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ABSTRACT

We introduce an optimal transport-based model for learning a metric tensor from
cross-sectional samples of evolving probability measures on a common Riemannian
manifold. We neurally parametrize the metric as a spatially-varying matrix field and
efficiently optimize our model’s objective using a simple alternating scheme. Using
this learned metric, we can nonlinearly interpolate between probability measures
and compute geodesics on the manifold. We show that metrics learned using our
method improve the quality of trajectory inference on scRNA and bird migration
data at the cost of little additional cross-sectional data.

1 INTRODUCTION

In settings like single-cell RNA sequencing (scRNA-seq) (Tanay & Regev, 2017), we often encounter
pooled cross-sectional data: Time-indexed samples

{
xi
t

}Nt

i=1
from an evolving population Xt with

no correspondence between samples xi
s and xi

t at times s ̸= t. Such data may arise when technical
constraints impede the repeated observation of some population member. For example, as scRNA-seq
is a destructive process, any given cell’s gene expression profile can only be measured once before
the cell is destroyed.

This data is often sampled sparsely in time, leading to interest in trajectory inference: Inferring the
distribution of the population or the positions of individual particles between times {ti}Ti=1 at which
samples are drawn. A fruitful approach has been to model the evolving population as a time-varying
probability measure Pt on RD and to infer the distribution of the population between observed times
by interpolating between subsequent pairs of measures

(
Pti , Pti+1

)
. Some existing approaches to

this problem use dynamical optimal transport to interpolate between probability measures, which
implicitly encodes a prior that particles travel along straight lines between observations. This prior is
often implausible, especially when the evolving population is sampled sparsely in time.

One can straightforwardly extend optimal transport-based methods by allowing the user to specify a
spatially-varying metric tensor to bias the inferred trajectories away from straight lines. This approach
is theoretically well-founded and amounts to redefining a straight line by altering the manifold on
which trajectories are inferred. Such a metric tensor, however, is typically unavailable in most
real-world applications.

We resolve this problem by introducing an optimal transport-based model in which a metric tensor may
be recovered from cross-sectional samples of evolving probability measures on a common manifold.
We derive a tractable optimization problem using the theory of optimal transport on Riemannian
manifolds, neurally parametrize its variables, and solve it using gradient-based optimization.

We demonstrate our algorithm’s ability to recover a known metric tensor from cross-sectional samples
on synthetic examples. We also show that our learned metric tensor improves the quality of trajectory
inference on scRNA data and allows us to infer curved trajectories for individual birds from cross-
sectional samples of a migrating population. Our method is both computationally-efficient, requiring
little computational resources relative to the downstream trajectory inference task, and data-efficient,
requiring little data per time point to recover a useful metric tensor.

2 RELATED WORK

Measure interpolation. An emerging literature considers the problem of smooth interpolation
between probability measures. Using the theory of optimal transport, we may construct a displace-
ment interpolation (McCann, 1997) between successive measures (Pi, Pi+1), yielding a sequence
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of geodesics between pairs (Pi, Pi+1) in the space of probability measures equipped with the 2-
Wasserstein distance W2 (Villani, 2008). This generalizes piecewise-linear interpolation to probability
measures. Schiebinger et al. (2019) use this method to infer the developmental trajectories of cells
based on static measurements of their gene expression profiles. Recent works such as (De Bortoli
et al., 2021) and (Vargas et al., 2021) provide numerical schemes for computing Schrödinger bridges;
these are an entropically-regularized analog to the displacement interpolation between measures.

Chen et al. (2018b); Benamou et al. (2018) leverage the variational characterization of cubic splines
as minimizers of mean-square acceleration over the set of interpolating curves and develop a general-
ization in the space of probability measures. Chewi et al. (2021) extend these works by providing
computationally efficient algorithms for computing measure-valued splines.

Hug et al. (2015) modify the usual displacement interpolation between probability measures by
introducing anisotropy to the domain on which the measures are defined. This change corresponds
to imposing preferred directions for the local displacement of probability mass. Whereas Hug et al.
hard-code the domain’s anisotropy, our method allows us to learn this anisotropy from snapshots of a
probability measure evolving in time. Zhang et al. (2022) apply similar techniques to unstructured
animation problems.

Ding et al. (2020) propose a non-convex inverse problem for recovering the ground metric and
interaction kernel in a class of mean-field games and supply a primal-dual algorithm for solving a
grid discretization of the problem. Whereas their Eulerian approach inputs a grid discretization of
observed densities and velocity fields, our approach is Lagrangian, operating directly on temporal
observations of particle positions.

Trajectory inference from population-level data. In domains such as scRNA-seq, we study an
evolving population from which it is impossible or prohibitively costly to collect longitudinal data.
Instead, we observe distinct cross-sectional samples from the population at a collection of times and
wish to infer the dynamics of the latent population from these observations. This problem is called
trajectory inference.

Hashimoto et al. (2016) study the conditions under which it is possible to recover a potential function
from population-level observations of a system evolving according to a Fokker-Planck equation. They
provide an RNN-based algorithm for this learning task and investigate their model’s ability to recover
differentiation dynamics from scRNA-seq data sampled sparsely in time. A recent work of Bunne
et al. (2022) presents a proximal analog to this approach, modeling population dynamics as a JKO
flow with a learnable energy function and describing a numerical scheme for computing this flow
using input-convex neural networks. This method addresses initial value problems where one is given
an initial measure ρ0 and seeks to predict future measures ρt for t > 0. In contrast, our method is
primarily applicable to boundary value problems, where we are given initial and final measures ρ0
and ρ1 and seek an interpolant ρt for 0 < t < 1.

Schiebinger et al. (2019) use optimal transport to infer future and prior gene expression profiles
from a single observation in time of a cell’s gene expression profile. Yang & Uhler (2019) propose a
GAN-like solver for unbalanced optimal transport and investigate the effectiveness of their method
for the inference of future gene expression states in zebrafish single-cell gene expression data.

As they learn transport maps between probability measures defined at discrete time points, none of the
above OT-based methods is suitable for inferring continuous trajectories. Tong et al. (2020) show that
a regularized continuous normalizing flow can provide an efficient approximation to displacement
interpolations arising from dynamical optimal transport. These displacement interpolations often do
not yield plausible paths through gene expression space, so the authors propose several application-
specific regularizers to bias the inferred trajectories toward more realistic paths. Rather than relying
on bespoke regularizers, our method supplies a natural approach for learning local directions of
particle motion in a way that is amenable to integration with algorithms like that of Tong et al. (2020).

