

∂λj

∂

∂λk
ϕ∗(λ) = − 1

κ
I{k = j} − Σλε(i, j) (19b)

in which pλ is a pmf of the form (17a) with λ∗ replaced by
λ, and Σλε is the covariance matrix of (ε1, . . . , εK) under pλ.

C. Markovian realizations

The pmf p∗ is not Markovian in general, but we obtain a
Markovian realization in several special cases.
Deterministic model In the deterministic TCL model we
have τk+1− τk = ∆̄(Xk) for each k. In this special case we
obtain a Markovian solution by expanding the state process:

Proposition 3.3: If the TCL model is deterministic, then

Rk(Xk
0 ) = Rdk(Φk)

for functions Rdk : X × R+ → R, in which Φk = (Xk, τk).
In this case {Φk} is Markovian under p∗, and the optimal
policy can be expressed in the form

P{U∗k+1 = u | Fk} = φ∗k+1(u|X∗k , τk) , k ≥ 0 (20)
The representation of the optimal policy simplifies further

when the error function εk(xk0) depends only on the current
state, of the form

Ek(xk) = U(xk)−Rk(xk) , 1 ≤ k ≤ K , (21)

where U is defined in (16b).
Proposition 3.4: Suppose that εk(xk0) = Ek(xk) for each

k. Then, the optimal pmf (17a) is Markovian,

p∗(x0, . . . , xK) = ν0(x0)
K−1∏
k=0

P̌k(xk, xk+1)

with P̌k−1(x, x′) =
hk(x′)
hk−1(x)

P◦(x, x
′)eλ

∗
kEk(x′)

(22a)

in which hK ≡ 1, and {hk : k < K} are defined recursively:

hk−1(x) =
∑
x′

P◦(x, x
′)eλ

∗
kEk(x′)hk(x′) , x ∈ X .

The policy is Markovian: with x′ = (s(x), u′),

φ∗k+1(u′|x) = eλ
∗
k+1Ek+1(x′) hk+1(x′)

hk(x) φ
◦(u′|x) (22b)

See [10] for the proof of a similar result, subject to the
assumption that φ◦(u′|x) depends on x only through s(x),
resulting in a slightly simpler representation.
Constant reference signal. The assumptions of Prop. 3.4
hold when the reference signal is independent of time, even
for the non-deterministic TCL model:

Proposition 3.5: If rt = r0 for all t ≥ 0, then the
assumptions of Prop. 3.4 hold with Rk(xk) = r0∆̄(xk) and
∆̄ defined in (15). �

Sampling design. Returning to the deterministic TCL model,
the assumptions of Prop. 3.4 hold provided S is chosen so
that ∆̄(Xk) = τk+1 − τk does not depend upon Xk (see
(15)). This conclusion is generalized in the following.

Proposition 3.6: Suppose that {∆̃k+1 := τk+1 − τk :
k ≥ 0} are independent and identically distributed, with
distribution independent of X0. Then, the assumptions of
Prop. 3.4 hold with Rk(xk) = E

[∫ τk+1

τk
rt dt

]
.

The assumptions in any of Propositions 3.3, 3.5, or 3.6
will never hold exactly. They do suggest approximations of
an optimal policy in certain regimes.



IV. MONTE-CARLO METHODS

The fixed point equation (17b) motivates practical numer-
ical techniques to obtain the Lagrange multiplier λ∗ that
determines p∗ via (17a).

The proof of [10, Proposition 3.1] can be extended to
establish the form of the pmf solving (18b):

pλ(x) = p◦(x) exp
(∑

λkεk(xk0)− Γλ(x0)
)

(23)

where again Γλ(x0) is a normalized constant for each x0 ∈ X.
We present the algorithm for a simplified objective function,

in which the error εk(xk0) is of the form (21), ensuring that
pλ is Markovian for any λ. The term Rk(xk) is chosen to
approximate

Rpk(xk) := E
[∫ τk+1

τk

rt dt | Xk = xk
]

(24)

Outside of very special cases, such as the setting of Prop. 3.6,
this conditional expectation depends on the pmf p. In Sec. IV-
A we present a stochastic gradient algorithm that can be
applied when the functions {Rk} are given. For example,
Rk(xk) taken equal to (24) under p◦, which is reasonable
when the reference signal is not large. An algorithm to
estimate both {Rpk} and λ∗ is presented in Sec. IV-C.

It is straightforward to extend the algorithm of Sec. IV-A
and Prop. 4.1 to the general case in which this constraint
on εk(xk0) is relaxed. The algorithm is more complex since
computation of the pmf (23) is more complex in this case.

