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Abstract

We consider the task of meta-analysis in high-dimensional settings in which the data sources
are similar but non-identical. To borrow strength across such heterogeneous datasets, we
introduce a global parameter that emphasizes interpretability and statistical efficiency in the
presence of heterogeneity. We also propose a one-shot estimator of the global parameter that
preserves the anonymity of the data sources and converges at a rate that depends on the size
of the combined dataset. For high-dimensional linear model settings, we demonstrate the
superiority of our identification restrictions in adapting to a previously seen data distribution
as well as predicting for a new/unseen data distribution. Finally, we demonstrate the benefits
of our approach on a large-scale drug treatment dataset involving several different cancer
cell-lines1.

Keywords: Robust statistics, sparse-regression, meta-analysis

1. Introduction

We consider the task of synthesizing information from multiple datasets. This is usually
done to enhance statistical power by increasing the effective sample size. However, as seen
in many pooled studies, the inherent heterogeneity among the studies must be managed
carefully. For example, in pooled genome-wide association studies (GWAS), differences
in study populations and measurement methods may confound the association between
the biomarkers and the outcome (Leek et al., 2010). To obtain meaningful conclusions,
practitioners must properly model the heterogeneity in pooled studies.

In this paper, we consider the task of fitting high-dimensional regression models to
m similar, but non-identical datasets. To borrow strength across the datasets, we must
distinguish between the common and idiosyncratic parts of the datasets. Let θ∗k ∈ Rd be
the vector of regression coefficients for the k-th dataset. Without loss of generality, we posit
that the θ∗k’s are related through an additive structure:

θ∗k = θ∗0 + δ∗k, k ∈ [m]. (1.1)

1. Codes are available in https://github.com/smaityumich/MrLasso.
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This is a decomposition of the θ∗k’s into common and idiosyncratic parts: the global pa-
rameter θ∗0 ∈ Rd represents the common part in the datasets, while the δ∗k’s represent
the idiosyncratic parts. By itself, this decomposition does not identify the common and
idiosyncratic parts because the decomposition is not unique: for any δ ∈ Rd, (θ∗0, δ

∗
1 , . . . , δ

∗
m)

and (θ∗0 − δ, δ∗1 + δ, . . . , δ∗m + δ) are different decompositions of the same θ∗k’s. Thus it is
necessary to impose additional identification restrictions on θ∗0 and the δ∗k’s. Note that this
identification issue is not specific to the additive decomposition (1.1); any parameterization
of the θ∗k’s that introduces a global parameter (to model the common parts of the datasets)
is overparameterized/underdetermined.

As we shall see, the choice of identification restriction is crucial to the efficacy of meta-
analysis; an improperly defined global parameters may totally negate its benefits. For
example, consider the common ANOVA identification restriction:

∑m
k=1 δ

∗
k = 0.

This restriction implies that the global parameter is the average of the θ∗k’s:

θ∗0 , 1
m

∑m
k=1 θ

∗
k. (1.2)

In some cases (e.g. when the θ∗k’s have disjoint supports), the global parameter can be up
to m-times denser than the local parameters, which negates any statistical efficiency gains
from borrowing strength across the datasets. We defer a more comprehensive discussion of
the inadequacies of common identification restrictions to Section 2.

In this paper, we define the global parameter as

(θ∗0)j , arg minµj∈R
∑m

k=1 Ψ((θ∗k)j − µj), j ∈ [d], (1.3)

where Ψ is a re-descending loss function (Huber, 1964). Intuitively, this definition separates
(θ∗1)j , . . . , (θ

∗
m)j into outlier and inliers and defines (θ∗0)j as the average of the inliers. Thus

the definition identifies the location of the inliers as the common part of the datasets. This
identification restriction is motivated by an ε-contamination model for the θ∗k’s:

(θ∗k)j ∼ (1− ε)Fj + εGj , (1.4)

where ε < 1
2 is the fraction of outliers, Fj is the distribution of the inliers, and Gj is the

distribution of the outliers (among the j-th regression coefficients). The two main benefits
of this identification restriction are

1. interpretability: if a majority of (θ∗1)j , . . . , (θ
∗
m)j are zero, then (θ∗0)j is zero. More

generally, if there is a majority value among (θ∗1)j , . . . , (θ
∗
m)j (i.e. a common value shared

by more than half of (θ∗1)j , . . . , (θ
∗
m)j), then (θ∗0)j is the majority value. Furthermore, if

most of the local parameter coordinates (θ∗1)j , . . . , (θ
∗
m)j) are in a bulk (considered as

inliers) and a few of them are significantly different (outliers), then (θ∗0)j is the average of
only the inliers. This ensures that the global parameter is sparse and interpretable as the
common part of the local datasets.

2. statistical efficiency: θ∗0 can be estimated at a faster rate than the θ∗k’s. This ensures
meta-analysis leads to gains in statistical efficiency.
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We note that the ANOVA identification restriction does not share these two benefits.
The rest of this paper is organized as follows. In Section 2, we describe the pitfalls of

several common definitions of the global parameter in integrative studies and propose a
robustness-based definition to avoid such pitfalls. We design an estimator of the robustness-
based global parameter in Section 3 and prove in Section 4 that it converges at a rate that
depends on the total number of samples in all the datasets. Finally, we demonstrate the
benefits of our approach in predicting the response of rare cancers to therapeutics with the
Cancer Cell Line Encyclopedia (CCLE).

1.1 Related work

The goal of meta-analysis is borrowing strength from different datasets, and the most common
approach is a two-step method in which the local parameters are first estimated from their
respective datasets and then combined with (say) a fixed-effects model (Hedges and Olkin,
2014) or a random-effects model (DerSimonian and Laird, 1986). In the high-dimensional
setting, we must also perform variable selection to reduce the prediction/estimation error
and ensure that the fitted model is interpretable.

Gross and Tibshirani (2016); Asiaee et al. (2018) studied the case of heterogeneous linear
regression models, where it is assumed that the underlying distribution of data sets are not
the same. The former focuses on the prediction aspects of the problem, while the latter
deals with the estimation aspects. Both papers reduce the problem of meta-analysis into
a single lasso exercise, while the latter uses a version of the gradient descent algorithm to
estimate parameters. Heterogeneity in the Cox model was studied by Cheng et al. (2015)
where the likelihood was maximized using a suitable lasso problem. However, all these
methods required the full data sets for analysis to be available on a single platform. This
raises the question of communication efficiency and privacy concerns pertaining to the
data sets. Cai et al. (2021) proposed a communication-efficient integrative analysis for
high-dimensional heterogeneous data which addresses the issue of privacy preservation. In
their two-step estimation procedure, they used lasso estimates and covariance matrices to
obtain an estimator for the shared parameter, which, in a nutshell, is the average of the
debiased lasso estimates.

There is a line of work on distributed statistical estimation and inference, e.g., Lee et al.
(2017); Battey et al. (2018); Jordan et al. (2016), which is distinguished from our work by the
additional assumption of no heterogeneity: i.e. the datasets are identically distributed. In this
line of work, there are two general approaches: averaging local estimates of the parameters
(Lee et al., 2017; Battey et al., 2018) and averaging local estimates of the score/sufficient
statistic (Jordan et al., 2016). Although averaging the score has computational benefits over
averaging the parameters, the latter is more amenable to meta-analysis because modeling
the heterogeneity in the parameters is easier than modeling heterogeneity in the score.

2. Identifying the global parameter

We now quickly review the developments thus far. To distinguish between the common and
idiosyncratic parts of the local parameters, we model the local parameters θ∗1, . . . , θ

∗
m with

an additive model:

θ∗k = θ∗0 + δ∗k, k ∈ [m].
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By itself, this additive model does not identify the global parameter θ∗0 because the model is
overparameterized. Thus it is necessary to impose additional identification restrictions to
uniquely identify the global parameter. As we saw in Section 1, the choice of identification
restriction is crucial to the statistical efficiency of meta-analysis. Recall we look for two
properties in an identification restriction: interpretability and statistical efficiency. We
describe them here again for the reader’s convenience:

1. interpretability: if there is a majority value among (θ∗1)j , . . . , (θ
∗
m)j (i.e. a common value

shared by more than half of (θ∗1)j , . . . , (θ
∗
m)j), then (θ∗0)j is the majority value. This

encourages sparsity in the global parameter θ∗0 because if a majority of (θ∗1)j , . . . , (θ
∗
m)j

are zero, then (θ∗0)j is zero.
2. statistical efficiency: θ∗0 can be estimated at a faster rate than the θ∗k’s. This ensures

meta-analysis leads to gains in statistical efficiency.

In the rest of this section, we show that standard identification restrictions do not satisfy
the two preceding properties. After describing the inadequacies of standard identification
restrictions, we present two that satisfy our desiderata.

2.1 Inadequacies of standard identification restrictions

Mean: The usual approach to borrowing strength across heterogeneous datasets is to model
the variation among the local parameters with a prior and consider the (hyper)parameter of
the prior as the global parameter. The celebrated empirical Bayes approach is a prominent
example. One of the simplest and most widely used priors is the Gaussian prior:

(θ∗k)j ∼ N((θ∗0)j , σ
2
0).

The standard estimator of (θ∗0)j is 1
m

∑m
k=1(θ∗k)j , which leads to the mean identification

restriction (1.2). Unfortunately, this identification restriction does not satisfy our desiderata.
Intuitively, the issue is it aggregates all local parameters in the definition of the global
parameter regardless of whether a local parameter is similar to the other local parameters.
This causes (θ∗0)j to lack interpretability because even a single non-zero local parameter is
enough to nudge the global parameter away from zero. In the worst case (when the sparsity
patterns of the local parameters are disjoint), the sparsity of the global parameter can be m
times the sparsity of the local parameters. This extra complexity of the global parameter
negates any gains in statistical efficiency from meta analysis.

Median: To address the sensitivity of the mean identification restriction to outliers, we
consider identifying the global parameter with more robust centrality measures. One obvious
choice is the median:

θ∗0 , arg minθ0∈Rd

∑m
k=1 ‖θ∗k − θ0‖1. (2.1)

Unfortunately, in certain scenarios, the median may fail to borrow strength across datasets,
making it statistically inefficient. If the local parameters are well-separated (see Figure 1),
then the global parameter is one of the local parameters. In this case, it is impossible to
estimate the global parameter at a faster rate than the equivalent local parameter. We
provide a detailed example in Appendix A (see Example 1).
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Figure 1: Median fails to borrow strength form well-separated local parameter estimates.

We note that Asiaee et al. (2018) and Gross and Tibshirani (2016) both considered
identification restrictions similar to (2.1). In particular, they studied the estimator

(θ̂0, δ̂1, . . . , δ̂m) ∈ arg min(θ0,δ1,...,δm)

{
1

2N

∑m
k=1 ‖Yk −Xk(θ0 + δk)‖22

+ 1
m(λ0‖θ0‖1 +

∑m
k=1 λk‖δk‖1)

}
,

where Xk ∈ Rnk×d and Yk ∈ Rnk are the features and responses in the k-th dataset and
N =

∑m
k=1 nk is the total sample size. This estimator implicitly enforces the identification

restriction
θ∗0 , arg minθ0 (

∑m
k=1 ‖θ∗k − θ0‖1 + c‖θ0‖1)

for some c > 0, which, unfortunately, suffers from a similar drawback as (2.1). We refer to
Result 11 in Appendix A for the details. We note that this issue is reflected in Asiaee et al.
(2018)’s theoretical results. In particular, they showed that

‖θ̂0 − θ∗0‖2 +
∑m

k=1
1√
m
‖δ̂k − δ∗k‖2 .P maxkm(maxk sk log d

N )
1
2 ,

where sk is the sparsity of θ∗k. If we assume θ∗0, δ∗1 , . . . , δ
∗
m are all s-sparse, then the right

side simplifies to
√
m( s log d

n )
1
2 . While this is the fastest rate of convergence we expect for

the left side, it suggests that the estimator of the global parameter θ̂0 converges at a rate
that depends on the local sample size.