Riemannian metric learning. Lebanon (2002) develops a parametric method for learning a Rieman-
nian metric from sparse high-dimensional data and uses this metric for nearest-neighbor classification.
Hauberg et al. (2012) construct a metric tensor as a weighted average of a set of learned metric
tensors and show how to compute geodesics and exponential and logarithmic maps on the resulting
Riemannian manifold. Arvanitidis et al. (2016) learn a Riemannian metric that encourages geodesics
to move towards region of high data density, define a Riemannian normal distribution with respect to
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this metric, and show how to learn the parameters of this model via maximum likelihood estimation.
Whereas these methods learn a Riemannian metric from static data, our model learns a metric from
snapshots of probability distributions evolving in time on a common manifold.

3 METHOD

We now describe our method for learning a Riemannian metric from cross-sectional samples of
populations evolving in time on a common manifold. We learn a metric that minimizes the average 1-
Wasserstein distance on the manifold between pairs of subsequent time samples from each population.
We derive a dual formulation of our problem, parametrize its variables by neural networks, and solve
for the dual variables and the metric via alternating optimization.

3.1 MODEL

Suppose we have K populations evolving according to unknown continuous dynamics over a common
Riemannian manifold M =

(
RD, g

)
with unknown metric g. The metric g is defined at any x ∈ RD

by the inner product ⟨u, v⟩x = uTA(x)v for A(x) ≻ 0. We model each population as a compactly-
supported probability distribution P k with density ρk on RD being pushed through an unobserved
velocity field vk(x). We will learn the metric tensor A(x) from temporal snapshots of the populations
P k during their evolution on the manifold.

Depending on the nature of our data, we may have the ability to repeatedly sample from P k at
a pair of initial and final times t = 0 and t = Tk or have a fixed set of samples {xk,0

i }Sk

i=1 and
{xk,Tk

i }Sk

i=1 drawn from the populations P k at their respective times. For convenience, we denote
both the density ρk and the empirical distributions over samples from P k at times t ∈ {0, Tk} by ρk0
and ρk1 respectively. As we only observe the initial and final spatial distributions ρk0 and ρk1 of the
populations and do not observe their dynamics, we assume that probability mass travels from initial
to final positions along A-geodesics. Geodesics are paths that minimize the action (or average kinetic
energy) of a particle traveling between points x, y ∈ M; this least-action interpretation of a geodesic
makes it a natural prior on paths in the absence of further information. We learn a field of positive
definite matrices A(x) that minimizes the average A-geodesic distance between the initial and final
positions of each unit of probability mass from each P k.

Formally, let rk be the map sending a point x ∈ M to its final position rk(x) after flowing through
the latent velocity field vk from time t = 0 to t = Tk. If we had access to such a solution map, we
would ideally solve the following problem:

inf
A:RD→SD

++

1

K

K∑
k=1

∫
M

dA
(
x, rk(x)

)
dρk0(x) + λR (A) , (1)

where R(A) is a regularizer that excludes the trivial solution A ≡ 0. Problem (1) optimizes for a
non-trivial metric A(x) that minimizes the average A-geodesic distance dA

(
x, rk(x)

)
traveled by

particles x in the population ρk0 at time t = 0 to their final positions rk(x) at time t = Tk.

Since we do not know the velocity fields vk that encode the particle dynamics, however, we also do
not know the maps rk in (1) that specify the correspondence between particle positions x at t = 0
and positions rk(x) at final times Tk. Furthermore, as noted in Section 1, we often encounter data for
which it is impossible to observe contiguous particle trajectories: A particle that we observe at t = 0
may not be in the sample at t = Tk. This issue is unavoidable for destructive measurement processes
such as scRNA sequencing; in this setting, a cell whose scRNA profile is observed at t = 0 would
be destroyed at this time and hence unobservable at a future time t = Tk. To accommodate these
limitations, we replace the true matchings of initial and final positions rk with the Monge map sk,
defined as the solution to the following problem:

W1,A(ρ
k
0 , ρ

k
1) = inf

sk:ρk
1=sk#ρk

0

∫
M

dA
(
x, sk(x)

)
dρk0(x). (2)

Here sk is a pushforward of ρk0 onto ρk1 ; we write ρk1 = sk#ρ
k
0 to denote this relationship. This

map matches units of mass from the initial and final distributions ρk0 , ρ
k
1 to minimize their average

A-geodesic distance. Substituting solutions to (2) for the maps rk in our idealized objective (1), we
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obtain the following lower bound on (1):

inf
A:RD→SD

++

inf
sk:ρk

1=sk#ρk
0

1

K

K∑
k=1

∫
M

dA
(
x, sk(x)

)
dρk0(x)︸ ︷︷ ︸

= 1
K

∑K
k=1 W1,A(ρk

0 ,ρ
k
1 )

+λR (A) .
(3)

Problem (3) is challenging as written: It requires the ability to compute and differentiate geodesic
distances dA with respect to an arbitrary metric. However, the inner optimization problem over maps
sk is a collection of decoupled Monge problems (2) whose optimal value is the average 1-Wasserstein
distance between (ρk0 , ρ

k
1) pairs on the manifold with metric A(x). As shown in Appendix B, these

problems can be expressed in a dual form (10) which is amenable to gradient-based optimization.

Replacing the inner Monge problems with their dual formulations (10), we may equivalently write
Problem (3) as a minimax problem:

inf
A:RD→SD

++

sup
ϕk:M→R

∥∇ϕk(x)∥A−1(x)≤1

1

K

K∑
k=1

(∫
M

ϕk(x)dρk0(x)−
∫
M

ϕk(x)dρk1(x)

)
+ λR (A) . (4)

In Problem (4), we learn a metric A(x) that minimizes the average 1-Wasserstein distance on the
manifold between pairs of subsequent time samples from each population. (4) requires neither the
computation of geodesic distances on M nor the solution of an assignment problem. As such, it is
substantially more tractable than the initial objective (3). We provide the details of our implementation
of (4) in Section 3.2.

3.2 IMPLEMENTATION

Enforcing the Lipschitz constraint. Problem (4) includes global constraints of form ∥∇ϕk∥A−1 ≤ 1.
These constraints are the Riemannian analog to the Lipschitz constraint in the dual formulation of the
1-Wasserstein distance on RD. Constraints of this type are challenging to enforce in gradient-based
optimization, and the Wasserstein GAN literature has explored approximations (Arjovsky et al., 2017;
Gulrajani et al., 2017; Miyato et al., 2018). We follow the standard technique introduced by Gulrajani
et al. (2017) and replace the global constraints ∥∇ϕk∥A−1 ≤ 1 with soft penalties of the following
form:

E
x0∼ρk

0

x1∼ρk
1

t∼U(0,1)

[
SoftPlus

(
∥∇ϕk

(
σx1
x0
(t)

)
∥2
A−1(σx1

x0
(t)) − 1

)]
, (5)

where σx1
x0
(t) := (1 − t)x0 + tx1 is a line segment between x0 and x1 parametrized by t ∈ [0, 1].