A. Stochastic gradient ascent
The goal is to obtain a recursive algorithm generating

estimates {λn : n ≥ 0} that converges to λ∗ a.s. from each
initial λ0 ∈ RK . To simplify notation we use pn to denote
pλ with λ = λn. The pmf pn is Markovian, obtained as in
Prop. 3.4: there is a collection of functions {hnk} on X such
that for each x = (s, u) ∈ X and x′ = (s(x), u′),

φnk+1(u′|x) =
hn
k+1(x′)

hn
k (x) eλ

n
k+1Ek+1(x′)φ◦(u′|x) .

The stochastic gradient ascent (SGA) algorithm described
here is designed to approximate gradient ascent,

λn+1
k = λnk + ακ

∂

∂λk
ϕ∗(λn)

κ
∂

∂λk
ϕ∗(λn) = −λnk − κ〈 pn, Ek 〉 , 1 ≤ k ≤ K

(25)

where the second equation follows from (19a) (with εk
replaced by Ek), and α > 0 is the step-size.

The SGA recursion takes the form,

λn+1
k = λnk + αn+1∇̃

n+1

k , 1 ≤ k ≤ K (26)

with {αn+1} a non-negative step-size sequence, and ∇̃n+1

k is
an unbiased estimate of the scaled gradient κ∇ϕ∗(λn). Even
subject to the simplification obtained by replacing {εk} by
{Ek} in the KLQ objective, constructing pn is complex if
K × |S| is large. For this reason, for each n we draw many
samples from the distribution pn to approximate this gradient.

Given λn, the random vector ∇̃n+1

k is constructed via the
following steps:

1. Generate data. Obtain N independent trajectories,
begining with the initialization, Xn+1,i

0 ∼ ν0, 1 ≤ i ≤ N .
Subsequent states are drawn independently and sequentially:

given {xi := Xn+1,i
k−1 : 1 ≤ i ≤ N}, obtain Sn+1,i

k = s(xi)

and Un+1,i
k = 1 with probability φnk+1( · |xi), which gives

Xn+1,i
k = (Sn+1,i

k , Un+1,i
k ) for each i.

The approach in Sec. IV-C also requires the sampling
times, τn+1,i

k+1 = τn+1,i
k + ∆̃n+1,i

k+1 . When using a simulator
based on the semi-Markov model, then ∆̃n+1,i

k+1 = τn+1,i
k+1 −

τn+1,i
k is drawn from the CDF in (14), using x = Xn+1,i

k .
These random variables could also be obtained through data
collected from appliances, or a high-fidelity simulator.

2. Gradient approximation.

∇̃n+1

k = −λnk − κ
1

N

N∑
i=1

Ek(Xn+1,i
k ) , 1 ≤ k ≤ K . (27)

The K-dimensional random vector ∇̃n+1
has mean ∇ϕ∗(λn),

so that the update (26) is the desired stochastic approximation
algorithm based on (25).

The recursion (26) is convergent under standard assump-
tions on the step-size sequence [6]. In the following we
consider the special case αn = n−% for % > 0 and apply
Polyak-Ruppert averaging: fix m0 ≥ 0 and define recursively,

λ̄m+1 = λ̄m + δm+1

{
−λ̄m + λm+1} , m ≥ m0 , (28)

with δm+1 = 1/(m−m0+1), and λ̄m0 = 0.

B. Rates of convergence

It is well known that the CLT holds for {λ̄m} with minimal
asymptotic covariance, but we are not aware of results
establishing convergence of the second moments. The mean-
square convergence rate of the estimates {λ̄m : m > m0}
is established here by applying recent techniques from the
stochastic approximation (SA) literature.

It will be convenient to begin with abstract notation, in
which the estimates {λn : n ≥ 0} are expressed as the output
of an SA recursion in two forms,

λn+1 = λn + αn+1f(λn, Zn+1)

= λn + αn+1

[
sf(λn) +Dn+1

] (29)

In the first, the sequence {Zn+1} is i.i.d. (reflecting the
independent sampling to obtain {Xn+1,i

k }), and in the second
the sequence {Dn+1} is a vector-valued martingale difference
sequence. We have sf(λ) = E[f(λ, Zn+1)] for any λ (the
expectation is independent of n).

Let ΣD = Cov
(
f(λ∗, Zn+1)

)
, and A = ∂ sf(λ∗). The

matrix G = −A−1 is the matrix gain in Ruppert’s stochastic
Newton Raphson algorithm [24], and the Polyak-Ruppert co-
variance matrix is Σ∗θ = GΣDG

ᵀ, subject to the assumption
that A is Hurwitz [4], [25], [22], [23].

