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(Extended abstract)
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Abstract

Hilbert and Ackermann asked for a method to consistently extend incomplete theories

to complete theories. Gödel essentially proved that any theory capable of encoding its

own statements and their proofs contains statements that are true but not provable.

Hilbert did not accept that Gödel’s construction answered his question, and in his late

writings and lectures, Gödel agreed that it did not, since theories can be completed

incrementally, by adding axioms to prove ever more true statements, as science normally

does, with completeness as the vanishing point. This pragmatic view of validity is

familiar not only to scientists who conjecture test hypotheses but also to real-estate

agents and other dealers, who conjure claims, albeit invalid, as necessary to close a

deal, confident that they will be able to conjure other claims, albeit invalid, sufficient

to make the first claims valid. We study the underlying logical process and describe

the trajectories leading to testable but unfalsifiable theories to which bots and other

automated learners are likely to converge.

1 Introduction

Logic as the theory of theories was originally developed to prove true statements. Here we
study developments in the opposite direction: modifying interpretations to make true some
previously false statements. In modal logic, such logical processes have been modeled as
instances of belief update [2, 3, 10]. In the practice of science, such processes arise when
theories are updated to explain new observations [22, Ch. 4]. In public life, the goal of such
processes is to influence some public perceptions to better suit some private preferences [11,
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Part V]. This range of applications gave rise to a gamut of techniques for influence and belief
engineering, covering the space from unsupervised learning to conditioning.

From incomplete theories to complete beliefs. The idea to incrementally complete in-
complete theories [9] arose soon after Gödel proved his Incompleteness Theorem [14]. Alan
Turing wrote a thesis about ordinal towers of completions and discovered the hierarchy of
unsolvability degrees [35]. The core idea was to keep recognizing and adding true but unprov-
able statements to theories. In the meantime, interests shifted from making true statements
provable to making false statements true. Many toy examples of belief updates and revisions
have been formalized and studied in dynamic-epistemic logic [4, 7], but the advances in belief
engineering and the resulting industry of influence overtook the theory at great speed, and
turned several corners of market and political monetizations. The theory remained frag-
mented even on its own. While modal presentations of Gödel’s theorems appeared early on
[33], the computational ideas, that made his self-referential constructions possible [34], never
transpired back into modal logic. The point of the present paper is that combining belief
updates with universal languages and self-reference leads to a curious new logical capability,
whereby theories and models can be steered to assure consistency and completeness of future
updates. This capability precludes disproving current beliefs and the framework becomes
belief-complete in a suitable formal sense, discussed below.

The logical framework combining belief updates and universal languages may seem unfamil-
iar. The main body of this paper is devoted to an attempt to describe how it arises from
familiar logical frameworks. Here we try to clarify the underlying ideas.

Universality. Just like Gödel’s incompleteness theorems, our constructions of unfalsifiable
beliefs are based on a universal language L. The abstract characterization of universality,
which we borrow from [24, Ch. 2], is that L comes equipped with a family of interpreters
{} : L×A −→ B, one for each pair of types1 A,B, such that every function f : A −→ B has a
description2

pfq in L, satisfying3

f = {pfq} (1)

This is spelled out in Sec. 4. The construction in Sec. 5 will imply that every g : L×A −→ B

has a fixpoint Γ, satisfying

g(Γ, a) = {Γ}(a) (2)

Any complete programming language can be used as L. Its interpreters support (1) and its
specializers induce (2). A sufficiently expressive software specification framework [28] would
also fit the bill, as would a general scientific formalism [22].