Intuitively, (5) penalizes violation of the Lipschitz constraint ∥∇ϕk∥A−1 ≤ 1 along line segments
connecting randomly-paired points in Xk

0 and Xk
1 . Gulrajani et al. (2017, Prop. 1) justify this

choice via a standard result in W1 theory showing that the constraint ∥∇ϕk∥ ≤ 1 binds on line
segments connecting pairs of points that are matched by the Monge map sk. Korotin et al. (2022)
show that this method results in accurate approximations to the directions of the gradients ∇ϕ̄k of
the true Kantorovich potentials. This observation is sufficient for our purposes; as noted below, our
optimization scheme encourages the low-energy eigenvectors of A(x) to be well-aligned with the
solutions ∇ϕk to the inner problem in (4).

Choice of regularizer R(A). Without a regularizer R(A), the objective in (4) can be driven to 0 by
choosing A(x) ≡ αI for arbitrarily small α > 0, thereby making all pairs of measures arbitrarily
close. This trivial solution would incorporate no useful information from the observed samples from
ρk0 and ρk1 , as it is simply a rescaling of the standard Euclidean metric.

We opt for the following regularizer in our method:

R(A) =
1

K

K∑
k=1

E
x0∼ρk

0

x1∼ρk
1

t∼U(0,1)

[
∥A−1

(
σx1
x0
(t)

)
∥2F

]
, (6)

where σx1
x0
(t) is as in the previous paragraph and ∥ · ∥2F denotes the squared Frobenius norm.
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Regularizer (6) penalizes ∥A−1∥2F at points drawn using a sampling scheme analogous to that in (5).
This is a natural way to exclude trivial solutions of form A(x) ≡ αI for arbitrarily small α > 0, as
∥A−1∥2F is large for such metrics. We investigate the impact of the regularization coefficient λ on the
learned metric in Appendix E. In Appendix F, we demonstrate the effect of removing the optimal
transport term from (4), which is equivalent to setting λ = +∞.

Optimization scheme. We parametrize the scalar potentials ϕk by neural networks to enable the use
of gradient-based optimization to solve Problem (4). As A appears in Equations (4), (5), and (6) only
via its inverse A−1, we directly parametrize the matrix field A−1 by a neural network; where we
require the evaluation of A(x) in downstream applications, we evaluate and then invert A−1(x). We
enforce the positive definiteness of A−1 (and hence the positive definiteness of A) by parametrizing
it as A−1(x) = Q(x)TQ(x) + ηI for a matrix-valued function Q(x) : M → RD×D and η > 0.

After parametrizing our problem variables with neural networks, we optimize the objective in (4)
via alternation. In the first phase of our scheme, we solve the inner problem by holding A fixed
(initializing it as A(x) = A−1(x) ≡ I) and solving for the optimal ϕk. This step decouples over
the potentials ϕk, and each of the resulting problems is an instance of the dual problem for the
1-Wasserstein distance on M. We approximate the integrals in (4) as sample means 1

N

∑N
i=1 ϕ

k(xi),
where the {xi} are samples from the distributions ρk0 and ρk1 . We likewise approximate the Lipschitz
penalty (5) and the regularizer (6) as sample means over draws from ρk0 and ρk1 and over t drawn
uniformly from [0, 1]. In the second phase, we solve the outer problem by fixing the optimal ϕk from
the previous step and solving for the optimal matrix field A(x). We optimize both problems using
AdamW (Loshchilov & Hutter, 2019). Few alternations are needed in practice to obtain high-quality
results.

The results in Appendix B show that given a fixed metric defined by A(x), the optimal ∇ϕk from the
first phase of our scheme point along A-geodesics joining pairs of points (x, sk(x)) where x ∼ ρk0
and sk solves (2). At initialization, A ≡ I , and these geodesics are line segments in RD connecting
the matched points.

Given fixed Kantorovich potentials ϕk from the first phase, the second phase of our scheme solves for
a matrix field A(x) that minimizes the regularizer R(A) = ∥A−1∥2F while also making ∥∇ϕk∥A−1

large. Intuitively, this encourages the unit eigenvector u1(x) corresponding to the minimal eigenvalue
λ1(x) of A(x) to be aligned with ∇ϕk(x) wherever the constraint is enforced.

4 EXPERIMENTS

In this section, we first use synthetic data to demonstrate that our algorithm successfully recovers the
correct eigenspaces of a known metric A(x) from cross-sectional samples satisfying our model. We
then use our method to learn a metric from cross-sectional scRNA data and show that this metric
improves the accuracy of trajectory inference for scRNA data that is sampled sparsely in time. We
finally show that by learning a metric from time-stamped bird sightings, we can infer curved migratory
trajectories for individual birds given the initial and final points of their trajectories. Details for all
experiments are provided in Appendix D.

4.1 METRIC RECOVERY

We first show that our method recovers the correct eigenspaces of a known metric A(x) from
cross-sectional samples Xk

0 and Xk
1 satisfying the model in Section 3.1. We fix initial positions

xn(0) and final positions xn(1) for a set of N particles xn ∈ X and also fix a spatially-varying
metric A(x). We compute A-geodesics between each (xn(0), xn(1)) pair and define populations
Xti = {xn(ti) : n = 1, ..., N} for times ti ∈ [0, 1], i = 0, ..., T .

We use our method to learn the latent metric A(x) from the pairs of samples (Xti , Xti+1). For each
example, we plot the eigenvectors of the true metric A(x) and those of the learned metric Â(x) on a
P × P grid (first row, Figure 1). We also plot the eigenvectors of Â(x) along with the log-condition
number log (λ2(x)/λ1(x)) of Â(x) (second row, Figure 1); this value is large when the learned metric
is highly anisotropic. We finally report a measure of the alignment of the eigenspaces of the true
metric A and its learned counterpart: ℓ(A, Â) = 1

D|X |
∑

x∈X
∑D

d=1 |⟨ud(x), ûd(x)⟩|. Here ud(x) is

the unit eigenvector with eigenvalue λd of A(x), ûd(x) is the corresponding eigenvector for Â(x),
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and X is a set of grid points at which we plot the eigenvectors of A and Â. ℓ(A, Â) = 1 when each
eigenvector of A(x) is parallel to the corresponding eigenvector of ˆA(x) at all grid points x ∈ X .

