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Abstract—Micro scanning mirrors (MSM) extend the range
and field of view of LiDARs, medical imaging devices, and
laser projectors. However, a new class of soft-hinged MSMs
contains out-of-plane translation in addition to the 2 degree-
of-freedom rotations, which presents a cabliration challenge.
We report a new calibration system and algorithm design to
address the challenge. In the calibration system, a new low-cost
calibration rig design employs a minimal 2-laser beam approach.
The new new algorithm builds on the reflection principle and
an optimization approach to precisely measure MSM poses.
To establish the mapping between Hall sensor readings and
MSM poses, we propose a self-synchronizing periodicity-based
model fitting calibration approach. We achieve an MSM poses
estimation accuracy of 0.020° with a standard deviation of 0.011°.

I. INTRODUCTION

Micro scanning mirrors (MSMs) are important component
of active sensing, and they can extend the range and field of
view (FoV) of LiDARs [1], medical imaging devices [2], and
laser projectors [3]. Although existing research has explored
techniques for calibrating MSMs with pure 2 degrees of
freedom (DoF) in rotation, a full 3-DoF MSM motion model
with additional translation pointing out of the mirror plane has
not been well studied [4, 5, 6, 7, 8]. In fact, the additional
translation cannot be ignored in soft-hinged MSMs which
are built upon hinges made of soft material instead of rigid
revolute joints. Simultaneously measuring the 2-DoF rotation
and 1-DoF translation of MSMs remains challenging because
1) the three types of motion’s influence on reflection are
coupled and cannot be recovered separately by observing a
single reflected point, and 2) the small mirror surface area
and large dynamic scanning range of MSMs make recovering
3-DoF motions from direct observations of the mirror plane
impractical.

To address the challenge, we present a new calibration
system and the corresponding algorithm design for the dy-
namic 3-DoF MSM system, which consists of a soft-hinged
MSM with a triaxial Hall effect feedback sensor (Fig. 1(a))
[9, 10]. Our contributions are threefold. First, we design a low-
cost minimal 2-laser beam approach to reduce hardware cost
(Figs. 1(b)) and 1(c)). With the help of two planar calibration
boards, the design can accurately estimate the 3-DoF MSM
pose without using linear stages for precise optical alignments.
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Fig. 1: (a) Schematics of the MSM (best viewed in color),
components of the fast axis, slow axis and out-of-plane
translation are colored in red, blue and green, respectively.
(b) Incident beam estimation setup. (c) Mirror pose estimation
setup.

Second, we derive calibration algorithms that build on a factor
graph optimization framework that incorporates the reflection
principle and conduct error analysis on the method. Third, we
develop a self-synchronizing calibration scheme to establish
the nonlinear mapping between Hall sensor readings and MSM
poses. We have developed and implemented the entire system
and algorithms. The results show that we can achieve an MSM
poses estimation accuracy of 0.020° with a standard deviation
of 0.011°.

II. RELATED WORKS

Calibration is essential in the development and maintenance
of a robotic system [11, 12]. Mechanism calibration and sensor
calibration are two common types. The calibration of the robot
mechanism focuses on estimating the kinematic or inertial
parameters of the robot from actuator input and sensor mea-
surements [13, 14]. Sensor calibration focuses on estimating
the sensing model parameters from sensor measurements. Our
MSM calibration is a combination of a mechanism calibration
between the 3-DoF MSM poses and camera measurements and
a sensor calibration between MSM poses and the triaxial Hall
effect sensor measurements.

The mechanism calibration of MSM poses is related to
manipulator calibration [15] and hand-eye calibration as the
mirror plane can be seen as an end-effector. While com-
mon practices of attaching markers to the end-effector for