1Each pair carries a different interpreter {}
AB

but we elide the superscripts.
2There may be many descriptions for each f and pfq refers to an arbitrary one.
3The curly bracket notation allows abbreviating λa.{} (p, a) to {p}.
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Gödel’s incompleteness: true but unprovable statement. Gödel used the set of
natural numbers N as L, with arithmetic making it into a programming language. The
concept of a programming language did not yet exist, but it came into existence through
Gödel’s construction. An arithmetic expression specifying a function f was encoded as a
number pfq and decoded by an arithmetic function {} : N×N −→ N as in (1). A restriction
of (2) was proved for arithmetic predicates p : N −→ B, where B = {0, 1} ⊂ N, and a fixpoint
of a predicate g : L× A −→ B was constructed as a predicate encoding pγq satisfying4

g (pγq , a) = {pγq}(a) = γ(a) (3)

To complete the incompleteness proof, Gödel constructed a predicate ¶ : N −→ B character-
izing provability in formal arithmetic:

¶ (ppq , a) ⇐⇒ ⊢ p(a) (4)

for all arithmetic predicates p : N −→ B. Although proofs may be arbitrarily large, they are
always finite, and if p(a) has a proof, ¶ will eventually find it. On the other hand, since
arithmetic predicates, like all arithmetic functions, satisfy p = {ppq}, we also have

¶ (ppq , a) = {ppq}(a) = p(a) (5)

Setting g(p, a) = ¶(p¬pq , a) in (2) induces a fixpoint γ with

¶(p¬γq , a)
(3)
= {pγq}(a)

(5)
= ¶ (pγq , a) (6)

But (4) then implies

⊢ ¬γ(a) ⇐⇒ ⊢ γ(a) (7)

which means that neither γ nor ¬γ can be provable. On the other hand, the disjunction
γ∨¬γ is classically true. The statement γ∨¬γ is thus true but not provable, and arithmetic
is therefore incomplete.

Belief completeness: universal updating. Remarkably, the same encoding-fixpoint
conundrum (1–2), which leads to the incompleteness of static theories, also leads to the
completeness of dynamically updated theories. Updating is presented as state dependency.
The function f in (1) is now in the form f : X × A −→ X × B where X is the state space.
It may be more intuitive to think of f as a process, since it captures state changes5. We
conveniently present it as a pair f = 〈f ′, f ′′〉, where f ′ : X×A −→ X is the next state update,
whereas f ′′ : X × A −→ B is an X-indexed family of functions f ′′

x : A −→ B. The elements

4Although this discussion is semi-formal, it may be helpful to bear in mind that the equality {pγq}(a) =
γ(a) is extensional : it just says that interpreting the description pγq on a value a always outputs the value

γ(a). But the process whereby {pγq}(a) arrives at this value may be different from a given direct evaluation
of γ(a).

5In automata theory, such functions are called the Mealy machines.

3



of the universal language L are now construed as belief states. Its universality means that
every observable state x from any state space X is expressible as a belief. The interpreters
{} : L × A −→ L × B are also presented as pairs {} =

〈

{}′, {}′′
〉

, where {}′ : L × A −→ L

updates the belief states whereas {}′′ : L × A −→ B evaluates beliefs to functions. Just like
every state x in X determines a function f ′′

x : A −→ B, every belief ℓ in L determines a
function {ℓ}

′′
: A −→ B, which makes predictions based on the current belief. Generalizing

the fixpoint construction (2), every process f = 〈f ′, f ′′〉 : X × A −→ X × B now induces an
assignment JfK : X −→ L of beliefs to states such that

{JfK(x)}
′
= JfK (f ′

x) {JfK(x)}
′′
= f ′′

x (8)

The construction of JfK is presented in Sec. 6. Here we propose an interpretation. The
second equation says that the output component of {} behaves as it did in (1): it interprets
the description JfK(x) and recovers the function f ′′

x executed by the process f at the state
x. The first equation says that the interpreter {} maps the JfK-description of the state x to
the JfK-description of the updated state f ′

x:

f ′ : x 7−→ f ′
x

{}
′
: JfK(x) 7−→ JfK (f ′

x)
(9)

Any state change caused by the process f is thus explained by a belief update of JfK along
{}. Interpreting the belief states JfK by the interpreter {} provides belief updates that can
be construed as explanations in the language L of any state changes in the process f . All
that can be learned about f is already expressed in JfK and all state changes that may be
observed will be explained by the updates anticipated by the current belief, as indicated in
(9). The belief is complete.

Remark. In coalgebra and process calculus, the universal interpreters {} : L × A −→ L × B

would be characterized as weakly final simulators [30]. They are universal in the sense that
the same state space L works for all types A,B. See [24, Sec. 7.2] for details and references.