Figure 1: Row 1: Eigenvectors of true metric A(x) (purple) and learned metric Â(x) (orange). Row
2: Log-condition number of learned metric Â(x) - yellow indicates highly anisotropic Â(x). The
points are time samples from which Â(x) is recovered. Teal points indicate earlier times and yellow
points indicate later times, so the pairs of temporal samples (Xti , Xti+1) follow the color gradient.
Our method accurately recovers the eigenvectors of the true metric, and the learned metric is highly
anisotropic in regions that overlap the observed data.

Our method accurately recovers the eigenspaces of the “Circular” (ℓ(A, Â) = 0.995) and “X Paths”
(ℓ(A, Â) = 0.916) metrics. It achieves lower accuracy with the “Mass Splitting” metric (ℓ(A, Â) =
0.839), struggling to capture the discontinuity in its eigenvectors at the x-axis and exhibiting numerical
instability to the left of the y-axis, where the training trajectories diverge. Note, however, that the
alignment score ℓ(A, Â) is in part measured at points that do not lie on the trajectory of the training
data. We would not expect our method to accurately recover the metric in these regions; the fact that
it largely does so for the “Circular” and “X Paths” examples reflects desirable smoothness properties
of the neural parametrization of the Kantorovich potentials and the metric tensor.

Row 2 of Figure 1 shows that our learned metric is highly anisotropic in regions that overlap with the
training data. In the “Mass Splitting” and “X Paths” examples, Â(x) also has small condition number
near the origin where the two paths diverge and cross, respectively; this behavior reflects expected
uncertainty in low-energy directions of motion in this region.

4.2 POPULATION-LEVEL TRAJECTORY INFERENCE WITH A LEARNED METRIC

scRNA sequencing (scRNA-seq) allows biologists to study the set of mRNA molecules (the “tran-
scriptome”) of individual cells at high resolution (Haque et al., 2017). As scRNA-seq is a destructive
process, any individual cell’s RNA can be sequenced only once, impeding the use of this technology
to study the change in a cell’s transcriptome over time. This has led to interest in methods that use
population-level scRNA-seq data to infer the temporal evolution of an individual cell’s scRNA-seq
profile.

Optimal transport-based techniques are well-established tools for solving these trajectory inference
problems. Schiebinger et al. (2019) and Tong et al. (2020) both use optimal transport to infer cellular
development trajectories but assume a Euclidean metric on gene expression space. In this section, we
use our method to relax this strong assumption by learning a metric for the ground space from scRNA
data. We incorporate Â(x) into a downstream trajectory inference task and show that this strategy
yields more accurate trajectories than a baseline without a learned metric and a baseline using the
Euclidean metric.
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scRNA data. We perform trajectory inference experiments with the scRNA data drawn from
Schiebinger et al. (2019). This data consists of force-directed layout embedding coordinates of
gene expression data collected over 18 days of reprogramming (39 time points total). We construct
populations Xti for i = 1, . . . , 39 by drawing 500 samples per time point in the original data; this
sampling uses 8.25% of the available data on average. We follow the same procedure as in Section
4.1 to learn a metric tensor Â(x) from subsequent pairs of samples (Xti , Xti+1). Learning the tensor
takes 16 minutes on a single V100 GPU.

For the downstream trajectory inference task, we keep one out of every k time points in the original
data for k = 2, ..., 19 to obtain a new collection of time points t̄ℓ with ℓ ∈ {nk : n ∈ N, n < 39

k }.
We then perform trajectory inference between subsequent retained time points (t̄ℓ, t̄ℓ+1) (using all of
the available data for these time points) by optimizing the following objective:

min
θ

Sϵ

(
X t̄ℓ+1 , ϕt=1(vθ)[X

t̄ℓ ]
)
+ λ

∑
x∈X t̄ℓ

m∑
j=1

||vt,θ(x(tj))||2Â(x(tj))
. (7)

Figure 2: Mean EMD
between left-out samples
and corresponding ad-
vected samples versus k,
with our learned metric
(orange), the Euclidean
metric A(x) ≡ I (green),
no regularizer (blue), and
interpolants obtained us-
ing Schiebinger et al.
(2019)’s method (red).

Here Sϵ is the Sinkhorn divergence (Feydy et al., 2019) between the
target data X t̄ℓ+1 and the advected samples ϕt=1(vθ)[X

t̄ℓ ]; ϕt=1(vθ)
denotes the solution map resulting from advecting a particle through
a neurally-parametrized time-varying velocity field vt,θ for one unit of
time; and tj ∈ [0, 1]. The Sinkhorn divergence used here is Sϵ(α, β) =
Wϵ(α, β) − 1

2Wϵ(α, α) − 1
2Wϵ(β, β); it is a debiased variant of the

entropically-regularized 2-Wasserstein distance Wϵ.

This is similar to the method of Tong et al. (2020), where we replace the
log-likelihood fitting loss with the Sinkhorn divergence; we found that the
Sinkhorn divergence led to stabler training than a log-likelihood fitting
loss. We use GeomLoss (Feydy et al., 2019) to compute the Sinkhorn
divergence between the target and advected samples efficiently.

We follow Tong et al. (2020) and assess the quality of inferred tra-
jectories by measuring the W1 distance (EMD) between left-out time
points in the ground truth data and advected samples at correspond-
ing times in the inferred trajectories. These distances are of the form
W1

(
Xti , ϕt=t̂i

(vθ)[X
t̄ℓ ]
)
, so we compare ground truth samples at each

left-out time ti = nk + h (h = 1, ..., k − 1) with samples from X t̄ℓ

advected through vθ for time t̂i =
h
k . For each value of k, we record the

average EMD between left out samples and their inferred counterparts
and compare our method to a baseline where λ = 0 in (7) (“Without A”

in Figure 2) and a Euclidean baseline where A(x) ≡ I (“A = Id” in Figure 2). Our “Without A” and
“A = Id” baselines are comparable to the “Base” and “Base + E” models, respectively, from Tong
et al. (2020). Both our baseline models and their models learn a velocity field vt,θ that pushes samples
at some time t̄ℓ onto samples at a future time t̄ℓ+1 and use the path followed by these samples as
they flow through vt,θ as an inferred trajectory. Our “Without A” baseline and their “Base” model
do not regularize vt,θ, whereas our “A = Id” baseline and their “Base + E” model regularize vt,θ by
penalizing its squared norm, which encourages samples to flow along straight paths.