pose estimation are applicable for regular-sized static mirrors
[16, 17], they are not suitable for MSM due to its small size
and dynamic scanning nature, attaching markers on the MSM
will result in a change of scanning dynamics and deviated
scanning poses. Similarly, the estimation methods that utilize
real-virtual point constraints for regular-sized static mirrors
proposed in [18, 19, 20, 21] are impractical because the
requirement of observing the points on objects and their virtual
counterparts in mirror cannot be satisfied during fast MSM
scanning. To measure MSM poses while accommodating the
small size and dynamic scanning constraints, stroboscopic
interferometer and position-sensitive detector (PSD) based
methods have been investigated in the existing literature. The
stroboscopic interferometer incorporates a periodically pulsed
light source to illuminate the MSM at a specific scanning phase
and estimates 3-DoF MSM poses from the interferometric im-
ages [8, 22]. The stroboscopic interferometer setup proposed
by Rembe et al. has been shown to be capable of measuring
dynamic MSM with up to um out-of-plane translation and
+12° rotations [22]. Although a stroboscopic interferometer
provides superior measurement accuracy, its limited measure-
ment range and costly complicated setup obstruct its applica-
tions. PSD-based methods estimate 2-DoF MSM rotations by
tracking a reflection point of an incident laser beam on the PSD
[23, 24]. Recent research focuses on improving the accuracy
and range of measurements. In [25], Yoo et al. proposed a
PSD-based MSM test bench with 0.026° accuracy in the 15°
MSM scanning range. Baier et al. incorporated a PSD camera
with a ray-trace shifting technique into their MSM test bench
and achieved a measurement uncertainty of less than 1% in
the 47° MSM scanning range [26]. These existing PSD based
methods assume a precise alignment of the incident laser beam
and the rotation center of the MSM due to their limitation
in differentiating MSM translational motion with rotational
motion, which impacts their accuracy when MSM out-of-
plane translation is non-negligible or the incident beam fails to
align with the mirror rotation center. Inspired by these existing
works, our MSM mechanism calibration measures dynamic 3-
DoF MSM poses by tracking the reflection of multiple incident
laser beams generated by a strobe light with a camera.

Time offset estimation is required when the temporal mis-
alignment in calibration measurements is not negligible, which
is common when sensors have different clocks and sampling
rates [27]. In [28, 29], the time offset is estimated by aligning
the rotational changes measured by the sensors. Xia et al.
show the independent estimations of time offset and the linear
relationship between the motion of the MSM and the acoustic
feedback in [24]. A joint estimate of the time offset and other
intrinsic and extrinsic parameters is preferred when the sensors
do not have common measurements or follow a simple linear
relationship [30, 31, 32]. Building on existing methods, we
propose an MSM calibration approach that jointly estimates
time offset and model parameters to incorporate the nonlinear
relationship between MSM motion and Hall effect sensor
feedback.

III. CALIBRATION SYSTEM DESIGN

The MSM mechanism is reviewed before we elaborate the
calibration procedure and the design of the rig.

A. MSM Mechanism Review

Fig. 1(a) illustrates the mechanical structure of our 2-axis
MSM that is detailed in our previous work [9, 10]. Each mirror
axis has a pair of soft hinges which form a gimbal structure to
support the inner and the middle mirror frames. When currents
flow through actuation coils of each axis, a magnetic force is
generated and applied to the corresponding actuation magnets
to rotate the mirror frame around the hinge pair. A sensing
magnet is mounted on the back of the mirror plate. Therefore,
the MSM motion changes the sensing magnet’s magnetic field,
which is perceived by a Hall effect sensor mounted on the fixed
base plate.

The mirror scanning motion is actuated by applying sine
wave-shaped alternating currents to the coils. For each scan-
ning axis, the maximum scanning angle is achieved when the
frequency of the input sine wave signal matches the resonance
frequency of the MSM mechanism, which is the resonant
scanning mode of the mirror. The mirror motion has 3 DoFs
which include two rotational motions (one is fast and the
other is slow) and out-of-plane translation because the soft
hinges are made of polymeric materials. Before detailing the
MSM calibration principle, we introduce common notations
as follows.

B. Nomenclature

All 3D coordinate systems or frames are right handed and
Euclidean unless specified. P> and P3 are 2D and 3D projective
coordinate systems, respectively. S is the unit 2-sphere in the
3D Euclidean coordinate system, T,S? is the tangent space at
the point v € S?. []» demotes skew-symmetric matrix.

{0} represents the MSM home frame, which is a fixed 3D
system defined by the MSM home position. Its origin is
at the MSM rotation center. Its Z-axis is parallel to the

MSM normal vector. Its X-axis is parallel to the mirror

fast axis.

is a fixed 3D frame defined by a fixed world plane 7.

Its origin is in the upper left corner of the checkerboard

pattern in 7y . Its Z-axis is perpendicular to 7w and points

inward. Its X-axis is parallel to the horizontal direction
of the checkerboard pattern.

