
Self-Consistent Velocity Matching of Probability Flows

Lingxiao Li
MIT CSAIL

lingxiao@mit.edu

Samuel Hurault
Univ. Bordeaux, Bordeaux INP, CNRS, IMB
samuel.hurault@math.u-bordeaux.fr

Justin Solomon
MIT CSAIL

jsolomon@mit.edu

Abstract

We present a discretization-free scalable framework for solving a large class
of mass-conserving partial differential equations (PDEs), including the time-
dependent Fokker-Planck equation and the Wasserstein gradient flow. The main
observation is that the time-varying velocity field of the PDE solution needs to
be self-consistent: it must satisfy a fixed-point equation involving the probabil-
ity flow characterized by the same velocity field. Instead of directly minimizing
the residual of the fixed-point equation with neural parameterization, we use an
iterative formulation with a biased gradient estimator that bypasses significant
computational obstacles with strong empirical performance. Compared to existing
approaches, our method does not suffer from temporal or spatial discretization,
covers a wider range of PDEs, and scales to high dimensions. Experimentally,
our method recovers analytical solutions accurately when they are available and
achieves superior performance in high dimensions with less training time compared
to alternatives.

1 Introduction

Mass conservation is a ubiquitous phenomenon in dynamical systems arising from fluid dynamics,
electromagnetism, thermodynamics, and stochastic processes. Mathematically, mass conservation is
formulated as the continuity equation:

∂tpt(x) = −∇ · (vtpt), ∀x, t ∈ [0, T], (1)

where pt : R
d → R is a scalar quantity such that the total mass

∫
pt(x) is conserved with respect to

t, vt : Rd → Rd is a velocity field, and T > 0 is total time. We will assume, for all t ∈ [0, T], pt ≥ 0
and

∫
pt(x) dx = 1, i.e., pt is a probability density function. We use µt to denote the probability

measure with density pt. Once a pair (pt, vt) satisfies (1), the density pt is coupled with vt in the
sense that the evolution of pt in time is characterized by vt (Section 3.1).

We consider the subclass of mass-conserving PDEs that can be written succinctly as

∂tpt(x) = −∇ · (ft(x;µt)pt), ∀x, t ∈ [0, T], (2)

where ft(·;µt) : R
d → Rd is a given function depending on µt, with initial condition µ0 = µ∗

0 for a
given initial probability measure µ∗

0 with density p∗0.

Different choices of ft lead to a large class of mass-conserving PDEs. For instance, given a functional
F : P2(R

d)→ R on the space of probability distributions with finite second moments, if we take

ft(x;µt) := −∇W2F(µt)(x), (3)

where ∇W2F(µ) : Rd → Rd is the Wasserstein gradient of F , then the solution to (2) is the
Wasserstein gradient flow of F [Santambrogio, 2015, Chapter 8]. Thus, solving (2) efficiently allows
us to optimize in the probability measure space. If we take

ft(x;µt) := bt(x)−Dt(x)∇ log pt(x), (4)

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

where bt is a velocity field and Dt(x) is a positive-semidefinite matrix, then we obtain the time-
dependent Fokker-Planck equation [Risken and Risken, 1996], which describes the time evolution of
the probability flow undergoing drift bt and diffusion with coefficient Dt.

A popular strategy to solve (2) is to use an Eulerian representation of the density field pt on a
discretized mesh or as a neural network [Raissi et al., 2019]. However, these approaches do not fully
exploit the mass-conservation principle and are usually limited to low dimensions. Shen et al. [2022],
Shen and Wang [2023] recently introduced the notion of self-consistency for the Fokker-Planck
equation and more generally McKean-Vlasov type PDEs. This notion is a Lagrangian formulation
of (2). They apply the adjoint method to optimize self-consistency. In this work, we extend their
notion of self-consistency to mass-conserving PDEs of the general form (2). Equipped with this
formulation, we develop an iterative optimization scheme called self-consistent velocity matching.
With the probability flow parameterized as a neural network, at each iteration, we refine the velocity
field vt of the current flow to match an estimate of ft evaluated using the network weights from the
previous iteration. Effectively, we minimize the self-consistency loss with a biased but more tractable
gradient estimator.

This simple scheme has many benefits. First, the algorithm is agnostic to the form of ft, thus covering
a wider range of PDEs compared to past methods. Second, we no longer need to differentiate through
differential equations using the adjoint method as in Shen and Wang [2023], which is orders of
magnitude slower than our method with worse performance in high dimensions. Third, this iterative
formulation allows us to rewrite the velocity-matching objectives for certain PDEs to get rid of
computationally expensive quantities such as∇ log pt in the Fokker-Planck equation (Proposition 3.1).
Lastly, our method is flexible with probability flow parameterization: we have empirically found
that the two popular ways of parameterizing the flow—as a time-varying pushforward map [Biloš
et al., 2021] and as a time-varying velocity field [Chen et al., 2018]—both have merits in different
scenarios.

Our method tackles mass-conserving PDEs of the form (2) in a unified manner without temporal or
spatial discretization. Despite using a biased gradient estimator, in practice, our method decreases
the self-consistency loss efficiently (second column of Figure 2). For PDEs with analytically-known
solutions, we quantitatively compare with the recent neural JKO-based methods [Mokrov et al.,
2021, Fan et al., 2021, Alvarez-Melis et al., 2021], the adjoint method [Shen and Wang, 2023], and
the particle-based method [Boffi and Vanden-Eijnden, 2023]. Our method faithfully recovers true
solutions with quality on par with the best previous methods in low dimensions and with superior
quality in high dimensions. Our method is also significantly faster than competing methods, especially
in high dimensions, at the same time without discretization. We further demonstrate the flexibility
of our method on two challenging experiments for modeling flows splashing against obstacles and
smooth interpolation of measures where the comparing methods are either not applicable or have
noticeable artifacts.

2 Related Works

Classical PDE solvers for mass-conserving PDEs such as the Fokker-Planck equation and the
Wasserstein gradient flow either use an Eulerian representation of the density and discretize space as a
grid or mesh [Burger et al., 2010, Carrillo et al., 2015, Peyré, 2015] or use a Lagrangian representation,
which discretizes the flow as a collection of interacting particles simulated forward in time [Crisan
and Lyons, 1999, Westdickenberg and Wilkening, 2010]. Due to spatial discretization, these methods
struggle with high-dimensional problems. Hence, the rest of the section focuses solely on recent
neural network-based methods.

Physics-informed neural networks. Physics-informed neural networks (PINNs) are prominent
methods that solve PDEs using deep learning [Raissi et al., 2019, Karniadakis et al., 2021]. The main
idea is to minimize the residual of the PDE along with loss terms to enforce the boundary conditions
and to match observed data. Our notion of self-consistency is a Lagrangian analog of the residual in
PINN. Our velocity matching only occurs along the flow of the current solution where interesting
dynamics happen, while in PINNs the residual is evaluated on collocation points that occupy the
entire domain. Hence our method is particularly suitable for high-dimensional problems where the
dynamics have a low-dimensional structure.

