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Abstract

A quantum neural network (QNN) is a parameter-
ized mapping efficiently implementable on near-
term Noisy Intermediate-Scale Quantum (NISQ)
computers. It can be used for supervised learn-
ing when combined with classical gradient-based
optimizers. Despite the existing empirical and the-
oretical investigations, the convergence of QNN
training is not fully understood. Inspired by the
success of the neural tangent kernels (NTKs) in
probing into the dynamics of classical neural net-
works, a recent line of works proposes to study
over-parameterized QNNs by examining a quan-
tum version of tangent kernels. In this work, we
study the dynamics of QNNs and show that con-
trary to popular belief it is qualitatively different
from that of any kernel regression: due to the
unitarity of quantum operations, there is a non-
negligible deviation from the tangent kernel re-
gression derived at the random initialization. As a
result of the deviation, we prove the at-most sub-
linear convergence for QNNs with Pauli measure-
ments, which is beyond the explanatory power of
any kernel regression dynamics. We then present
the actual dynamics of QNNs in the limit of over-
parameterization. The new dynamics capture the
change of convergence rate during training, and
implies that the range of measurements is crucial
to the fast QNN convergence.

1. Introduction

Analogous to the classical logic gates, quantum gates are the
basic building blocks for quantum computing. A variational
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quantum circuit (also referred to as an ansatz) is composed
of parameterized quantum gates. A quantum neural network
(QNN) is nothing but an instantiation of learning with para-
metric models using variational quantum circuits and quan-
tum measurements: A p-parameter d-dimensional QNN for
a dataset {x;,y;} is specified by an encoding x; — p, of
the feature vectors into quantum states in an underlying
d-dimensional Hilbert space H, a variational circuit U(8)
with real parameters 6 € RP, and a quantum measurement
M. The predicted output g; is obtained by measuring M
on the output U(8)p,UT (). Like deep neural networks,
the parameters @ in the variational circuits are optimized by
gradient-based methods to minimize an objective function
that measures the misalignments of the predicted outputs
and the ground truth labels.

With the recent development of quantum technology,
the near-term Noisy Intermediate-Scale Quantum (NISQ)
(Preskill, 2018) computer has become an important platform
for demonstrating quantum advantage with practical appli-
cations. As a hybrid of classical optimizers and quantum
representations, QNN is a promising candidate for demon-
strating such advantage on quantum computers available to
us in the near future: quantum machine learning models are
proved to have a margin over the classical counterparts in
terms of the expressive power due the to the exponentially
large Hilbert space of quantum states (Huang et al., 2021;
Anschuetz, 2022). On the other hand by delegating the
optimization procedures to classical computers, the hybrid
method requires significantly less quantum resources, which
is crucial for readily available quantum computers with lim-
ited coherence time and error correction. There have been
proposals of QNN (Dunjko & Briegel, 2018; Schuld & Kil-
loran, 2019) for classification (Farhi et al., 2020; Romero
et al., 2017) and generative learning (Lloyd & Weedbrook,
2018; Zoufal et al., 2019; Chakrabarti et al., 2019).

Despite their potential there are challenges in the practi-
cal deployment of QNNs. Most notably, the optimization
problem for training QNNs can be highly non-convex. The
landscape of QNN training may be swarmed with spuri-
ous local minima and saddle points that can trap gradient-
based optimization methods (You & Wu, 2021; Anschuetz
& Kiani, 2022). QNNs with large dimensions also suffer
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from a phenomenon called the barren plateau (McClean
et al., 2018), where the gradients of the parameters vanish
at random intializations, making convergence slow even in
a trap-free landscape. These difficulties in training QNNss,
together with the challenge of classically simulating QNNs
at a decent scale, calls for a theoretical understanding of the
convergence of QNNs.

Neural Tangent Kernels Many of the theoretical difficul-
ties in understanding QNNs have also been encountered
in the study of classical deep neural networks: despite the
landscape of neural networks being non-convex and sus-
ceptible to spurious local minima and saddle points, it has
been empirically observed that the training errors decays
exponentially in the training time (Livni et al., 2014; Arora
et al., 2019) in the highly over-parameterized regime with
sufficiently many number of trainable parameters. This
phenomenon is theoretically explained by connecting the
training dynamics of neural networks to the kernel regres-
sion: the kernel regression model generalizes the linear
regression by equipping the linear model with non-linear
feature maps. Given a training set {x;, y;}7-; C X'x) and
a non-linear feature map ¢ : X — X’ mapping the features
to a potentially high-dimensional feature space X”’. The
kernel regression solves for the optimal weight w that min-
imizes the mean-square loss 5= > 7" (W7 d(x;) — y;)*.
The name of kernel regression stems from the fact that the
optimal hypothesis w depends on the high-dimensional fea-
ture vectors {¢(x;)}72; through a m x m kernel matrix
K, such that K;; = ¢(x;)” ¢(x;). The kernel regression
enjoys a linear convergence (i.e. the mean square loss de-
caying exponentially over time) when K is positive definite.

The kernel matrix associated with a neural network is de-
termined by tracking how the predictions for each training
sample evolve jointly at random initialization. The study of
the neural network convergence then reduces to character-
izing the corresponding kernel matrices (the neural tangent
kernel, or the NTK). In addition to the convergence results,
NTK also serves as a tool for studying other aspect of neu-
ral networks including generalization (Canatar et al., 2021;
Chen et al., 2020) and stability (Bietti & Mairal, 2019).

The key observation that justifies the study of neural net-
works with neural tangent kernels, is that the NTK becomes
a constant (over time) during training in the limit of infi-
nite layer widths. This has been theoretically established
starting with the analysis of wide fully-connected neural
networks (Jacot et al., 2018; Arora et al., 2019; Chizat et al.,
2019) and later generalized to a variety of architectures (e.g.
Allen-Zhu et al. (2019)).

Quantum NTKs Inspired by the success of NTKs, recent
years have witnessed multiple works attempting to asso-
ciate over-parameterized QNN to kernel regression. Along

the line there are two types of studies. The first category
investigates and compares the properties of the “quantum”
kernel induced by the quantum encoding of classical fea-
tures, where K;; associated with the i-th and j-th feature
vectors x; and x;; equals tr(p;p;) with p; and p; being the
quantum state encodings, without referring to the dynamics
of training (Schuld & Killoran, 2019; Huang et al., 2021;
Liu et al., 2022b). The second category seeks to directly
establish the quantum version of NTK for QNNs by ex-
amining the evolution of the model predictions at random
initialization, which is the recipe for calculating the classical
NTK in Arora et al. (2019): Shirai et al. (2021) empirically
evaluates the direct training of the quantum NTK instead
of the original QNN formulation. On the other hand, by
analyzing the time derivative of the quantum NTK at ini-
tialization, Liu et al. (2022a) conjectures that in the limit
of over-parameterization, the quantum NTK is a constant
over time and therefore the dynamics reduces to a kernel
regression.

Despite recent efforts, a rigorous answer remains evasive
whether the quantum NTK is a constant during training for
over-parameterized QNNs. We show that the answer to this
question is indeed, surprisingly negative: as a result of the
unitarity of quantum circuits, there is a finite change in the
conjectured quantum NTK as the training error decreases,
even in the the limit of over-parameterization.

Contributions In this work, we focus on QNNs equipped
with the mean square loss, trained using gradient flow, fol-
lowing Arora et al. (2019). In Section 3, we show that, de-
spite the formal resemblance to kernel regression dynamics,
the over-parameterized QNN does not follow the dynam-
ics of any kernel regression due to the unitarity: for the
widely-considered setting of classifications with Pauli mea-
surements, we show that the objective function at time ¢ de-
cays at most as a polynomial function of 1/¢ (Theorem 3.2).
This contradicts the dynamics of any kernel regression with
a positive definite kernel, which exhibits convergence with
L(t) < L(0)exp(—ct) for some positive constant c. We
also identify the true asymptotic dynamics of QNN train-
ing as regression with a time-varying Gram matrix K,sym
(Lemma 4.1), and show rigorously that the real dynamics
concentrates to the asymptotic one in the limit p — oo (The-
orem 4.2). This reduces the problem of investigating QNN
convergence to studying the convergence of the asymptotic
dynamics governed by K,gym.

We also consider a model of QNNs where the final measure-
ment is post-processed by a linear scaling. In this setting,
we provide a complete analysis of the convergence of the
asymptotic dynamics in the case of 1 training sample (Corol-
lary 4.3), and provide further theoretical evidence of conver-
gence in the neighborhood of most global minima when the
number of samples m > 1 (Theorem 4.4). These theoretical
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evidences are supplemented with an empirical study that
demonstrates in generality, the convergence of the asymp-
totic dynamics when m > 1. Coupled with our proof of
convergence, these form the strongest concrete evidences of
the convergence of training for over-parameterized QNNs.