% is a point in the image, % € R?. Tts homogeneous coun-
terpart is x = [X' 1]T € P2,

X is a point in the 3D Euclidean space, X € R3. Its homo-
geneous counterpart is X = [X' 1]T € P3.

7 is a plane. 7 =[n" d]7, n € S? is its unit length normal
vector and d is its distance to the origin.

L is a 3D line. L = [[v], m], v € S? is its unit length
direction vector and m € TyS? is its moment vector at
coordinate Pliicker [33, 34].

B is a triaxial Hall effect sensor measurement vector of the
magnetic field, B = [by by b,]" € R3.

W}



We use the left superscript to denote the coordinate system
of an object; WX is a point in the coordinate system {W}.
Variables without a specified coordinate are defaulted to {W}.

C. Calibration Principle

Recall that an MSM has a compact size and driving
frequency-dependent working range; we cannot directly attach
markers to it. Instead, we estimate MSM poses during resonant
scanning by observing the reflected pulse laser dot positions
on a world plane my. Let us explain the working principle.

Fig. 2(a) shows that the incident laser beam L; and its
reflected laser dot X; on 7mw define a light-path plane 7,
which is perpendicular to the mirror plane my. Therefore, its
normal vector np; must also be perpendicular to the mirror
normal my, this forms a single DoF constraint. By including
another incident laser beam, we can obtain the new normal
vector ny of its light-path plane in a similar way. We maintain
nr, # np; when choosing the second incident laser beam.
Therefore, the normal vector of the two DoF mirror plane
ny can be derived as follows, my; = np; X npp, where ‘X’
means cross product. The spanning angle 6 between np; and
Ny, is a control variable, and we will discuss its effect on the
uncertainty of the estimation in Sec. VI-BI.
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Fig. 2: Mirror pose estimation principle (best viewed in color):
(a) Mirror normal ny; is estimated from light-path plane
normal vectors np | and npp, 6 is the spanning angle between
them. (b) A point X1 on mirror plane is estimated from the
real-virtual points X; and Xj.

Once the 2-DoF mirror plane normal is determined, the last
DoF of the MSM pose can be determined by identifying any
point on the mirror plane. Here, we identify the middle point
Xmi between the reflected laser dot X; and its reflection point
X{. We know the line X X} // my. Therefore, the line XX
is uniquely defined because we know X; and mp;. As shown
in Fig. 2(b), the intersection of the line XX/ and the incident
beam line L; is X}. With ny and X = 3(X; + X)), the
mirror plane my is uniquely determined. In summary, with
two incident laser beams L; # Ly and their corresponding
observation points X and X», the mirror plane my is uniquely
defined.

D. Calibration Rig Design and Procedure

To obtain two pairs of non-parallel laser beams and their
reflected laser dots, we employ a beam splitter to generate
two laser beams from a pulse laser source and a camera to
observe the reflected laser dots positions. This leads to a two-
step process described by Figs. 1(b) and 1(c).

The first step is to obtain the 3D line parameters of the
incident beams. Fig. 1(b) shows the setup where a fixed camera
observes the sliding plane 7g and the fixed world plane my.
The camera is placed with a good view of the sliding planes.
The corresponding camera coordinate system is defined as
Ci. The MSM is not mounted in this step to allow the two
incident beams to project points directly onto mg. We track
their projected laser dots on a sliding plane, since laser beams
are not directly visible in the camera image. When we move g
closer to the laser source, the positions of the laser points on g
change with motion. The sliding plane coordinate system {S;}
with its /-th pose is defined with respect to its checkerboard,
similar to how {W} is defined. To reconstruct the incident
beams, from image I; we extract the laser points x;; of the
i-th incident beam and the checkerboard corner points X
and x,,;, where s and w are index variables for the s-th and
the w-th corner points on the sliding plane and world plane,
respectively.

At the end of the step, before the movable part of the MSM
(i.e. the top frame of the mirror in Fig. 1(a)) is assembled,
we also collect background magnetic field measurements B,
which include periodic background noises generated by actu-
ator coils. We use function generators to drive the actuation
coils with the sine wave signals that excite resonance mirror
scanning, and record background measurements By, from the
Hall effect sensor. We will show how to use Bj to cancel
background noise later in the paper. After this step, the MSM
is fully assembled to measure the actual magnetic field B,
during mirror scanning.