Huber loss: As an alternative to the median, we consider minimizing Huber’s loss (Huber,
1964). Huber’s loss function is defined as

Lη(x) =

{
1
2x

2 if |x| ≤ η
η
(
|x| − 1

2η
)

otherwise,
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for some η > 0, and the global parameter is defined (coordinate-wise) as:

(θ∗0)j , arg minθ0
∑m

k=1 Lη((θ
∗
k)j − θ0) (2.2)

We hope that the quadratic part of Huber’s loss allows it to borrow strength effectively
across datasets. Unfortunately, this leads to a loss of interpretability. Consider a problem in
which all but one local parameter values are identically zero. It is possible to show that the
global parameter is non-zero for any η > 0 (see Example 2 in Appendix A).

2.2 Two interpretable and statistically efficient global parameters

The three examples presented in this subsection are hardly exhaustive. We list them here to
illustrate the delicacy of the choice of identification restriction. In the rest of this section,
we provide two examples of identification restrictions that satisfy our desiderata.

Both the examples have hyperparameters, that one must choose carefully, depending
on the properties of the local datasets to satisfy our desiderata. At first, this seems
unusual because the global parameter depends on the hyperparameters. However, the global
parameter is defined by the data scientist to facilitate meta-analysis, and the hyperparameters
reflect the discretion of the data scientist. Thus the dependence of the global parameter on
the hyperparameters is natural. From another perspective, different values of hyperparameter
lead to possible global parameters. However, not all the global parameters are interpretable
and neither can they be estimated in a statistically efficient manner. We only consider global
parameters that have these desirable properties.

Re-descending loss: In this paper, we define the global parameter as the minimum of
a re-descending loss function (Huber, 1964). More concretely, we consider the quadratic
re-descending loss function: Ψη(x) , min{x2, η2}, and we define the global parameter as

(θ∗0)j , arg minx∈R
∑m

k=1 Ψηj ((θ
∗
k)j − x) . (2.3)

It is possible to derive similar results for other re-descending loss functions, but we focus on
the quadratic re-descending loss function here. As we shall see, (θ∗0)j is not only interpretable
but also statistically efficient.

First, we check that (2.3) leads to an interpretable global parameter. The quadratic
re-descending loss function has the property that its derivative vanishes outside [−ηj , ηj ], so
(2.3) ignores any local parameters that are outside this interval. Thus local parameters that
are far from the bulk of the local parameter values are considered outliers and ignored by
(2.3), thereby ensuring that the global parameter is interpretable. For example, if there is a
majority value among (θ∗1)j , . . . , (θ

∗
m)j , then for a suitable choice of ηj , (2.3) ignores all local

parameters that are different from the majority value.
Second, we argue that it is possible to estimate (θ∗0)j at a fast rate. Consider (θ∗0)j as an

M -estimator in which the effective sample size is the number of local parameters in bulk
(not considered outliers). This suggests that it is possible to estimate (θ∗0)j at a rate that
depends on the number of local parameters in the bulk. As we shall see, the simple approach
of replacing the local parameters with their estimates in (2.3) leads to an estimator that
achieves this goal. We refer to Lemma 6 for a formal statement of a result to this effect.

We note that the choice of ηj plays a crucial role in the interpretability and statistical
efficiency of the global parameter (θ∗0)j . If ηj is very large, then none of the local parameter
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values will be identified as outliers and (2.3) is equivalent to the mean identification restriction.
This leads to a global parameter that is sensitive to outlier local parameters. On the other
hand, if ηj is small, then (2.3) ignores most local parameter values because it considers them as
outliers. This reduces the statistical efficiency of borrowing strength across datasets because
most datasets are ignored. Thus ηj must be chosen in a way that balances interpretability
and statistical efficiency.

We note that the quadratic re-descending loss has a close connection with the ε-
contaminated model (1.4), where the inliers parameters are normally distributed:

(θ∗k)j ∼ (1− ε)N
(
(θ∗0)j , σ

2
)

+ εGj . (2.4)

In the absence of contamination (ε = 0), it is not hard to check that minimizing the squared
loss function leads to the maximum likelihood estimator for the global parameter θ∗0. In the
presence of outliers, we can avoid the corrupting effects of the outliers by using a robust
version of the squared loss function. There are many choices of such robust loss; one such
choice is a re-descending loss function (Hampel, 2005).

Quadratic + `1 loss As an alternative to the re-descending loss, we could also consider
minimizing a convex combination of quadratic and `1 loss functions:

θ∗0 , arg minθ∈R
∑m

k=1
1

1+λ

{
λ‖θ∗k − θ‖1 + 1

2‖θ∗k − θ‖22
}
. (2.5)

This identification restriction combines the mean and the median identification restrictions,
but in a different way than Huber’s loss function. It is not hard to check that this identification
restriction satisfies our desiderata. The quadratic part of (2.5) allows us to borrow strength
across datasets, while it is possible to pick λ in a way such that θ∗0 is interpretable. For
example, if all but one of the local parameters are zero, it is possible to pick λ large enough
so that the global parameter is zero, in contrast to the Huber loss function. That said, we
focus on the re-descending loss here because it has better empirical performance (see Section
5).

3. Communication-efficient data enriched regression

In this section, we suggest a privacy-preserving communication-efficient estimator for the
global parameter θ∗0 which borrows strength over different datasets. The privacy concern
limits us to communicate with the datasets only through some summary statistics. So,
the high-level idea to estimate θ∗0 is to start with some estimator of the local parameters
computed from the datasets. Then the global parameter is estimated only using local
estimates, without any further communication among datasets.

We describe the debiased lasso estimator for local parameters in the set-up of `1 regularized
M-estimators. The case of the linear regression model can be considered as a special case.
Let ρ(y, a) be a loss function, which is convex in a, and ρ̇, ρ̈ be its derivatives with respect
to a. That is

ρ̇(y, a) =
d

da
ρ(y, a), ρ̈(y, a) =

d2

da2
ρ(y, a).
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Define `k(θk) = 1
nk

∑nk
i=1 ρ(yki,x

T
kiθk), where the sum is only over the pairs on dataset k.

The lasso estimator for local parameter θ∗k is given by

θ̃k := arg minθ∈Rd`k(θ) + λk‖θ‖1. (3.1)

Since averaging only reduces variance, not bias, we gain (almost) nothing by averaging the
biased lasso estimators. That is, the MSE of the naive average estimator is of the same
order as that of the local estimators. The key to overcoming the bias of the averaged lasso
estimator is to “debias” the lasso estimators before averaging.

The debiased lasso estimator as in van de Geer et al. (2014) is

θ̃dk = θ̃k − Θ̂k∇`k(θ̃k), (3.2)

where Θ̂k is an approximate inverse of ∇2`k(θ̃k). The choice of Θ̂k in the correction term
crucial to the performance of the debiased estimator. In particuar, Θ̂k must satisfy

‖I − Θ̂k∇2`k(θ̃k)‖∞ .

(
log d

nk

) 1
2

.

One possible approach to forming Θ̂k, as in van de Geer et al. (2014), is by nodewise
regression on the weighted design matrix X

θ̂k
:= W

θ̂k
Xk, where, Xk is the nk × d design

matrix for k-th dataset, defined as Xk =
[
xk1 xk2 . . . xknk

]>
, and W

θ̂k
is nk × nk

diagonal matrix, whose diagonal entries are

(
W
θ̂k

)
i,i

:= ρ̈(yki, x
T
kiθ̂k)

1
2 .

That is, for j ∈ [p] that machine k is debiasing, the machine solves

γ̂
(k)
j := arg minγ∈Rp−1

1

2nk
‖X

θ̂k,j
−X

θ̂k,−j
γ‖22 + λj‖γ‖1, j ∈ [p], (3.3)

and forms
(

Θ̂k

)
j,·

=
1

τ̂2
kj

[
−γ̂(k)

j,1 . . . −γ̂(k)
j,j−1 1 −γ̂(k)

j,j+1 . . . −γ̂(k)
j,p

]
, (3.4)

where

τ̂kj =

(
1

nk
‖X

θ̂k,j
−X

θ̂k,−j
γ̂j‖22 + λj‖γ̂j‖1

) 1
2

.

After calculating the debiased lasso estimators θ̃dk in local datasets, the integrated
estimator is obtained using similar optimization problem as in (2.3). j-th co-ordinate of the
integrated debiased lasso estimator is obtained as

(
θ̃0

)
j

= arg minx

m∑

k=1

Ψηj

((
θ̃dk

)
j
− x
)
, (3.5)

where, ηj ’s used in the above equation are the same ones that are used to identify the global
parameter. The integrated estimator θ̃0 calculated in (3.5) has a serious drawback. Loosely
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speaking, the use of quadratic re-descending loss to define θ̃0 gives us the co-ordinate wise
mean of debiased lasso estimates, after dropping the outlier values. Since the debiased
estimates are no longer sparse, θ̃0 is also dense. This detracts from the interpretability of the
coefficients and makes the estimation error large in the `2 and `1 norms. To remedy both
problems, we threshold θ̃0. Below we describe the hard-threshold and soft-threshold on θ̃0:

HTt

(
θ̃0

)
←
(
θ̃0

)
j
· 1{∣∣∣(θ̃0)j ∣∣∣≥t}, or (3.6)

STt

(
θ̃0

)
← sign

((
θ̃0

)
j

)
·max

{∣∣∣∣
(
θ̃0

)
j

∣∣∣∣− t, 0

}
.

The final estimator θ̂0 is obtained by hard-thresholding or soft-thresholding θ̃0 at t ∼√
log d
Nmin

, where, Nmin = mmink nk, i.e., θ̂0 = HTt

(
θ̃0

)
or STt

(
θ̃0

)
, and the final estimators

for δk’s are obtained by hard-thresholding or soft-thresholding θ̃dk − θ̃0 at a level t′ ∼
√

log d
nk

,

i.e., δ̂k ← HTt′
(
δ̃k

)
or STt′

(
δ̃k

)
.

A step by step process to obtain the global estimator θ̂0 for linear regression models is
described in Algorithm 1. The Algorithm requires suitable choices of the parameters {ηj}, t
and {tk}. In our numerical studies we pick these choices via the cross-validation approach,
described in Algorithm 2. If appropriate choices of ηj ’s are available from background
knowledge then one can use those instead of picking them from cross-validation. In practice,
cross-validating over ({ηj}, t, {tk})

)
might be computationally challenging since there are

d+m+ 1 many unknown parameters for m local datasets and d as the covariate dimension;
and specifically d can be quite large. In our experiments we further simplify the choice by
assuming ηj ’s have equal value η and tk = t

√
Nmin/nk. This simplifies the cross-validation

parameters ({ηj}, t, {tk})
)

to just two parameters (η, t).

Algorithm 1: MrLasso({ηj}, t, {tk})
1 Input: {Dk = ({xki,yki})nk

i=1 : k ∈ [m]} , {ηj}j∈[d].

2 Output:
(
θ̂0, δ̂1, . . . , δ̂m

)
.

3 for k = 1, 2, · · · ,m, do

4 θ̃k ← arg minθ∈Rd
1

2nk

∑nk
i=1 ρ(yki,x

T
kiθ) + λk‖θ‖1

5 θ̃dk ← θ̃k − Θ̂k∇`k(θ̃k), where, Θ̂k are defined as in 3.4,

6

(
θ̃0

)
j
← arg minx

∑m
k=1 Ψηj

((
θ̃dk

)
j
− x
)
,

7 θ̂0 ← HTt

(
θ̃0

)
or STt

(
θ̃0

)
for t ∼

√
log d
Nmin

, where, Nmin = mmink nk,

8 for k ∈ [m], do

9 δ̃k ← θ̃dk − θ̃0,

10 δ̂k ← HTtk

(
δ̃k

)
or STtk

(
δ̃k

)
for tk ∼

√
log d
nk

.

9



Maity, Sun and Banerjee

Algorithm 2: Cross-validation

1 Input: D = {Dk = ({xki,yki})nk
i=1 : k ∈ [m]} , C, G the grid of ({ηj}, t, {tk}).

2 Output:
(
θ̂0, δ̂1, . . . , δ̂m

)
.