We also compare against interpolants obtained via the method of Schiebinger et al. (2019). As their
Waddington OT method solves a static optimal transport problem and pushes cells through transport
maps between fixed time steps, a direct comparison against our dynamical method is not possible.
However, we attempt to replicate their validation by geodesic interpolation as closely as possible. We
compute static optimal transport couplings between data at subsequent retained time points (t̄ℓ, t̄ℓ+1),
linearly interpolate between coupled data points, and measure the W1 distance (EMD) between
left-out time points in the ground truth data and advected samples at corresponding times in the
interpolated trajectories.

Figure 2 shows that our learned metric improves on the “Without A” baseline (analogous to the
“Base” model of Tong et al. (2020)) and the approach based on Schiebinger et al. (2019) for nearly
all values of k, whereas the Euclidean baseline A(x) ≡ I (analogous to the “Base + E” model of
Tong et al. (2020)) generally results in less accurate trajectories than the non-regularized baseline. As
expected, the gap between our results and both baselines increases for large values of k; for example,
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Figure 3: Comparison of inferred trajectories for k = 3 (first row) and k = 15 (second row).
Trajectories inferred using our learned metric tensor (second column) more closely follow the
manifold structure of the ground truth data than the non-regularized baseline trajectories (first
column), where particles follow nearly straight-line paths between observed time points.

using our learned metric results in a 19.7% mean reduction in EMD between left-out samples and
the corresponding advected samples for k ≥ 10. This observation indicates that including a learned
metric has a larger impact on the inferred trajectories when the ground truth data is sampled sparsely
in time.

Figure 3 compares the trajectories inferred using our method to the non-regularized baseline and
ground truth trajectories for k = 3, where the time sampling is sufficiently dense that the baseline
performs well, and k = 15, where our learned metric tensor substantially improves the quality of
the inferred trajectories. Whereas the non-regularized baseline simply advects particles from the
base measures to the corresponding targets along nearly-straight paths, the learned metric biases the
trajectory to follow the highly-curved paths taken by the ground truth data.

These results suggest that in settings where data collection is expensive and samples collected at a
small subset of times are of primary interest, our method enables the plausible inference of particle
positions at intermediate time points at the cost of little additional data and computation.

4.3 INDIVIDUAL-LEVEL TRAJECTORY INFERENCE WITH A LEARNED METRIC

In this section, we learn a metric Â(x) from time-stamped sightings of snow geese during their spring
migration. We then compute an Â-geodesic between the initial and final point of GPS-tagged snow
geese and show that this provides a reasonable coarse approximation to the geese’s ground truth
trajectories.

Migratory paths as geodesics on a latent manifold. Many migratory bird species return to their
summer breeding sites and wintering grounds with high spatial fidelity, sometimes returning to within
500 meters of their usual breeding location (Mowbray et al., 2020). Given this behavior, a boundary
value problem that fixes the endpoints of the birds’ migratory trajectories is a reasonable model
for bird migration. Once the endpoints are fixed, we must specify an objective that birds plausibly
optimize to determine their trajectories. Absent further information, minimizing total kinetic energy
over their trajectory is a reasonable choice. However, measuring kinetic energy with respect to the
Euclidean metric leads to straight-line paths, which typically do not agree with observed migration
trajectories. We use our method to learn a metric from untagged snow goose sightings that agrees
with the data for this species. This metric summarizes the factors that birds may use to modify their
migratory paths locally, such as local weather conditions, food availability, and predatory pressures.

Snow goose data. The training data for this experiment consists of time-stamped sightings of
untagged snow geese (Anser caerulescens) across the U.S. and Canada during their spring migration.
We treat the sightings at time t as samples from a time-indexed spatial distribution of birds ρt and
train our metric on subsequent pairs of bird distributions (ρt, ρt+1). This implies that our method
does not have access to any complete goose trajectories when learning the metric. We do not expect
untagged goose sightings to contain enough information to predict high-frequency detail in migratory
trajectories, but this data is far cheaper to obtain than complete migratory trajectories, which are
typically recorded via GPS trackers attached to individual geese. The widespread availability and
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Figure 4: By using a metric Â(x) learned from time-stamped bird sightings, we obtain inferred
trajectories (center) that capture the curved structure of the ground truth migratory paths (left). Our
method results in a 26.9% reduction in mean DTW distance between the inferred and ground truth
trajectories relative to the Euclidean baseline (right).

low cost of obtaining untagged bird sighting data motivates the use of our method for bird trajectory
inference

The training data is drawn from the eBird basic dataset (Sullivan et al., 2009), current as of February
2022. We bin the sightings by month of observation and use our algorithm to learn a metric tensor
Â(x) from populations Xi consisting of the spatial coordinates of snow goose sightings in month i
for i = 0, ..., 5 (i.e. January to June). This training data is depicted in Figure 5 in Appendix D.3.

We use this learned metric tensor to compute an Â-geodesic between the initial and final observation
of several snow geese along their migratory paths. This data is drawn from the Banks Island Snow
Goose study as hosted on Movebank (Kays et al., 2021). We estimate an Â-geodesic between initial
and final points on each path by learning a time-varying velocity field vt,θ optimizing the following
objective:

min
θ

∥x1 − x(1)∥2 + µ
m∑
j=1

||vt,θ(x(tj))||2Â(x(tj))
. (8)

As in Section 4.2, the velocity field vt,θ is neurally parametrized, 0 = t0 ≤ · · · tj ≤ · · · tm = 1, and
we optimize (8) using AdamW. We set the initial condition x(0) = x0 such that x0 is the goose’s
initial position on its migratory trajectory and use a Euclidean norm penalty to force its final position
x(1) along the inferred trajectory to match the true final position x1.

Figure 4 compares the Â-geodesics obtained using the method described above (center plot) to the
ground truth goose trajectories (left plot). While population-level data (in the form of untagged snow
goose sightings; see Figure 5 in Appendix D.3) does not provide sufficient information to reconstruct
the migratory paths of individual geese perfectly, the inferred trajectories accurately capture the
curved structure of the ground truth trajectories.

We evaluate our method’s performance by computing the dynamic time warping (DTW) distance
(Berndt & Clifford, 1994) between each inferred goose trajectory and the corresponding ground truth
trajectory. We also generate straight-line paths (i.e. Euclidean geodesics) between the initial and
final points of each ground truth goose trajectory and compute DTW distances between these paths
and the ground truth. Our method results in a 26.9% reduction in mean DTW distance between the
inferred and ground truth trajectories relative to the Euclidean baseline.