Fig. 1(c) shows the second step in estimating the mirror
pose, where the camera aims at 7w and the MSM is mounted
to reflect incident beams to project points onto 7y . The camera
pose is adjusted to have a good view of mw with its camera
coordinate system defined as C,. Note that incident beams
maintain the same configuration as in the last step.

The synchronized pulse laser and the mirror scanning sig-
nals create a pair of dotted scanning patterns from the two
incident beams. The k-th image I; captures the checkerboard
corner points X,,; on 7w and the reflected laser points x; ; of
the incident beam i-th triggered at time ¢;.

In image processing, we apply color thresholding to extract
laser dots from images. For each laser dot, the mean position of
extracted pixels is used to represent its 2D position in image.
By the central limit theorem, the i-th laser dot position X;
follows a Gaussian distribution N(0,Xy;), where Xy; = %\‘}l is
the covariance matrix of x;, Xp; is the covariance matrix of the
2D pixel positions, and N is the number of extracted pixels.

E. Signal Synchronization and Sparse Signal Triggering

To capture dynamic mirror motion and reduce motion blur
caused by mirror scanning, we use a pulsed laser with a 15
ns pulse width as our strobe light source, which also frees
the camera from triggering or synchronizing. To establish the
correspondence between laser dot positions, mirror driving
signals, and Hall sensor readings, we use a function generator
(FG) to provide 4 synchronized signals (Fig. 3(a)) that include
a pulse signal to trigger the laser source, two sine wave driving



signals to activate coils in the MSM, and a clock signal to
align with Hall effect sensor interrupt signals generated by
the microcontroller unit (MCU).

Synchronization clock
Slow axis current
Fast axis current (b)

Laser trigger
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Fig. 3: (a) One cycle of the 4 signals generated. (b) Expected
scanning pattern where the orange line is the ideal laser dot
trajectory and green dots are the locations illuminated by the
laser pulses. (c) The observed dot pattern in the image.

Because cluttered laser dots in an image may lead to
incorrect dot center estimation, we generate the laser trigger
signals according to the mirror motion, which makes the laser
dots sparsely spaced. Since the rotation angle is nearly linear
to the driving current of the mirror, we can match the trigger
signal with the driving sine waves to ensure the sparsity of the
laser dots. Fig. 3 illustrates an example where the two sine-
wave signals drive the corresponding mirror axis. To avoid
cluttering, the laser pulse is triggered when both sine waves
have a positive gradient and their vertical distance in signal
space (Fig. 3(b)) is constant.

IV. PROBLEM FORMULATION

We have the following assumptions:

a.l1 The camera is pre-calibrated which means known intrin-
sic parameters with lens distortion removed.

a.2 The MSM scanning pattern is repeatable given the same
input current sequence.

Mirror calibration is a two-step process. The first step is a
mirror pose estimation problem.

Definition 1 (Mirror Pose Estimation): Given the obser-
vation points of the two incident laser beams x;; and their
reflected laser points x; ; in their respective image coordinates
and checkerboard points Xg;, X,; and X, in the image,

estimate the mirror planes OﬁfMj.
Xs,1; X, 1 X k B., By
Xij ~ " "
— Estimate 3D |Xi; |Estimate Mirror [t™; | _ Ty | Estimate Time offset |
> Estimate {0} F— &

ﬁ. Point/Line |L;; | Pose in {W}

Model Parameters

1) Mirror Pose Estimation 2) Hall Sensor Calibration

Fig. 4: Calibration block diagram.

The second step is to model and calibrate the mapping between
Hall sensor readings and mirror poses.

Definition 2 (Hall Sensor Calibration): Given a sequence
of mirror planes 7, j» sequence of background magnetic field
measurements B, and actual measurements B, from the Hall
sensor, estimate the time offset ¢ and the parameters of the
model f:R3 — R3? that maps Hall sensor readings to mirror
poses.

V. CALIBRATION ALGORITHM

The calibration pipeline is shown in Fig. 4. We start with
mirror pose estimation.

A. Mirror Pose Estimation

For simplicity, we omit the index subscript j for the
variables associated with time #; before Sec. V-A3. In other
words, the points x; ; and X; ;, the lines L; ; and the planes 7
will be noted as x;, X;, L;, and 7y, respectively, in Secs. V-Al
and V-A2.