One conclusion of Prop. 4.1 is that the matrices A and
ΣD may be expressed in terms of ΣE , the covariance of
the random vector (E1(X1); E2(X2); · · · ; EK(XK)) under the
optimal pmf p∗.
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Fig. 1: SGA without averaging, for two values of N in (30). Column 1: evolution of {λni : n ≥ 0, i = 1, 2, 3} (values of i are blue, orange, green
respectively). Column 2: evolution of the primal and dual functions; the normalized error is also shown, with axis to the left. Column 3: tracking performance
using the final value of λn.

Proposition 4.1: Using step-size αn = n−%, with % ∈
(1/2, 1), the estimates {λn+1} converge to λ∗ as n→∞. The
PR-estimates converge with optimal mean-square convergence
rate: for any fixed m0 ≥ 1 the limit (3) holds, with Σ∗θ given
in (4) identical to the Polyak-Ruppert covariance matrix.

Proof The update equation (26) may be expressed as the SA
recursion (29) in which sf(λ) = ∇ϕ∗(λ) and {Dn+1} is a
K-dimensional martingale difference sequence. This follows
from independent sampling to obtain (27), which results in

∇̃n+1

k = κ
∂

∂λk
ϕ∗(λn) +Dn+1

k

with Dn+1
k =

κ

N

N∑
i=1

Ẽk(Xn+1,i
k )

in which Ẽk(x) = Ek(x)−E[Ek(Xk)], with expectation taken
under pn. Prop. A.1 combined with Prop. 3.2 completes the
proof, on recognizing that A = κ∇2ϕ∗(λ∗) = −I − κΣE .

The expression for {Dn+1
k } gives the steady-state covari-

ance formula ΣD = κ2

N ΣE . �

C. Concurrent estimation of mean reference signal

Suppose that the expectation (24) is not dependent on the
policy. While this is unlikely to hold exactly, as discussed
earlier it is a reasonable approximation in some settings.

Two changes are required in the SGA algorithm. First, we
require the additional data,

R̂n+1,i
k =

∫
rt dt

where the integral is over [τn+1,i
k , τn+1,i

k+1 ]. The gradient
approximation is then modified as follows:

∇̃n+1

k = −λnk − κ
1

N

N∑
i=1

(
Uk(Xn+1,i

k )− R̂n+1,i
k

)
(30)

With this modification the recursion (26) can be applied to
approximate λ∗.

However, an additional step is required to draw samples in
the first step of SGA, since we must estimate the functions
{Ek : 1 ≤ k ≤ K}. Given the definition Ek(xk) := U(xk)−
Rk(xk), it remains to estimate the second term. Introduce
the unbiased estimates {Rn+1

k } of (24) via

Rn+1
k (x) =

1

Nn+1
x

N∑
i=1

I{Xn+1,i
k = x}R̂n+1,i

k

Nn+1
x =

N∑
i=1

I{Xn+1,i
k = x}

To ensure consistency these estimates must be averaged.
Obtain {Enk : 1 ≤ k ≤ K} recursively via,

En+1
k (x) = Enk (x) + βn+1{−Enk (x) + U(x)−Rn+1

k (x)}

We then define pn+1 using this estimate:

pn+1(x) = p◦(x) exp
(∑

λn+1
k En+1

k (xk)− Γn+1(x0)
)

To ensure that En+1
k (x) ≈ Rpk(xk) in (24), with p = pn,

requires a two-time scale algorithm in which βn/αn →∞ as
n→∞; e.g., αn = n−% and βn = n−%

′
, 1

2 < %′ < % < 1.



D. Example

The SGA algorithm was applied to control a fleet of
homogeneous refrigerators modeled according to (5), such
that their aggregate power consumption approximately tracks
a reference signal while maintaining all temperatures within
a finite interval [θmin, θmax]. This motivates the constraint
S ⊂ [θmin, θmax], containing both θmax and θmin.

The set is expressed S = S+ ∪ S−, in which the union
need not be disjoint, and the mapping s is defined as follows:
for each θ ∈ S,

s(x) =

{
arg max{θ+ ∈ S+ : θ+ < θ} x = (θ, 1)

arg min{θ− ∈ S− : θ− > θ} x = (θ, 0)

We are not assuming that Θt ∈ [θmin, θmax] for all t, but by
design this constraint is satisfied for t = τk when k ≥ 1. It
follows by construction that mt = 1 whenever Θt ≥ θmax,
and mt = 0 whenever Θt ≤ θmin.