2

Neural JKO methods. Recent works [Mokrov et al., 2021, Alvarez-Melis et al., 2021, Fan et al.,
2021] apply deep learning to the time-discretized JKO scheme [Jordan et al., 1998] to solve Wasser-
stein gradient flow (3). By pushing a reference measure through a chain of neural networks parameter-
ized as input-convex neural networks (ICNNs) [Amos et al., 2017], these methods avoid discretizing
the space. Mokrov et al. [2021] optimize one ICNN to minimize Kullback-Leibler (KL) divergence
plus a Wasserstein-2 distance term at each JKO step. This method is extended to other functionals
by Alvarez-Melis et al. [2021]. Fan et al. [2021] use the variational formulation of f -divergence to
obtain a faster primal-dual approach.

An often overlooked problem of neural JKO methods is that the total training time scales quadratically
with the number of JKO steps: to draw samples for the current step, initial samples from the reference
measure must be passed through a long chain of neural networks, along with expensive quantities like
densities. However, using too few JKO steps results in large temporal discretization errors. Moreover,
the optimization at each step might not have fully converged before the next step begins, resulting
in an unpredictable accumulation of errors. In contrast, our method does not suffer from temporal
discretization and can be trained end-to-end. It outperforms these neural JKO methods with less
training time in experiments we considered.

Velocity matching. A few recent papers employ the idea of velocity matching to construct a flow
that follows a learned velocity field. di Langosco et al. [2021] simulate the Wasserstein gradient
flow of the KL divergence by learning a velocity field that drives a set of particles forward in
time for Bayesian posterior inference. The velocity field is refined on the fly based on the current
positions of the particles. Boffi and Vanden-Eijnden [2023] propose a similar method that applies to
a more general class of time-dependent Fokker-Planck equations. These two methods approximate
probability measures using finite particles which might not capture high-dimensional distributions
well. Liu et al. [2022], Lipman et al. [2022], Albergo and Vanden-Eijnden [2022] use flow matching
for generative modeling by learning a velocity field that generates a probability path connecting a
reference distribution to the data distribution. Yet these methods are not designed for solving PDEs.

Most relevant to our work, Shen et al. [2022] propose the concept of self-consistency for the Fokker-
Planck equation, later extended to McKean-Vlasov type PDEs [Shen and Wang, 2023]. They observe
that the velocity field of the flow solution to the Fokker-Planck equation must satisfy a fixed-point
equation. They theoretically show that, under certain regularity conditions, a form of probability
divergence between the current solution and the true solution is bounded by the self-consistency loss
that measures the violation of the fixed-point equation. Their algorithm minimizes such violation
using neural ODE parameterization [Chen et al., 2018] and the adjoint method. Our work extends
the concept of self-consistency to a wider class of PDEs in the form of (2) and circumvents the
computationally demanding adjoint method using an iterative formulation. We empirically verify that
our method is significantly faster and reduces the self-consistency loss more effectively in moderate
dimensions than that of Shen and Wang [2023] (Figure 2).

3 Self-Consistent Velocity Matching

3.1 Probability flow of the continuity equation

A key property of the continuity equation (1) is that any solution (pt, vt)t∈[0,T] (provided pt is
continuous with respect to t and vt is bounded) corresponds to a unique flow map {Φt(·) : Rd →
Rd}t∈[0,T] that solves the ordinary differential equations (ODEs) [Ambrosio et al., 2005, Proposition
8.1.8]

Φ0(x) = x,
d

dt
Φt(x) = vt(Φt(x)), ∀x, t ∈ [0, T], (5)

and the flow map satisfies µt = (Φt)#µ0 for all t ∈ [0, T], where (Φt)#µ0 to denote the pushforward
measure of µ0 by Φt. Moreover, the converse is true: any solution (Φt, vt) of (5) with Lipschitz
continuous and bounded vt is a solution of (1) with µt = (Φt)#µ0 [Ambrosio et al., 2005, Lemma
8.1.6]. Thus the Eulerian viewpoint of (1) is equivalent to the Lagrangian viewpoint of (5). We next
exploit this equivalence by modeling the probability flow using the Lagrangian viewpoint so that it
automatically satisfies the continuity equation (1).

3

3.2 Parametrizing probability flows

Our algorithm will be agnostic to the exact parameterization used to represent the probability flow.
As such, we need a way to parameterize the flow to access the following quantities for all t ∈ [0, T]:

• Φt : R
d → Rd, the flow map, so Φt(x) is the location of a particle at time t if it is at x at time 0.

• vt : R
d → Rd, the velocity field of the flow at time t.

• µt ∈ P(Rd), the probability measure at time t with sample access and density pt.

We will assume all these quantities are sufficiently continuous and bounded to ensure the Eulerian
and Lagrangian viewpoints in Section 3.1 are equivalent. This can be achieved by using continuously
differentiable activation functions in the network architectures and assuming the network weights are
finite similar to the uniqueness arguments given in [Chen et al., 2018]. We can now parameterize the
flow modeling either the flow map Φt or the velocity field vt as a neural network.

Time-dependent Invertible Push Forward (TIPF). We first parameterize a probability flow by
modeling Φt : R

d → Rd as an invertible network for every t. The network architecture is chosen
so that Φt has an analytical inverse with a tractable Jacobian determinant, similar to [Biloš et al.,
2021]. We augment RealNVP from Dinh et al. [2016] so that the network for predicting scale and
translation takes t as an additional input. To enforce the initial condition, we need Φ0 to be the identity
map. This condition can be baked into the network architecture [Biloš et al., 2021] or enforced by
adding an additional loss term EX∼µ∗

0
∥Φ0(X)−X∥2. For brevity, we will from now on omit in

the text this additional loss term. The velocity field can be recovered via vt(x) = ∂tΦt(Φ
−1
t (x)).

To recover the density pt of µt = (Φt)#µ0, we use the change-of-variable formula log pt(x) =

log p∗0(Φ
−1
t (x)) + log det

∣∣JΦ−1
t (x)

∣∣ (see (1) in Dinh et al. [2016]).

Neural ODE (NODE). We also parameterize a flow by modeling vt : R
d → Rd as a neural network;

this is used in Neural ODE [Chen et al., 2018]. The network only needs to satisfy the minimum
requirement of being continuous. The flow map and the density can be recovered via numerical
integration: Φt(x) = x+

∫ t

0
vs(Φs(x)) ds and log pt(Φt(x)) = log p∗0(x)−

∫ t

0
∇ · vs(Φs(x)) ds, a

direct consequence of (1) also known as the instantaneous change-of-variable formula [Chen et al.,
2018]. To obtain the inverse of the flow map, we integrate along −vt. With NODE, the initial
condition µ0 = µ∗

0 is obtained for free.