1) Estimate 3D Point/Line: Because the mirror pose is
estimated from points in camera image, let us first introduce
the camera projection model and then explain how to obtain
the transformation between the camera coordinate systems and
{W} and {S} defined by the planes 7w and 7.

According to [35], a 3D point X in world coordinate {W }
and its counterpart X in camera image satisfies

x = AK[R t]X. (1)

Here A is a scaling factor, K is the intrinsic matrix of the

camera, R and t are rotation and translation components of
R

0 1
from coordinate of the world plane {W} to coordinate of the
camera {C}. %T is estimated by solving the perspective n-
point problem (PnP) [36] with K from camera calibration and
checkerboard points.

In the setup shown in Fig. 1(b), the transformations g}T
and g‘T between the camera coordinate system {C;}, {W}
and {S;} are obtained from the checkerboard corner points
Xs1, Xy and their corresponding 3D planar checkerboard
corner points by solving the PnP problem. Similarly, for the
camera coordinate system {C,} in the second step (Fig. 1(c)),
€V2T is solved with PnP using checkerboard corner points
Xy and their 3D counterparts. Because the grid size of the
checkerboard pattern is known, the true scale is recovered in
the process.

3D point X; on the world plane can be derived from
its image counterpart x; with the transformation matrix %T
estimated from PnP, as X; = RT(%K_lx,- —t), here R and t are
components from vcva and A = %xi, where []3 denotes
the third row of a vector or matrix. ’

The points in the sliding plane 75 share the same derivation
as the points in myw. Therefore, we can obtain the observation
points of all incident laser beams *! X, from x; ;. We transform
the points in {S;} to {W} as X;; = CVYITSC,IITSIXM, where the
transformation matrix EVIT and gllT is obtained by solving the
PnP problem.

We represent a 3D line with Pliicker coordinates. The inci-
dent laser beam L; = [[v;]x my] is formed by the direction vec-
tor v; and the moment vector m;. The direction vector v; can
be estimated from the points in the incident laser beam by the
principal component analysis (PCA) as (XLi —XLi)T =USVT,
where Xp; = [... Xiy ...] arc the laser dots observed in
the sliding plane as shown in Fig. 1(b), X; is the mean of
the row of Xp;. The first principal component of V is the

the transformation matrix %,T = , which transform



direction vector v; of L;. The moment vector m; is given by
m; = v; x X following the conventions of [33].

Any point X;; on L; satisfies v; X X,-J 4+m; =0 and Xj; =
X[ 1], a line constrain can be formulated as

L X1 =0. 2

For any point X; not on L;, the normal vector of the light
path plane they form is given by ny; = v; x (X; — X1;) = L;X;.

2) Estimate Mirror Pose in {W}: As discussed in
Sec. II-C, mirror plane my is calculated from incident beams
L; and their reflected laser dots X;.

The mirror plane my is perpendicular to the light path planes
7; means that the mirror normal ny; and the normal light path
planes ng; are also perpendicular. Therefore, ny can be solved
from N'ny =0, where NL = [... ny; ...] contains all the
normals in the light-path plane.

As shown in Fig. 2(b), for a reflected laser dot X;, its virtual
counterpart X/ lies on the extension of the incident beam L;.
X/ can be derived from the reflection transformation as X} =
X; —2(ny,X; — dy)nm [18]. Therefore a reflection constrain
can be formulated as

LHX; =0 3)
_ T _
where H = I ZgMnM 2di\4 M is the reflection transfor-

mation matrix.

To obtain the optimal mirror estimation results from the
initial solutions solved using (1), (2) and (3), we formulate a
Maximum Likelihood Estimation (MLE) problem that jointly
refines the parameters from measurements in camera images.

During optimization, the variables are represented in their
minimum parameterization to improve computation efficiency.
With the logarithmic maps Logg : SO(3) — R? and Log, :
S3 — R3 defined in [37], the transformation matrix T is
represented as T = [Logg(R)T tT]T € R®, the plane 7 is
represented as to 7 = Logq(ﬁ) € R3, the 3D line L is
mapped to L = [Logg(Rz)" m]" € R*, where m = ||m|| and
R,=[v ™ vx 2] The minimum parameterized variables
are aggregated as X = [PT LT TT|T to be optimized in
MLE, where P = [... 7%]&]- ..]T are all the mirror planes,
c-[. 1y .