Connections to previous works Our result extends the
existing literature on QNN landscapes (e.g. Anschuetz
(2022); Russell et al. (2017)) and looks into the training
dynamics, which allows us to characterize the rate of con-
vergence and to show how the range of the measurements
affects the convergence to global minima. The dynamics
for over-parameterized QNNs proposed by us can be rec-
onciled with the existing calculations of quantum NTK as
follows: in the regime of over-parameterization, the QNN
dynamics coincides with the quantum NTK dynamics con-
jectured in Liu et al. (2022a) at random initialization; yet it
deviates from quantum NTK dynamics during training, and
the deviation does not vanish in the limit of p — oc.

2. Preliminaries

Empirical risk minimization (ERM) A supervised
learning problem is specified by a joint distribution D over
the feature space X" and the label space ), and a family F
of mappings from X to Y (i.e. the hypothesis set). The goal
is to find an f € F that well predicts the label y given the
feature x in expectation, for pairs of (x,y) € X x ) drawn
1.1.d. from the distribution D.

Given a training set S = {x;,y;}7., composed of m pairs

of features and labels, we search for the optimal f € F by
the empirical risk minimization (ERM): let £ be a loss func-
tionf:) x Y — R, ERM finds an f € F that minimizes
the average loss: minger = 37" £(9;, y;), where §; =
f(x;). We focus on the common choice of the square loss
Ug,y) =35 —y)*

Classical neural networks A popular choice of the
hypothesis set F in modern-day machine learning is
the classical neural networks. A vanilla version of
the L-layer feed-forward neural network takes the form
fla; We, -+ Wp) = Wpo(---Wao(Wio(z))---),
where o(+) is a non-linear activation function, and for all
I € [L], W; € RuXdi-1 jg the weights in the I-th layer,
with dr, = 1 and d the same as the dimension of the
feature space X. It has been shown that, in the limit
minzL:_11 d; — oo, the training of neural networks with
square loss is close to kernel learning, and therefore enjoys a
linear convergence rate (Jacot et al., 2018; Arora et al., 2019;
Allen-Zhu et al., 2019; Oymak & Soltanolkotabi, 2020).

Quantum neural networks Quantum neural networks is
a family of parameterized hypothesis set analogous to its

classical counterpart. At a high level, it has the layered-
structure like a classical neural network. At each layer, a
linear transformation acts on the output from the last layer.
A quantum neural network is different from its classical
counterpart in the following three aspects.

(1) Quantum states as inputs A d-dimensional quantum
state is represented by a density matrix p, which is a positive
semidefinite d x d Hermitian with trace 1. A state is said
to be pure if p is rank-1. Pure states can therefore be equiv-
alently represented by a state vector v such that p = vvf.
The inputs to QNNs are quantum states. They can either be
drawn as samples from a quantum-physical problem or be
the encodings of classical feature vectors.

(2) Parameterization In classical neural networks, each
layer is composed of a linear transformation and a non-
linear activation, and the matrix associated with the linear
transformation can be directly optimized at each entry. In
QNNs, the entries of each linear transformation can not
be directly manipulated. Instead we update parameters in
a variational ansatz to update the linear transformations.
More concretely, a general p-parameter ansatz U() in a
d-dimensional Hilbert space can be specified by a set of
d x d unitaries {Uy, Uy,--- ,U,} and a set of non-zero
d x d Hermitians {H(l), H? ... ,H(p)} as

U, exp(—if,HP)U,_; exp(—if, HP™Y).
. eXp(—z'HgH(Q))Ul exp(—i@lH(l))Uo. (D

Without loss of generality, we assume that tr(H®)) = 0.
This is because adding a Hermitian proportional to I on
the generator H® does not change the density matrix of
the output states. Notice that most p-parameter ansatze U :
R? — C%*? can be expressed as Equation 1. One exception
may be the anastz design with intermediate measurements
(e.g. Cong et al. (2019)). In Section 4, we will also consider
the periodic anastz:

Definition 2.1 (Periodic ansatz). A d-dimensional p-
parameter periodic anasatz U(@) is defined as

U, exp(—i0,H) - - - - - Uy exp(—i6h H) Uy, 2)

where U; are sampled i.:.d. with respect to the Haar mea-
sure over the special unitary group SU(d), and H is a non-
zero trace-0 Hermitian.

Up to a unitary transformation, the periodic ansatz is equiv-
alent to an ansatz in Line (1) where {H") P_, sampled as
VZHV}L with V; being haar random d x d unitary matri-
ces. Similar ansatze have been considered in McClean et al.
(2018); Anschuetz (2022); You & Wu (2021); You et al.
(2022).
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(3) Readout with measurements Contrary to classical
neural networks, the readout from a QNN requires perform-
ing quantum measurements. A measurement is specified
by a Hermitian M. The outcome of measuring a quantum
state p with a measurement M is tr(pM), which is a linear
function of p. A common choice is the Pauli measurement:
Pauli matrices are 2 x 2 Hermitians that are also unitary. The
Pauli measurements are tensor products of Pauli matrices,
featuring eigenvalues of +1.

A common choice is the Pauli measurement: Pauli matrices
are 2 X 2 Hermitians that are also unitary:

o1 o —i 10
IX= 1 oY T i o727 o -1l

The Pauli measurements are tensor products of Pauli matri-
ces, featuring eigenvalues of +1.

ERM of quantum neural network. We focus on quan-
tum neural networks equipped with the mean-square loss.
Solving the ERM for a dataset S := {(p;,y;)}L; C

(C4*d x R)™ involves optimizing the objective function
ming L(0) := 5= e (9;(0) — yj)2, where §;(0) =
tr(ijT(H)MoU(B)) for all j € [m] with My being
the quantum measurement and U(6) being the variational
ansatz. Typically, a QNN is trained by optimizing the ERM
objective function by gradient descent: at the ¢-th iteration,
the parameters are updated as 0 (t+1) < 0(t)—nVL(0(t)),
where 1) is the learning rate; for sufficiently small 7, the dy-
namics of gradient descent reduces to that of the gradient
flow: dO(t)/dt = —nVL(O(t)). Here we focus on the
gradient flow setting following Arora et al. (2019).

Rate of convergence In the optimization literature, the
rate of convergence describes how fast an iterative algo-
rithm approaches an (approximate) solution. For a general
function L with variables 8, let 8(¢) be the solution main-
tained at the time step ¢ and 8* be the optimal solution.
The algorithm is said to be converging exponentially fast
or at a linear rate if L(0(t)) — L(0*) < aexp(—ct) for
some constants ¢ and «. In contrast, algorithms with the
sub-optimal gap L(0(t)) — L(0") decreasing slower than
exponential are said to be converging with a sublinear rate
(e.g. L(6(t)) — L(0*) decaying with ¢ as a polynomial of
1/t). We will mainly consider the setting where L(6*) = 0
(i.e. the realizable case) with continuous time ¢.

Other notations  We use ||-[|,, |||/ z and || ||, to denote
the operator norm (i.e. the largest eigenvalue in terms of
the absolute values), Frobenius norm and the trace norm of
matrices; we use |||, to denote the p-norm of vectors, with
the subscript omitted for p = 2. We use tr(-) to denote the
trace operation.

3. Deviations of QNN Dynamics from NTK

Consider a regression model on an m-sample training set:
for all j € [m], let y; and §; be the label and the model
prediction of the j-th sample. The residual vector r is
a m-dimensional vector with r; := y; — g;. The dy-
namics of the kernel regression is signatured by the first-
order linear dynamics of the residual vectors: let w be the
learned model parameter, and let ¢(-) be the fixed non-
linear map. Recall that the kernel regression minimizes
L(w) = g5 200 (whe(x;) — y;)? for a training set
S = {(xj,y;)}}jL;, and the gradient with respect to w
is = > (WTo(x)) — y)o(x)) = — = D0 1i(%;).
Under the gradient flow with learning rate 7, the weight w
updates as G = 137" | r;¢(x;), and the i-th entry of
the residual vector updates as dr;/dt = —¢(x;)T L%
-1 ;nzl #(x;)T¢(x;)r;, or more succinctly dr/dt =

m

—LKr with K being the kernel/Gram matrix defined as
Ki; = ¢(x;)T¢(x;) (see also Arora et al. (2019)). No-
tice that the kernel matrix K is a constant of time and is
independent of the weight w or the labels.

Dynamics of residual vectors We start by characteriz-
ing the dynamics of the residual vectors for the general
form of p-parameter QNNs and highlight the limitation
of viewing the over-parameterized QNN as kernel regres-
sions. Similar to the kernel regression, % = —%
—tr(p; 2UT(0(t)MoU(6(t))) in QNNs. We derive the
following dynamics of r by tracking the parameterized mea-
surement M (8) = UT(8)M,U(8) as a function of time ¢.