The numerical results that follow are based on models
considered in [11], and the TCL model was a typical
refrigerator model from [18]. The set S was obtained based
on consideration of the deterministic ODE obtained from (5)
with W ≡ 0. The values in S were selected so that ∆̄(x)
is approximately independent of x ∈ X. It was found that
the value |S| = 36 was small enough to ensure feasibility of
tracking for the reference signals considered.

The nominal model defined by φ◦ was designed to
approximate deterministic hysteresis control—see [11] for
details its construction.

We display normalized data: yref
t = rt/β and yt = E[mt]

(the probability of a refrigerator being on, estimated via
Monte-Carlo). The plots shown in Fig. 1 demonstrate the
results of two numerical experiments, identical except for
the choice of N . The left column contains plots displaying
the evolution of {λni : n ≥ 0} for selected values of i. The
middle column contains plots displaying the evolution of the
primal and dual functions, and the normalized error, defined
as their difference divided by the value of the primal. Notice
how these trajectories are much more volatile when N is
small, as expected.

The right column contains plots displaying the tracking
performance using the final value of λn. The value of κ
was chosen to achieve satisfactory tracking of this feasible
reference signal.

V. CONCLUSIONS

The SGA algorithm proposed in this paper is simple and
easily analyzed, as seen by the explicit expression for the
asymptotic covariance in (4). This simplicity is a product of
the simple model obtained from event triggered sampling—
without (8), representations of the KLQ solution are far more
complex [8], [11].

Observe that a SGQ algorithm does not require estimation
of εk(xk0), defined in (16a). The formula (19a) and the
smoothing property of conditional expectations gives,

∂

∂λk
ϕ∗(λ) = − 1

κ
λk − E

[
U(Xk)−

∫ τk+1

τk

{βmt − rt} dt
]

where the expectation is under pλ. The simplifications in
Sec. IV were imposed to simplify both constructing pλ and
sampling from this pmf.

Topics of current interest include: combining PR averaging
with other acceleration techniques; error bounds for the
approach posed in Sec. IV-C, and conducting numerical
experiments to gain insight; the construction of useful finite-n
error bounds for SGA (tractable since the noise is martingale
difference in (29)), complementing the asymptotic theory.

APPENDIX I
MOMENT BOUNDS FOR STOCHASTIC APPROXIMATION

The PR averaged estimate λ̄m obtained from (28) is in
fact the average of {λn}. This fact is used in our analysis of
(29), along with the scaled average of the disturbance:

λ̄m = 1
m−m0

m∑
n=m0+1

λn , Wm := 1√
m−m0

m∑
n=m0+1

Dn+1 (31)

Under the assumptions of Prop. A.1, the distribution of Wm

is approximately Gaussian N(0,ΣD) when m� m0.
Proposition A.1: Consider the general K-dimensional SA

algorithm (29), with step-size αn = n−%, % ∈ (1/2, 1), in
which Z is i.i.d. on a finite state space.

Suppose moreover that f( · , z) is globally Lipschitz contin-
uous for each z, so that sf is also Lipschitz; it is continuously
differentiable in a neighborhood of the unique root λ∗, and
that A = ∂ sf (λ∗) is Hurwitz. Finally, assume that the ODE
d
dtx = sf(x) is exponentially asymptotically stable.

Then there exists a finite constant B such that E[‖λn −
λ∗‖4] ≤ Bα2

n for each n, and the limit (4) holds for the
averaged estimates {λ̄m}.
Proof Exponentially asymptotically stability implies that
an “ODE@∞” has the same property [29]. This is one key
assumption in [5, Thm. 3.6] to obtain the bound E[‖λn −
λ∗‖4] ≤ Bα2

n for a fixed constant B.
It remains to establish (4). For this, write

sf(λn) = A[λn − λ∗] + E(λn)

in which the error term satisfies E[‖E(λn)‖2] ≤ Bfα2
n under

the given assumptions.
Denote λ̃n := λn − λ∗. Subtracting λ∗ from each side of

(29), dividing each side by αn+1, and rearranging terms gives
1

αn+1
λ̃n+1 − 1

αn
λ̃n = Aλ̃n +Dn+1 + E(λn) + γnλ̃

n

with γn = 1/αn+1 − 1/αn ≤ ρnρ−1. Averaging each side and
applying (31),

1
αm
λ̃m − 1

αm0+1
λ̃m0+1 = A(λ̄m − λ∗) + 1√

m−m0
Wm

+ 1
m−m0

m∑
n=m0+1

(
E(λn) + γnλ̃

n
)

Written in the more suggestive form,
√
m−m0 (λ̄m − λ∗) = −A−1Wm + E ′m

it follows from the previous bounds that E[‖E ′m‖2] → 0 as
m→∞, which implies (4). �
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