3 {D(c)}Cc=1 ← C equal partition of D
4 for ({ηj}, t, {tk}) ∈ G do
5 for c = 1, . . . , C do

6 D(−c) ← D\D(c)

7

(
θ̂0

(c)
, δ̂

(c)
1 , . . . , δ̂

(c)
m

)
← MrLasso

(
D(−c), ({ηj}, t, {tk})

)

8 Ec ← 1
|D(c)|

∑m
k=1

∑
(x,y)∈D(c)

k

ρ{y, x>(θ̂0
(c)

+ δ̂
(c)
k )}

9 E({ηj}, t, {tk})← 1
C

∑C
c=1 Ec

10 ({η̂j}, t̂, {t̂k})← arg min E({ηj}, t, {tk})
11

(
θ̂0, δ̂1, . . . , δ̂m

)
← MrLasso

(
D, ({η̂j}, t̂, {t̂k})

)

4. Theoretical properties of the communication-efficient estimator

To present the theoretical justification of consistency of the estimators we shall focus on
`1, `2, and `∞ consistency of the estimators. Before getting into the assumptions and results,
we first define some notations. We use ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ to denote usual `1-norm,
`2-norm, and `∞-norm respectively.

The performance of global estimator depends on the debiased lasso estimators from the
local datasets. Hence, it is important to have a reasonable performance for local estimators.
We study the `∞ error rate of the debiased lasso estimator θ̃d for the parameter θ, calculated
form the dataset {xi,yi}ni=1. For a random vector (y,x), whose distribution is parametrized
by θ, we assume that E[ρ(y,xT θ)] is uniquely minimized at θ. As before, the debiased
lasso estimator is defined as θ̃d , θ̃ − Θ̂∇`(θ̃), where, θ̃ = arg minθ∈Rd`(θ) + λ‖θ‖1, for

`(θ) = 1
n

∑n
i=1 ρ(yi,x

T
i θ), and Θ̂ is calculated according to (3.4). We assume that the

actual parameter value θ∗ is s0 sparse, i.e., θ∗ has s0 many non-zero entries. Letting
Θ , (E∇2`(θ∗))−1 we assume the j-th row of Θ, which is denoted as Θj,· is sj-sparse. Denote
s∗ = maxj sj . We make the following assumptions on distributions of local datasets. These
assumptions establish high probability bounds for the local debiased lasso estimates.

Assumption 1 Under the M-estimation setup, we assume the following.

1. The pairs {(xi, yi)}ni=1 are iid P and for some K ≥ 1, ‖X‖∞ = maxi,j |Xi,j | = O(K) and
the projection of Xθ∗,j on the row space of Xθ∗,−j in the Σ∗θ , E[∇2`(θ∗)] inner product
is bounded: ‖Xθ∗,−jγj‖∞ = O(K) for any j, where

γj , arg minγ∈Rp−1E
[
‖Xθ∗,j −Xθ∗,−jγ‖22

]
.

We define τ2
j as τ2

j , E
[

1
n‖Xθ∗,j −Xθ∗,−jγj‖22

]
.

2. It holds that K2sj
√

log d/n = o(1).
3. The smallest eigenvalue of Σθ∗ is bounded away from zero, and moreover, ‖Σθ∗‖∞ = O(1).

10
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4. There exists a δ > 0 such that for any θ that satisfies ‖θ−θ∗‖1 ≤ δ it holds that ρ̈(yi,x
T
i θ)

stay away form zero and that ‖ρ̈(yi,x
T
i θ)‖∞ = O(1). Furthermore, for any such θ and

all x, y
|ρ̈(y, xT θ)− ρ̈(y, xT θ∗)| ≤ |xT (θ − θ∗)|.

5. With probability at least 1 − o(d−1) we have 1
n‖X(θ̃ − θ∗)‖22 . s0

log d
n and ‖θ̃ − θ∗‖1 .

s0

√
log d
n .

6. The derivative ρ̇(y, a), ρ̈(y, a) exists for all y, a, and for some δ-neighborhood, ρ̈(y, a) is
locally Lipschitz: for some L > 0

max
a0∈{xTi θ∗}

sup
|a−a0|∨|â−a0|≤δ

sup
y∈Y

|ρ̈(y, a)− ρ̈(y, â)|
|a− â| ≤ L.

Moreover,

max
a0∈{xTi θ∗}

sup
y∈Y
|ρ̇(y, a0)| = O(1), max

a0∈{xTi θ∗}
sup

|a−a0|≤δ
sup
y∈Y
|ρ̈(y, a0)| = O(1).

7. The diagonal entries of ΘE
[
∇`(θ∗)∇`(θ∗)T

]
Θ are bounded by σ2.

The list of conditions in Assumption 1 are standard ones to establish `∞ convergence for
the debiased lasso estimator and are adapted from (van de Geer et al., 2014, Assumptions
(D1)-(D5)) and (Lee et al., 2017, Assumptions (B1)-(B7)). Condition 5 that directly assumes
convergence of estimation and prediction error for lasso is implied by the other assumptions.
We refer to (Bühlmann and Van De Geer, 2011, Chapter 6, Section 6.7) for the details,
where the necessary compatibility condition is inherited from the condition 3. Here we state
this to simplify the exposition. We refer to the corresponding literature (specifically Lee
et al. (2017)) for further discussions about the conditions.

In the literature on debiased lasso for high-dimensional M-estimation, it is usually
assumed that K = O(1) (see (van de Geer et al., 2014, Section 3.3.1), (Lee et al., 2017,
Section 5)). For sub-gaussian covariates one can use a high-probability bound of the order
K = OP(

√
log(dn)). The high probability `∞ bound for local debiased lasso estimate follows.

Lemma 2 Under Assumption 1 the debiased lasso estimator θ̃d satisfies the following high
probability bound.

for some c > 0, P

(
‖θ̃d − θ∗‖∞ > σ

√
12 log d

n
+ c

max{Ks∗,K2s0} log d

n

)
≤ o(d−1). (4.1)

Remark 3 Under the Assumption 1 and K2s0

√
log d
n = o(1) we have a high probability

bound ‖θ̃d − θ∗‖∞ .P
√

log d/n.

Before studying the theoretical properties of the integrated estimator defined in (3.5)
one might notice that the identification restriction (2.3) may not lead to a unique global
parameter, in general. The whole business of studying the theoretical properties of the
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µ− 5δ µ− δ µ µ + δ µ + 5δ

outliers outliersnon-outliersseparation separation

η ≈ 2δ

Figure 2: Bulk structure for the local parameters (Assumption 4). This structure ensures
the global parameter (2.3) is unique.

global estimator is not meaningful if one cannot uniquely identify the global parameter.
Hence, it is necessary to make some assumptions about the parameter values, with the goal
that they will suffice unique identification of the global parameter. Here, we present the
assumptions on the finite number of machines to have a uniquely identified parameter. For
j ≤ d we assume

Assumption 4 (B1) Let Ij be the set of indices for (θ∗k)j’s which are considered as inliers.
We assume |Ij |/m ≥ 4/7.

(B2) Let µj = 1
|Ij |
∑

k∈Ij (θ
∗
k)j . Let δ be the smallest positive real number such that (θ∗k)j ∈

[µj − δ, µj + δ] for all k ∈ Ij . We assume that none of the (θ∗k)j’s are in the intervals
[µj − 5δ, µj − δ) or (µj + δ, µj + 5δ].

(B3) Let δ2 = mink1∈Ij ,k2 /∈Ij |(θ∗k1
)j − (θ∗k2

)j | is the minimum separation between inliers and
outliers. Clearly, 4δ < δ2. We choose ηj such that 2δ < ηj < δ2/2.

The Assumption 4 sets a co-ordinate wise clustering assumption for the local parameters.
A visualization summary of the cluster Assumption 4 is seen in Figure 2. The conditions
ensure enough separation between the bulk and the outliers such that the re-descending loss
(2.3) uniquely identifies the global parameter at mean of the bulk values, as suggested by
Result 5.

Result 5 Under the Assumption 4 the objective function x 7→∑m
k=1 Ψηj ((θ∗k)j − x) has a

unique minimizer (θ∗0)j = µj .

Result 5 implies that under the Assumption 4 the global parameter θ∗0 is uniquely identified
at the mean of the inlier parameter values. This has the following nice implications: (1) the
global parameter is not affected by outlier values; (2) the estimator of the global parameter
can effectively borrow strength across datasets with inlier parameter values. The Lemma 6,
where we study the coordinate-wise convergence rates for θ̃0, is a step toward establishing
effective borrowing strength for the estimator of global parameter.

Lemma 6 Let the following hold:

(i) For any j, {(θ∗k)j}nk=1 satisfy the Assumption 4.
(ii) The datasets {Dk}mk=1 satisfy the Assumption 1 uniformly over k.

(iii) Let sk,0 be the sparsity for θ∗k and s∗k being the maximum sparsity for the rows
of Θk , {E[∇2`k(θ

∗
k)]}−1. Define s0,max = maxk sk,0, s∗max = maxk s

∗
k and seff =

max{Ks∗max,K
2s0,max}. We assume m = o

(
n2

min

s2effnmax log d

)
, where, nmax = maxk∈[m] nk,

and nmin = mink∈[m] nk.

12
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Then for sufficiently large nk we have the following bound for the co-ordinates of θ̃0 and
`∞ bound for δ̃k:

∣∣∣(θ̃0)j − (θ∗0)j

∣∣∣ ≤ 4σ

√√√√ log d

|Ij |2
∑

k∈Ij

1

nk
, for all j, and ‖δ̃k − δ∗k‖∞ ≤ 4σ

√
log d

nk
, for all k,

(4.2)
with probability at least 1− o(1).

Condition (i) in lemma 6 is needed to identify the global parameter uniquely, as suggested
by Result 5. Condition (ii) provides a high probability `∞ bound for the local debiased
lasso estimates (see lemma 2). Finally, the condition (iii) ensures the bias in local debiased
estimates is of smaller order than the variance in integrated estimate. Since the bias term
may not improve under averaging, violating this condition would result in higher-order for
the bias in local estimates, and the estimation error for the global parameter stops improving
(with a higher number of datasets).

In the following remark we introduce a weighted version of our data integration method
(3.5).

Remark 7 (A weighted integration) One may also consider a weighted version of the
data integration

(
θ̃w0

)
j

= arg minx

m∑

k=1

wkΨηj

((
θ̃dk

)
j
− x
)
, (4.3)

where wk ≥ 0 is the weight corresponding to k-th dataset with
∑m

k=1wk = 1. In that case
the uniqueness of the corresponding global parameter

(
θw,∗0

)
j

= arg minx

m∑

k=1

wkΨηj

(
(θ∗k)j − x

)
, (4.4)

at the value
(
θw,∗0

)
j

=
∑

k∈Ij wk(θ∗k)j/(
∑

k∈Ij wk) is established (in Result 17) by considering

a weighted version of Assumption 4 (see Assumption 16) where we replace |Ij |/m by
∑

k∈Ij wk
in condition (B1), and let µj =

∑
k∈Ij wk(θ

∗
k)j/(

∑
k∈Ij wk) in condition (B2). Furthermore,

under conditions (ii) and (iii) in Lemma 6, one can establish (see Theorem 18) the following

high probability bound for
(
θ̃w0

)
j
:

P



∣∣∣(θ̃w0 )j − (θw,∗0 )j

∣∣∣ ≤ 4

√√√√ log d
(∑

k∈Ij wk
)2
∑

k∈Ij

w2
k

nk
, for all j


 = 1− o(1) .

Further details about the setup are provided in Appendix C.
An interesting special case arises when wk = nk/N , and the above rate simplifies to

O
(
{∑k∈Ij nk}−1

)
and yields the fastest rate among all possible weights:

1∑
k∈Ij nk

= min
w

[ 1
(∑

k∈Ij wk
)2
∑

k∈Ij

w2
k

nk

]
.
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Note that the rate O
(
{∑k∈Ij nk}−1

)
is faster than the corresponding one in (4.2), especially

when the nk’s are significantly different. The downside to the weighted formulation is that
the corresponding structural assumptions on the local parameter values depends on the sample
size, which can be perceived as strange.