We summarize the advantages and disadvantages of TIPF and NODE as follows. While the use of
invertible coupling layers in TIPF allows exact access to samples and densities, TIPF becomes less
effective in higher dimensions as many couple layers are needed to retain good expressive power, due
to the invertibility requirement. In contrast, NODE puts little constraints on the network architecture,
but numerical integration can have errors. Handling the initial condition is trivial for NODE while an
additional loss term or special architecture is needed for TIPF. As we will show in the experiments,
both strategies have merits.

3.3 Formulation

We now describe our algorithm for solving mass-conserving PDEs (2). A PDE of this form is
determined by ft(·;µt) : R

d → Rd plus the initial condition µ∗
0. If a probability flow µt with flow

map Φt and velocity field vt satisfies the following self-consistency condition,

vt(x) = ft(x;µt), ∀x in the support of µt, (6)

then the continuity equation of this flow implies the corresponding PDE (2) is solved. Conversely, the
velocity field of any solution of (2) will satisfy (6). Hence, instead of solving (2) which is a condition
on the density pt that might be hard to access, we can solve (6) which is a more tractable condition.
Shen et al. [2022], Shen and Wang [2023] develop this concept for the Fokker-Planck equation and
McKean-Vlasov type PDEs; here we generalize it to a wider class of PDEs of the form (2).

Let θ be the network weights that parameterize the probability flow using TIPF or NODE. The flow’s
measure, velocity field, and flow map at time t are denoted as µθ

t , vθt , Φθ
t respectively. One option to

solve (6) would be to minimize the self-consistency loss

min
θ

∫ T

0

EX∼µθ
t

[∥∥vθt (X)− ft(X;µθ
t)
∥∥2] dt. (7)

4

This formulation is reminiscent of PINNs [Raissi et al., 2019] where a residual of the original PDE is
minimized. Direct optimization of (7) is challenging: while the integration over [0, T] and µθ

t can be
approximated using Monte Carlo, to apply stochastic gradient descent, we must differentiate through
µθ
t and ft: this can be either expensive or intractable depending on the network parameterization.

The algorithm by Shen and Wang [2023] minimizes (7) with the adjoint method specialized to
Fokker-Planck equations and McKean-Vlasov type PDEs; extending their approach to more general
PDEs requires a closed-form formula for the time evolution of the quantities within ft, which at best
can only be obtained on a case-by-case basis.

Instead, we propose the following iterative optimization algorithm to solve (7). Let θk denote the
network weights at iteration k. We define iterates

θk+1 := θk − η∇θ|θ=θkF (θ, θk), (8)

where

F (θ, θk) :=

∫ T

0

E
X∼µ

θk
t

[∥∥∥vθt (X)− ft(X;µθk
t)

∥∥∥2] dt. (9)

Effectively, in each iteration, we minimize (9) by one gradient step where we match the velocity
field vθt to what it should be according to ft based on the network weights θk from the previous
iteration. This scheme can be interpreted as a gradient descent on 7 using the biased gradient estimate
∇θF (θ, θk)—see Appendix A for a discussion. We call this iterative algorithm self-consistent velocity
matching.

If ft depends on the density of µt only through the score∇ log pt (corresponding to a diffusion term
in the PDE), then we can apply an integration-by-parts trick [Hyvärinen and Dayan, 2005] to get rid
of this density dependency by adding a divergence term of the velocity field. Suppose ft is from the
Fokker-Planck equation (4). Then the cross term in (9) after expanding the squared norm has the
following alternative expression.

Proposition 3.1. For every t ∈ [0, T], for ft defined in (4), assume vθt , Dt are bounded and
continuously differentiable, and µθ′

t is a measure with a continuously differentiable density pθ
′

t that
vanishes in infinity and not at finite points. Then we have

EX∼µθ′
t

[
vθt (X)⊤ft(X;µθ′

t)
]
= EX∼µθ′

t

[
vθt (X)⊤bt(X) +∇ ·

(
D⊤

t (X)vθt (X)
)]
. (10)

We provide the derivation in Appendix B. With Proposition 3.1, we no longer need access to∇ log pt
when computing∇θF . This is useful for NODE parameterization since obtaining the score would
otherwise require additional numerical integration.

Our algorithm is summarized in Algorithm 1 in the appendix. We use Adam optimizer [Kingma and
Ba, 2014] to modulate the update (8). For sampling time steps t1, . . . , tL in [0, T], we use stratified
sampling where tl is uniformly sampled from [(l−1)T/L, lT/L]; such a sampling strategy results in
more stable training in our experiments. We implemented our method using JAX [Bradbury et al.,
2018] and FLAX [Heek et al., 2020]. See Appendix C for the implementation details.

4 Experiments

We show the efficiency and accuracy of our method on several PDEs of the form (2). We start with
three Wasserstein gradient flow experiments (Section 4.1, Section 4.2, Section 4.3). Next, we consider
the time-dependent Fokker-Planck equation that simulates attraction towards a harmonic mean in
Section 4.4. Finally, in Section 4.5, we apply our framework to generate complicated low-dimensional
dynamics including flows splashing against obstacles and smooth interpolation of measures. We will
use SCVM-TIPF and SCVM-NODE to denote our method with TIPF and NODE parameterization
respectively. We use JKO-ICNN to denote the method by Mokrov et al. [2021], JKO-ICNN-PD to
denote the method by Fan et al. [2021] (PD for “primal-dual”), ADJ to denote the adjoint method
by Shen and Wang [2023], SDE-EM to denote the Euler-Maruyama method for solving the SDE
associated with the Fokker-Planck equation, and DFE (“discrete forward Euler”) to denote the method
by Boffi and Vanden-Eijnden [2023]. We implemented all competing methods in JAX—see more
details in Appendix C—and we compare quantitatively against these methods when possible.

5

In Table 1, we compare the time complexity of training the described methods, where we show that
SCVM-TIPF and SCVM-NODE have low computational complexity among all methods.

Evaluation metrics. For quantitative evaluation, we use the following metrics. To compare
measures with density access, following Mokrov et al. [2021], we use the symmetric Kullback-
Leibler (symmetric KL) divergence, defined as SymKL(ρ1, ρ2) := KL(ρ1 ∥ ρ2) + KL(ρ2 ∥ ρ1),
where KL(ρ1 ∥ ρ2) := EX∼ρ1 [log dρ1(X)/dρ2(X)]. Sample estimates of KL can be negative which
complicates log-scale plotting, so when this happens, we consider an alternative f -divergence
Df (ρ1 ∥ ρ2) := EX∼ρ2 [(log ρ1(X)−log ρ2(X))2/2] whose sample estimates are always non-negative.
We similarly define the symmetric f -divergence SymDf (ρ1, ρ2) := Df (ρ1 ∥ ρ2) +Df (ρ2 ∥ ρ1).
For particle-based methods, we use kernel density estimation (with Scott’s rule) to obtain the density
function before computing symmetric KL or f -divergence. We also consider the Wasserstein-2
distance [Bonneel et al., 2011] and the Bures-Wasserstein distance [Kroshnin et al., 2021]; these
two measures only require sample access. All metrics are computed using i.i.d. samples. See
Appendix C.6 for more details.