Lemma 3.1 (Dynamics of the residual vector). Consider a
ONN instance with an ansatz U(0) defined as in Line (1),
a training dataset S = {(p;, y;) 7", and a measurement
My. Under the gradient flow for the objective function

, 2 .
L) = 7 Z;”:I (tr(ijT(O)MOU(O)) — y;)" with
learning rate 1), the residual vector r satisfies the differ-
ential equation

dr(0(t))

U
0 = o, KM(6()))r(6(t)), 3)

where K is a positive semi-definite matrix-valued function
of the parameterized measurement. The (i, j)-th element of

K is defined as

P
> (tr (iIM(O(1)), p,JHL) tr (iM(B(2)), p,]HL)). (4)
=1

Here H;, = UjUl,_(0)HYU,, ()Uy, is a

function of 6 with Uy..(0) being the shorthand for

U, exp(—if, H™) ... Uy exp(—ify HWY).

While Equation (3) takes a similar form to that of the kernel
regression, the matrix K is dependent on the parameterized
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measurement M (8). This is a consequence of the unitarity:
consider an alternative parameterization, where the objective
; 1 m 2. ..
function L(M) = 3w Q=1 (tr(ij) —yj.) is OPtlmIZGd
over all Hermitian matrices M. It can be easily verified that
the corresponding dynamics is exactly the kernel regression

with K’L'j = tr(pzpj)

Due to the unitarity of the evolution of quantum states, the
spectrum of eigenvalues of the parameterized measurement
M(0) is required to remain the same throughout training.
In the proof of Lemma 3.1 (deferred to Section A.1 in the
appendix), we see that the derivative of M (8) takes the form
of a linear combination of commutators i[A, M(80)] for
some Hermitian A. As a result, the traces of the k-th matrix
powers tr(Mk(O)) are constants of time for any integer
k, since dtr(M"(0))/dt = ktr(M*~1(6)dM(0)/dt) =
Etr(M*~1(8)i[A, M(0)]) = 0 for any Hermitian A. The
spectrum of eigenvalues remains unchanged because the
coefficients of the characteristic polynomials of M(8) is
completely determined by the traces of matrix powers. On
the contrary, the eigenvalues are in general not preserved
for M evolving under the kernel regression.

Another consequence of the unitarity constraint is that a
QNN can not make predictions outside the range of the
eigenvalues of M, while for the kernel regression with
a strictly positive definite kernel, the model can (over-)fit
training sets with arbitrary label assignments. Here we
further show that the unitarity is pronounced in a typical
QNN instance where the predictions are within the range of
the measurement.

Sublinear convergence in QNNs One of the most com-
mon choices for designing QNNss is to use a (tensor prod-
uct of) Pauli matrices as the measurement (see e.g. Farhi
et al. (2020); Dunjko & Briegel (2018)). Such a choice
features a measurement M with eigenvalues {41} and
trace zero. Here we show that in the setting of supervised
learning on pure states with Pauli measurements, the (neural
tangent) kernel regression is insufficient to capture the con-
vergence of QNN training. For the kernel regression with
a positive definite kernel K, the objective function L can
be expressed as ;- Z;.n:l(yj y;)? = 5r7'r; under the
kernel dynamics of

ZLKr, it is easy to verify that
dlnL _ _2nr TKr <

I 2n )\mm(K) with Apin (K) being
the smallest eigenvalue of K This indicates that L decays
at a linear rate, i.e. L(T") < L(0) exp(— 3:17 Amin (K)T). In
contrast, we show that the rate of convergence of the QNN
dynamics must be sublinear, slower than the linear conver-
gence rate predicted by the kernel regression model with a
positive definite kernel.

Theorem 3.2 (No faster than sublinear convergence). Con-
sider a QNN instance with a training set S = {(p;,y;)}
such that p; are pure states and y; € {%1}, and a measure-

ment Mg with eigenvalues in {£1}. Under the gradient flow
for the objective function L(0) = 5 ;nzl tr(p;M(6) —
y;)> for any ansatz U(0) defined in Line (1), L converges
to zero at most at a sublinear convergence rate. More
concretely, for U(0) generated by {H(l)}l 1> let 1) be the
learning rate and m be the sample size, the objective func-
tion at time t:

L(O(t)) > 1/(co + crt)*. (5
Here the constant ¢¢ = 1/4/L(0(0)) depends on
the objective function at initialization, and ¢y =

2
12772;’:1‘H<” .

op

The constant ¢; in the theorem depends on the number of

2
parameters p through Zle H HO H if the operator norm
op

of HY is a constant of p. We can get rid of the dependency
on p by scaling the learning rate n or changing the time
scale, which does not affect the sublinearity of convergence.

By expressing the objective function L(6(t)) as
ﬁr(e(t))Tr(H(t)), Lemma 3.1 indicates that the decay of
ALOM) s Jower-bounded by =21\, (K (8(1)))L(6(t)),
where Apax(-) is the largest eigenvalue of a Hermitian
matrix. The full proof of Theorem 3.2 is deferred to
Section A.2, and follows from the fact that when the QNN
prediction for an input state p; is close to the ground truth
y; = 1 or —1, the diagonal entry K;;(6(t)) vanishes. As a
result the largest eigenvalue A5 (K (60(t))) also vanishes
as the objective function L(6(t)) approaches 0 (which is
the global minima). Notice the sublinearity of convergence
is independent of the system dimension d, the choices of
{H(l)}f:1 in U(6) or the number of parameters p. This
means that the dynamics of QNN training is completely
different from kernel regression even in the limit where d
and/or p — oo.

Experiments: sublinear QNN convergence To support
Theorem 3.2, we simulate the training of QNNs using M
with eigenvalues +1. For dimension d = 32 and 64, we
randomly sample four d-dimensional pure states that are
orthogonal, with two of samples labeled +1 and the other
two labeled —1. The training curves (plotted under the log
scale) in Figure 1 flattens as L approaches 0, suggesting
the rate of convergence —d In L/dt vanishes around global
minima, which is a signature of the sublinear convergence.
Note that the sublinearity of convergence is independent of
the number of parameters p. For gradient flow or gradient
descent with sufficiently small step-size, the scaling of a
constant learning rate 7 leads to a scaling of time ¢ and
does not fundamentally change the (sub)linearity of the
convergence. For the purpose of visual comparison, we
scale 17 with p by choosing the learning rate as 10~3 /p. For
more details on the experiments, please refer to Section D.
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Figure 1. Sublinear convergence of QNN training. For QNNs with
Pauli measurements for a classification task, the (log-scaled) train-
ing curves flatten as the number of iterations increases, indicating
a sublinear convergence. The flattening of training curves remains
for increasing numbers of parameters p = 10, 20, 40, 80. The
training curves are averaged over 10 random initialization, and the
error bars are the halves of standard deviations.

4. Asymptotic Dynamics of QNNs

As demonstrated in the previous section, the dynamics of
the QNN training deviates from the kernel regression for any
choices of the number of parameters p and the dimension d
in the setting of Pauli measurements for classification. This
calls for a new characterization of the QNN dynamics in the
regime of over-parameterization. For a concrete definition
of over-parameterization, we consider the family of the
periodic ansatze in Definition 2.1, and refer to the limit
of p — oo with a fixed generating Hamiltonian H as the
regime of over-parameterization. In this section, we derive
the asymptotic dynamics of QNN training when number of
parameters p in the periodic ansatze goes to infinity. We
start by decomposing the dynamics of the residual r(6(t))
into a term corresponding to the asymptotic dynamics, and a
term of perturbation that vanishes as p — co. As mentioned
before, in the context of the gradient flow, the choice of 7 is
merely a scaling of the time and therefore arbitrary. For a
QNN instance with m training samples and a p-parameter
ansatz generated by a Hermitian H as defined in Line (2),

m d?>—1 1 : .
we choose 7 to be " () to facilitate the presentation:

Lemma 4.1 (Decomposition of the residual dynamics). Let
S be a training set with m samples {(p;,y;)}jL,, and let
U(0) be a p-parameter ansatz generated by a non-zero H
as in Line 2. Consider a QNN instance with a training

set S, ansatz U(0) and a measurement My. Under the
d*—1

% tr(H?)

a function of time t through 0(t) evolves as

gradient flow with 1 = the residual vector r(t) as

dr(t)
dt

= —(Kasym(t) + Kpert (t))r(2) (6)

where both K,sym and Kper are functions of time through

the parameterized measurement M(0(t)), such that

(Kasym ()7 == tr (i[M(t), p;] i[M(2), py]), (@)
(Kpert (1)) = tr (i[M(t), p;] @ i[M(1), p,]A(1)). (8)

Here A(t) is a d* x d? Hermitian as a function of t through
o(t).

Under the random initialization by sampling {U;}/_, i.i.d.
from the haar measure over the special unitary group SU (d),
A(0) concentrates at zero as p increases. We further show
that A(¢) — A(0) has a bounded operator norm decreasing
with number of parameters. This allows us to associate
the convergence of the over-parameterized QNN with the
properties of Kooym (t):

Theorem 4.2 (Linear convergence of QNN with
mean-square loss). Let S be a training set with m
samples {(p;,y;)}72,, and let U(0) be a p-parameter
ansatz generated by a non-zero H as in Line (2). Consider
a QNN instance with the training set S, ansatz U(0)
and a measurement My, trained by gradient flow with
n = %t‘fi\iﬁg). Then for sufficiently large number of
parameters p, if the smallest eigenvalue of Kagym(t) is
greater than a constant Cy, then with high probability over
the random initialization of the periodic ansatz, the loss
function converges to zero at a linear rate

L(t) < L(0) exp(=—=)- ©)

We defer the proof to Section B.2. Similar to r(t), the
evolution of M(t) decomposes into an asymptotic term

EM() =DM, M), 5] (10)
j=1

and a perturbative term depending on A(t). Theorem 4.2
allows us to study the behavior of an over-parameterized
QNN by simulating/characterizing the asymptotic dynamics
of M(t), which is significantly more accessible.