The logic of going dynamic. When L is a programming language, the interpreter {}
interprets programs as computable functions A −→ B, where A and B are types, usually
predicates that allow type checking. When L is a language of software specifications or
scientific theories construed as beliefs about the state of the world, the interpreter {} updates
beliefs to explain the state changes observed in explainable processes X×A −→ X×B, where
A,B and X are state spaces. States are usually also defined by some predicates, but their
purpose is not to be easy to check but to define the state changes as semantical reassignments.
This is spelled out in Sec. 2.1. Dynamic reassignments of meaning bring us into the realm
of dynamic logic. If the propositions from a lattice T are used as assertions about the states
of the world or the states of our beliefs about the world, then the dynamic changes of these
assertions under the influence of events from a lattice E can be expressed in terms of Hoare
triples

A{e}B (10)
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saying that the event e ∈ E after the precondition A ∈ T leads to the postcondition B ∈ T .
The Hoare logic of such statements was developed in the late 1960s as a method for reasoning
about programs. The algebra of events E was generated by program expressions, whereas
the propositional lattice T was generated by formal versions of the comments inserted by
programmers into their code, to clarify the intended meanings of blocks of code [13, 17].
A triple (10) would thus correspond to a block of code e, a comment A describing the
assumed state before e is executed, as its precondition, and a comment B describing the
guaranteed state after e is executed, as its postcondition. By formalizing the “assume-
guarantee” reasoning of software developers, the Hoare triples provided a stepping stone into
the logic of state transitions in general. The propositional algebra of dynamic logic can be
viewed as a monotone map

T o × E × T
−{−}−

−−−−−→ O

where O is a lattice of truth values, whereas T and E are as above, and T o is T with
the opposite order. If the lattice T is complete, then each event e ∈ E induces a Galois
connection

A⋊ e ⊢ B ⇐⇒ A{e}B ⇐⇒ A ⊢ [e]B

determining a dynamic modality [e] : T −→ T for every e ∈ E [31]. The induced interior
operation ([e]B)⋊E ⊢ B says that [e]B is the weakest precondition that guarantees B after
e. The induced closure A ⊢ [e] (A⋊ e) says that A⋊e is the strongest postcondition that can
be guaranteed by the assumption A before e. In addition to formal program annotations,
dynamic logic found many other uses and interpretations [6, 10, 15]. Here we use it as a
backdrop for the coevolution of theories and their interpretations.

Updating completeness. In static logic, a theory is complete when all statements true in a
reference model are provable in the theory. In dynamic logic, the model changes dynamically
and the true statements vary. There are different ways in which the notion of completeness
can be generalized for dynamic situations. The notion of completeness that seems to be
of greatest practical interest is the requirement that the theory and the model can be dy-
namically adapted to each other: the theory can be updated to make provable some true
statements or the model can be updated to make true some false statements. This require-
ment covers both the theory updates in science and the model updates by self-fulfilling and
belief-building announcements in various non-sciences. The logical frameworks satisfying
such completeness requirements allow for matching current beliefs and future states.

2 World as a monoidal category

2.1 State spaces as objects

In computation, a state is a family of typed variables with a partial assignment of values. In
science, a state is a family of observables, some with expected values. Formally, a state can
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be viewed as a family of predicates, or a theory in first-order logic, with a specified model.
Both can be presented in the standard Tarskian format, where a theory is a quadruple of
sorts, operations, predicates, and axioms, and its interpretation is an inductively defined
model [8].

Theories as sketches. In this extended abstract, theories are presented as categorical
sketches and their models are specified in extended functorial semantics [1, 5, 19, 20, 21].
While this may not be the most popular view, it is succinct enough to fit into the available
space. The main constructions, presented in Sec. 4–6, do not depend on the choice of
presentation. The reader could thus skip to Sec. 3 and come back as needed.