4.1 Sampling from mixtures of Gaussians

We consider computing the Wasserstein gradient flow of the KL divergence F(µ) = KL(µ ∥ µ∗)
where we have density access to the target measure µ∗. To fit into our framework, we set ft(x;µt) =
∇ log p∗(x)−∇ log pt(x) which matches (4) with bt(x) = ∇ log p∗(x) and Dt(x) = Id. Following
the experimental setup in Mokrov et al. [2021] and Fan et al. [2021], we take µ∗ to be a mixture of
10 Gaussians with identity covariance and means sampled uniformed in [−5, 5]d. The initial measure
is µ∗

0 = N (0, 16Id). We solve the corresponding Fokker-Planck PDE for a total time of T = 5 and
for d = 10, . . . , 60. As TIPF parameterization does not scale to high dimensions, we only consider
SCVM-NODE in this experiment.

Figure 1 shows the probability flow produced by SCVM-NODE in dimension 60 at different time
steps; as we can see, the flow quickly converges to the target distribution.

Figure 1: Probability flow produced by SCVM-NODE for a 60-dimensional mixture of Gaussians at
irregular time steps. Samples are projected onto the first two PCA components and kernel density
estimation is used to generate the contours.

In Figure 2, we quantitatively compare our method with Mokrov et al. [2021], Fan et al. [2021], and
Shen and Wang [2023]. Training time is reported for all methods.

• In the left two columns of Figure 2, we find that even though the adjoint method ADJ [Shen and
Wang, 2023] minimizes the self-consistency loss (7) directly, the decay of self-consistency can
be much slower than that of SCVM-NODE as the dimension increases. We suspect this is due to
the amount of error accumulated in the adjoint method which involves two numerical integration
passes to obtain the gradient. Moreover, ADJ requires up to third-order spatial derivatives of the
parameterized neural velocity field which can be inaccurate even if the consistency loss is low—in
comparison SCVM-NODE only requires one integration pass and the first-order spatial derivative
of the network. Despite the bias of the gradient used in SCVM-NODE, it finds more efficient
gradient trajectories than ADJ. Additionally, ADJ takes 80 times longer to train than SCVM-NODE
in dimension 10, and scaling up to higher dimensions becomes prohibitive.

• The rightmost column of Figure 2 shows SCVM-NODE achieves far lower symmetric KL compared
to the JKO methods. The gradient flow computed by JKO methods does not decrease KL divergence
monotonically, likely because the optimization at each JKO step has yet to reach the minimum even
though we use 2000 gradient updates for each step. For both JKO methods, the running time for
each JKO step increases linearly because samples (and for JKO-ICNN also log det terms) need to
be pushed through a growing chain of ICNNs; as a result, the total running time scales quadratically
with the number of JKO steps. JKO methods also take about 40 times as long evaluation time as

6

SCVM-NODE in dimension 60 since density access requires solving an optimization problem for
every JKO step. On top of the computational advantage and better results, our method also does not
have temporal discretization: after being trained, the flow can be accessed at any time t (Figure 1).

0 2500 5000 7500 10000
Training iteration (d = 5)

10−1

100

S
ym

m
et
ri
c
K
L
(t

=
T
) SCVM-NODE

ADJ

0 2500 5000 7500 10000
Training iteration (d = 5)

100

C
on
si
st
en
cy

SCVM-NODE

ADJ

0 2500 5000 7500 10000
Training iteration (d = 10)

100

101

S
ym

m
et
ri
c
K
L
(t

=
T
)

SCVM-NODE

ADJ

0 2500 5000 7500 10000
Training iteration (d = 10)

100

101

C
on
si
st
en
cy

SCVM-NODE

ADJ

0 2 4
Time t (d = 30)

100

101

102

S
ym

m
et

ri
c

K
L

SCVM-NODE

JKO-ICNN-PD

JKO-ICNN

0 2 4
Time t (d = 60)

100

101

102

S
ym

m
et

ri
c

K
L

SCVM-NODE

JKO-ICNN-PD

JKO-ICNN

Figure 2: Quantitative comparison for the mixture of Gaussians experiment. The left two columns
plot the symmetric KL (at t = T compared against the target measure) and consistency (7) versus the
training iterations for SCVM-NODE (ours) and ADJ [Shen and Wang, 2023]. The rightmost column
plots the symmetric KL across time t (compared against the target measure) for SCVM-NODE and
the JKO methods in high dimensions. Training time: for d = 10, SCVM-NODE takes 7.37 minutes,
ADJ takes 585.2 minutes; for d = 60, SCVM-NODE takes 23.9 minutes, JKO-ICNN takes 375.2
minutes, and JKO-ICNN-PD takes 24.4 minutes.

4.2 Ornstein-Uhlenbeck process

We consider the Wasserstein gradient flow of the KL divergence with respect to a Gaussian with the
initial distribution being a Gaussian, following the same experimental setup in Mokrov et al. [2021],
Fan et al. [2021]. In this case, the gradient flow at time t is a Gaussian G(t) with a known mean and
covariance; see Appendix D.1 for details. We quantitatively compare all methods in Figure 3:

• ADJ achieves the best results in dimensions d = 5 and d = 10. However, this is at the cost of
high training time: in dimension 10, ADJ takes 341 minutes to train, while SCVM-TIPF and
SCVM-NODE take 23 and 9 minutes respectively for the same 20k training iterations. As such, we
omit ADJ in higher-dimensional comparisons.

• Both our SCVM-TIPF and SCVM-NODE achieve good results second only to ADJ in dimensions
5 and 10. In low dimensions, SCVM-TIPF results in lower probability divergences than SCVM-
NODE likely due to having exact density access. Although not shown, SCVM-TIPF also satisfies
the initial condition well (numbers at t = 0 are comparable to those at t = 0.25 in the left two
columns in Figure 3).

• For the two JKO methods, they result in much higher errors for t ≤ 0.5 compared to later times:
this is expected because the dependency of G(t) on t is exponential, so convergence to µ∗ is faster
in the beginning, yet a constant step size is used for JKO methods.

• For DFE, the result is highly sensitive to the forward Euler step size ∆t. We choose step size
∆t = 0.01 which empirically gives the best results among {0.1, 0.01, 0.001, 0.0001}. As DFE
achieves far lower symmetric KL divergence or f -divergence compared to alternatives, we only
include its Bures-Wasserstein distance in high dimensions where its number is slightly worse than
alternatives (bottom right plot of Figure 3).