Application: QNN with one training sample To demon-
strate the proposed asymptotic dynamics as a tool for an-
alyzing over-parameterized QNNs, we study the conver-
gence of the QNN with one training sample m = 1. To
set a separation from the regime of the sublinear conver-
gence, consider the following setting: let M be a Pauli
measurement, for any input state p, instead of assigning
7 = tr(pU(0)MoU(8)), take v tr(pU(0)TM,oU(8)) as
the prediction g at @ for a scaling factor v > 1.0. The
v-scaling of the measurement outcome can be viewed as
a classical processing in the context of quantum informa-
tion, or as an activation function (or a link function) in the
context of machine learning, and is equivalent to a QNN
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with measurement YIM. The following corollary implies
the convergence of 1-sample QNN for v > 1.0 under a mild
initial condition:

Corollary 4.3. Let p be a d-dimensional pure state, and let
y be £1. Consider a QNN instance with a Pauli measure-
ment My, an one-sample training set S = {(p,y)} and an
ansatz U(0) defined in Line (2). Assume the scaling factor

v > 1.0 and p — oo withn = %. Under the initial
condition that the prediction at t = 0, §(0) is less than 1,
the objective function converges linearly with

L(t) < L(0) exp(—Cht) (11)
with the convergence rate C; > 72 -1

With a scaling factor v and training set {(p;,y;)}7L:,
the objective function, as a function of the param-
eterized measurement M(t), reads as: L(M(t)) =
30 iy (v tr(p;M(t)) — y;)?. As stated in Theorem 4.2,
for sufficiently large number of parameters p, the conver-
gence rate of the residual r(t) is determined by Kaeym (%),
as the asymptotic dynamics of r(t) reads as 4r =
—Kasym(M(t))r(t) with the chosen n. For m = 1,
the asymptotic matrix K,qm reduces to a scalar k(t) =
—tx(AM(£), pJ?) = 2(y* — §(t)?). §(t) approaches the
label y if k(t) is strictly positive, which is guaranteed for
§(t) < ~y. Therefore |§(0)| < 1 implies that |§(¢)| < 1 and
k(t) > 2(y? — 1) forall t > 0.

In Figure 2 (top), we plot the training curves of one-sample
QNN with p = 320 and varying v = 1.2,1.4,2.0,4.0, 8.0
with the same learning rate = le — 3/p. As predicted in
Corollary 4.3, the rate of convergence increases with the
scaling factor . The proof of the corollary additionally
implies that k(t) depends on 4(¢): the convergence rate
changes over time as the prediction  changes. Therefore,
despite the linear convergence, the dynamics is different
from that of kernel regression, where the kernel remains
constant during training in the limit p — oo.

In Figure 2 (bottom), we plot the empirical rate of conver-
gence — % In L(t) against the rate predicted by . Each data
point is calculated for QNNs with different v at different
time steps by differentiating the logarithms of the training
curves. The scatter plot displays an approximately linear
dependency, indicating the proposed asymptotic dynamics
is capable of predicting how the convergence rate changes
during training, which is beyond the explanatory power of
the kernel regression model. Note that the slope of the lin-
ear relation is not exactly one. This is because we choose a
learning rate much smaller than 7 in the corollary statement
to simulate the dynamics of gradient flow.

QNNs with one training sample have been considered be-
fore (e.g. (Liu et al., 2022a)), where the linear convergence
has been shown under the assumption of “frozen QNTK”,
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Figure 2. (Top) The training curves of one-sample QNNs with
varying -y. The smallest convergence rate —d In L /dt during train-
ing (i.e. the slope of the training curves under the log scale)
increases with . (Bottom) The convergence rate —d In L/dt|i=1
as a function of 2(y* — §2(T)) (jointly scaled by 1/ for vi-
sualization) are evaluated at different time steps 1" for different
~. The approximately linear dependency shows that the proposed
dynamics captures the QNN convergence beyond the explanatory
power of the kernel regressions.

namely assuming K, the time derivative of the log resid-
ual remains almost constant throughout training. In the
corollary above, we provide an end-to-end proof for the
one-sample linear convergence without assuming a frozen
K. In fact, we observe that in our setting K = 2(72 — §(t))
changes with 4 (t) (see also Figure 2) and is therefore not
frozen.

QNN convergence for m > 1 To characterize the conver-
gence of QNN with m > 1, we seek to empirically study
the asymptotic dynamics in Line (10). According to Theo-
rem 4.2, the (linear) rate of convergence is lower-bounded
by the smallest eigenvalue of K,em(t), up to an constant
scaling. In Figure 3, we simulate the asymptotic dynamics
with various combinations of (v,d, m), and evaluate the
smallest eigenvalue of K,qm () throughout the dynamics
(Figure 3, details deferred to Section D). For sufficiently
large dimension d, the smallest eigenvalue of K,sm de-
pends on the ratio between the number of samples and the
system dimension m/d and is proportional to the square of
the scaling factor 2.

Empirically, we observe that the smallest convergence rates
for training QNNs are obtained near the global minima
(See Figure 6 in the appendix), suggesting the bottleneck of
convergence occurs when L is small.

We now give theoretical evidence that, at most of the global
minima, the eigenvalues of K,sm are lower bounded by
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Figure 3. The smallest eigenvalue of K,s,m for the asymptotic
dynamics with varying system dimension d, scaling factor v and
number of training samples m. For sufficiently large d, the smallest
eigenvalue depends on the ratio m/d and is proportional to the
square of the scaling factor 2.

292(1 — 1/4% — O(m?/d)), suggesting a linear conver-
gence in the neighborhood of these minima. To make this
notion precise, we define the uniform measure over global
minima as follows: consider a set of pure input states { p; =
vjv; };":1 that are mutually orthogonal (i.e. vzvj = 0if
i # j). For a large dimension d, the global minima of the
asymptotic dynamics is achieved when the objective func-
tion is 0. Let u; () (resp. w;(t)) denote the components of
v; projected to the positive (resp. negative) subspace of the
measurement M () at the global minima. Recall that for a
~v-scaled QNN with a Pauli measurement, the predictions
9(t) = vtr(pM(1)) = y(u) (B (t) — wh(t)w;(t)). At
the global minima, we have u;(t) = §(1 & 1/7)0;(¢) for
some unit vector ;(t) for the j-th training sample with
label £1. On the other hand, given a set of unit vectors
{0, };”:1 in the positive subspace, there is a corresponding
set of {u; ()} and {w;(t)}7", such that L = 0 for suf-
ficiently large d. By uniformly and independently sampling
a set of unit vectors {0;}72 from the d/2-dimensional
subspace associated with the positive eigenvalues of M(¢),
we induce a uniform distribution over all the global min-
ima. The next theorem characterizes K,s,m under such an
induced uniform distribution over all the global minima:

Theorem 4.4. Let S = {(p;,y;)}jL, be a training set
with orthogonal pure states {pj}}”:l and equal number
of positive and negative labels y; € {+1}. Consider the

smallest eigenvalue \g of Kasym at the global minima of the
asymptotic dynamics of an over-parameterized QNN with
the training set S, scaling factor vy and system dimension d.
With probability > 1 — § over the uniform measure over all
the global minima

m2m

1
Ay > 29%(1 — = —
gfly( ,}/2 C2max{d’d

2
log5}),  (12)
which is strictly positive for large v > 1 and d =
Q(poly(m)). Here Cy is a positive constant.

We defer the proof of Theorem 4.4 to Section C in the ap-
pendix. A similar notion of a uniform measure over global
minima was also used in Canatar et al. (2021). Notice that
the uniformness is dependent on the parameterization of the
global minima, and the uniform measure over all the global
minima is not necessarily the measure induced by random
initialization and gradient-based training. Therefore Theo-
rem 4.4 is not a rigorous depiction of the distribution of con-
vergence rate for a randomly-initialized over-parameterized
QNN. Yet the prediction of the theorem aligns well with
the empirical observations in Figure 3 and suggests that by
scaling the QNN measurements, a faster convergence can
be achieved: In Figure 4, we simulate p-parameter QNN
with dimension d = 32 and 64 with a scaling factor v = 4.0
using the same setup as in Figure 1. The training early stops
when the average L(t) over the random seeds is less than
1 x 1072, In contrast to Figure 1, the convergence rate
—d1In L/dt does not vanish as L — 0, suggesting a simple
(constant) scaling of the measurement outcome can lead to
convergence within much fewer number of iterations.

d=32 d=64
10° — p=10
—_ p=20
()
? — p=40
8,10-1 —— p=80
3
10-?