Definition 2.1. A clone Σ is a cartesian category6 freely generated by sorts, operations, and
equational axioms of a logical theory. A theory is a pair Θ = 〈Σ,Γ〉, where Σ is a clone and
Γ is a set of cones and cocones in Σ, capturing the general axioms7 of the logical theory. A
model of Θ is a cartesian functor M : Σ −→ Set mapping the Γ-cones into limit cones and
the Γ-cocones into colimit cocones. A state of belief (or belief state) is a triple

A = 〈ΣA,ΓA,MA〉

where ΘA = 〈ΣA,ΓA〉 is a theory and MA its model in a category Set of sets and functions.
An element of the model MA is called an observable of the state A.

States of A as extensions of MA. The reference model MA determines the notion of
truth in the state space A. It expresses properties that may not be proved in the theory ΘA

or even effectively specified8. The reference model MA should thus not be thought of as a
single object of the category of all models of ΘA but as the (accessible) subcategory of model
extensions of MA. These model extensions are the states of the state space A. The structure
of a state space can be further refined to capture other features of theories in science and
engineering, including their statistical and complexity-theoretic valuations [32, 36]. While
such refinements have no direct impact on our considerations, they signal that we are in the
realm of inductive inference, which may feel unusual for the Tarskian framework of static
logic, normally concerned with deductive aspects. The fact that the theory ΘA has a model
MA implies that it is logically consistent but it does not imply that it is true within an
external frame of reference, a “reality” that may drive the state transitions, i.e. the processes
of extending and reinterpreting theories. The intuition is that the states in the space A are
observables that may never be observed, since MA may be incompatible with the actual
observations. The theory ΘA may be consistent but wrong.

6We stick with the traditional terminology where a category is cartesian when it has cartesian products.

The cartesian product preserving functors are abbreviated to cartesian functors. This clashes with the
standard terminology for morphisms between fibrations, but fibrations do not come about in this paper.

7Equational axioms could be subsumed among cones and cocones, and omitted from Σ, which would boil

down to the free category generated by sorts and operations.
8E.g., the set of all true statements of Peano arithmetic is expressed by its standard model, but most of

them cannot be described effectively.
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Examples of state spaces include logical theories with standard models that arise not only in
natural sciences but also in social systems, as policy formalizations. A software specification
with a reference implementation can also be viewed as a state space. Updates and evolution
of a software system can then be analyzed using a higher-order dynamic logic [12]. The
functorial semantics view was spelled out in [23], used in a software synthesis tool [26, 28, 29],
and applied in algorithm design [25, 27].

2.2 Transitions as morphisms

Intuitively, a transition f from a state space A to a state space B is a specification that
induces a transition from any A-state to a B-state. We first consider the transitions arising
from reinterpreting theories and then expand to modifying the reference models.

Definition 2.2. An interpretation of state space A in a state space B is a logical inter-
pretation of the theory ΘB = 〈ΣB,ΓB〉 in the theory ΘA = 〈ΣA,ΓA〉 which reduces the
reference model MA to MB. More precisely, an interpretation f : A −→ B is a cartesian
functor f : ΣA ←− ΣB mapping ΓB-(co)cones to ΓA-(co)cones according to a given assign-
ment fΓ : ΓA ←− ΓB and making the following diagram commute

ΣA ΣB

Set

MA MB

f

(11)

The models MA and MB map the (co)cones from ΓA and ΓB to (co)limits of sets, as required
by Def. 2.1.

Interpretations as assignments. The structure of interpretations of software specifica-
tions and the method to compose them were spelled out in [23, 28]. Since software specifi-
cations are finite, an interpretation f : ΣA ←− ΣB boils down to a tuple of assignments

x1 := t1 ; x2 := t2 ; . . . ; xn := tn

of terms t = 〈t1, t2, . . . , tn〉 from ΣA to variables x = 〈x1, x2, . . . , xn〉 from ΣB in such a way
that, for each axiom γ ∈ ΓB, the substitution instance

f(γ) = [x := t]γ

is a theorem derivable from the axioms in ΓA. In Hoare logic [17], a state transition f : ΣA ←−
ΣB is presented as a triple ΘA{x := t}ΘB. By definition, this triple is valid if and only if
ΘA ⊢ [x := t]ΘB, where [x := t]ΘB is the result substituting the ΘA-terms t for ΘB-variables
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x in all axioms γ ∈ ΓB. Condition (11) moreover requires that this theory interpretation
recovers the model MB from the model MA.