CAT Ok Ci7 T .
b T 5 T" are all the transformations
between camera, the world plane and the sliding plane.

arec all the laser beams, and T =

@ x ar Vor

w :
s T L; TOMj

Ci

—l— Line Constrain —L Reflection Constrain
Fig. 5: Factor graph illustration of the MLE problem.

PnP Constrain

The cost function of the MLE problem is formulated as
the reprojection errors ol images points, and it has three
components, their detailed derivations are included in [38].
The first component Cp (green edges in Fig. 5) is from the
checkerboard corner points observed in the calibration process
(Fig. 1(b) and Fig. 1(c)). Cp(X) is defined as

Cp(X) =Y x— fr(T.X)|I3 4)

where fp is the PnP constraint derived from (1). Here
(x.T.X) € {(%n 3 T, Xe) s Kk T, Xe ), (K, 51 T, Xe) b X
is the known 3D checkerboard points on the sliding plane
and world plane predefined by the checkerboard pattern. || ||z
denotes the Mahalanobis distance. The second cost function
component Cy, (blue edges in Fig. 5) is from the laser beam
observation points shown in Fig. 1(b), C.(X) is defined as

CL(X) =Y Ixis — fu(§ T, L DB )
il
where fi is the line constraint derived from (1) and (2) as
the camera image projection of the intersecting point between
laser beam L and sliding plane 7. The third component of
the cost function Cg (red edges in Fig. 5) is from the reflected
laser dots shown in Fig. 1(c). Cg(X) is defined as

Cr(X) = X %0 — fiel T, Lo, ) 13 ©)
ij
where f is the reflection constraint derived from (1) and (3) as
the camera image projection of the intersecting point between
laser beam L and reflected world plane 7y with the reflection
relationship defined by mirror plane 7.
The MLE of X is solved by minimizing

II/{LH CP(X*)—FCL(X*)—FCR(X*) @)

using the Levenberg—Marquardt (LM) algorithm. And the
uncertainty of X* is given by

-1
ree (zmmﬁ B T g ) ()
w,il w.k 8,0 il ij

2/p (3 T Xe)
LQX
Jwi Afp(# T Xe)
J 9
o 2/p(5) T X0) .
where [Jy; | = — are the Jacobians.
Jii (T L T
- iy W
Jij 0%
afR(w2T*y£7$ﬁK/l')

To validate the paranfégers estimated from MLE, we use
the Euclidean distance between the reflected laser dot ob-
servations Xx,, ; in testing set and the predicted projection of
the reflected laser dot as our evaluation metric. Because the
data used for parameter estimation are not overlapped with
the testing data, we note the index variables m # i Vm,i. Let
P = [(T7)", (7)) " %y] T be the parameters we use for the

rtm
prediction, where x,, = [... x} , ...]T. The prediction error is

6m.,j = ||Xm.,j - fpred(pm,j)”2 ©)]

where || -[|2 is the L2 norm, f,., is the projection prediction
function derived from (1), (2) and (3). Under the Gaussian
noise assumption, the variance of the prediction error is

O j = IEIxJy +pZply (10)

i o ; s
m, m,J
where Jy = —Lax,,” and Jp = Tom Yp =

, where
ZX"!
Y7z is a submatrix of Xy derived in 8 and Xy, =
diag(...,Xy,...) is a block diagonal matrix with all the co-
variance matrix of X, ;.



3) Estimate {0}: Frame transformation from {W} and {0}
is to be estimated from the transient mirror poses 7y;. This is
a necessary step because we need to extract the mirror poses
in {0} before we can map them to the Hall sensor readings.

By definition, the X-axis of the mirror coordinate system is
parallel to the mirror fast axis, which is perpendicular to all
mirror normals during 1D fast axis scanning, this means that
we can estimate its directional vector er from N;ep =0 where
N = [ Nyt } contains all the mirror normals during
1D fast axis scanning. The Z axis of the mirror coordinate
system is parallel to the normal vector of the neutral mirror
position my. Therefore, the rotation matrix from {0} to {W}
is KVR = [eF npo X eg IIM()] .