0 200 0 500 1000
Number of Iterations Number of Iterations

Figure 4. Training curves of QNNs with v = 4.0 for learning a
4-sample dataset with labels £1. For p = 10, 20, 40, 80, the rate
of convergence is greater than 0 as L — 0, and it takes less than
1000 iterations for L in most of the instances to convergence below
1 x 10™2. In contrast, in Figure 1, L > 1 x 1071 after 10000
iterations despite the increasing number of parameters.

Another implication of Theorem 4.4 is the deviation of
QNN dynamics from any kernel regressions. By straight-
forward calculation, the normalized matrix Kasym (0)/7? at
the random initialization is independent of the choices of
7. In contrast, the typical value of \,/~v? in Theorem 4.4
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is dependent on 72, suggesting non-negligible changes in
the matrix K,qm(t) governing the dynamics of r for finite
scaling factors . Such phenomenon is empirically verified
in Figure 5 in the appendix.

5. Limitations and Outlook

In the setting of m > 1, the proof of the linear convergence
of QNN training (Section 4) relies on the convergence of
the asymptotic QNN dynamics as a premise. Given our
empirical results, an interesting future direction might be to
rigorously characterize the condition for the convergence of
the asymptotic dynamics. Also we mainly consider (vari-
ants of) two-outcome measurements M with two eigensub-
spaces. It might be interesting to look into measurements
with more complicated spectrums and see how the shapes
of the spectrums affect the rates of convergence.

A QNN for learning a classical dataset is composed of three
parts: a classical-to-quantum encoder, a quantum classifier
and a readout measurement. Here we have mainly focused
on the stage after encoding, i.e. training a QNN classi-
fier to manipulate the density matrices containing classical
information that are potentially too costly for a classically-
implemented linear model. Our analysis highlights the ne-
cessity for measurement design, assuming the design of the
quantum classifier mixes to the full d x d special unitary
group. Our result can be combined with existing techniques
of classifier designs (i.e. ansatz design) ((Ragone et al.,
2022; Larocca et al., 2021; Wang et al., 2022; You et al.,
2022)) by engineering the invariant subspaces, or be com-
bined with encoder designs explored in (Huang et al., 2021;
Du et al., 2022).
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A. Proofs for Section 3
A.1. Proof of Lemma 3.1

Lemma A.1 (Dynamics of the residual vector). Consider a QNN instance with an ansatz U(0) defined as in Line (1),
a training dataset S = {(p;,y;)}7%,, and a measurement My. Under the gradient flow for the objective function

L) = 5~ ;-n:l (tr(ijT(G)MOU(O)) — yj)2 with learning rate ), the residual vector v satisfies the differential

2m
equation

= ——K(M(6(1)))r(0(t)), 3)

where K is a positive semi-definite matrix-valued function of the parameterized measurement. The (i, j)-th element of K is
defined as

> (tr( ), p; HL) tr (IM(6(1)), p;|HL) ). )

=1

Here H;, := U%ULfl(0)H(Z)U1;l,1(0)U0, is a function of 0 with U;..(0) being the shorthand for
U, exp(—if, H"™) ... Uy exp(—ify HWY).

Proof. For succinctness, we drop the dependency on 8(t) when there are no ambiguity. The unitary U,.,,(@) depends on 6,
forl > r:

U,
00,

= Uy,p(0)(—iH") U, _1(0) = iU, HOU] U, (13)

Therefore for all [ € [p]

OM(6(1)) 0UL,\' oU,.
o= Ul 6917’ MUy, Ug + UJUL, M, . Uy, (14)
=i(Ujul, U, HYU], MU, Ug) — (U U], MU, HYU], UL, Uy), (15)
= i[H;, M(6(?))]. (16)
By the chain rule with matrix parameters, we have
8L(0(t)) oM .
—_— L—) =it LH;, M(6(t))]). 17
oo = tr (VmLg") = ite(VaLEL M(B(0) a7
Furthermore, due to the gradient flow dynamics,
P P
dfy ) OM(6(t))
— 1
g dt 89; 21 89l 06, (18)
= nZtr(VML[Hl,M(O(t))])[Hl,M(O(t))]. (19)
=1

By plugging in VgL = — L 27:1 7;p;, we show that the parameterized measurement M(6) = U (0)M,U(8) follows
the dynamics

dM(6(t))/dt = %Z (" rip,i[H;, M(6(2))])i[EL, M(6(1))- (20)
=1 j=1

12



Analyzing Convergence in Quantum Neural Networks

By definition r; := y; — ¥;, and

dr; dtr i 0 d 0
-2 > Zmpj [, M(6(1))]) tr (psi[H, M(8(1)))) (22)
= — L3y (tr (o[, M(O(1))]) r ([, M6(1))])) 03
j=1
= —% > i (tr (iIM(O(1)), p,JHL) tr (IM(0(2)), p,HL)). (24)

The last equality is due to the cyclicity of the trace operation. Making the identification K;;(M(0(t))) =
(tr (i[M(6(t)), p,]H;) tr (i(M(6(t)), p,;]H;)), we have

= ——K(M(6(1))r(6(t)). (25)

A.2. Proof of Theorem 3.2

Proof. The mean squared loss function L(6(t)) can be expressed as 7-r(8(t))7r(8(t)). Using Lemma 3.1, the rate of
convergence can be lower-bounded as

1 dL(6(t))

LO®) dt (26)
1 d T

= —1r(0(t)) r(6(t)), (27)
o) (o ait ) T

2 x(60)"K(O(1)r(6(1)) o)

m e rew)
> 2 (K(O(1). (29)

The positive semi-definiteness of K(0(t)) suggests that A\pna(K(0(t))) < tr(K(6(t))). We now proceed to bound
tr(K(0(t))). Since the eigenvalues of My and M(8) all lie in {£1}, M(O(t)) decomposes into the difference of to
projections, II (6(t)) and II_(60(t)), projecting onto the subspaces associated with eigenvalues of +1 and —1 respectively.
When g; approaches y;, the input state p; lies almost completely in one of the eigen-subspaces, leading to a vanishing
commutator i[M(6(t)), p;] such that K;;(0(t)) approaches zero:

Let v be the statevector representation of the pure state p;, such that p; = v v, Vector v j decomposes into the components
within the positive and negative eigen-subspaces of M(6(t)): v; = u;(6(t)) + w;(0(t)), where u;(6(t)) = I1, (6(t))v;
and w;(6(t)) = II_(6(¢t))v;. In the following we omit the arguments 8(¢) in u; and v, for succinctness, but the time
dependence is to be implicitly understood The commutator between the parameterized measurement and the input state can
be written as [M(6(t)), p,] = 2(uj —wju ) Therefore

| tr(i[M, p; [ H)| < 4[| [op [[uy || [ w;]]- (30)

Assume without loss of generality that the j-th label y; is +1. Then ||u; I? + || w; I? = |v; | = 1 by definition, and
2 2 2 2 2
g [ = [w;l|” = tr(M(8(2))p;) = yj —rj = 1 — ;. Then |[w; | = [r;[/2, and [[u; " [|w; [|* = (1 = [r;]/2)|r;|/2.

13
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Therefore we have,

Z )): p;1HL)

Irsl (g _ Iral
<162||H lop 5 (1= 557

op 2

2{: 2 |yl
<16 ”HlHop 2j
=1

As a result

1 dLe)
TOw)  d
> _fnﬂ 2(K(O(1))) > —%” i K

m

167 & 2
_W Z ||Hl ||op Z |Tj|
=1 i=1

> —16v2n > | Hy||3, V/L(6(t))

=1

— _16v2y Ep: HH”) LO0).
=1

Here we use the fact that 377" | || < VA /r(0) T r(0(t)) = /2m2L(0(t)).

The theorem statement follows directly by integrating the inequality above:

L(O(1))" 2 dL(8(t)) > 24772 H

— —2d(L(O1)?) > 24nZHH(l dt

=1

’ﬂ

— L(6(T))"% — L(6(0)) % < 12n2 HH
=1

[N

— L(H(T))_ —co < 1T

Note that the same “at most sublinear convergence” holds for a measurement M such that My =

€1y

(32)

(33)

(34)

(35)

(36)

(37

(38)

(39)

(40)

(41)

(42)

_ and

IT, + II_ + II, = I for some non-zero projection IIy. The proof still holds with the following modification: define

14
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s = ||uj||* + ||lw;||* < 1, we have

S T YT Sty Ty
(U (e T
:f—(yj rj)?
4
1_(yj_TJ)
- 4
(1- yj)2 + 2y;rj —1;
4
rioor
YT TG Yt
2 4 — 2
_Irsl
2

The last equality follows from the fact that r; > 0 (resp. r; < 0) for y; = 1 (resp. y; = —1).