4.3 Porous medium equation

Following Fan et al. [2021], we consider the porous medium equation with only diffusion: ∂tpt =
∆pmt with m > 1. Its solution is the Wasserstein gradient flow of F(µ) =

∫
1

m−1p(x)
m dx where

p is the density of µ with ∇W2
F(µ)(x) = ∇(m

m−1p
m−1(x))—see Appendix D.2 for details. We

consider only SCVM-TIPF and JKO methods here.

7

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time t (d = 5)

10−5

10−4

10−3

10−2

10−1

100

S
ym

m
et

ri
c

K
L

SCVM-NODE

SCVM-TIPF

ADJ

JKO-ICNN-PD

JKO-ICNN

DFE

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time t (d = 10)

10−5

10−4

10−3

10−2

10−1

100

101

S
ym

m
et

ri
c

K
L

SCVM-NODE

SCVM-TIPF

ADJ

JKO-ICNN-PD

JKO-ICNN

DFE

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time t (d = 5)

10−7

10−5

10−3

10−1

S
ym

m
et

ri
c
f

-d
iv

er
ge

nc
e

SCVM-NODE

SCVM-TIPF

ADJ

JKO-ICNN-PD

JKO-ICNN

DFE

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time t (d = 10)

10−5

10−4

10−3

10−2

10−1

100

101

S
ym

m
et

ri
c
f

-d
iv

er
ge

nc
e

SCVM-NODE

SCVM-TIPF

ADJ

JKO-ICNN-PD

JKO-ICNN

DFE

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time t (d = 5)

10−2

6× 10−3

2× 10−2

3× 10−2

4× 10−2

B
ur

es
-W

as
se

rs
te

in
di

st
an

ce

SCVM-NODE

SCVM-TIPF

ADJ

JKO-ICNN-PD

JKO-ICNN

DFE

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time t (d = 10)

3× 10−2

4× 10−2

6× 10−2

B
ur

es
-W

as
se

rs
te

in
di

st
an

ce

SCVM-NODE

SCVM-TIPF

ADJ

JKO-ICNN-PD

JKO-ICNN

DFE

10 20 30 40 50 60
Dimension d

10−3

10−2

S
ym

m
et

ri
c

K
L

SCVM-NODE

JKO-ICNN-PD

JKO-ICNN

10 20 30 40 50 60
Dimension d

10−3

10−2

10−1

S
ym

m
et

ri
c
f

-d
iv

er
ge

nc
e

SCVM-NODE

JKO-ICNN-PD

JKO-ICNN

10 20 30 40 50 60
Dimension d

10−1

100

B
ur

es
-W

as
se

rs
te

in
di

st
an

ce

SCVM-NODE

JKO-ICNN-PD

JKO-ICNN

DFE

Figure 3: Quantitative results for the OU process experiment. The left two columns show the metrics
(symmetric KL, symmetric f -divergence, and Bures-Wasserstein distance) versus time t of various
methods computed against the closed formed solution G(t) in dimension d = 5, 10. The right column
shows the metrics averaged across t versus dimension d in higher dimensions.

We show the efficiency of SCVM-TIPF compared to JKO-ICNN in dimension d = 1, 2, . . . , 6. We
exclude JKO-ICNN-PD because it produces significantly worse results. We visualize the density pt
of the solution from SCVM-TIPF and JKO-ICNN on the top of Figure 4 in dimension 1 compared
to p∗t . Both methods approximate p∗t well with SCVM-TIPF being more precise at small t; this is
consistent with the observation in Figure 2 where JKO methods result in bigger errors for small t.

−1 0 1
t = 0.000

0

1

2

3

4

5

p t
(x

)

JKO-ICNN

SCVM-TIPF

−1 0 1
t = 0.004

0

1

2

3

4

5

p t
(x

)

−1 0 1
t = 0.006

0

1

2

3

4

5

p t
(x

)

−1 0 1
t = 0.015

0

1

2

3

4

5

p t
(x

)

−1 0 1
t = 0.025

0

1

2

3

4

5

p t
(x

)

JKO-ICNN

SCVM-TIPF

2 3 4 5 6
Dimension d

10−6

10−5

10−4

10−3

10−2

T
V

di
st

an
ce

JKO-ICNN t = 0.004

JKO-ICNN t = 0.025

SCVM-TIPF t = 0.004

SCVM-TIPF t = 0.025

2 3 4 5 6
Dimension d

10−6

10−5

10−4

10−3

10−2

10−1

100

S
ym

m
et

ri
c
f

-d
iv

er
ge

nc
e

JKO-ICNN t = 0.004

JKO-ICNN t = 0.025

SCVM-TIPF t = 0.004

SCVM-TIPF t = 0.025

2 3 4 5 6
Dimension d

10−3

10−2

W
as

ss
er

st
ei

n-
2

di
st

an
ce

JKO-ICNN t = 0.004

JKO-ICNN t = 0.025

SCVM-TIPF t = 0.004

SCVM-TIPF t = 0.025

Figure 4: Top: visualization of the densities of p∗t and pt for the porous medium equation in dimension
1 at varying time steps t for SCVM-TIPF and JKO-ICNN. Bottom: total variation distance, symmetric
f -divergence, and Wasserstein-2 distances across dimensions at t = 0.004 and t = 0.025 between pt
and p∗t for solving the porous medium equation.

8

On the bottom row of Figure 4, we plot the total variation (TV) distance, the symmetric f -divergence,
and the Wasserstein-2 distance (details on the TV distance are given in Appendix C.6) between the
recovered solution pt and p∗t for both methods at t = 0.004 and t = 0.025. Note that the values
of all metrics are very low implying that the solution from either method is very accurate, with
SCVM-TIPF more precise in TV distance and symmetric f -divergence, especially for d > 3. Like
with the experiments in previous sections, JKO-ICNN is much slower to train: in dimension 6,
training JKO-ICNN took 102 minutes compared to 21 minutes for SCVM-TIPF.

4.4 Time-Dependent Fokker-Planck equation

In this section, we qualitatively evaluate our method for solving a PDE that is not a Wasserstein
gradient flow. In this case, JKO-based methods cannot be applied. Consider the OU process from
Section 4.2 when the mean β and the covariance matrix Γ become time-dependent as βt and Γt. The
resulting PDE is a time-dependent Fokker-Planck equation of the form (4) with

ft(X,µt) = Γt(βt −X)−D∇ log pt(X). (11)

In this configuration, when the initial measure p0 is Gaussian, the solution µt can again be shown
to be Gaussian with mean and covariance following an ODE—see Appendix D.3 for more details.
We consider, in dimension 2 and 3, time-dependent attraction towards a harmonic mean βt =
a(sin(πωt), cos(πωt)) using the expression of βt from Boffi and Vanden-Eijnden [2023], augmented
to βt = a(sin(πωt), cos(πωt), t) in dimension 3.