The frame {0}’s origin X is defined as the center of mirror
rotation; in other words, it is the point that shares all mirror
planes. Therefore, Xo satisfies

[ Xo =0 (11)

where Iy = [... @y ...] contains all the mirror poses.

We can now derive the transformation matrix from {W}
WRT _WRTX o

to {0} as T = [“ 0 0 ) ] Mirror planes in {0}

is 071'1\/[J- = OWTTﬂMj which contains two angles of rotation and

one out-of-plane translation that can be mapped to Hall sensor

readings in the next step.

B. Hall Sensor Calibration

In Hall sensor data processing, we first linearly interpolate
actual and background readings B, and By, as Ba(#) and Bg(r)
to allow time offset estimation in model calibration [31]. Then
subtract the background signal from the actual signal to obtain
the foreground signal as B(r) = Ba(r) —Bg(r) [39]. With
background interference removed, let us model and establish
the mapping between the magnetic field readings and mirror
poses. The experiment setup that generates these readings will
be explained in the next section.
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Fig. 6: Angle measurements and Hall sensor readings in signal
space (a and b) and temporal space (¢ to f). (a), (¢), and (e)
are mirror poses while (b), (d), and (f) are magnetic field
readings with background removed. Time is coded in color.
Red ‘X’ shows one corresponding point across the two signals
in different domains.

The angle measurements and Hall sensor readings are shown
in Fig. 6. There is a clear correlation between the angle

measurements and the Hall sensor readings. Because the
sensing magnet is mounted on the back of mirror plate, its
motion direction is always opposite to the mirror movement.
This reversed motion is reflected in Figs. 6(a) and 6(b), a
point (marked with red ‘X’) in the top left corner of (a)
corresponds to the bottom right corner of (b). Translating the
correspondence in signal space to temporal space show the
time offset between the two signals, the time offset can be
observed by comparing Figs. 6(c) and 6(e) to Figs. 6(d) and
6(f).

Based on the a near linear relationship and periodicity of
the angle measurements and Hall sensor readings, we compare
a linear model to a sine wave model in the mapping between
the two types of signal.

A linear model maps a linear combination of the Hall sensor
readings to the mirror plane as

fL(AB))=A[B] 1]7 (12)

here A is a 3-by-4 matrix of model parameters, and B; = B(z;).
Similarly, a sine wave model can be modeled as

f5(A,Bj) = Alsin(®(B;))" 1]T (13)

here A is also a 3-by-4 matrix of model parameters. Phase
mapping function ®(B;) = 2nfB~!(B;), where f is a 3-by-1
vector of the foreground Hall effect sensor signal frequencies
obtained from the data, B~! is the inverse function of the
Hall sensor reading interpolation that maps the readings back
to time. We can now simultancously estimate the time offset
Ot that associates the two data sequences and the parameters
of each model f € {fi,fs} from

r/{l%f{llef(AvB(fjﬂL&)) — i |- (14)
o1

VI. EXPERIMENTS
A. Experiment Setup

The experiment setup is shown in Fig. 7. Checkerboard
patterns have a cell size of 10.0mmx10.0mm. We employ
two function generators (Keysight 33520B) to output driving
and triggering signals. The pulse width of our laser source
(Crystalaser QL532-1WO0) is 15 ns. The sampling rate of our
triaxial Hall effect sensor (Melexis ML.X90393) is 1 kHz,
and the MCU (STM NUCLEO-F439ZI) produces an interrupt
signal when it receives a Hall sensor reading. We employ an
industry-grade 10 mega-pixel CMOS camera (DS-CFMT1000-
H) to capture images, and the camera intrinsic parameters have
been calibrated using OpenCV.

B. Experimental Results

1) Mirror Pose Estimation Result: We collected six datasets
to validate the mirror pose estimation method in Sec. V-A.
The six datasets are combinations of two different MSM
scanning patterns and three laser beam setups with different
incident angles. We compare the estimation results from our
proposed 3 DoF mirror estimation method and a baseline
method employed in [26] that assumes pure MSM rotational
motion and precise alignment between the MSM center of
rotation and the incident laser beams.
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Fig. 7: Photo of the experiment setup.