B. Proofs for Asymptotic Dynamics
B.1. Proof of Lemma 4.1

Lemma B.1 (Decomposition of the residual dynamics). Let S be a training set with m samples {(p;,y;)}L,, and let

U(0) be a p-parameter ansatz generated by a non-zero H as in Line 2. Consider a QNN instance with a training set S,
m d*>—1

ansatz U(0) and a measurement M. Under the gradient flow with n = ROl the residual vector r(t) as a function of

time t through 0(t) evolves as

dr(t)
dt

= _(KaSym (t) + Kopert())r(t) (6)
where both Kasym and Kpert are functions of time through the parameterized measurement M(0(t)), such that

M(t)7pi] i[M(t)7ij7 (7)
(Kpert(1))ij == tr (i[M(t), p,] @ i[M(t), p;]A(t)). (8)

Here A(t) is a d* x d* Hermitian as a function of t through 0(t).

Throughout the proof, we make use of the following notations. Let H be a d-dimensional Hilbert space, and let {€, } o¢[q]
be a basis of H. We use I;,4 denote the identity matrix Zae[ d) eael. We use ® for kronecker products on vectors,
matrices and Hilbert spaces. For the d? x d?-dimensional product space H ® H, let W 42, 4> denote the swap matrix
Z%be[d] eae}: ® epel.

We will also make use of the well-known integration formula with respect to the haar measure over d-dimensional unitaries
(see e.g. Collins & Sniady (2006) for more details).

15
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Proof. As proven in Lemma 3.1, we track the dynamics of the parameterized measurement M (8):

dM(6) <~ df; OM(6)

dt & dt 96, (43)
= lZ:(—n) tr (i[H;, M(0)]VMmL)i[H;, M(8)] (44)
=l§_p;77tr (i[VmL, M(6)H,)i[H;, M(6)] (45)
ém[“ (i[VmL, M(0)]H,;)H;, M(6)] (46)
:Xp:m'[trl ((i[VamL,M(0)] ® I)(H, @ H)), M(8)]. 47)

1

Here try (+) is the partial trace: Given the product of two Hilbert spaces H1 ® Ho, the partial trace on the first Hilbert space
is a linear mapping such that

tr; (A ® B) =tr(A)B
for any Hermitians A and B on the spaces H; and Hs. By linearity,

try (ZA[ ® Bl) = Ztr(Al)Bl
l l

for any Hermitians {A;} and {B,} on the spaces {1 and Hs.

Let Z(H, d) denote the ratio t;(zH 1) . the learning rate 7 can be expressed as = Let Y (6(t)) denote the normalized
d? x d*-complex matrix pZ(H’d) 21:1 H; ® H; for H; defined in Lemma 3.1 and let Y* denote W g2 42 — %Idzxdz, the
asymptotic version of Y. We can accordingly decompose the dynamics into the asymptotic dynamics and the deviation

(perturbation) from the asymptotic dynamics:

BUO) oz ayyilir, (19w M(O)] © DY), M(0)] @)
=(pZ(H, d))i[tr1 (({[VmL, M(8)] @ )Y*),M(0)] (49)
+ (mpZ (H, d))iftry (({[VamL, M(0)] @ D)(Y(0(t)) — Y)), M(0)] (50)
=(npZ(H, d))i[(i[VamL, M(6)], M(6)] (51)
+ (mpZ (H, d))iftry (({[VamL, M(0)] @ D)(Y(0(t)) — Y*)), M(0)] (52)
— (npZ(H, d))[M(6), [M(6), VL] (53)
—(an(Hd))[ (), try (((M(6), VmL] @ D)(Y(8(t)) — Y¥))] (54)
Plugging in that Vi L(M(0)) = f%n S, rip; with the residual r; == y; — §; = tr(M(0)p;) — i
= Z r;[M(6), [M(8). p,] (55)
+Z7"J ), tr1 ((M(8), p;] @ D)(Y(8(1) — Y™))] (56)

Trace after multiplying p; on both 51des:

@
dt

= uw(p, 2O Zn tr (p[M(8), [M(6), p,]) (57)
- er tr (p:[M(0), tr1 (IMI(0). p;] © (Y (0(1)) — Y*))]) (8)
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The lemma follows directly from rearranging: for the first term,

- im‘ tr(p;[M(0), [M(8), p,]]) (59)
== im tr([p;, M(6)][M(6), p;]) (60)
== f:rj tr(i[M(6), p;]i(M(6), p;])- (61)
For the second term, B
- é rj tr (p;[M(8), tr1 ((M(0), p;] @ I)(Y(6(1)) — Y))]) (62)
=- i rjtr (i(M(8), p;] tr1 (({(M(8), p,] @ I)(Y (8(t)) — Y™))) (63)
=- ZE rjtr (T@i[M(0), p))(i[M(6), p,] @ D)(Y (O(t)) — Y™)) (64)
=- ; rjtr ((i(M(8), p;] @ i[M(8), p,]) (Y (8(t)) — Y™)) (65)
= XE rjtr ((i(M(8), p;] @ i[M(6), p;]) (Y (0()) — Y7)) (66)

The last equality follows from the fact that Y and Y™ are invariant under the swapping of spaces. The lemma follows by
identifying the matrix A(¢) with Y(0(¢)) — Y™. O

B.2. Proof of Theorem 4.2

Theorem 4.2 (Linear convergence of QNN with mean-square loss). Let S be a training set with m samples {(p;,y;)}7L,,
and let U(0) be a p-parameter ansatz generated by a non-zero H as in Line (2). Consider a QNN instance with the training

m d’—1

set S, ansatz U(0) and a measurement My, trained by gradient flow with n = PR OL Then for sufficiently large number

of parameters p, if the smallest eigenvalue of Kyeym () is greater than a constant Cy, then with high probability over the
random initialization of the periodic ansatz, the loss function converges to zero at a linear rate

L(t) < L(0) exp(— —2). ©)

Proof. In Lemma 4.1, we decompose the QNN dynamics into the asymptotic term and the perturbation term depending
on A(t) = Y(0(t)) — Y*. We now show that the use of the terms “asymptotic” and “perturbation” are exact, by showing
that Y (0(t)) — Y™ vanishes as p — oo. We make use of the characterization of a similarly-defined quantity in (You et al.,
2022), restated as Lemma B.2 and B.4, such that for sufficiently large p, | Y (6(t)) — Y™||,, vanishes for all ¢ with high
probability over the randomness in {Ul}f’zo. Recall that the perturbation term K is defined as

(Kpert())ij = tr ((i[M(6), p;] @ i[M(8), p,]) (Y (8(t)) — Y*)). (67)

By choosing sufficiently large p, we have || Kpert(t) [|,, < Co/10 and therefore the loss function converging to zero at a rate
> Cp/2. O

Lemma B.2 (Concentration at initialization, adapted from Lemma 3.4 in (You et al., 2022)). Over the randomness of ansatz
initialization (i.e. for {U;}}_, sampled i.i.d. with respect to the Haar measure), for any initial 6(0), with probability 1 — 6:

2= 2
v o) - v, < & 2o o), ) (68)
=5 Z 5
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Proof. Define

(Ugu—1(8(0)) HUY,,_,(6(0)))%* —=Y*. (69)

By straight-forward calculation (e.g. using results in Collins & Sniady (2006)) we know that X is centered (i.e E[X;] = 0).
The set {X;} can be viewed as independent random matrices as the Haar random unitary removes all the correlation. The
matrix on the left-hand side can therefore be expressed as the arithmetic average of p independent random matrices. The
square of X is bounded in operator norm:

X2, = 1%l IHle 1, _ 20HIG,

w< o+ T < () (70)

where the second inequality follows from the fact that the ratio ¢; = |H ng / tr(H?) satisfies that 1 > g; > 1/d. By
Hoeffding’s inequality((Tropp, 2012), Thm 1.3), with probability > 1 — 6,

1 2 IIHIIfp 2d2

IY(00) =¥ lly < 7 g\ los 5

(71)

As we pointed out in the main body, a vanishing perturbation term at initialization is not sufficient to guarantee the term
remain perturbative throughout the training. We now show in Lemma B.4 that Y (6(¢)) — Y remain small during training by
showing Y (0(¢)) — Y ((0)) vanishes in the limit p — oo. But before that, we show that, while the QNN predictions changes
much during training, the change in the parameters measured in ¢2- or £o.-norm (||@(t) — 6(0)||2 or ||6(t) — 6(0)|o0)
vanishes as p — oo during the training of QNN:

Lemma B.3 (Slow-varying 6 in QNNSs). Suppose that under learning rate n = H L ,forall 0 <t < T, the loss function
L(6(t)) < L(6(0)) exp(—at) for some constant a, then for all 0 < t1,t5 < T

_ 1Vom |H]||, M|l VL(6(0))