We apply both SCVM-TIPF and SCVM-NODE to this problem and compare our results with
alternatives. Similar to Figure 3, as shown in Figure 5, both SCVM-TIPF and SCVM-NODE achieve
results on par with ADJ, with both SCVM methods being 30 times faster than ADJ in dimension 10.
DFE results in good Wasserstein-2 metrics but worse divergences. Visualization of the evolution of a
few sampled particles are given in Figure 9 and Figure 10.

In Appendix D.4, we augment (11) with an interaction term to simulate a flock of (infinitely many)
birds, resulting in a non-Fokker-Planck PDE that can be readily solved by our method.

2 4 6 8 10
Time t (d = 2)

10−3

10−2

10−1

S
ym

m
et

ri
c
f

-d
iv

er
ge

nc
e

SCVM-TIPF

SCVM-NODE

DFE

ADJ

SDE-EM

2 4 6 8 10
Time t (d = 3)

10−2

10−1

100

S
ym

m
et

ri
c
f

-d
iv

er
ge

nc
e

SCVM-TIPF

SCVM-NODE

DFE

ADJ

SDE-EM

2 4 6 8 10
Time t (d = 2)

10−2

2× 10−2

3× 10−2

4× 10−2

W
as

ss
er

st
ei

n-
2

di
st

an
ce

SCVM-TIPF

SCVM-NODE

DFE

ADJ

SDE-EM

2 4 6 8 10
Time t (d = 3)

10−1

4× 10−2

6× 10−2

W
as

ss
er

st
ei

n-
2

di
st

an
ce

SCVM-TIPF

SCVM-NODE

DFE

ADJ

SDE-EM

2 4 6 8 10
Time t (d = 2)

10−3

10−2

10−1

S
ym

m
et

ri
c
f

-d
iv

er
ge

nc
e

SCVM-TIPF

SCVM-NODE

DFE

ADJ

SDE-EM

2 4 6 8 10
Time t (d = 3)

10−2

10−1

100

S
ym

m
et

ri
c
f

-d
iv

er
ge

nc
e

SCVM-TIPF

SCVM-NODE

DFE

ADJ

SDE-EM

2 4 6 8 10
Time t (d = 2)

10−2

2× 10−2

3× 10−2

4× 10−2

W
as

ss
er

st
ei

n-
2

di
st

an
ce

SCVM-TIPF

SCVM-NODE

DFE

ADJ

SDE-EM

2 4 6 8 10
Time t (d = 3)

10−1

4× 10−2

6× 10−2

W
as

ss
er

st
ei

n-
2

di
st

an
ce

SCVM-TIPF

SCVM-NODE

DFE

ADJ

SDE-EM

Figure 5: Symmetric KL divergence and Wasserstein-2 distances across time for d = 2, 3 between
the recovered flows and the ground truth for the time-dependent Fokker-Planck equation.

4.5 Additional qualitative low-dimensional dynamics

To demonstrate the flexibility of our method, we apply our algorithm to model more general mass-
conserving dynamics than the ones considered in the previous sections.

Flow splashing against obstacles. We model the phenomenon of a 2-dimensional flow splashing
against obstacles using a Fokker-Planck equation (4) where bt encodes the configuration of three

9

obstacles that repel the flow (See Appendix D.5 for details). We solve this PDE using SCVM-NODE
for T = 5 and visualize the recovered flow in (6). When solving the same PDE using SDE-EM, the
flow incorrectly crosses the bottom right obstacle due to a finite time step size (Figure 14). When
using DFE, the path of initial samples appears jagged (right of Figure 13); our method has no such
issue and results in continuous sample paths (left of Figure 13). Method ADJ suffers from numerical
instability and cannot be trained without infinite loss in this example.

Figure 6: A flow splashing against three obstacles (in purple) produced by SCVM-NODE. Particles
are colored based on the initial y coordinates.

Smooth interpolation of measures. To illustrate the flexibility of our method, we demonstrate two
ways to formulate the problem of smoothly interpolating a list of measures. First, we model the
interpolation as a time-dependent Fokker-Planck equation and use it to interpolate MNIST digits 1, 2,
and 3, starting from a Gaussian (Figure 7). Next, we adopt an optimal transport formulation and use
it to generate an animation sequence deforming a 3D hand model to a different pose and then to a
ball, similar to the setup in Zhang et al. [2022]. Note that the optimal transport formulation is not
solvable using competing methods. See Appendix D.6 for more details.

Figure 7: Smooth interpolation of measures. Top: interpolating MNIST digits 1 to 3. Bottom:
interpolating hand from the initial pose to a different pose and then to a ball.

5 Conclusion

By extending the concept of self-consistency from Shen et al. [2022], we present an iterative
optimization method for solving a wide class of mass-conserving PDEs without temporal or spatial
discretization. In all experiments considered, our method achieves strong quantitative results with
significantly less training time than JKO-based methods and the adjoint method in high dimensions.

Below we highlight a few future directions. First, as discussed, the two ways to parameterize a proba-
bility flow, TIPF, and NODE, both have their specific limitations. Finding a new parameterization
that combines the advantages of both TIPF and NODE is an important next step. Secondly, we hope
to extend our approach to incorporate more complicated boundary conditions. Finally, given that
the proposed algorithm is highly effective empirically, it would be an interesting theoretical step to
explore its convergence properties.

Acknowledgements The MIT Geometric Data Processing group acknowledges the generous
support of Army Research Office grants W911NF2010168 and W911NF2110293, of Air Force Office
of Scientific Research award FA9550-19-1-031, of National Science Foundation grant CHS-1955697,
from the CSAIL Systems that Learn program, from the MIT–IBM Watson AI Laboratory, from the
Toyota–CSAIL Joint Research Center, from a gift from Adobe Systems, and from a Google Research
Scholar award.

SH acknowledges the financial support from the University of Bordeaux (UBGR grant) and the
French Research Agency (PostProdLEAP).

10

References
Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.

arXiv preprint arXiv:2209.15571, 2022.

David Alvarez-Melis, Yair Schiff, and Youssef Mroueh. Optimizing functionals on the space of
probabilities with input convex neural networks. arXiv preprint arXiv:2106.00774, 2021.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the
space of probability measures. Springer Science & Business Media, 2005.

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Conference
on Machine Learning, pages 146–155. PMLR, 2017.

Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan Gün-
nemann. Neural flows: Efficient alternative to neural odes. Advances in Neural Information
Processing Systems, 34:21325–21337, 2021.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López,
Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. arXiv
preprint arXiv:2105.15183, 2021.

Nicholas M Boffi and Eric Vanden-Eijnden. Probability flow solution of the fokker–planck equation.
Machine Learning: Science and Technology, 4(3):035012, jul 2023. doi: 10.1088/2632-2153/
ace2aa. URL https://dx.doi.org/10.1088/2632-2153/ace2aa.

Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich. Displacement
interpolation using lagrangian mass transport. In Proceedings of the 2011 SIGGRAPH Asia
conference, pages 1–12, 2011.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Martin Burger, José A Carrillo, and Marie-Therese Wolfram. A mixed finite element method for
nonlinear diffusion equations. Kinetic & Related Models, 3(1):59, 2010.