In general, however, it is not always possible to transform all computational states annotated
at all relevant program points into one another by mere substitutions. That is why Hoare
logic does not boil down to the assignment clause, but specifies the meaning of other program
constants in other clauses, which can be viewed as more general state transitions.

Definition 2.3. A state transition f : A −→ B is a cartesian functor f : ΘA ←− ΘB mapping
ΓB-(co)cones to ΓA-(co)cones according to a given assignment fΓ : ΓA ←− ΓB and moreover
making the following diagram commute

ΘA ΘB

Set

MA MB

f

(12)

where MA is the extension of MA along the completion ΣA →֒ ΘA of ΣA under the limits
and colimits generated by ΓA; ditto for MB.

General sketches. In Def. 2.2, theories were presented as pairs Θ = 〈Σ,Γ〉, where the
category Σ is comprised of sorts, operations, and equations of the theory, whereas the cones
and the cocones in Γ specify its predicates and axioms. In Def. 2.3, a theory Θ is presented as
the category obtained by completing Σ under the limits and the colimits specified by Γ. This
general sketch, with the family of limit cones and colimit cocones from Γ, is now denoted Θ,
by abuse of notation. A detailed construction of this sketch can be found in [21, §4.2–3]. It
is a canonical view of the theory derived in the signature Σ from the axioms Γ. Since the
category Θ is the Γ-completion of Σ, any functor M : Σ −→ Set mapping the Γ-(co)cones
in Σ to (co)limit (co)cones in Set has a unique Γ-preserving extension M : Θ −→ Set. These
extensions are displayed in (11). The upshot of saturating the sketches from Def. 2.2 in the
form Θ = 〈Σ,Γ〉 to the general sketches over Θ in Def. 2.3 is that the general explainable
transitions are now simply the structure-preserving functors displayed in (11).

2.3 Monoidal category of state spaces and transitions

Let

• U be the category of state spaces from Def. 2.1 and transitions from Def. 2.3, and let

• U• be the category of state spaces from Def. 2.1 and interpretations from Def. 2.2.
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In both cases, the monoidal structure is induced by the disjoint unions of theories:

A⊗B =
〈

ΣA + ΣB , ΓA + ΓB , [MA +MB]
〉

(13)

where MA⊗B = [MA +MB] : ΣA + ΣB

ΓA⊗B

−−−→ Set maps ΣA like MA and ΣB like MB. The
tensor unit is I = 〈⊥,⊥, ∅〉, where the truth value ⊥ denotes the inconsistent theory or
sketch, its only axiom, and ∅ is its empty model. It obviously satisfies I ⊗ A = A = A⊗ I.
The associativity of the tensor ⊗ follows from the associativity of the disjoint union +. The
arrow part of ⊗ is induced by the disjoint unions as coproducts. The coproduct structure
equips every state space A with a cartesian comonoid structure

A⊗ A
∆

←−−−−− A

⊸

•

−−−−→ I (14)

ΣA + ΣA

[id,id]
−−−−→ ΣA

⊥
←−−− ⊥

This provides a categorical mechanism for cloning and erasing states, which makes some
observations repeatable and deletable, as required for testing in science and software engi-
neering. However, U is not a cartesian category, and ⊗ is not a cartesian product, because
some transitions f : A −→ B do not in general boil down to functors ΣA ←− ΣB, but only to
functors ΘA ←− ΣB, where ΘA is a completion of ΣA under the ΓA-(co)-limits. Intuitively,
this means that the axioms of the theory ΘB may not be interpreted as axioms of ΘA, but
may be mapped into theorems, which only arise in the ΓA-completion. This captures the
uncloneable and undeletable states that arise in many sciences, including physics of very
small or very large (quantum or cosmological) and economics. The only transitions that
preserve the cartesian structure (14) are the interpretations f : A −→ B, with the underlying
functors ΣA ←− ΣB. They form the category U•, which is the largest cartesian subcategory
of U . If the states α ∈ U(I, A) are thought of as observables, the states a ∈ U•(I, A) are the
actual observations.