Proof Here we shall provide a brief outline of the proof of Lemma 6. The detailed proof of
this lemma is provided in appendix B. We start with the Remark 3, which gives us a high
probability error bound for the individual local lasso estimators. From condition (i) we see
that the θ∗j ’s satisfies Assumption 4. As long as θ̃dk concentrates around θ∗k, θ̃

d
k also satisfies

Assumption 4 (with different δj and δ2,j ’s but identical ηj ’s). Using Result 5 we see that the
integrated estimator has the form

(θ̃0)j =

∑
k∈Ij (θ̃

d
k)j

|Ij |
.

Finally, we use the decomposition on the individual lasso estimators θ̃dk in Lemma 12 and
concentration bound for sums of independent random variables to get a high probability
bound for the estimation error of θ̃0.

Before we study the theoretical properties of the thresholded estimators, we would like
to make a few remarks about the rates of convergence for the coordinates of θ̃0. If there
is reason to believe that none of the local parameters are outliers and we consider ηj ’s
large enough, then the global parameter is identified as mean of the local parameters, i.e.
θ∗0 = 1

m

∑m
k=1 θ

∗
k. In that case, the rate of convergence for θ̃0 in Lemma 6 simplifies to:

‖θ̃0 − θ∗0‖∞ .P

√√√√ log d

m2

m∑

k=1

1

nk
,

where, .P implies with probability converging to 1. This kind of rate is not surprising. Proba-
bly the simplest situation, under which this kind of convergence rate arises is ANOVA model.
Let {Yki}i∈[nk],k∈[m] is a set of independent random variables, such that Yki ∼ N(θ∗0 +δ∗k, σ

2),

where θ∗0, δ
∗
1 , . . . , δ

∗
m are some real numbers. Under the assumption

∑m
k=1 δ

∗
k = 0, the estima-

tor θ̂0 = 1
m

∑m
k=1 Ȳk·, where, Ȳk· = 1

nk

∑nk
i=1 Yki, follows distribution N

(
θ∗0,

1
m2

∑m
k=1

1
nk

)
.

This gives us the following convergence rate for θ̂0 :

P


|θ̂0 − θ∗0| ≤ 3

√√√√ 1

m2

m∑

k=1

1

nk


 ≈ 1.

We notice that 1∑
k∈Ij

nk
≤ 1
|Ij |2

∑
k∈Ij

1
nk
, and the equality holds when nk’s are equal, which

gives us the best possible rate. In this case the rate simplifies to:

∣∣∣(θ̃0)j − (θ∗0)j

∣∣∣ .P

√
log d

|Ij |n
≤
√

log d

(1− αj)N
.
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Let nmin = mink nk and αmax = maxj αj . Notice that 1∑
k∈Ij

nk
≤ 1
|Ij |2

∑
k∈Ij

1
nk
≤

1
|Ij |nmin

≤ 1
(1−αj)mnmin

. Hence, we can get the following simple (possibly naive) `∞ high

probability bound for θ̃0 :

‖θ̃0 − θ∗0‖∞ ≤ 4σ

√
log d

(1− αmax)mnmin
.

The estimators in Lemma 6 are dense, they have higher `1 and `2 error. We threshold the
estimators at a suitable level. The thresholding is usually done at a level of the `∞ error
rate of the estimator. We recall the following result from Lee et al. (2017) which ensures
probability convergence for such thresholding.

Lemma 8 (Lee et al. (2017), Lemma 11) As long as t > ‖β̄ − β∗‖∞ β̄htt = HTt(β̄)
satisfies the following.

1. ‖β̄ht − β∗‖∞ < 2t,
2. ‖β̄ht − β∗‖2 < 2

√
2st,

3. ‖β̄ht − β∗‖2 < 2
√

2st,

where, s is the sparsity of β∗. The analogous results holds for β̄stt = STt(β̄).

A combination of the Lemmas 6 and 8 establishes the rate of convergence for the estimates
of global and heterogeneous effect parameters.

Theorem 9 Define Nmin := mnmin. Assume that the threshold for θ̃0 is set at t0 =

4σ
√

log d
(1−αmax)Nmin

and for δ̃k’s are set at tk = 4σ
√

log d/nk, respectively. Then under

the conditions in Lemma 6 and for sufficiently large nk we have the following:

1. ‖θ̂0 − θ∗0‖∞ .P

√
log d
Nmin

,

2. ‖θ̂0 − θ∗0‖1 .P s(θ
∗
0)
√

log d
Nmin

,

3. ‖θ̂0 − θ∗0‖2 .P

√
s(θ∗0) log d
Nmin

,

4. ‖δ̂k − δ∗k‖∞ .P

√
log d
nk

,

5. ‖δ̂k − δ∗k‖1 .P s(δ
∗
k)
√

log d
nk

,

6. ‖δ̂k − δ∗k‖2 .P

√
s(δ∗k) log d

nk
,

where, for a vector θ ∈ Rd, s(θ) denotes its sparsity level.

It is not necessary to threshold all the co-ordinates of θ̃0 at a same level. Thresholding the

j-th co-ordinate of θ̃0 at t0j = 4σ
√

log d
|Ij |2

∑
k∈Ij

1
nk

may give us a faster rate of convergence for

θ̂0 in terms of `1 and `2 errors. If one wish to use cross-validation to determine an appropriate
choices of thresholding, setting different thresholding level for different co-ordinates may be
computationally hectic. For computational simplicity, we consider same thresholding level
for all the co-ordinates.
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One important consequence of Theorem 9 is variable selection under beta-min assumption.
For a vector θ ∈ Rd let us define its sparsity set as S(θ) = {j ∈ [d] : θj 6= 0}. Under the
assumption that

min
j∈S(θ∗0)

|θ∗j | �
√

log d

Nmin
and, min

j∈S(θ∗k)
|(θ∗k)j | �

√
log d

nk
(4.5)

Theorem 9 implies P
(
S(θ̂0) = S(θ∗0),S(θ̂k) = S(θ∗k)

)
→ 1, i.e., with very high probability

all the active variables will be selected by the proposed estimators.

5. Computational results

In this section, we compare the performance of MrLasso to several other global parameters
considered in Section 2 on simulated data: the Mean (1.2), the Median (2.1), the square and
absolute error trade-off in (2.5) and the Huber estimator in (2.2). The datasets are generated
from a linear model with d = 2000 covariates. In our simulation, the covariates are generated
from auto-regressive model (x = (x1, . . . , xd)

>, x1 ∼ N(0, 1), xj =
√

1− ρ2xj−1 + ρεj , and
εj ∼ N(0, 1)) with the correlation ρ = 0.9, and the response in the k-th local dataset is
generated as

yk = x>k β
∗
k + εk, εk ∼ N(0, 0.25),

where β∗k is the vector of regression coefficients for the k-th dataset. The first s co-ordinates
of β∗k’s are independent N(2, (1.5)2) random scalars. The next 20 coordinates of β∗k are
drawn from the mixture distribution (1− 1

m) · δ0 + 1
m ·U([15, 16]), where δ0 is the degenerate

distribution at zero. This endows the local coordinates with the cluster structure of
Assumption 4. This structure in the local coordinates highlights the difference between the
identification restrictions in MrLasso and the other estimators.

Note that the definition MrLasso, square and absolute loss trade-off and Huber loss
require additional tuning parameters. In the simulation, we hold out 1

5 of the dataset as
a validation set and we pick those parameters to minimize test error on the validation set.
The data dependent choice of tuning parameters are used to define the global parameters
for square and absolute loss trade-off and Huber loss to keep the comparison fair, whereas
for MrLasso the global parameters are identified with oracle tuning parameter values. The
upper left plot in Figure 3 shows the `2-estimation error of the global parameter with respect
to the sample size for each dataset (nk). We fix the number of datasets (m) at 5 and the
sparsity of the MrLasso global parameter (s) at 5. Note that the global parameters are
different for different identification restrictions. The convergence rate of MrLasso is faster
than the others. For denser global parameters, the performance discrepancy between the
estimators reduces. We see this behavior in the lower-left plot of Figure 3.

A study on the effect of m for fixed nk and s is presented in the upper right plot of
Figure 3. All the estimates are able to borrow strength across datasets (`2-error decreases
for higher m) but MrLasso produces lower `2-errors than others.

In the lower right panel of Figure 3 we study the sensitivity of MrLasso to the misspecifi-
cation of η. As seen in the plot, MrLasso produces a good estimate of the global parameter
as long as η falls within a reasonable range. This range depends on the separation between
the bulk and outlier local coordinates (see Assumption 4, condition (B3)). The plot also
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Figure 3: Upper left : Errorbar plots for `2-error in estimation of β0 using different global
estimators for varying sample sizes in each datasets (nk) with m = 5 and s = 5. Upper right :
For varying m with nk = 200 and s = 5. Lower left : For different s with nk = 200 and
m = 5. Lower right : For different η with nk = 200 and s = 5 and m = 5.
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Figure 4: The choices of data dependent η’s for MrLasso in the experiments in Figure 3,
upper-left, upper-right and lower-left plot.

suggests that (cross-)validation leads to a value of η that falls in this range. We confirm this
in Figure 4, which shows the chosen values of η for the simulations in Figure 3.

The `2 errors in Figure 3 are calculated in terms of the corresponding global parameters
of the estimators, but the global parameters are different. We complement this experiment
by evaluating the prediction error of them on a test dataset that is generated without
any outlier local regression coefficients. In particular, the first s coordinates of the local
regression coefficient vectors are generated independently from N(2, (1.5)2), while the rest
of the coordinates are zero. In this setup, we expect the MrLasso global parameter to be
closer to the population global parameter because it correctly identifies the coordinates of
all but the first s coordinates as zero. This is confirmed in Figure 5.

We finally note that our method is both privacy-preserving (no raw data is sent) and
communication efficient (only scalars and vectors are sent). Even the model selection protocol
for η can be carried out without having to send the raw data: we only need to transfer
scalars and vectors. We first send the local debiased estimates to the central machine to
calculate β̂0 and δ̂k’s for several choices of η’s. These estimates are sent back to the local
machines to calculate prediction error on the holdout datasets. Finally these errors can be
transferred back to the global machine to determine the choice of η.

6. Cancer cell line study

The Cancer Cell Line Encyclopedia is a database of gene expression, genotype, and drug
sensitivity data for human cancer cell lines. We use our method to study the sensitivity of
cancer cell lines to certain anti-cancer drugs. We treat the area above the dose-response curve
as the response variable (Barretina et al., 2012) and use expression levels of approximately
20000 genes (d) as features. More details about data source and pre-processing are provided
in Appendix E. After prepossessing we have 482 cancer cell lines. Each of these cell lines
comes from a cancerous organ and corresponds to a specific cancer type. The lines are
divided into different machines (k) according to cancer types. For a given drug, our goal is
to obtain a single regression coefficient vector which can be used to predict the response of
different cancer types to that drug. We fit our model on the more common cancer cell types
2 with at least 10 samples and evaluate the prediction accuracy of the models on rare cancer

2. The number of local datasets (m) that are used in meta-analysis is same as the number of common cancer
cell types shown in the upper left panel of the corresponding figures (for example the drug PD-0325901
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Figure 5: Upper left : Errorbar plots for prediction errors in test data using global estimators
for varying sample sizes in each datasets (nk) with m = 5 and s = 5. Upper right : For
varying m with nk = 200 and s = 5. Lower left : For different s with nk = 200 and m = 5.
Lower right : For different η with nk = 200 and s = 5 and m = 5.
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Figure 6: Left: Drug-response prediction mean squared errors (MSEs) for the most frequent
cancer types (upper left) and rare cancer types (lower left panel) for the drug PD-0325901.
Right: Coefficient plot for the selected genes in lasso estimates for most frequent cancer types
(calculated locally on each machine) and Mean and Mr Lasso (integrated across machines).
The size of the points is related to the magnitude of the coefficients, whereas the signs are
represented by colour (red for negative and blue for positive).

types (those with less than 10 samples). The performance of three models are presented:
soft thresholded mean of the local estimators (which we call Mean), the soft thresholded
version of our integrated estimator (as in section 3), and a global lasso estimator that simply
fits the lasso to an aggregate dataset consisting of samples from all common cancer types.