José A Carrillo, Alina Chertock, and Yanghong Huang. A finite-volume method for nonlinear
nonlocal equations with a gradient flow structure. Communications in Computational Physics, 17
(1):233–258, 2015.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Dan Crisan and Terry Lyons. A particle approximation of the solution of the kushner–stratonovitch
equation. Probability Theory and Related Fields, 115(4):549–578, 1999.

Marco Cuturi, Laetitia Meng-Papaxanthos, Yingtao Tian, Charlotte Bunne, Geoff Davis, and Olivier
Teboul. Optimal transport tools (ott): A jax toolbox for all things wasserstein. arXiv preprint
arXiv:2201.12324, 2022.

Lauro Langosco di Langosco, Vincent Fortuin, and Heiko Strathmann. Neural variational gradient
descent. arXiv preprint arXiv:2107.10731, 2021.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.

Jiaojiao Fan, Amirhossein Taghvaei, and Yongxin Chen. Variational wasserstein gradient flow. arXiv
preprint arXiv:2112.02424, 2021.

11

https://dx.doi.org/10.1088/2632-2153/ace2aa
http://github.com/google/jax

Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouvé, and Gabriel
Peyré. Interpolating between optimal transport and mmd using sinkhorn divergences. In The 22nd
International Conference on Artificial Intelligence and Statistics, pages 2681–2690. PMLR, 2019.

Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with sinkhorn diver-
gences. In International Conference on Artificial Intelligence and Statistics, pages 1608–1617.
PMLR, 2018.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2020. URL
http://github.com/google/flax.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker–planck
equation. SIAM journal on mathematical analysis, 29(1):1–17, 1998.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Patrick Kidger. On Neural Differential Equations. PhD thesis, University of Oxford, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alexey Kroshnin, Vladimir Spokoiny, and Alexandra Suvorikova. Statistical inference for bures–
wasserstein barycenters. The Annals of Applied Probability, 31(3):1264–1298, 2021.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Petr Mokrov, Alexander Korotin, Lingxiao Li, Aude Genevay, Justin M Solomon, and Evgeny
Burnaev. Large-scale wasserstein gradient flows. Advances in Neural Information Processing
Systems, 34:15243–15256, 2021.

Gabriel Peyré. Entropic approximation of wasserstein gradient flows. SIAM Journal on Imaging
Sciences, 8(4):2323–2351, 2015.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Hannes Risken and Hannes Risken. Fokker-planck equation. Springer, 1996.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94,
2015.

Zebang Shen and Zhenfu Wang. Entropy-dissipation informed neural network for mckean-vlasov
type pdes. arXiv preprint arXiv:2303.11205, 2023.

Zebang Shen, Zhenfu Wang, Satyen Kale, Alejandro Ribeiro, Aim Karbasi, and Hamed Hassani.
Self-consistency of the fokker-planck equation. arXiv preprint arXiv:2206.00860, 2022.

Juan Luis Vázquez. The porous medium equation: mathematical theory. Oxford University Press on
Demand, 2007.

Michael Westdickenberg and Jon Wilkening. Variational particle schemes for the porous medium
equation and for the system of isentropic euler equations. ESAIM: Mathematical Modelling and
Numerical Analysis, 44(1):133–166, 2010.

Paul Zhang, Dmitriy Smirnov, and Justin Solomon. Wassersplines for neural vector field-controlled
animation. In Computer Graphics Forum, volume 41, pages 31–41. Wiley Online Library, 2022.

12

http://github.com/google/flax

SCVM-TIPF SCVM-NODE ADJ JKO-ICNN JKO-ICNN-PD
O(STd2) O(STNoded) O(STNoded

3) O(ST 2d3) O(ST 2d)
Table 1: Time complexity of training for S iterations for the methods considered, in terms of
dimension d. We assume for simplicity that the same batch size is used, the training is done for T
time steps, and any network forward pass takes O(d) time. For SCVM-NODE and ADJ, Node denotes
the number of ODE integration steps. For SCVM-TIPF, RealNVP is used to build the coupling layer,
and we use d coupling layers, hence the extra multiple of d. For ADJ, the d3 term comes from the
third-order spatial derivatives. For JKO-ICNN, the d3 term is due to computing the log-determinant
term. For both JKO methods, the quadratic dependency on T is due to maintaining a growing chain
of neural networks of size T as described in the related works section.

Appendix
In this appendix, we provide details and further justification of the proposed method. In Appendix A,
we provide an interpretation of the update (9) as a gradient descent step with a biased gradient.
In Appendix B, we explain the integration-by-parts trick used to prove (3.1). In Appendix C, we
provide implementation details of all considered methods. In Appendix D, we provide additional
experimental details and results.

Algorithm 1 Self-consistent velocity matching
Input: ft(·, ·), µ∗

0, T , Ntrain, B, L.
Initialize network weights θ.
for k = 1, . . . , Ntrain do
θ′ ← θ.
Sample x1, . . . , xB ∼ µ∗

0, t1, . . . , tL ∼ [0, T].
yb,l ← Φθ′

tl
(xb), ∀b = 1, . . . , B, l = 1, . . . , L.

θ ← θ − η∇θ
1

BL

∑
b,l

∥∥∥vθtl(yb,l)− ftl(yb,l;µ
θ′

tl
)
∥∥∥2.

end for
Output: optimized θ.

A Biased Gradient Interpretation

Assume µθ
t has density pθt . Using fθ

t (x) to denote ft(x;µ
θ
t) from (7), the self-consistency loss can

be written as,

L(θ) :=

∫ T

0

∫
pθt (x)

∥∥vθt (x)− fθ
t (x)

∥∥2 dx dt.
Assuming all terms involving θ are differentiable with respect to θ, the gradient of L(θ) with respect
to the neural network parameters θ can be written as:

∇L(θ) =
∫ T

0

∫
∇θp

θ
t (x)

∥∥vθt (x)− fθ
t (x)

∥∥2 dx dt (12)

+ 2

∫ T

0

∫
pθt (x)Jθv

θ
t (x)

⊤(vθt (x)− fθ
t (x)) dx dt (13)

− 2

∫ T

0

∫
pθt (x)Jθf

θ
t (x)

⊤(vθt (x)− fθ
t (x)) dx dt. (14)

Here we use Jθ to denote the Jacobian with respect to θ. On the other hand, the gradient used in the
updates (8) is∇θF (θ, θ′) at θ′ = θ:

∇θF (θ, θ′)

∣∣∣∣
θ′=θ

= 2

∫ T

0

∫
pθt (x)Jθv

θ
t (x)

⊤(vθt (x)− fθ
t (x)) dx dt. (15)

We see that (15) is exactly the middle term (13). Hence our formulation can be interpreted as
doing gradient descent with a biased gradient estimator. It remains a future work direction to

13

theoretically analyze the amount of bias in (15) and the condition under which the dot product
⟨∇L(θ),∇θF (θ, θ′)|θ′=θ⟩ ≥ 0. The central challenge would be to relate Jθv

θ
t and Jθf

θ
t ; this

depends on the neural network architecture and the type of the PDE.