We generate three laser beams using the beam splitter and
a static mirror. We employ two beams to estimate mirror
poses while validating the estimation with the third beam. The
choice of the two beams causes different angles between the
two incident beams and leads to different spanning angles 6
between the light path plane normals (shown in Fig. 2(a)). 6
changes during MSM scanning and as it approaches 90° it
reduces the uncertainty of mirror pose estimation; therefore,
we use it as a control variable to validate our results, a larger
average spanning angle 8 should lead to a smaller prediction
error.

Because the ground truth measurements of the 3 DoF mirror
poses are not available, we validate the estimated mirror
poses by comparing the projections of the reflected beam
on the world plane predicted by the estimations with the
actual observations. The difference between the predictions
and observations is calculated using (9) and converted from
pixel space to angular space. We used the root-mean-squared
angular errors 8 to measure the accuracy of our calibration.

TABLE I: Mirror Pose Estimation Result

Avg. Spanning Angle  Baseline Model Error ~ Proposed Model Error
o = s

Dataset

6(°) O£ (%) optop (°)
Pattern-A-1 18.45 0.045+0.023 0.042+0.026
Pattern-A-2 27.67 0.121+0.076 0.031+0.020
Pattern-A-3 46.13 0.036+£0.018 0.022+0.012
Pattern-B-4 18.34 0.106+£0.071 0.032+0.017
Pattern-B-5 27.15 0.133+0.093 0.030+0.008
Pattern-B-6 45.49 0.061+0.034 0.020+0.011

As shown in Tab. I, the maximum prediction error of
the proposed model is 0.042° in the six datasets, and the
minimum is 0.020°. The proposed 3-DoF mirror estimation
model performs better than the baseline model in all six
datasets.

The proposed model also shows a consistent error level
when choosing the same spanning-angle laser between the two
incident beams used in calibration. As shown in Tab. I, for
the Pattern-A-3 and Pattern-B-6 datasets, when the averaged
spanning angles @ between normals are greater than 45°, the
prediction errors are the smallest between the datasets. This is
expected because a larger angle between the light-path plane
normals leads to a smaller uncertainty range of the mirror
plane estimations; hence the higher accuracy improves. The
detailed error analysis results are included on page 4 of the
multimedia attachment file.

2) Hall Sensor Calibration Result: We have collected a
dataset with 195 mirror pose measurements and 130k actual
Hall sensor readings and 65k background Hall sensor readings.
The dataset is randomly divided into a training set and a testing
set with a ratio of 4:1. Both the linear model and the sine
wave model have been fitted into the training set by solving
(14) for the two candidate models in (12) and (13). Each
estimated model is then used to predict the mirror planes with
Hall sensor readings in the testing set, and the errors between
the predictions and measurements are used for comparison.
We repeat this process 50 times and compare the root mean
squared error of each model. To maintain independence of
the training and testing process, Hall effect sensor readings
are interpolated separately on the training and testing sets. In
the dataset, the range of mirror scanning angles is 4.37° and
17.17° for the fast and slow axes, respectively. The range of
out-of-plane translation is 1.04 mm.

The root-mean-squared test errors of the two models on the
50 random trails are shown in Tab. II. The sine wave model
performs better than the linear model, which is not surprising
because the sine wave model captures the inherent periodicity
property better than the linear model. It is also expected to be
more robust to the baseline shift caused by external magnetic
interference.

TABLE II: Hall Sensor Calibration Result

Model 8ot 04 () Sgtop ) Sytoy (mm)
Linear 0.1014+0.053  0.082+0.052  0.11-:0.08
Sine Wave  0.083+0.040  0.069+£0.040  0.1040.08

VII. CONCLUSIONS AND FUTURE WORK

We reported on our design of a calibration rig and algo-
rithms for MSM with triaxial Hall sensors. To reduce cost and
address the unique challenges brought by MSMs, we employed
a 2-laser beam approach assisted by two checkerboards. We
extracted laser dot patterns and modeled their reflection prop-
erty to propose an indirect mirror pose estimation method.
We also proposed a self-synchronizing optimization approach
that exploits the signal periodicity to map mirror poses to
Hall sensor readings. We constructed the calibration rig and
implemented algorithms. Our experimental results validated
our design with satisfactory results. In the future, we will
further explore optimal calibration setup (e.g. incident beam
number and spanning angles) and calibrate MSMs with differ-
ent sensory feedback methods. New results will be reported
in future publications.
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