For integration purposes we first need to calculate the de-biased lasso estimate from
each of these frequent cancer types. The regularization parameter for each of these cancer
types is chosen using 7 fold cross-validation. After calculating the debiased lasso from each
dataset, Mean is obtained by soft-thresholding their average, with the level of thresholding
determined via 10 fold cross-validation. To calculate MrLasso, we assume that the parameters
ηj are identical over the gene expressions. Besides determining this common parameter η
we also require a proper soft-threshold level (t) for the integrated estimator. To this end
the appropriate pair (η, t) is again chosen via cross validation (see the discussion in last
paragraph of Section 3). We compare the performances of the Mean, the MrLasso and the

has m = 7 as seen in Figure 6), where the number of data-points (nk’s) in each of these common cancer
types are also shown in the upper-left panel.
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Drug: Paclitaxel

Figure 7: Left: Drug-response prediction mean squared errors (MSEs) for the most frequent
cancer types (upper left) and rare cancer types (lower left panel) for the drug Paclitaxel.
Right: Coefficient plot for the selected genes in lasso estimates for most frequent cancer
types and Mean and Mr Lasso.
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Drug: Topotecan

Figure 8: Left: Drug-response prediction mean squared errors (MSEs) for the most frequent
cancer types (upper left) and rare cancer types (lower left panel) for the drug Topotecan.
Right: Coefficient plot for the selected genes in lasso estimates for most frequent cancer
types and Mean and Mr Lasso.
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global lasso (obtained using combined data over the most-frequent cancer types with best
regularization parameter chosen via 10-fold cross-validation) for drugs PD-0325901 (Figure
6), Paclitaxel (Figure 7) and Topotecan (Figure 8).

To evaluate the efficacy of this approach, we fit the global parameter using Mean,
MrLasso, and a global lasso on the more common cancer types and evaluate its predictive
accuracy on rare cancer types. The lower left panels in Figures 6, 7 and 8 give comparative
plots for the prediction accuracy of drug-response of the three global parameter estimates
(for the three drugs). The plots for several other drugs are provided in Appendix E. For
completeness, we also evaluate the predictive performance of the fitted global parameters on
held out data from the more common cancer types in the top left panels.

We see that the predictive performance of MrLasso is generally superior to that of Mean
and the global lasso. This is mostly due to the heterogeneity in the relationship between drug
sensitivity and genotype on different cancer types, as evinced by the considerable variation
between the effect sizes of genetic variants on drug sensitivity from cancer to cancer: see for
example, Figures 6, 7 and 8. This causes the global parameter fitted by the Mean to be
considerably denser than the global parameter fitted by MrLasso. In other words, the Mean
pools effect sizes across all cancer types regardless of whether the effect sizes are similar.
This causes the global parameter fitted by the Mean to pick up many small effect sizes
that are specific to certain cancer types, thereby detracting from the generalizability of the
global parameter to other (rare) cancer types. On the other hand, MrLasso only aggregates
effect sizes when the data suggests they are similar. In other words, the global parameter
fitted by MrLasso only incorporates effects that persist across cancer types. This leads to a
parameter whose prediction performance generalizes across cancer types. In some extreme
cases (e.g. Figure 8), the effect sizes are so dissimilar that MrLasso does not borrow strength
at all, but the Mean continues to pool the effect sizes. This leads to overall poor prediction
performance. In comparison with Mean, we see that MrLasso can automatically adapt to
the intrinsic level of heterogeneity across datasets, leading to a better generalization.

7. Discussion

We consider integrative regression in the high-dimensional setting with heterogeneous data
sources. The two main issues that we address are (i) identifiability of the global parameter,
and (ii) statistically and computationally efficient estimator of the global parameter. In
many prior works on integrative regression in high dimensions, there is either no global
parameter or a global parameter that is not properly identified (see Section 2 for a discussion
of global parameters in prior work).

We suggest a way to identify the global parameter that addresses some of the drawback of
prior approaches by appealing to ideas from robust location estimation. The main benefit of
our suggestion is it is possible to estimate the global parameter at a rate that depends on the
size of the combined dataset. We also proposed a statistically and computationally efficient
estimator of the global parameter. By statistically efficient, we mean the estimation error
vanishes at a rate that depends on the size of the combined datasets. By computationally
efficient, we mean the communication cost of evaluating the estimator depends only on the
dimension of the problem and the number of machines. Further, because no individual
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samples are communicated between machines, evaluating the proposed estimator does not
compromise the privacy of the individuals in the data sources.
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Appendix A. Identifiability

Lemma 10 (Contaminated normal model) Let

x ∼ (1− ε)N
(
(µ0, σ

2
)

+ εg,

where ε < 1/2 and g is continuous density of contamination distribution. The expected
redescending loss L(µ) = E[(x− µ)2 ∧ η2] is minimized at µ0 if

∫ µ0+η

µ0−η
(x− µ0)g(x)dx = 0

and

(1−ε)
{

Φ
(η
σ

)
−Φ
(
− η
σ

)
− 2η

σ
φ
(η
σ

)}
+ε

{
G(µ+η)−G(µ−η)−2η

(
g(µ+η)+g(µ−η)

)
}
> 0,

where φ and Φ are density and distribution functions of standard normal distribution.

Proof We note that

L′(µ)/2 = E
[
(µ− x)1(|x− µ| ≤ η)

]

= (1− ε)E
(1/σ)φ

(
(x−µ)/σ

)[(µ− x)1(|x− µ| ≤ η)
]

+ εEg
[
(µ− x)1(|x− µ| ≤ η)

]

Here

Eg
[
(µ0 + δ − x)1(|x− µ0 − δ| ≤ η)

]

= δ

∫ µ0+δ+η

µ0+δ−η
g(x)dx−

∫ µ0+δ+η

µ0+δ−η
(x− µ0)g(x)dx

= δ
[
G(µ0 + δ + η)−G(µ0 + δ − η)

]
−
[
Γ(µ0 + δ + η)− Γ(µ0 + δ − η)

]
,

where Γ′(x) = (x− µ0)g(x). From the first order Taylor expansion

Eg
[
(µ0 + δ − x)1(|x− µ0 − δ| ≤ η)

]

≈ δ
[
G(µ0 + η) + δg(µ0 + η)−G(µ0 − η)− δg(µ0 − η)

]

−
[
Γ(µ0 + η) + δηg(µ0 + η)− Γ(µ0 − η) + δηg(µ0 − η)

]

≈ δ
[
G(µ0 + η)−G(µ0 − η)− η

(
g(µ0 + η) + g(µ0 − η)

)]
−
[
Γ(µ0 + η)− Γ(µ0 − η)

]

If g is the density of N(µ0, σ
2) then

Eg
[
(µ0 + δ − x)1(|x− µ0 − δ| ≤ η)

]

≈ δ
[

Φ
(η
σ

)
− Φ

(
− η

σ

)
− 2η

σ
φ
(η
σ

)]
.
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From the requirement that

L′(µ0 + δ) =





0 if δ = 0,

> 0 if δ > 0,

< 0 if δ < 0,

for any arbitrarily small δ, we have the lemma.

Example 1 Consider an one dimensional case where we have 2m+ 1 datasets each of size
n. The local parameters of these datasets take the values µ∗k = 2k for k = 1, 2, · · · , 2m+ 1.
In this case the global parameter µ∗0 will be identified as 2(m+ 1). Suppose we have some
estimators for the local parameters µ̂k which can be written as µ̂k = µ∗k+ηk and for simplicity
we assume ηk are normal random variables with mean zero standard deviation σ√

n
. The

example can also be extended for sub-Gaussian random variables.

The parameter σ depends on the variances of observations. For simplicity we assume
that σ is 1. For some 0 < δ < 1 if sample sizes n ≥ 8 log

(
4m+2
δ

)
for each datasets then by

union bound over sub-Gaussian inequality we get

P
(
|µ̂k − µ∗k| ≤

1

2
for all k = 1, 2, · · · , 2m+ 1

)
≥ 1−

2m+1∑

k=1

P (|ηk| > t)

≥ 1− 2(2m+ 1)e−
n
8

≥ 1− δ.

We can see that with probability at least 1− δ the local estimators are ordered as µ̂1 < µ̂2 <
· · · < µ̂2m+1. Let this event be E. A natural choice for µ̂0 is the median of µ̂k’s under the
identification condition (2.1). Clearly, under the event E, µ̂0 is µ̂m+1 and hence we have
µ̂0 − µ∗0 = µ̂m+1 − µ∗m+1 = ηm+1. As ηm+1 is N(0, 1/n), we see that

P
(
|µ̂0 − µ∗0| >

C√
mn

)
≥ P

(
|ηm+1| >

C√
mn

)
− P(Ec)

≥ 2− 2Φ

(
C√
m

)
− δ.

For a fixed C > 0 the above probability is larger than 1−Φ
(

C√
m

)
whenever n ≥ 8 log

(
4m+2

1−Φ
(

C√
m

)
)
.

This is a contradiction to the fact that rate of convergence for µ̂0 to µ∗0 is 1√
mn
.

Example 2 Let µ1 = · · · = µm−1 = 0, and µm > 0. For any choice of λ > 0, µ0 as defined
in (2.2) is never zero.
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Proof Define

L(x, λ) =

m∑

k=1

Lλ(x− µk) = (m− 1)Lλ(x) + L(µm − x).

Since

Lλ(x) =

{
1
2x

2 if |x| ≤ λ
λ
(
|x| − 1

2λ
)

otherwise,

we note that

∂xLλ(x) =

{
x if |x| ≤ λ
λ · sign(x) otherwise,

for x 6= 0 and ∂xLλ(0) = 0, we have

∂xL(0, λ) = (m− 1)∂xLλ(0) + ∂xL(µm) = λ · sign(µm) . (A.1)

Note that ∂xL(0, λ) is can never be zero, which concludes that the minimum is never achieved
at zero.

Result 11 Suppose the covariate dimension d is fixed. Assume

1. n1 = · · · = nm = n,
2. Var(εki) are same over different k’s,
3. Σk = E

(
xkix

T
ki

)
’s are invertible,

4.
∑m

k=1 ‖θ∗k − θ0‖1 + c‖θ0‖1 has a unique minimizer θ∗0.

Define

(θ̂0, δ̂1, . . . , δ̂m)(n) = arg min(θ0,δ1,...,δm)

1

2N

m∑

k=1

‖Yk −Xk(θ0 + δk)‖22+λn

m∑

k=1

‖δk‖1+cλn‖θ0‖1,

for λn ∼ 1√
n

some c > 0 independent of n. Then

(θ̂0, δ̂1, . . . , δ̂m)(n)→ (θ∗0, δ
∗
1 , . . . , δ

∗
m),

in probability, with respect to ‖ · ‖2 norm, where, θ∗0 = arg minθ0 (
∑m

k=1 ‖θ∗k − θ0‖1 + c‖θ0‖1)
and δ∗k = θ∗k − θ∗0 for k ∈ [m].

This result can be shown for any norm in Rd(m+1).

Proof Define

Mn(φ) =
1

2N

m∑

k=1

‖Yk −Xk(θ0 + δk)‖22 + λn

m∑

k=1

‖δk‖1 + cλn‖θ0‖1
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and

M̃n(φ) =
1

2m

m∑

k=1

(θ0 + δk − θ∗k)TΣk(θ0 + δk − θ∗k) + λn

m∑

k=1

‖δk‖1 + cλn‖θ0‖1,

where, φ = (θ0, δ1, . . . , δm). We define KM ⊂ Rd(m+1) to be the closed ball around φ∗ =

(θ∗0, θ
∗
1 − θ∗0, . . . , θ∗m − θ∗0) with radius M. Since, for each φ ∈ KM , Mn(φ) → M̃n(φ) and

supφ∈KM
M̃n(φ) is finite, supφ∈KM

|Mn(φ)− M̃n(φ)| → 0 in probability.

For any ε > 0,

inf
‖φ−φ∗‖2≥ε

M̃n(φ) > M̃n(φ∗).