O(ta) — O(t ty —t 72
10(t2) — 0(t1)]|oo <5 7 |t1 — tal, (72)
1 Vom |H|p M|y L(6(0))
0(ty) — O(t t1 — tol. 73
[6(t2) — (t1)]l2 < 7P 7 |ty — taf (73)
Proof. We first bound the absolute value of the derivative %:
d@ m
bh \Zmr 0), Hilp,)|. (74)
Plugging inn = Z,wehave
d@l 1 1
5 tr( ), Hilp,)| = =——=|(r,a)|, 75
= M\Zr 1(i 10 = 57 1(x.a) @)
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where the vector a is defined such that a; = tr(i[M(0), H]p;) for j € [m]. The £-norm of a

Hah—Ztr i[M, Hy]p;) (76)
= tr ((i[M, H;])®? Z p;%?) (77)
j=1
< || GIVL L) 1D 052 (78)
i=1 .
< VL E |5 D 0y (79)
j=1 »
< @IMIE IR o™ 0
< 2IMllp [ H|p vim)*. (81)
Therefore we can bound | 1 as
del 1
<
G < plrlalale (52)
<957 2mL(8(t)) - 2| M| [H| z v (83)
1vV2m ||M|  |H
1v2m||M H
< 12m IMe 19l /76 exp(—at/2 )
D
Hence for all | € [p]:
to to
|6:(t2) — 0i(t1)| = | dtdf,(t)/dt| < / dt|do,(t)/dt| (86)
t1 tl
2 1v2m M|, |H
< dtf\[mH Z”FH le /T @800 exp(—at/2) 87)
t1
2 1 M H
<L pfm e Ml /G0 exp(—aty/2) — exp(—ata/2) (88)
1vV2m |[M| » |H
<5 ” Z”FH e /L@~ 1 (89)
(90)
The bounds on the ¢5- and ¢,,-norm follows from direct computation. O

We are now ready to show Y (t2) — Y (¢1) vanishes as p — oo:

Lemma B.4 (Concentration during training, adapted from Lemma 3.5 in (You et al., 2022)). Suppose that under learning
rate ) = Sotgrgy, Jor all 0 < t < T, the loss function L(0( )) decreases as L(0(0)) exp(—at) then with probability
>1—4, forall0<t<T:|Y(0()—Y(60))],, <Cs-

llop where C' is a constant of T and p.

f’
Proof. To bound the supremum of the matrix-valued random field, we use an adapted version of the Dudley’s inequality:

Claim 1 (Dudley’s inequality for matrix-valued random fields, adapted from Theorem 8.1.6 in High-dimensional
probability (Vershynin, 2018).). Let R be a metric space equipped with a metric d(-,-), and X : R > RDPXP
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with subgaussian increments i.e. it satisfies Pr[||X(r1) — X(r2)llop > ¢] < 2Dexp (—W). Then
with probability at least 1 — 2D exp(—u?) for any subset S C R: sup(,, .)es [IX(r1) — X(r2)llop < C -

[ diam(8) /A7 (S.d, €) de + u - diam(S)| for some constant C, where N(S,d, ¢€) is the metric entropy defined as
the logarithm of the e-covering number of S using metric d.

To make use of Claim I, we now establish the sub-gaussian increment of Y (6(t)) through the following Claim 2 by applying

McDiarmid inequality:

Claim 2 (Sub-gaussianity of Y) Pr(|[Y (0) — Y (0)||,, > t] < 2exp (—W) for some constant C;. Then due to
2

the Haar distribution of the unitaries {U;}}_,

oD

Pr{|[ Y (02) — Y(81),, > 1] < 2exp (_ —~1*Z(H, d) )

2C11102 — 61113

To see that Claim 2 is true, consider an alternative description of Y (). Recall that Y () is defined as Y (0) =
m SP Y, withY;(8) being H?®>. We consider a re-parameterization of the random variables H; () by con-
structing random variables that are identically distributed, but are functions on a different latent probability space. Defining
H; as U(T) e UlelHUl_l ---Up, Y can be rewritten as:

P
-1 (08 b Hia om0 Hi om0 ) 92 (92)
pZ l—1

By the Haar randomness of {U;}}_;, we can view {H;}}_, as random Hermitians generated by {VZHVZ} for i.i.d. Haar
random {V;}7_,. This variable is identically distributed to Y and Y, can be defined as each term in the sum.

We will apply the well-known McDiarmid inequality (e.g. Theorem 2.9.1 in High-dimensional probability (Vershynin,

2018)) that can be stated as follows: Consider independent random variables X1, ..., X} € X. Suppose a random variable
¢: X% — R satisfies the condition that for all 1 < j < k and for all 1, . .. 7 R zk,x;- € X,
(@1, xgy . xk) — G, ., wg)| < g, (93)

then the tails of the distribution satisfy

2
i=1Ci

—2t?
Prilo(Xy,...,X;) —E¢| > t] <exp () : (94)
>
With our earlier re-parameterization we can consider Y and consequently Y; as functions of the randomly sampled Hermitian

operators H;. Define the variable Y %) as that obtained by resampling Hj, independently, and Yl(k) correspondingly. Finally
we define

ARy = H (Y(8) - Y(0) — (Y®P(6) - Y®P)| = HY(O) —Y® (g 95)
op
Via the triangle inequality,
APY = |Y(0) - Y™ (0)] = —HZ Yi(0) - YV (0)] (96)
1>k
ZHYZ -YM(0)]. 97)

l>k
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Then by definition,

k
1Y:(6) — Y7 (9)]
:||(ei91H1 . e’iek,lHk,1>®2 ((eiekaKe—iQka)(@Q

_(eiékH;Ke—iOkH;c)®2)(e—i9k,1Hk,1 . e—i01H1)®2||
=||(6i6’“HkK€7i0ka)®2 _ (einH;KefiQkH;C>®2”
<H(ei0kaK67i0ka)®2 . K®2|| + ‘|(6i0kH;“K€7i9kH;“)®2 B K®2||.

where K := er+1Hir1 . gl Himi o= Hioy L o=k et K(¢) denote e**HrKe~#Hr we can bound
the first term on the righthand side as follows:

H (eiOkaKe—ieka)®2 _ K®2||

K (6:)2 — K(0)2]
_ O d ®2
o / o3 (K(0))]

O d 22
<[ dol|—(K(o
| o)
<4|0x || HLx [[[1 K12
The last inequality follows from the fact that
d
— K ®2
| K@
=|(exp(ioH))** ([~iHy, K] ® K + K @ [~iHy, K]) (exp(—i¢Hy)) |
=||[-iH, K] @ K+ K ® [-iH}, K]||
<4||H || |K]*.

The same reasoning holds for the term with H).. Using the fact that || Hy|| = ||H}|| = ||H]|, and we have

k k
1(Y1(8) — Y1(0)) — (Y (8) — Y{¥(0)) || < 816, HI[| K> = 86, ||H.
Claim 2 follows from the direct application of McDiarmid inequality.

By Lemma B.3, ||0(t2) — 0(t1)]]2 < C—\/LE |ta —t1| with C, being a constant with respect to p. Plugging this into Claim 2, we

see that Y has sub-gaussian increments if we define the metric d(¢o,t1) = % tg — g

, thereby satisfying the conditions

for Claim 1. Under this metric, the diameter of the interval [0, T'] is of order %. Applying Claim 1, with u = +/log(2d/)
to ensure a failure probability at most § we have

T
sup |['Y(0(t)) —Y(6(0 <(Cg-—, (98)
S Y (6(t)) (0))lop 7
where Cj is a constant of p and T and depends polynomially on other quantities including d and log(1/4). O

C. Proof for Theorem 4.4

In this section, we present the proof for Theorem 4.4 for characterizing the rate of convergence at global minima:

Theorem 4.4. Let S = {(p;,y;)} L, be a training set with orthogonal pure states {p;}], and equal number of positive
and negative labels y; € {£1}. Consider the smallest eigenvalue Ay of Kasym at the global minima of the asymptotic
dynamics of an over-parameterized QNN with the training set S, scaling factor vy and system dimension d. With probability

> 1 — 0 over the uniform measure over all the global minima

1 m?2 m 2

2

)\g 22')/ (1—?—Cgmax{77glogg}), (12)
which is strictly positive for large v > 1 and d = Q(poly(m)). Here C5 is a positive constant.
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We start by presenting a few helper lemma:

C.1. Helper Lemma for K,

Lemma C.1. Let A, B be d x d Hermitians. Let |-||,, denote the operator norm of a given Hermitian and let o denote the
Hadamard product (i.e. the elementwise multiplication) of two matrices, we have

HAOB”op — HA” ||BHop' (99)

Proof. For any d x d Hermitian matrix, let A;(-) denote its i-th smallest eigenvalue. The Hadamard product A o B is a
d x d principal submatrix of the Kronecker product A ® B, and by the Poincaré separation theorem (see e.g. Corollary
4.3.37 in Horn & Johnson (2012)):

MARB)<)MN(AoB) < A\p2(A®B). (100)
The statement follows from the fact that the eigenvalues of A ® B take the form of A\;(A)X;(B) for 4, j € [d]. O
Lemma C.2 (K, for asymptotic dynamics). Let S be a m-sample training set composed of pure states {pj = Vjv;r- };”zl