5 DISCUSSION AND CONCLUSION
We have introduced an optimal transport-based method for learning a Riemannian metric from
cross-sectional samples of populations evolving over time on a latent Riemannian manifold. Our
method accurately recovers metrics from cross-sections of populations moving along geodesics on
a manifold, improves the quality of trajectory inference on sparsely-sampled scRNA data at low
data and compute cost, and allows us to approximate individual trajectories of migrating birds using
information from untagged sightings.

One key limitation of our work is that it learns a Riemannian metric on RD, whereas large swaths of
data naturally lie on graphs. Future work might consider extending this algorithm learn from data
defined on graphs; a recent work of Heitz et al. (2021) presents an optimal transport-based direction
towards solving this problem. Future work may also extend our methods to learn a metric from
temporal snapshots of Schrödinger bridges.
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A BACKGROUND ON RIEMANNIAN GEOMETRY

A Riemannian manifold M = (M, g) is a differentiable manifold M equipped with a Riemannian
metric g. Throughout this paper, we take M = RD and focus our attention on the metric g. A
Riemannian metric assigns an inner product ⟨·, ·⟩p to the tangent space TpM of each p ∈ M in a way
that varies smoothly with p. In the case where M = RD, we may simply identify all tangent spaces
TpM with RD; here a metric g amounts to a spatially-varying inner product on RD. Since any inner
product on RD may be computed as ⟨u, v⟩A = uTAv for some A ≻ 0, a Riemannian metric g on
M = RD is specified by a smooth field of positive definite matrices A(x) : RD → SD

++ (we use
SD
++ to denote the set of positive definite D×D matrices). We use ⟨u, v⟩A(x) = uTA(x)v to denote

the metric at a point x ∈ RD.

An inner product ⟨·, ·⟩A(x) induces a norm ∥v∥A(x) :=
√

⟨v, v⟩A(x). Given this norm, we define the
length of a continuously differentiable curve γ : [0, 1] → M to be ℓ(γ) =

∫ 1

0
∥γ̇(t)∥A(γ(t)) dt. The

A-geodesic distance dA(x, y) between two points x, y ∈ M is then the infimum of the length ℓ(γ)
of continuously differentiable curves γ such that γ(0) = x and γ(1) = y.

B W1 ON RIEMANNIAN MANIFOLDS

Feldman & McCann (2002) study Monge’s transport problem on a Riemannian manifold M =
(M, g); we focus on the case M = RD with g specified by a field of matrices A(x) ≻ 0. Given two
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compactly-supported densities ρ0, ρ1 on M, Monge’s problem seeks a pushforward s of ρ0 onto ρ1
solving the following problem:

W1,A(ρ0, ρ1) = inf
s:ρ1=s#ρ0

∫
M

dA (x, s(x)) dρ0(x). (9)

Feldman & McCann (2002) show that under mild technical conditions, (9) has a possibly non-unique
solution s. Intuitively, this map is a pushforward of ρ0 onto ρ1 minimizing the average geodesic
distance between matched units of probability mass. The optimal value of (9) is the 1-Wasserstein
distance between ρ0 and ρ1, which we denote by W1,A(ρ0, ρ1).

If ϕ is continuously differentiable on M, then it is 1-Lipschitz on M if and only if ∥∇ϕ(x)∥A−1(x) ≤
1 for all x ∈ M. Here, we use ∇ϕ(x) to denote the vector of partial derivatives of ϕ at x. Armed
with this local characterization of Lipschitz continuity, we may define the following dual problem to
(9):

sup
ϕ:M→R

∥∇ϕ(x)∥A−1(x)≤1

(∫
M

ϕ(x)dρ0(x)−
∫
M

ϕ(x)dρ1(x)

)
. (10)

If the minimum in (10) is attained by some Kantorovich potential ϕ, the optimal values of (9) and
(10) coincide and the Lipschitz bound for ϕ is tight at pairs of points (x, y) arising from a Monge
map s solving (9) (Feldman & McCann, 2002, Lemma 4).

Feldman & McCann (2002, Lemma 10) also show that given a geodesic γx : [0, 1] → M between a
pair of matched points (x, s(x)) and t ∈ (0, 1), we have ∇ϕ (γx(t)) = − γ̇x(t)

∥γ̇x(t)∥A(γx(t))
. Intuitively,

∇ϕ points along geodesics γx joining pairs of points in the support of ρ0 and ρ1 that are matched by
the Monge map s.

C BACKGROUND ON DYNAMICAL OPTIMAL TRANSPORT

Let α and β be probability measures defined on Ω ⊆ RD. The Benamou-Brenier formulation of the
2-Wasserstein distance W2(α, β) defines it as the solution to a fluid-dynamical problem (Benamou &
Brenier, 2000)

W 2
2 (α, β) = min

ρt,vt

∫ 1

0

∫
Ω

ρt(x)∥vt(x)∥22 dx dt (11)

subject to the constraints that ρ0 = α, ρ1 = β and the continuity equation ∂ρt

∂t +∇ · (ρtvt) = 0.

Solving this problem yields a time-varying velocity field vt(x) that transports α’s mass to β’s along a
curve ρt of probability measures. The kinetic energy in the integrand of (11) encourages probability
mass to travel in straight lines. This assumption is occasionally undesirable, but it is straightforward
to modify Eq. (11) to encourage v to point in specified directions (Hug et al., 2015):

min
ρt,vt

∫ 1

0

∫
Ω

vt(x)
TA(x)vt(x)ρt(x) dx dt. (12)

Using the language developed in Appendix A, A(x) ≻ 0 specifies a metric g on the Riemannian
manifold M =

(
RD, g

)
, and vt(x)

TA(x)vt(x) = ∥vt(x)∥2A(x). Eq. (12) encourages v to be aligned
with the eigenvectors u1 corresponding to the minimal eigenvalues λ1 of the matrices A(x).

While works like (Hug et al., 2015; Zhang et al., 2022) investigate the modeling applications of
anisotropic optimal transport, they only consider the case where the Riemannian metric A(x) is
available a priori. This assumption is unrealistic for many problem domains, motivating our model,
which learns a metric from cross-sectional samples from populations evolving over time.
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D EXPERIMENT DETAILS

D.1 METRIC RECOVERY

Circular data. The ground truth metric tensor for this example is A(x, y) = I − v(x, y)v(x, y)T ,

where v(x, y) =

(
−y√
x2+y2

, x√
x2+y2

)
.