So, by argmin continuous mapping theorem

∥∥∥arg minφ∈KM
Mn(φ)− arg minφ∈KM

M̃n(φ)
∥∥∥

2
→ 0

in probability. Taking the radius M →∞ we get

∥∥∥arg minφ∈Rd(m+1)Mn(φ)− arg minφ∈Rd(m+1)M̃n(φ)
∥∥∥

2
→ 0

As n → ∞, λn → 0 + . Hence, in the minimization problem of M̃n(φ) 1
2m

∑m
k=1(θ0 +

δk − θ∗k)TΣk(θ0 + δk − θ∗k) becomes more and more important, and in the limiting case this
becomes primary objective. Looking at the loss for primary objective we see that optimum
achieved at φ for which θ0 + δk = θ∗k for all k ∈ [m]. Hence, arg minφ∈Rd×(m+1)M̃n(φ) →
arg minφ∈A

∑m
k=1 ‖δk‖1 + c‖θ0‖1, where, A = {φ : θ0 + δk = θ∗k}.

Appendix B. Supplementary Results

Lemma 12 Under the Assumption 1 the followings hold.

1. The debiased lasso estimator θ̃d can be decomposed as

θ̃d = θ∗ − Θ̂∇`(θ∗) + ∆

where, for and some c1 > 0,

P (‖∆‖∞ > c1Ks0 log d/n) ≤ o(d−1).

2. For some c2 > 0,

P
(

for some j ∈ [d], ‖Θ̂j,· −Θj,·‖1 > c2 max{Ksj ,K2s0}
√

log d/n
)
≤ o(d−1).

3. There is some c3 > 0 such that ‖Θj,·‖1 ≤ c3
√
sj hold for any j ∈ [d].
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Proof of Lemma 12. For the proof of 2. readers are suggested to see Theorem 3.2. in van de
Geer et al. (2014).

Denote s∗ = max{s1, . . . , sd}. To verify 1. we start with the Taylor expansion of θ̃d:

θ̃d = θ̃ − Θ̂∇`(θ̃)

= θ̃ − Θ̂
1

n

n∑

i=1

ρ̇(yi,x
T
i θ̃)

= θ̃ − Θ̂
1

n

n∑

i=1

ρ̇(yi,x
T
i θ
∗)xi − Θ̂

1

n

n∑

i=1

ρ̈(yi, ãi)xix
T
i (θ̃ − θ∗)

= θ∗ − Θ̂∇`(θ∗) + (I − Θ̂M)(θ̃ − θ∗)

where, ãi is some number between xTi θ̃ and xTi θ
∗, and M = 1

n

∑n
i=1 ρ̈(yi, ãi)xix

T
i . We give

a high probability `∞ bound for ∆ = (I − Θ̂M)(θ̃ − θ∗). By triangle inequality

‖(I − Θ̂M)(θ̃ − θ∗)‖∞ ≤
∥∥∥
(
I − Θ̂∇`(θ̃)

)
(θ̃ − θ∗)

∥∥∥
∞

+
∥∥∥Θ̂
(
∇2`(θ̃)−M

)
(θ̃ − θ∗)

∥∥∥
∞

≤max
j

∥∥∥eTj − Θ̂j,·∇2`(θ̃)
∥∥∥
∞
‖θ̃ − θ∗‖1

︸ ︷︷ ︸
I

+
1

n

n∑

i=1

‖Θ̂xi‖∞|(ρ̈(yi,x
T
i θ̃)− ρ̈(yi, ãi))x

T
i (θ̃ − θ∗)|

︸ ︷︷ ︸
II

From KKT condition for nodewise lasso we get

− 1

n
X
θ̃,−j(Xθ̃,j

−X
θ̃,−j γ̂j) + λj ẑj = 0,

where, ‖ẑj‖∞ ≤ 1. This implies

− 1

n
γ̂Tj X

θ̃,−jXθ̃
Θ̂T
j,·τ̂

2
j + λj‖γ̂j‖1 = 0

Now

τ̂2
j =

1

n
‖X

θ̃,j
−X

θ̃,−j γ̂j‖
2
2 + λj‖γ̂j‖1

=
1

n
XT
θ̃,j

X
θ̃
Θ̂T
j,·τ̂

2
j −

1

n
γ̂Tj X

θ̃,−jXθ̃
Θ̂T
j,·τ̂

2
j + λj‖γ̂j‖1

=
1

n
XT
θ̃,j

X
θ̃
Θ̂T
j,·τ̂

2
j .

Hence 1
nXT

θ̃,j
X
θ̃
Θ̂T
j,· = 1. This implies

‖ej −∇2`(θ̃)Θ̂T
j,·‖∞ =

∥∥∥∥∥
1

nτ̂2
j

X
θ̃,−j(Xθ̃,j

−X
θ̃,−j γ̂j)

∥∥∥∥∥
∞

≤ λj
τ̂2
j

.
1

τ̂2
j

(
log d

n

) 1
2

.
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By van de Geer et al. (2014), Theorem 3.2,

|τ̂2
j − τ2

j | .
(

max{Ks∗,K2s0} log d

n

) 1
2

with probability at least 1 − o(d−1). Thus maxj

∥∥∥eTj − Θ̂j,·∇2`(θ̃)
∥∥∥
∞

.P

(
log d
n

) 1
2

and by 6.

in the Assumption 1

max
j

∥∥∥eTj − Θ̂j,·∇2`(θ̃)
∥∥∥
∞
‖θ̃ − θ∗‖1 .P

s0 log d

n
,

where, .P denotes . with probability at least 1 − o(d−1).
We turn our attention to (II). We see that

‖Θ̂XT ‖∞ ≤max
j
‖Θ̂j,·X

T ‖∞ . max
j
‖Θ̂j,·X

T
θ∗‖∞

≤max
j

1

τ̂2
j

‖Xθ∗,j −Xθ∗,−j γ̂j‖∞.

Again by van de Geer et al. (2014), Theorem 3.2,

.P max
j

1

τ2
j

‖Xθ∗,j −Xθ∗,−j γ̂j‖∞

≤max
j

1

τ2
j

‖Xθ∗,j −Xθ∗,−jγj‖∞

+
1

τ2
j

‖Xθ∗,−j‖∞‖γ̂j − γj‖1,

which, by 1. in the Assumption 1 and van de Geer et al. (2014), Theorem 3.2,

.P K +K ×max{Ks∗,K2s0}
√

log d

n
.

Now,

1

n

n∑

i=1

‖Θ̂xi‖∞|(ρ̈(yi,x
T
i θ̃)− ρ̈(yi, ãi))x

T
i (θ̃ − θ∗)|

.P K
1

n

n∑

i=1

|(ρ̈(yi,x
T
i θ̃)− ρ̈(yi, ãi))x

T
i (θ̃ − θ∗)|

which, by 5. and 6. in the Assumption 1, is at most

.
K

n
‖X(θ̃ − θ∗)‖22 .P

Ks0 log d

n
.

By union bound

‖∆‖∞ .P
(1 +K)s0 log d

n
= O

(
Ks0 log d/n

)
.
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This shows assumption (A3).
From 3. in the Assumption 1 that the minimum eigen-value of Σ∗θ is bounded away from

zero for all d, we get that, for some κ > 0, which doesn’t depend on d, the largest eigne-value
of Θ2 ≤ κ. Hence,

‖Θj,·‖21 ≤ sj‖Θj,·‖21
= sje

T
j Θ2ej , where, {ej}dj=1 is the standard basis of Rd

≤ sjκ.
This shows 3. in lemma 12

Proof of Lemma 2. We start with the linear decomposition, 1. in lemma 12, which give us

‖θ̃d − θ∗‖∞ ≤ ‖Θ̂∇`(θ∗)‖∞ + ‖∆‖∞.

‖θ̃d − θ∗‖∞ ≤ ‖Θ̂∇`(θ∗)‖∞ + ‖∆‖∞
≤ ‖Θ∇`(θ∗)‖∞︸ ︷︷ ︸

I

+ ‖(Θ̂−Θ)∇`(θ∗)‖∞︸ ︷︷ ︸
II

+ ‖∆‖∞︸ ︷︷ ︸
III

.

From the fact that θ∗ is the unique minimizer of Eρ(yi,x
T
i θ) we get

E
[
ρ̇(yi,x

T
i θ
∗)xi

]
= 0.

Using 3. in lemma 12 and 7. in the Assumption 1 we have ‖Θxiρ̇(yi,xi)‖∞ ≤MK3

√
s∗

for some M > 0. Using Bernstein’s inequality we get,

P

(∣∣∣∣∣
n∑

i=1

Θj,·xiρ̇(yi,x
T
i θ
∗)

∣∣∣∣∣ > t

)
≤ 2exp

(
−

1
2 t

2

nσ2
j + 1

3

√
s∗MK3t

)
,

where, σ2
j = Θj,·E

[
∇`(θ∗)∇`(θ∗)T

]
ΘT
j,·. For t ≤ 3nσ2

j√
s∗MK3

we get sub-Gaussian bound

P

(∣∣∣∣∣
n∑

i=1

Θj,·xiρ̇(yi,x
T
i θ
∗)

∣∣∣∣∣ > t

)
≤ 2exp

(
− t2

4nσ2
j

)
.

By union bound

P (‖Θ∇`(θ∗)‖∞ > t) ≤ 2dexp

(
− nt

2

4σ2

)
,

where, σ2 = maxj σ
2
j . Setting t = σ

√
12 log d
n we get P

(
‖Θ∇`(θ∗)‖∞ > σ

√
12 log d
n

)
≤ 2

d2 .

Since, for sufficiently large n we have σ
√

12 log d
n ≤ 3nσ2

j√
s∗MK3

, such a choice for t is justified.

Since,
{
xiρ̇(yi,x

T
i θ
∗)
}n
i=1

is bounded and zero mean random vectors, we get the following
high probability bound for ‖∇`(θ∗)‖∞ :

For some c4 > 0, P

(
‖∇`(θ∗)‖∞ > c4

√
log d

n

)
≤ 1

d2
.

Let A the event that the followings hold:
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1. ‖∆‖∞ > c1Ks0 log d/n,
2. maxj ‖Θ̂j,· −Θj,·‖1 ≤ c2 max{Ks∗,K2s0}

√
log d/n,

3. ‖Θ∇`(θ∗)‖∞ ≤ σ
√

12 log d
n ,

4. ‖∇`(θ∗)‖∞ ≤ c4

√
log d
n .

Then P(A) ≥ 1− o(d−1). Under the event A, (I) ≤ σ
√

12 log d
n , and (III) ≤ c1Ks0 log d/n.

We also notice that (II) ≤ maxj ‖Θ̂j,· −Θj,·‖1‖∇`(θ∗)‖∞ ≤ c2c4 max{Ks∗,K2s0} log d/n.

Hence, P
(
‖θ̃d − θ∗‖∞ ≤ σ

√
12 log d
n + cmax{Ks∗,K2s0} s

∗ log d
n

)
≥ 1− o(d−1).

Proof of Result 5. We shall prove uniqueness of the global parameter for each co-ordinates
separately. Fix j ∈ [d]. For simplicity of the notation we ignore the index j, and denote
Ij , (θ

∗
k)j , µj , and, ηj as I, θ∗k, µ and, η, respectively.

For x ∈ R let us define Ix = {k : θ∗k ∈ [x− η, x+ η]}, and Nx =
∑

k∈Ix nk.
When Ix = I, we have

m∑

k=1

Ψη (θ∗k − x) = (m− |I|)η2 +
∑

k∈I
(θ∗k − x)2

which is uniquely minimized at x = µ.
Under the case Ix 6= I we must have |µ− x| > δ. We consider the case δ < |µ− x| ≤ 3δ.

|µ− x| > δ implies either x is larger or smaller than θ∗k’s which are in I. We assume that
x > θ∗k for all k ∈ I. The other case will follow similarly. In that case,

(θ∗max − θ∗k) ≤ (2δ) ∧ (x− θ∗k),

for all k ∈ I, where θ∗max = maxj∈I θ
∗
k. Since, η > 2δ, we have

∑

k∈I
Ψη (θ∗k − x) ≥

∑

k∈I
Ψη (θ∗k − θ∗max) .