Let My be a Pauli-like measurement with eigenvalues +1 and trace-0. Consider training a QNN with S, measurement V]
and a scaling factor of y. The positive semidefinite matrix K,sym can be expressed entry-wise as

(Kasym )i (M(1)) = 87 Re(u] (t)ui(t)w! (H)w; (t)), (101)
where u;(t) := IL; (t)v; (resp. w;(t) := I1_(t)v;) is the projection of v; into the postive (resp. negative) subspace of
M(t) = y(II4(t) — TI_(¢)). Let P(t) := (uz(t)uj (t)ijeim) and N(t) := (wz(t)wj (t))i,jem) be the Gram matrices of
{u; (&)}, and {w;(t)}™,, we have:

Amin (Kasym(£)) > 872 Amin (P(2)) min (Ny;()) > 87 Amin (P (£)) Amin (N(£)). (102)

1€[m]

Proof. For succinctness, we drop the time dependency ¢ when there are no ambiguities. Calculate the expression of
(Kasym)i; for pure states p; = v;v}:

(Kasym (M(#)))i5 = tr (i[M, p;] i[M, p;]) (103)
= tr (M2pipj) + tr (M2pjpi) — 2tr (Mpiij) (104)
=29%(tr(pip;) — tr((TLy —TL)p;(T1;. —TI_)p;)) (105)

Plugging in p;, = vivj, we have:

1
W(Kasym(M(t)))ij = [ufu; + wiw;|> — [(u; + w) (I — I1)(u; + w;)|? (106)
= [ulu; + wiw; |2 = |(u; + wi) T (u; — w;)[? (107)
=Mw+ﬂwﬁlww—mmﬁ (108)

= 2uiuj . Wij: + 2u;u7; . W;er (109)

= 4Re(ulu;wiw;), (110)

or (Kasym(M(2)))i; = SWZRe(u;[-uiw;[wj).
Let P(t) and N (t) be the Gram matrices for {u;(¢)}7, and {w;(t)}7™:
(P(1))ij = u(®)u(t);, (N())i; = w(t)Iw(t);, (11D

the matrix K,sym can be expressed as Kooym = 47°P o N7 4+ 442PT o N, where o denotes the Hadamard product, with P
and N being positive semidefinite matrices. Following a result of Schur’s (e.g. see Lemma 6.5 in (Oymak & Soltanolkotabi,
2020)), we estimate the smallest eigenvalue of K,sym as

Amin (Kasym (M(0))) > 8v? max ( _m[in](Nii))\min(P), _m[in](Pii)/\min(N)). (112)
em 1€m

O
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The second statement in the limit suggests that the K,s,m is positive definite unless the subspaces spanned by u; or w; are
not full rank, though we do not make use of this fact in the proof of Theorem 4.4.

C.2. Proof of Theorem 4.4

Proof. For each input state p; = v v;, let u; and w; denote the projection of v ; onto the positive and negative subspaces of
the measurement. Since the measurment is updated throughout the training, u; and w ; are functions of time. For a QNN with

the scaling factor ~, the QNN prediction for the input state p; at time ¢ is §; = y(u} (t)u;(t)— w} (t)w;(t)). Additionally by

the normalization of quantum states and the orthogonality of the training sample, we have u;f (t)u;(t) + w; (t)w;(t) = 05,

where 51-]- is the Kronecker delta function. Combining these two conditions, we can solve that u} u; = %(1 +1/7) and

v;rv] 1(1F1/y) fory; = £1.

By Lemma C.2, the diagonal entries (Kasym);j = 872Re(u;ujw}wj) =872 2(1+1/7) (1 F1/7) =292(1 —1/+?).

Without loss of generality, assume y1 = y2 = -+ = Y2 = 1 and yp, 2041 = Ymy242 = **Ym = —1. Then
u; =4/ Mﬁj forl1 <j<m/2andu; =/ 1= 1/”’uj form/2 + 1 < j < m. Here G, are unit vectors defined as
u;/\/ul ;. For the off-diagonal entries, (Kasym)ij = SPyQRe(uiujw;wi) — 8y2Re(uu; - (—u;(ui)) = —8v2|uu,2.

For the first equality we use the orthogonality among {v; };”:1

Define m x m Hermitian G such that G;; = @} i1; and R such that Ry; = 3(1+1/7) for1 <4,5 < m/2, Rij = 1(1-1/)
form/2+1<1i,j <m,and R;; = %\/1 —1/y2for1 <i<m/2,m/24+1<j<morm/24+1<i<m,1<j<m/2
The off-diagonal entries can be expressed —8v2R;;G;;G ;.

Using the notations of R and G, the matrix K,sym at the global minima can be expressed as
Kagm = 27°(1 = 1/7))1-8y’Ro (G - 1) o (GT - 1), (113)

where I is the m x m identity matrix.

Eigenvalues of R Let e; and e» denote the unit vectors

/2

€1 = 7(]%17"'3170707"'70),11 (114)
m
2 T

€2 = *(0,0"'70,1,1,"',1) (115)
m

that are zero in the first (last) m /2 entries. The matrix R can be written as

m,1 1
5 (2(1+1/7)e1e1+ (171/7)e2e2+ 1—1/72erel + = \/171/72e2e1 (116)
and can be shown to have eigenvalues (3,0, - - - ,0) by straight-forward calculation.

Eigenvalues of G Over the uniform measure over all the global minima, the direction vectors ; are sampled independently
and uniformly from a d/2-dimensional (complex) sphere. By the approximate isometric properties (see e.g. Theorem 5.58
in (Vershynin, 2010)), the gram matrix G of {uj} ", is approximately an isometry: with probability > 1 — 2 exp(—c,t?)

G —1|,, gcmw (117)

for constants ¢, and c,,.

Applying Lemma C.1 to R, G — I and GT — I, we have that with probability > 1 — &, the smallest eigenvalues of Kiogym at

global minima is greater than or equal to

m2 mlog(2/9)
d

for some constant Cy > 0. O

271~ 1/7% — Cpmax{~- N (118)
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D. Experiments
D.1. Experiment Details

Our numerical experiments involve simulating both quantum neural networks and the asymptotic dynamics.

QNN simulation We simulate the QNN experiments using Pytorch (Paszke et al., 2019) with the periodic ansatze defined
in Definition 2.1. The generating Hamiltonian H are chosen to be a d-dimensional diagonal matrix with d/2 v/d — d—! and
d/2 —+/d — d—1 on the diagonal (normalized such that tr(H?)/(d? — 1) = 1). Each instance of the experiments is specified
by the number of samples m, system dimension d, number of parameters p and the scaling factor . A m-sample dataset is
generated by randomly sampled m orthogonal pure states {v;}", € C¢ and randomly assigned half of the samples with

1=

label +1 and the other half label —1 (i.e. {y;}~, C {£1}™).

The optimizer we use is the standard gradient descent optimizer. To simulate the dynamics of gradient flow, we choose the
learning rate to be 0.001/p and the maximum number of epochs is set to be 10000. We run the experiments on Amazon
EC2 C5 Instances.

Asymptotic dynamics simulation Theorem 4.2 allows us to examine the behavior of QNN dynamics when p — oo by
studying the asymptotic dynamics:

P = S MU, M), ), where Vg € ] 1 = (M(D)p,) — ;. (119)

For a QNN asymptotic dynamics with number of samples m, system dimension d and scaling factor -, we initialize M (0) as

1 0 -+ 0 0
0 +1 -~ 0 0

VUl: @ - ¢ |ut (120)
0 0 -1 0
0 0 0 -1

with U being a d x d haar random unitary. Similar to the QNN simulation, the training set is chosen to be m orthogonal
pure states with labels randomly sampled from {£1}. The simulation of the asymptotic dynamics is run on Intel Core
17-7700HQ Processor (2.80Ghz) with 16G memory.

D.2. K,sym as a Function of ¢

In Corollary 4.3, we see that the convergence rates for one-sample QNNs change significantly during training. Theorem 4.2
allows us further verify this observation for training sets with m > 1 by simulating the asymptotic dynamics.

In Figure 5, we plot the relative change of the Ky, (¢) defined as
(Kasym(t))ij = tr (i[M(#), pi]i[M(2), p;]). (121

Each of the data point is averaged over 100 random initialization of M[(0). It is observed that K4, (¢) changes significantly
(> 5%) for each of the hyperparameters d, m and ~y. Therefore we conclude that the deviation from the neural tangent
kernel regression is ubiquitous in general for practical settings. Particularly it rules out the existing belief that the d — oo
alone can lead to a neural tangent kernel-like behavior in QNNs. Same is observed for over-parameterized QNNs (Figure 6)
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Figure 5. Relative change of Kasym(t) in the QNN asymptotic dynamics for varying system dimension d, scaling factor v and number of
training samples m. Kasym (t) changes significantly (> 5%) throughout training.
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Figure 6. Change of the Amin (Kasym (¢)) during the training in QNNs with m = 4, = 2.0 and varying d.
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