To generate the training data, we begin by drawing 100 samples each from 4 isotropic normal distri-
butions with standard deviation σ = 0.1 whose means are µi ∈ {(1, 0), (−1, 0), (−1,−1), (0, 1)}.
We randomly pair samples from subsequent distributions and compute A-geodesics between each
pair by solving problem (8). We implement (8) in Pytorch using a time-invariant vector field vθ
parametrized by a fully connected two-layer neural network with ELU nonlinearities and 64 hidden
dimensions. We set λ = 1 and solve the initial value problem ẋ(t) = vθ(x(t));x(0) = x0 using the
explicit Adams solver in torchdiffeq’s odeint with default hyperparameters (Chen et al., 2018a).
We optimize the objective using AdamW with learning rate 10−3 and weight decay 10−3 and train
for 100 epochs per pair of samples. We then draw 24 points at equispaced times ti ∈ [0, 1] from each
resulting geodesic and aggregate across geodesics to form the observed populations Xti .

We then use our method to recover Â−1(x) from the Xti . We parametrize the scalar potentials
in (4) as a single-hidden-layer neural net with 32 hidden dimensions and Softplus activation. We
parametrize the matrix field Â−1(x) as A−1(x) = Q(x)TQ(x) + 10−3I , where Q(x) is a two-layer
neural network with Softplus activations and 32 hidden dimensions. The strength of the gradient
penalty (5) is 10−3 when training the potentials ϕ in the first step of alternation and 10−4 in the next
step; it is 1 when training Â−1. The strength of the regularization (6) is 103. We carry out a two
steps of the alternating scheme by training with AdamW with learning rate 10−2 and weight decay
5 ∗ 10−1. We train for 300 epochs for the ϕ step and 1,000 epochs for the A step.

We evaluate the alignment score ℓ(A, Â) on a 100× 100 grid overlaid on a box of radius 1.5.

Mass splitting data. The ground truth metric tensor for this example is A(x, y) = I −
v(x, y)v(x, y)T , where v(x, y) =

(
1√
2
, 1√

2

)
for y ≥ 0 and v(x, y) =

(
1√
2
, −1√

2

)
for y < 0.

To generate the training data, we begin by drawing 100 samples each from a standard normal dis-
tribution and from a mixture of two isotropic normal distributions with unit variance and mixture
components centered at (10, 10) and (10,−10). We randomly pair samples from subsequent dis-
tributions and compute A-geodesics between each pair by solving problem (8) using the method
described in the circular data section. We then draw 10 points at equispaced times ti ∈ [0, 1] from
each resulting geodesic and aggregate across geodesics to form the observed populations Xti .

We then use our method to recover Â−1(x) from the Xti . We parametrize the scalar potentials
in (4) as a single-hidden-layer neural net with 32 hidden dimensions and Softplus activation. We
parametrize the matrix field Â−1(x) as A−1(x) = Q(x)TQ(x) + 10−3I , where Q(x) is a two-
layer neural network with Softplus activations and 32 hidden dimensions. The strength of the
gradient penalty (5) is 2 when training the potentials ϕ and 1 when training Â. The strength of
the regularization (6) is 106. We carry out a single step of the alternating scheme by training with
AdamW with learning rate 5 ∗ 10−3 and weight decay 10−3. We train for 600 epochs for the ϕ step
and 20,000 epochs for the A step.

We evaluate the alignment score ℓ(A, Â) on a 100 × 100 grid overlaid on the rectangular region
[−2.5, 15]× [−15, 15].

X-Paths data. The ground truth metric tensor for this example is A(x, y) = I − v(x, y)v(x, y)T .
Here we define v(x, y) = α(x, y)v1(x, y) + β(x, y)v2(x, y), where v1(x, y) =

(
1√
2
, 1√

2

)
and

v2(x, y) =
(

1√
2
, −1√

2

)
. We then define α(x, y) = 1.25 tanh(ReLU(x · y)) and β(x, y) =

−1.25 tanh(ReLU(−x · y)). Intuitively, α should be large in quadrants 1 and 3 and β should
be large in quadrants 2 and 4.
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The training data for this example consists of two trajectories. To generate it, we begin by drawing
100 samples each from isotropic normal distributions with standard deviation σ = 0.1 centred at
(−1,−1), (1, 1) for the first trajectory and (−1, 1), (1,−1) for the second trajectory. We randomly
pair samples from subsequent distributions along each trajectory and compute A-geodesics between
each pair by solving problem (8) using the method described in the circular data section. We then
draw 10 points at equispaced times ti ∈ [0, 1] from each resulting geodesic and aggregate across
geodesics to form the observed populations Xti .

We then use our method to recover Â(x) from the Xti . We parametrize the scalar potentials in (4) as
a single-hidden-layer neural net with 32 hidden dimensions and Softplus activation. We parametrize
the matrix field Â(x) as A(x) = Q(x)TQ(x) + 10−3I , where Q(x) is a two-layer neural network
with Softplus activations and 32 hidden dimensions. The strength of the gradient penalty (5) is 10−3

when training the potentials ϕ in the first alternating step and 10−4 for subsequent steps. It is 1 when
training Â. The strength of the regularization (6) is 103. We carry out three steps of the alternating
scheme by training with AdamW with learning rate 10−2 and weight decay 5 ∗ 10−3. We train for
300 epochs for the ϕ step and 40,000 epochs for the A step.

We evaluate the alignment score ℓ(A, Â) on a 100× 100 grid overlaid on a box of radius 1.5.

D.2 SCRNA TRAJECTORY INFERENCE

Data pre-processing. The data for this experiment consists of force-directed layout embedding
coordinates of gene expression data from Schiebinger et al. (2019) collected over 18 days of re-
programming (39 time points total) which we rescale by a factor of 10−3 for increased stability in
training. We construct populations Xti for i = 1, ..., 39 by randomly drawing 500 samples per time
point in the original data; this corresponds to using 8.25% of the available data on average.

Learning the metric. We use our method to learn a metric Â−1(x) from the Xti . We parametrize the
scalar potentials in (4) as a single-hidden-layer neural net with 128 hidden dimensions and Softplus
activation. We parametrize the matrix field Â−1(x) as A−1(x) = Q(x)TQ(x) + 10−9I , where
Q(x) is a single-hidden-layer neural network with Softplus activation and 2048 hidden dimensions.
We omit the gradient penalty (5) when training the potentials ϕ and set the penalty strength to 10

when training Â. The strength of the regularization (6) is 5 ∗ 102. We carry out a single step of the
alternating scheme by training with AdamW with learning rate 5 ∗ 10−3 and weight decay 1.5 ∗ 10−2.
We train for 100 epochs for the ϕ step and 5,000 epochs for the A step.