3 String diagrams

Constructions in monoidal categories yield to insightful presentations in terms of string
diagrams [18, 24, Ch. 1]. We will need them to present the constructions like (2) and in
particular (8). While commutative diagrams like (11) display compositions of morphisms and
abbreviate their equations, string diagrams display decompositions of morphisms. Monoidal
categories come with two composition operations: the categorical (sequential) morphism
composition ◦ and the monoidal (parallel) composition ⊗. The former is drawn along the
vertical axis, the latter along the horizontal axis. The objects are drawn as strings, the

morphisms as boxes. A morphism A
f
−→ B is presented as a box f with a string A hanging

from the bottom and a string B sticking out from the top. The identities are presented as
invisible boxes: the identity on A is just the string A. The unit type I is presented as the
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invisible string. There are thus boxes with no strings attached. The composite morphism

g ◦ f = (A
f
−→ B

g
−→ C) is drawn bottom-up, by hanging the box f on the string B under the

box g. The monoidal composition is presented as the horizontal adjacency: the composite
(g ◦ f)⊗ (s ◦ t) is drawn by placing the boxes g ◦ f next to the boxes for s ◦ t:

B

A

f

g

C

U

V

t

f⊗t

g◦f

s

W

(15)

The middle-two-interchange law (g ◦ f)⊗ (s ◦ t) = (g ⊗ s) ◦ (f ⊗ t) corresponds to the two
ways of reading the diagram: vertical-first and horizontal-first, marked by the red and the
blue rectangle respectively. The string diagrams corresponding to the cartesian comonoids
(14) are

A A

AA ⊸

•

∆
(16)

The equations that make them into commutative comonoids look like this:

= = = =

State parametrization and updating. Products A ⊗ B denote a space where A and B

but do not interfere. In a diagram, they are just parallel strings. Since the product states
from the space X ⊗ A do not interfere, a transition g : X ⊗ A −→ B can be viewed as X-
parametrized family gx : A −→ B, as it was viewed in Sec. 1. Since the product states from
X ⊗B also remain separate, a transition q : X ⊗A −→ X ⊗B can be viewed as X-updating
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process, as it was also viewed in Sec. 1. The corresponding string diagrams are

B

X A

g

B

X A

X

q (17)

Shape conventions. While the boxes in (15) and (17) are rectangular, the cartesian “boxes”
in (16) are reduced to black dots. In general, the boxes denoting general transitions can vary
in shape, and fixed shapes are used for generic notations. E.g., the interpreters, introduced
in (19) below, are denoted by trapezoids, and the interpretations, that are fed to them, by
triangles. A black dot on a box signals that it is cartesian, i.e. belongs to U•.

Projections. Using the cartesian structure from (16), a state updating transition q can still
be decomposed like before

q′ =

(

X ⊗A
q
−→ X × B

id⊗ ⊸

•

−−→ X

)

q′′ =

(

X ⊗ A
q
−→ X ⊗B

⊸

•⊗id
−−→ B

)

(18)

In general, however, although the transitions u : Z −→ U and v : Z −→ V can be paired into

〈u, v〉 = (Z
∆
−→ Z ⊗Z

u⊗v
−−→ U ⊗ V ), the pair 〈q′, q′′〉 may not be equal to q in the universe U ,

unless it happens to be cloneable, in the sense that it commutes with ∆.

4 Universal language

A theory of theories, such as the categorical theory of sketches, is a theory. Category theory
is also a theory and functorial semantics provides a categorical theory of reference models.
The theory of state spaces from Sec. 2.1 can thus be formalized and presented as a state
space in the category U . The theory of state spaces from Sec. 2.1 can thus be formalized into
a sketch with a reference model and presented as a state space in the category U . The theory
of state transitions from Sec. 2.2 is another sketch, and with another reference model it is
also a state space in U . Call it L. The fact that the states in L correspond to the transitions
in U means that it satisfies a parametrized version of (1). It is a universal language for U .
Its interpreters follow from its definition, as the models of the theory of transitions. Since
there is no room here to spell out the details of a theory of transitions and show that the
correspondence of its cartesian models and the transitions in U equips L with all interpreters,
we postulate the existence of the interpreters by the following definition.