Notice that, for |x− µ| ≤ 3δ we have Ψη(θ
∗
k − x) = η2 whenever k /∈ I. Hence,

m∑

k=1

Ψη (θ∗k − x) ≥
m∑

k=1

Ψη (θ∗k − θ∗max) >
m∑

k=1

Ψη (θ∗k − µ) ,

where the last inequality follows form the fact that Ix = I for x = θ∗max.
Now, consider the case |x− µ| > 3δ, under which we have Ix ∩ I = ∅.
Then

m∑

k=1

Ψη (θ∗k − x) > 4|I|δ2

and
m∑

k=1

Ψη (θ∗k − µ) = (m− |I|)η2 +
∑

k∈I
(θ∗k − µ)2.
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Since, the range of {θ∗k}k∈I is less than 2δ, we have
∑

k∈I(θ
∗
k − µ)2 ≤ δ2|I|. This implies

m∑

k=1

Ψη (θ∗k − µ) ≤ (m− |I|)η2 + δ2|I|

≤ 4(m− |I|)δ2 + |I|δ2

≤ (4m− 3|I|)δ2 ≤ 4|I|δ2

and hence, µ is the unique minimizer in this case.

Proof of Lemma 6.

We start with remark 3 that under the assumption (ii) for sufficiently large nk we have

‖θ̃dk − θ∗k‖∞ ≤ 2σ
√

log d/nk

with probability at least 1−o(d−1). By union bound, with probability 1−o(1), simultaneously
for all k we have

‖θ̃dk − θ∗k‖∞ ≤ 2σ
√

log d/nk.

If 2σ
√

log d/nk ≤ 1
4(ηj − 2δ) ∧ (ηj − δ2/2) for all k, then there exists δ̂ and δ̂2 such that

the following holds,

2δ ≤ 2δ̂ < ηj < δ̂2/2 ≤ δ2/2.

and assumptions 4 holds with δ̂ and δ̂2. Hence, by result 5 we have (θ̃0)j =

∑
k∈Ij

(θ̃dk)j

|Ij | .

Let γ
(j)
k = 1

|Ij |1Ij (k), where, 1A is the indicator function over the set A. From Lemma 12

(θ̃0)j =
m∑

k=1

γ
(j)
k (θ̃dk)j

=

m∑

k=1

γ
(j)
k

(
(θ∗k)j − (Θ̂k)j·∇`k(θ∗k) + (∆k)j

)

= (θ∗0)j −
m∑

k=1

γ
(j)
k (Θ̂k)j·∇`k(θ∗k) +

m∑

k=1

γ
(j)
k (∆k)j .
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Hence,

∣∣∣(θ̃0)j − (θ∗0)j

∣∣∣ ≤
∣∣∣∣∣
m∑

k=1

γ
(j)
k (Θ̂k)j·∇`k(θ∗k)

∣∣∣∣∣+

∣∣∣∣∣
m∑

k=1

γ
(j)
k (∆k)j

∣∣∣∣∣

≤
∣∣∣∣∣
m∑

k=1

γ
(j)
k (Θk)j·∇`k(θ∗k)

∣∣∣∣∣+

∣∣∣∣∣
m∑

k=1

γ
(j)
k

(
(Θ̂k)j· − (Θk)j·

)
∇`k(θ∗k)

∣∣∣∣∣

+

∣∣∣∣∣
m∑

k=1

γ
(j)
k (∆k)j

∣∣∣∣∣

≤
∣∣∣∣∣
m∑

k=1

γ
(j)
k (Θk)j·∇`k(θ∗k)

∣∣∣∣∣
︸ ︷︷ ︸

I

+
m∑

k=1

γ
(j)
k

(
‖(Θ̂k)j· − (Θk)j·‖1‖∇`k(θ∗k)‖∞ + |(∆k)j |

)

︸ ︷︷ ︸
II

.

To bound (I) we notice that
{

(Θk)j,·xkiρ̇(yki,x
T
kiθ
∗
k)
}
i∈[nk],k∈[m]

are zero mean random

variables bounded by M
√
s∗ > 0. By Bernstein inequality,

P

(∣∣∣∣∣
m∑

k=1

γ
(j)
k (Θk)j·∇`k(θ∗k)

∣∣∣∣∣ > t

)
≤ 2exp


−

1
2 t

2

∑m
k=1

(
γ

(j)
k

)2 σ2
jk

nk
+ 1

3MtM
√
s∗


 ,

where σ2
jk = E

[
(Θk)j,·∇`k(θ∗k)∇`k(θ∗k)T (Θk)

T
j,·

]
. Let a2

j =
∑m

k=1

(
γ

(j)
k

)2 σ2
jk

nk
= 1
|Ij |2

∑m
k=1

σ2
jk

nk
.

For t ≤ 3a2
jk

M
√
s∗

we get a probability bound with subgaussian tail

P

(∣∣∣∣∣
m∑

k=1

γ
(j)
k (Θk)j·∇`k(θ∗k)

∣∣∣∣∣ > t

)
≤ 2exp

(
− t2

4a2
j

)
.

Letting t = 2aj
√

3 log d we get

∣∣∣∣∣
m∑

k=1

γ
(j)
k (Θk)j·∇`k(θ∗k)

∣∣∣∣∣ ≤ 2aj
√

3 log d

with probability at least 1− d−2. Taking union bound over all co-ordinates we get the above
bound for each co-ordinates with probability at least 1 − d−1.

We shall apply Bennett’s concentration inequality 15 on (I). Fix some j ∈ [d]. For

k ∈ [m], i ∈ [nk] define gik =
Θj,·∇ρ(yki,x

T
kiθ
∗
k)

MK3

√
s∗

, and aki =
γ

(j)
k MK3

√
s∗

nk
. Then Egki = 0 and

Eg2
ki ≤ σ2

M2K2
3s
∗ := δ where, σ2 ≥ maxk∈[m],j∈[d] Θj,·E[∇ρ(yki,x

T
kiθ
∗
k)∇ρ(yki,x

T
kiθ
∗
k)
T ]ΘT

j,·,

from assumption (A5). Also, |gki| ≤ ‖Θj,·‖1‖∇ρ(yki,x
T
kiθ
∗
k)‖∞

MK3

√
s∗

≤ 1. Let us define a :=
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(aki, k ∈ [m], i ∈ [nk]). Now we apply Bennett’s inequality 15 on
∑m

k=1 γ
(j)
k (Θk)j·∇`k(θ∗k) =

∑m
k=1

∑nk
i=1 akigki. We notice that for t ≤ δ‖a‖22

‖a‖∞ e
2 we have the following bound:

P

(∣∣∣∣∣
m∑

k=1

nk∑

i=1

akigki

∣∣∣∣∣ > t

)
≤ 2exp

(
− t2

2δ‖a‖22e2

)
.

For t = 2
√
δ log d‖a‖2e we get

P

(∣∣∣∣∣
m∑

k=1

nk∑

i=1

akigki

∣∣∣∣∣ > 2
√
δ log d‖a‖2e

)
≤ 2

d2
.

We need to confirm that such a choice of t is valid, i.e., 2
√
δ log d‖a‖2 ≤ δ‖a‖22

‖a‖∞ e
2 or

‖a‖∞
√

log d ≤ c
√
s∗‖a‖2 for some c independent of m, d and nk,∈ [m]. We notice that

‖a‖2 =
MK3

√
s∗

|Ij |

√√√√
∑

k∈Ij

1

nk
≥ 1√

|Ij |nmax

, and ‖a‖∞ ≤
MK3

√
s∗

nmin|Ij |

and hence,
√
s∗‖a‖2

‖a‖∞
√

log d
≥
√
s∗n2

min|Ij |
nmax log d

≥
√

n2
min

s∗2nmax log d
.

From assumption (iii) we get that
√

n2
min

s∗2nmax log d
asymptotically goes to infinity. Hence, such

a choice of t is valid.

We notice that ‖a‖2 is dependent of j. We define bj =: 2
√
δ‖a‖2e ≤ 2eσ

|Ij |

√∑
k∈Ij

1
nk
.

To get a bound for (II) we see that maxj ‖(Θ̂k)j·−(Θk)j·‖1 . max{Ks∗k,K2sk,0}
√

log d/nk,
and ‖∆k‖∞ . Ksk,0 log d/nk. We also notice that {xkiρ̇(yki,x

T
kiθ
∗
k)}i∈[nk],k∈[m] are mean zero

bounded random vectors. Hence, by Bernstein inequality we can show that for sufficiently
large nk’s we can get a bound

‖∇`k(θ∗k)‖∞ .

√
log d

nk

with probability at least 1 − d−2. Hence, by union bound we get

‖(Θ̂k)j· − (Θk)j·‖1‖∇`k(θ∗k)‖∞ + |(∆k)j | .
max{Ks∗max,K

2s0,max} log d

nmin
for all j, k

with probability at least 1 − o(1).

Again by union bound, we get

|(θ̃0)j − (θ∗0)j | ≤ bj
√

log d+ C
max{Ks∗max,K

2s0,max} log d

nmin
, for all j (B.1)
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with probability at least 1 − o(1), where C > 0 is some constant. Since, bj ≥ σ′
√

1
mnmax

,

for some σ′, from assumption (iv) we get
max{Ks∗max,K

2s0,max} log d
nmin

. bj
√

log d. Hence, for

sufficiently large
n2

min
nmax

, the above high probability bound reduces to

|(θ̃0)j − (θ∗0)j | ≤ bj
√

log d

with probability at least 1 − o(1).

Under the assumption (iii) we have bj ≤ 2eσ
√

1
|Ij |2

∑
k∈Ij

1
nk
, which gives us the first

result.
For the second inequality we get a bound for each θ̃dk of the form:

‖θ̃dk − θ∗k‖∞ ≤ 2σ

√
2 log d

nk
+ Ck

max{Ks∗k,K2sk,0} log d

nk
, for each k

with probability at least 1 − o(1). Form the above bound and (B.1) we get

‖δ̃k − δ∗k‖∞ ≤ 2σ

√
2 log d

nk
+ Ck

max{Ks∗max,K
2s0,max} log d

nk

+ 2eσ

√√√√ log d

|Ij |2
∑

k∈Ij

1

nk
+ C

max{Ks∗k,K2sk,0} log d

nmin
.

hence, for sufficiently large nk’s, we have

‖δ̃k − δ∗k‖∞ ≤ 4σ

√
log d

nk
for all k,

with probability at least 1 − o(1).

Result 13 For each k ∈ [m] let ‖θ̃k − θ∗k‖∞ ≤ ξ, where ξ < minj
1
4(ηj − 2δj) ∧ (δ2j/2− ηj).

Then the assumptions 4 are satisfied for {θ̃k}mk=1 for {δ̃j = δj + ξ/2}dj=1, {δ̃2j = δ2j − 2ξ}dj=1

and {ηj}dj=1.

Proof Let j ∈ [d]. Consider the same Ij as in assumption 4, (i). Let µ̃ = 1
Ij

∑
k∈Ij θ̃k. Notice

that for ‖θ̃k−θ∗k‖∞ ≤ ξ we have |µ̃−µ| ≤ ξ. We further notice that 2(δj +2ξ) < ηj <
δ2j−2ξ

2 .

This implies assumption 4, (ii) and (iii) are satisfied with δ̃j = δj + 2ξ and δ̃2j = δ2j − 2ξ.

Result 14 (Bernstein’s inequality) Let {xi}ni=1 be independent random variables with
Exi = 0, Ex2

i ≤ σ2. Suppose for some λ0 > 0 and M > 0 the following holds for all i ∈ [n] :

Eexp(λ0|xi|) ≤M.
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Then for any a ∈ Rn and t ≤ Mσ2‖a‖22λ0

‖a‖∞ the following holds:

P

(∣∣∣∣∣
n∑

i=1

aixi

∣∣∣∣∣ > t

)
≤ 2exp

(
− t2

2‖a‖22σ2M

)
.

Lemma 15 (Bennett’s Inequality) Let X1, X2, . . . Xn be independent random variables
such that (1) EXi = 0, (2) EX2

i ≤ δ, and (3) |Xi| ≤ 1. Then for any a1, a2, . . . , an ∈ R and
for any t > 0

P

(∣∣∣∣∣
n∑

i=1

aiXi

∣∣∣∣∣ > t

)
≤





2exp
(
− t2

2δ‖a‖22e2

)
, if t ≤ t∗

2exp
(
− t

4‖a‖∞ log
(
t‖a‖∞
δ‖a‖22

))
, if t > t∗

where t∗ =
δ‖a‖22
‖a‖∞ e

2.