Trajectory inference task. We parametrize the time-varying velocity field vt,θ as a fully connected
three-hidden-layer neural network with 64 hidden dimensions and Softplus activations. We follow
Grathwohl et al. (2019) and concatenate the time variable to the input to each layer of the neural net.
We compute particle trajectories x(t) by solving the initial value problem ẋ(t) = vθ(x(t));x(0) = x0

for initial positions x0 ∈ Xti using the midpoint method solver in torchdiffeq’s odeint with default
hyperparameters (Chen et al., 2018a). The fitting loss for this task is GeomLoss’s Sinkhorn divergence
with p = 2 and blur parameter fixed to 5 ∗ 10−2. We fix λ = 10−1 for both our learned metric Â
and for the identity baseline A = I and choose the intermediate time points tj to be an equispaced
sampling of [0, 1] with step size 1

60 for all experiments.

We solve problem (7) for each pair of subsequent time retained points (ti, ti+1). In each case, we
optimize the objective using AdamW with learning rate 10−3 and weight decay 10−3 and train for
10,000 iterations. We evaluate the inferred trajectories by approximately computing the W1 distance
(using GeomLoss with p = 1 and blur of 10−6) between left-out time points in the ground truth data
and advected samples at corresponding time points. For left-out time points of form t = ki+ ℓ for
some integer ℓ ∈ 1, ..., k − 1, the corresponding advected sample in the equispaced sampling of step
size 1

60 of [0, 1] has index ⌊ j
k ∗ 60⌋.

D.3 SNOW GOOSE TRAJECTORY INFERENCE

Data pre-processing. The training data for learning the metric in this experiment consists of
time-stamped sightings of untagged snow geese (Anser caerulescens) across the U.S. and Canada
during their spring migration. This data is drawn from the February 2022 version of the eBird basic
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dataset (Sullivan et al., 2009). We bin the sightings by month of observation, keep 1000 records
per month, and convert the sighting locations from latitude-longitude to xy coordinates using the
Mercator projection implemented in Matplotlib’s Basemap module with rsphere set to 5 and the
latitude/longitude of the lower left and upper right corners of the projection set to the minimum
latitude and longitude and maximum latitude and longitude in the training data, respectively.

The ground truth goose trajectories are drawn from the “Banks Island SNGO” study on Movebank.
This data consists of time-stamped GPS measurements of the locations of 8 snow geese from 2019
to 2022. We use the same Mercator projection to convert the goose location measurements from
latitude/longitude to xy coordinates. We then estimate the initial and final time point of a single migra-
tion for each goose. For geese with ID {82901, 82902, 82905, 82906, 82907, 82908, 82909, 82910},
their respective initial time indices are {20000, 0, 0, 20000, 0, 0, 0, 0} and their respective final time
indices are {26000, 9100, 15057, 26500, 9000, 13037, 7201, 10000}. The initial location of each
goose is the initial condition x0 in (8), and the final location of each goose is x1.

Learning the metric. We use our method to learn a metric Â−1(x) from the Xti . We parametrize the
scalar potentials in (4) as a single-hidden-layer neural net with 32 hidden dimensions and a Softplus
activation. We parametrize the matrix field Â−1(x) as A−1(x) = Q(x)TQ(x) + 10−3I , where Q(x)
is a two-layer neural network with Softplus activations and 32 hidden dimensions. The strength of the
gradient penalty (5) is 10−6 when training the potentials ϕ and 1 when training Â−1. The strength of
the regularization (6) is 109. We carry out a single a step of the alternating scheme by training with
AdamW with learning rate 10−2 and weight decay 10−3. We train for 2,000 epochs for the ϕ step
and 10,000 epochs for the A step.

Figure 5: The untagged goose sighting data used to learn the metric for the bird trajectory inference
experiments. Each subplot depicts goose sightings in the U.S. and Canada during one month of the
spring migration, beginning in January (upper-left) and ending in June (bottom-right). Note that there
is no correspondence between points in subsequent time points; any given goose is likely to have
been sighted only once.

Trajectory inference task. We parametrize the time-varying velocity field vt,θ as a fully connected
three-hidden-layer neural network with 64 hidden dimensions and ELU nonlinearities. We compute
particle trajectories x(t) by solving the initial value problem ẋ(t) = vθ(x(t));x(0) = x0 for initial
positions x0 ∈ Xti using the dopri5 solver in torchdiffeq’s odeint with default hyperparameters
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(Chen et al., 2018a). We fix λ = 1.25 ∗ 102 for geese 82901, 82902, 82906, 82908, and 82909 and
use λ = 2.5 ∗ 102 for the remaining geese 82905, 82907, 82910. In each case, we optimize the
objective using AdamW with learning rate 10−3 and no weight decay, set the times tj in (8) be an
equispaced sampling of [0, 1] with 32 time points and train for 500 iterations.

E ABLATION STUDY: IMPACT OF THE REGULARIZATION COEFFICIENT

In this section, we carry out an ablation study of the impact of the coefficient λ on the regularization
term R(A) in (4). We repeat the metric recovery experiment on the “Circular” example. We follow
the procedure in Appendix D.1 but set λ ∈ {5 ∗ 102, 103, 5 ∗ 103, 104, 5 ∗ 104, 105}. (Note that our
reported results in Section 4.1 use λ = 103.)

The results of this experiment are recorded in Figure 6. The eigenvectors of the learned metric Â(x)
are robust to the value of λ except at the largest value of λ = 105, where the alignment score falls to
0.857. As expected, the log-condition number of Â(x) increases somewhat with λ, indicating that
larger values of λ favor high levels of anisotropy.

F ABLATION STUDY: REMOVING THE OT TERM

In this section, we briefly demonstrate that if we remove the optimal transport term from (4), the
resulting metric is not informed by the training data. We repeat the metric recovery experiment on
the “Circular” example. We follow the procedure in Appendix D.1 but exclude the OT term

1

K

K∑
k=1

(∫
M

ϕk(x)dρk0(x)−
∫
M

ϕk(x)dρk1(x)

)
(13)

from our implementation of (4). The results of this experiment are presented in Figure 7. Note that the
learned metric is no longer informed by the data; the low-energy eigenvectors point in the direction
of the vertical axis everywhere and the log-condition number is simply an increasing function of
distance from the origin.
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Figure 6: Results of ablation study of the impact of regularization coefficient λ in (4). The eigenvec-
tors of the learned metric Â(x) are robust to the value of λ (rows 1,3). The log-condition number of
Â(x) increases with λ (rows 2,4), indicating that large values of λ lead to increased anisotropy.

18



Published as a conference paper at ICLR 2023

Figure 7: Learned metric Â(x) with the OT term (13) removed from Problem (4). The metric is no
longer informed by the data when the OT term is excluded.
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