Definition 4.1. An universal interpreter for state spaces A,B is a transition {} : L⊗A −→ B

in U which is universal for all parametric families of transitions from A to B. This means
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that for any state space X and any transition g ∈ U(X ⊗ A,B) there is an interpretation
G ∈ U•(X,L) with

{}
= P

BB

X A

g

G

X A

•
(19)

On one hand, a universal interpreter is universal for parametric families. On the other hand,
it is a parametric family itself. It is thus capable of interpreting itself. This capability of self-
reflection was crucial for Gödel’s incompleteness construction. This capability is embodied
in the specializers, which are derived directly from Def 4.1.

Lemma 4.2. For any X,A,B there is an interpretation [ ] ∈ U•(L×X,L) which specializes
from a given X ⊗ A-interpreter to an A-interpreter, in the sense

{}
= L

BB

X A

{}
[ ]

X A

•

LL

(20)

Hoare logic of interpreters and specializers. If interpreters are presented as Hoare
triples in the form (X ⊗A){G}B, and if X [G] denotes a specialization of G to X as above,
then (20) can be written as the invertible Hoare rule

(X ⊗ A){G}B
============
A{X [G]}B

Explanations. Interpretations (in the sense of Def. 2.2) of arbitrary states from some space
X along G ∈ U•(X,L) in a universal language L can be construed as explanations. If L

is a programming language, they are programs. The idea that explaining a process means
programming a computation has been pursued in theory of science from various directions
[22, and references therein]. A universal language L is thus a universal space of explanations.
The idea of programming languages as universal state spaces is pursued in [24, Ch. 7].
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Just like any universal programming language makes every computation programmable, any
universal language from Def. 4.1 makes any observable transition explainable. What we
cannot explain, we cannot recognize, and therefore we cannot observe. But it gets funny
when we take into account how our explanations influence our observations, and how our
current explanations can be made to steer future observations. This is sketched in the next
two sections.

5 Self-explanations

When a state change depends on our explanations, then we can find an explanation consistent
with its own impact: the state changes the way the explanation predicts. More precisely,
if a family of transitions in the form t : L ⊗ X ⊗ A −→ B, then the predictions tℓx can be
steered by varying the explanations ℓ for every x until a family of explanations ptq : X −→ L

is found, which is self-confirming at all states x, i.e. it satisfies t(ptqx , x, a) = {ptqx}a.

Proposition 5.1. For any belief transition t ∈ U(L ⊗ X ⊗ A,B) there is an explanation

ptq ∈ U•(X,L) such that

• •

A A

t

B B

{}=

ptq ptq

XX

•

(21)

Proof. Let T ∈ U•(X,L) be an explanation of the transition on the left in (21).

•

• •

A A

[ ]

t

B B

{}=

T

XX

(22)
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H exists by Def. 4.1. Then ptqx = [Tx] is self-confirming, because

•

• •

A A

[ ]

t

B B

{}=

T

XX

•
T

•

•
T

A

B

{}=

X

•
T

A

B

{}=

•

•[ ]

X

•
T

•ptq ptq

•

(23)

6 Unfalsifiable explanations

A transition in the form q : X⊗A −→ X⊗B updates the state x on input a to a state x′ = q′x(a)
in X and moreover produces an output b = q′′x(a) in B. A correct explanation JqK : X −→ L

of the process q must correctly predict the next state and the output. The predictions
are extracted from an explanation by the interpreter {}. In this case, the predictions of
an explanation JqK of the process q at a state x and on an input a will be in the form
{JqKx}(a) in X ⊗B. A correct prediction of the output b = q′′x(a) is simply {JqKx}

′′
(a) = b.