Proof Without loss of generality assume ‖a‖∞ = 1. Let λ > 0. Set Y =
∑n

i=1 aiXi. Then

Eexp(λY ) =
n∏

i=1

Eexp(λaiXi).

For any y ∈ R, ey ≤ 1 + y + y2

2 e
|y|.

Hence

Eexp(λaiXi) ≤ 1 + E
λ2a2

iX
2
i

2
e|λaiXi|

≤ 1 +
λ2a2

i δ

2
eλ

≤ exp

(
λ2a2

i δ

2
eλ
)

Therefor Eexp(λY ) ≤ exp
(
λ2‖a‖22δ

2 eλ
)
.

By Markov’s inequality

P(Y > t) ≤ exp

(
λ2‖a‖22δ

2
eλ − λt

)
.

We have to minimize φ(λ) = λt− λ2‖a‖22δ
2 eλ.

(1) Consider the case λ ≤ 2. Then φ(λ) ≥ λt− λ2‖a‖22δ
2 e2. minimization with respect to λ

gives us φ(λ) ≥ λt− λ2‖a‖22δ
2 e2 ≥ t2

2‖a‖22δe2
. Since the minimum attains at λ = t

‖a‖22δe2
, under

the condition λ ≤ 2 we have t ≤ δ‖a‖222e2. Hence, for t ≤ δ‖a‖222e2 we get the upper bound

P(Y > t) ≤ exp

(
− t2

2‖a‖22δe2

)
.
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(2) Consider the case of λ > 1. This implies λ < eλ. Then φ(λ) ≥ λt − λ‖a‖22δ
2 e2λ =

λ
(
t− ‖a‖

2
2δ

2 e2λ
)
. Choose λ2 such that

‖a‖22δ
2 e2λ2 = t

2 . Then φ(λ) ≥ λ2t/2 = t
4 log

(
t

‖a‖22δ

)
.

Also from λ2 > 1 we get 1
2 log

(
t

‖a‖22δ

)
> 1 which gives us t ≥ ‖a‖22δe2. Hence, for t ≥ ‖a‖22δe2

we get the upper bound

P(Y > t) ≤ exp

(
− t

4
log

(
t

‖a‖22δ

))
.

So, there is an overlap in the interval (δ‖a‖2e2, 2δ‖a‖22e2) under which we get both the
tails. We just choose t∗ = δ‖a‖22e2.

Appendix C. A weighted data integration

In this section we consider a setup of weighted data integration where the weight w =
(w1, . . . , wm) (

∑m
k=1wk = 1) are applied in integration step the debiased lasso estimators:

(
θ̃w0

)
j

= arg minx
∑m

k=1wkΨηj

((
θ̃dk

)
j
− x
)
. (C.1)

The corresponding global parameter (θw,∗0 ) is identified via weighted re-descending loss:

(θ∗0)j = arg minx∈R
∑m

k=1wkΨηj ((θ
∗
k)j − x), (C.2)

and the unique identification of such global parameter is guaranteed by a similar set of
structural conditions as in Assumption 4. We state the conditions below:

Assumption 16 (P1) Let Ij be the set of indices for (θ∗k)j’s which are considered as non-
outliers. We assume (

∑
k∈Ij wk) ≥ 4/7.

(P2) Let µj =
(∑

k∈Ij wk(θ∗k)j
)
/(
∑

k∈Ij wk). Let δ be the smallest positive real number such

that (θ∗k)j ∈ [µj − δ, µj + δ] for all k ∈ Ij . We assume that none of the (θ∗k)j’s are in
the intervals [µj − 5δ, µj − δ) or (µj + δ, µj + 5δ].

(P3) Let δ2 = mink1∈Ij ,k2 /∈Ij |(θ∗k1
)j − (θ∗k2

)j |. Clearly, 4δ < δ2. We choose ηj such that
2δ < ηj < δ2/2.

Result 17 Under the conditions (P1)-(P3) in Assumption 16, the objective functions∑m
k=1wkΨηj ((θ∗k)j − θ) is uniquely minimized at (θ∗,w0 )j = µj , for all j.

Proof This proof is exactly same as the proof of Result 5 if we assume that there are wk
proportitions of θ∗k.

Theorem 18 Let the followings hold:

(i) For any j, {(θ∗k)j}nk=1 satisfy the assumption 16.
(ii) The datasets {Dk}mk=1 satisfy the Assumption 1 uniformly over k
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(iii) Let sk,0 be sparsity for θ∗k and s∗k being the maximum sparsity for the rows of
the inverse of E[`k(θ

∗
k)]. Define s0,max = maxk sk,0, s∗max = maxk s

∗
k and seff =

max{Ks∗max,K
2s0,max}. We assume m = o

(
n2

min

s2effnmax log d

)
, where, nmax = maxk∈[m] nk,

and nmin = mink∈[m] nk.

Then for sufficiently large nk we have the following bound for the co-ordinates of θ̃0 and
`∞ bound for δ̃k:

∣∣∣(θ̃w0 )j − (θw,∗0 )j

∣∣∣ ≤ 4σ

√√√√ log d

(
∑

k∈Ij wk)
2

∑

k∈Ij

w2
k

nk
, for all j,

and ‖δ̃wk − δw,∗k ‖∞ ≤ 4σ

√
log d

nk
, for all k,

δ̃wk = θ̃dk − θ̃w0 , δw,∗k = θ∗k − θw,∗0

(C.3)

with probability at least 1− o(1).

Proof The proof is similar to the proof of Lemma 6 if we replace γ
(j)
k by wk∑

k∈Ij
wk

1Ij (k).

Appendix D. Computational results: generalized linear model

In this section we perform synthetic experiments similar to Section 5 on binary classification
setup. The covariates are d = 100 dimensional and again generated from AR(1) model
with correlation ρ = 0.9 and variance 0.25 (x = (x1, . . . .xd), x1 ∼ N(0, 0.25) and xj =

ρxj−1 +
√

1− ρ2εj , εj ∼ N(0, 0.25)), and the response yk for k-th dataset is generated as:

yk,i ∼ Bernoulli(σ(x>k,iβ
∗
k)), σ(t) =

et

et + 1
.

We preform the debiased lasso on logistic regression to get the local estimates and keep rest
of the setup exactly same as before.

In Figure 9 compare the `2-error of global parameter estimates with corresponding global
parameters (note that they are different). The behaviors are similar to the linear models.
For a fair comparison with the same baseline, we examine the prediction performance of the
global parameters on new test data (not seen before), which one can find in Figure 10. The
results for the logistic regression model have similar behavior as the linear regression model.

Appendix E. Supplementary details for cancer cell line study

In the following section we provide the detail about cancer cell line dataset.

E.1 Data source and preprocessing

The Cancer Cell Line Encyclopedia is a database on gene expression, genotype and drug
sensitivity data. As covariates, we use the RNAseq TPM gene expression data DepMap
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Figure 9: Upper left : Errorbar plots for `2-error in estimation of β0 using different global
estimators for varying sample sizes in each datasets (nk) with m = 5 and s = 5. Upper right :
For varying m with nk = 200 and s = 5. Lower left : For different s with nk = 200 and
m = 5. Lower right : For different η with nk = 200 and s = 5 and m = 5.
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Figure 10: Upper left : Errorbar plots for prediction errors in test data using global estimators
for varying sample sizes in each datasets (nk) with m = 5 and s = 5. Upper right : For
varying m with nk = 200 and s = 5. Lower left : For different s with nk = 200 and m = 5.
Lower right : For different η with nk = 200 and s = 5 and m = 5.
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Drug: 17−AAG

Figure 11: Left: Drug-response prediction mean squared errors (MSEs) for the most frequent
cancer types (upper left) and rare cancer types (lower left panel) for the drug 17-AAG.
Right: Coefficient plot for the selected genes in lasso estimates for most frequent cancer
types and ADELE and Mr Lasso.

(2021) for just protein coding genes (DepMap 21Q2 Public release) and the pharmacologic
profiles for 24 anticancer drugs Consortium et al. (2015) across 504 across lines as the
responses. The cell-lines in the gene expression data and the drug response data are matched
using the pairs of cell line name and depmap id from the secondary screen dose response curve
parameters file Corsello et al. (2019) (secondary-screen-dose-response-curve.csv). These data
files are publicly available in DepMap portal3

The gene expression data has genetic expression for d = 19177 genes across 1379 cell
lines. After matching them with the drug response data we only keep the cell lines for
which the dose-response curve was fitted using sigmoid function. We use the area above
dose-response curve (ActArea) as the drug response measure. Finally we end up with 482
cell lines in total. The codes are available in https://github.com/smaityumich/MrLasso.

E.2 Drug-response prediction plots

Next we present prediction error plots and gene selections for the drugs 17-AAG, Irinotecan,
AZD0530, AEW541, ZD-6474, TKI258, RAF265 and PF2341066.

3. Depmap portal: https://depmap.org/portal/
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Drug: Irinotecan

Figure 12: Left: Drug-response prediction mean squared errors (MSEs) for the most frequent
cancer types (upper left) and rare cancer types (lower left panel) for the drug Irinotecan.
Right: Coefficient plot for the selected genes in lasso estimates for most frequent cancer
types and ADELE and Mr Lasso.
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Drug: AZD0530

Figure 13: Left: Drug-response prediction mean squared errors (MSEs) for the most frequent
cancer types (upper left) and rare cancer types (lower left panel) for the drug AZD0530.
Right: Coefficient plot for the selected genes in lasso estimates for most frequent cancer
types and ADELE and Mr Lasso.
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Drug: AEW541

Figure 14: Left: Drug-response prediction mean squared errors (MSEs) for the most frequent
cancer types (upper left) and rare cancer types (lower left panel) for the drug AEW541.
Right: Coefficient plot for the selected genes in lasso estimates for most frequent cancer
types and ADELE and Mr Lasso.
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Drug: ZD−6474

Figure 15: Left: Drug-response prediction mean squared errors (MSEs) for the most frequent
cancer types (upper left) and rare cancer types (lower left panel) for the drug ZD-6474.
Right: Coefficient plot for the selected genes in lasso estimates for most frequent cancer
types and ADELE and Mr Lasso.
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Drug: TKI258

Figure 16: Left: Drug-response prediction mean squared errors (MSEs) for the most frequent
cancer types (upper left) and rare cancer types (lower left panel) for the drug TKI258. Right:
Coefficient plot for the selected genes in lasso estimates for most frequent cancer types and
ADELE and Mr Lasso.

48



Meta-analysis of heterogeneous data

2−6

2−4

2−2

20

22

cn
s

(nk=
19)

endometriu
m

(nk=
12) lung

(nk=
55) ova

ry

(nk=
15)

pancre
as

(nk=
18) ski

n

(nk=
29)

ove
rall

M
S

E

2−2

20

22

bone
breast

large in
testin

e
live

r

oeso
phagus

pleura

so
ft t

iss
ue

sto
mach

urin
ary 

tra
ct

ove
rall

M
S

E

Mean MrLasso global.Lasso

CCDC73

GDF11

GDPD3

IMMP2L

IRAG1

LRIF1

POGLUT1

PSG4

cn
s

en
do

metr
ium lun

g
ov

ary

pa
nc

rea
s

sk
in

Mea
n

MrLa
ss

o

Drug: RAF265

Figure 17: Left: Drug-response prediction mean squared errors (MSEs) for the most frequent
cancer types (upper left) and rare cancer types (lower left panel) for the drug RAF265.
Right: Coefficient plot for the selected genes in lasso estimates for most frequent cancer
types and ADELE and Mr Lasso.
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Figure 18: Left: Drug-response prediction mean squared errors (MSEs) for the most frequent
cancer types (upper left) and rare cancer types (lower left panel) for the drug PF2341066.
Right: Coefficient plot for the selected genes in lasso estimates for most frequent cancer
types and ADELE and Mr Lasso.
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