However, the external state x′ = q′x(a) may not be directly observable. It is believed to
be explained by JqKx′. A correct prediction of the next state is thus a correct prediction
of its explanation {JqKx}

′
(a) = JqKx′. At each state x, the explanation JqKx is required

to anticipate the explanations JqKx′ of all future states and be consistent with them. If the
explanation JqKx′ at a future state x′ = q′x(a) is found to be inconsistent with the explanation
{JqKx}

′
(a), then the explanations JqK of the process q have been proven false. This is the

standard process of testing explanations. Our claim is, however, that a universal language
allows constructing testable but unfalsifiable explanations, that remain consistent at all future
states. This persistent consistency can be viewed as a dynamic form of completeness. It
is achieved by predicting the state updates of the given process q and anticipating their
explanations, as in the following construction.

Proposition 6.1. For any process q ∈ U(X ⊗ A,X ⊗ B) there is an explanation JqK ∈
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U•(X,L) which maintains consistency of all future explanations:

=

L

X

JqK

A

B

q

L

X A

B

•

•

JqK

{}
(24)

Proof. Set JqK = [Q] where Q is an explanation of the belief transition q postcomposed with
a specialization over the state space X of updates:

=

Q

q

•

•
Q

{}

•

[ ]

=

Q
•

{}
•[ ]

(25)

7 From natural science to artificial delusions

7.1 What did we learn?

We sketched the category U of state spaces A,B, . . ., comprised of theories with reference
models. A transition f : A −→ B transforms A-states to B-states. Such morphisms capture
theory expansions, reinterpretations, and map observables of type A to observables of type B.
They can be construed in terms of dynamic logic and support reasoning about the evolution
of software systems or scientific theories. The crucial point is that the category U contains a
universal language L of explanations and belief updates. The self-reference in such languages
was the crux of Gödel’s incompleteness constructions. While Gödel established that static
theories capable of self-reference cannot be complete or prove their own consistency, we note
that dynamic theory and model updates allow constructing testable theories that preempt
falsification. While a static model of a given theory fixes a space of true statements once and
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for all, the availability of dynamic semantical updates opens up the floodgates of changing
models and varying notions of truth. Faster learners conquer this space faster. The bots, as
the fastest learners among us, have been said to acquire their delusions from our training sets.
The presented constructions suggest that they may also become delusional by dynamically
updating their belief states and steering their current explanations of reality into persistent
consistency, resilient to further learning. They may also combine the empiric delusions from
our training sets with the logical delusions constructed in a universal language, leverage one
against the other, and get the best of both worlds.

But why would they do that?

7.2 Beyond true and false

Why did the Witches tell Macbeth that it is his destiny to be king thereafter, whereupon he
proceeded to kill the King? Why did the Social Network have to convince its very first users
that more than half of their friends were already users? Some statements only ever become
true if they are announced to be true when they are false. They are self-fulfilling prophecies.
There are also self-defeating claims. In the dynamic logic of social interactions, most claims
interfere with their own truth values in one way or another. If I convince enough people that
I am rich, I stand a better chance to become rich. If we convince enough people that this
research direction is promising and well-funded, it will become well-funded and promising.
Just like true statements about nature help us to build machines and get ahead in the
universe, the manipulations of truth help us get ahead in society. They are the high-level
patterns of language that used to be studied in early logic right after the low-level patterns
of meaning (that used to be called “categories”). If you train a bot to speak correctly, it will
start speaking convincingly as soon as it learns long enough n-grams. It will lie not only the
static lies contained in its training set but also the lies generated dynamically, according to
the rules of rational interaction. Rhetorics used to be studied right after grammar, sophistic
argumentation after syllogisms, witchcraft arose from cooking, magic from tool building.
The bot religions arise along that well-trodden path.

We presented two constructions. One produces self-confirming explanations. The other one
explains all future states, so it is testable but not falsifiable. Science requires that its theories
are testable and falsifiable. Religion explains all future observations. If you train a bot on
long enough n-grams, it may arrive at persistently unfalsifiable false beliefs.

Truth be told, all of the constructions presented in this extended abstract have only been
tested on toy examples. We may be just toying with logic. Nevertheless, the fact that
semantical assignments are programmable, tacitly established by Gödel and mostly ignored
as an elephant in the room of logic ever since, seems to call for attention, as beliefs transition
beyond the human carriers.
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