B Integration-by-Parts Trick

This is a common trick used in score-matching literature [Hyvärinen and Dayan, 2005].

Proof of Proposition 3.1. Fix t > 0. The form of ft in (4) is

ft(x;µt) = bt(x)−Dt(x)∇ log pt(x).

Hence

EX∼µθ′
t

[
vθt (X)⊤ft(X;µθ′

t)
]
= EX∼µθ′

t

[
vθt (X)⊤bt(X)

]
−EX∼µθ′

t

[
vθt (X)⊤Dt(X)∇ log pθ

′

t (X)
]
.

The second term can be written as

EX∼µθ′
t

[
vθt (X)⊤Dt(X)∇ log pθ

′

t (X)
]
=

∫
vθt (x)

⊤Dt(x)∇ log pθ
′

t (x) dpθ
′

t (x)

=

∫
vθt (x)

⊤Dt(x)∇pθ
′

t (x)/pθ
′

t (x) · pθ′

t (x) dx

=

∫
vθt (x)

⊤Dt(x)∇pθ
′

t (x) dx

= −
∫

∇ ·
(
Dt(x)

⊤vθt (x)
)
pθ

′

t (x) dx

= −EX∼µθ′
t

[
∇ ·

(
Dt(X)⊤vθt (X)

)]
,

where we use integration-by-parts to get the second last equation and the assumption that vθt , Dt are
bounded and pθt (x)→ 0 as ∥x∥ → ∞.

C Implementation Details

C.1 Network architectures for SCVM.

For TIPF, our implementation follows Dinh et al. [2016]. Each coupled layer uses 3-layer fully
connected networks with layer sizes 64, 128, 128 for both scale and translation prediction. We use
twice as many coupling layers as the dimension of the problem while each coupling layer updates
one coordinate; we found using fewer layers with random masking gives much worse results.

For NODE, we use a 3-layer fully connected network for modeling the velocity field with layer
size 256. We additionally add a low-rank linear skip connection x 7→ A(t)x+ b(t) where A(t) =
L(t)L⊤(t) and L(t) is a d× 20 matrix to make A(t) low-rank.

We use SILU activation [Elfwing et al., 2018] which is smooth for all layers for both TIPF and NODE.
For NODE, we apply layer normalization before applying activation. We also add a sinusoidal
embedding for the time input t plus two fully connected layers of size 64 before concatenating it with
the spatial input.

The numerical integration for NODE is done using Diffrax library [Kidger, 2021] with a relative and
absolute tolerance of 10−4; we did not find considerable improvement when using a lower tolerance.

We use the integration-by-parts trick for SCVM-NODE whenever possible. Since TIPF has tractable
log density, we do not use such a trick and optimize (9) directly for SCVM-TIPF which we found to
produce better results.

C.2 Hyperparameters.

Unless mentioned otherwise, we choose the following hyperparameters for Algorithm 1. We set
Ntrain = 105 or 2 × 105, B = 1000, L = 10 or 20. We use Adam [Kingma and Ba, 2014] with

14

a cosine decay learning rate scheduler, with initial learning rate 10−3, the number of decay steps
same as Ntrain, and α = 0.01 (so the final learning rate is 10−5). Since we are effectively performing
gradient descent using a biased gradient, we set b2 = 0.9 in Adam (instead of the default b2 = 0.999),
so that the statistics in Adam can be updated more quickly; we found this tweak improves the results
noticeably.

C.3 Implementation of JKO methods.

We base our JAX implementation of ICNN on the codebase by the original ICNN author:
https://github.com/facebookresearch/w2ot. Compared to the original ICNN implemen-
tation by Amos et al. [2017], we add an additional convex quadratic skip connections used by Mokrov
et al. [2021], which we found to be crucial for the OU process experiment. For ICNNs, we use hidden
layer sizes 64, 128, 128, 64. The quadratic rank for the convex quadratic skip connections is set to 20.
The activation layer is taken to be CELU.

To implement the method by Fan et al. [2021], we model the dual potential as a 4-layer fully connected
network with layer size 128, with CELU activation. For the gradient flow of KL divergence and
generalized entropy (used in Section 4.3), we follow closely the variational formulation and the
necessary change of variables detailed in Fan et al. [2021, Corollary 3.3, Corollary 3.4].

In order to compute the log density at any JKO step, following Mokrov et al. [2021], we need to
solve a convex optimization to find the inverse of the gradient of an ICNN. We use the LBFGS
algorithm from JAXopt [Blondel et al., 2021] to solve the optimization with tolerance 10−2 (except
for Section 4.3 we use a tolerance of 10−3 to obtain finer inverses, but it takes 6x longer compared to
10−2).

We always use 40 JKO steps, consistent with past works. For each JKO step, we perform 1000
stochastic gradient descent using Adam optimizer with a learning rate of 10−3, except for the mixture
of Gaussians experiment, we use 2000 steps—using fewer steps will result in worse results. We have
tested with the learning rate schedules used in Fan et al. [2021], Mokrov et al. [2021] and did not
notice any improvement.

C.4 Implementation of ADJ method.

We implement the adjoint method carefully following the formulation in Shen and Wang [2023]. The
neural network for parameterizing the velocity field is identical to the one used in SCVM-NODE.
The ODE integration also uses the same hyperparameters as that of SCVM-NODE. This way we can
compare ADJ with SCVM-NODE in a fair manner since they only differ in the gradient estimation.

C.5 Implementation of DFE method.

We implement DFE following the algorithm outlined in Boffi and Vanden-Eijnden [2023]. We
use 5000 particles. For score estimation, we use the same network architecture as in NODE. At
each time step, we optimize the score network 100 steps. We found the result of DFE depends
tremendously on the time step size ∆t. For the OU process experiment in dimension 60, when
∆t = 0.1, 0.01, 0.001, 0.0001, the resulting Bures-Wasserstein distance at the final time to the target
measure is 28.11, 0.31, 0.46, 9.21 respectively. Surprisingly, a smaller ∆t can result in bigger errors.
We choose ∆t = 0.01 since it gives the best results.

C.6 Evaluation metrics

For all our experiments, calculations of all metrics are repeated 20 times on 1000 samples from each
distribution. Our plots show both the average and the standard deviation calculated over these 20
repetitions.

When estimating symmetric KL divergence using samples, due to the finite sample size and the
numerical error in estimating the log density, the estimated divergence can be very close to zero or
even negative (when this occurs we take absolute values). This explains why the standard deviation
regions touch the x-axis in the log-scale plots in Figure 3.

15

To compute Bures-Wasserstein distance [Kroshnin et al., 2021], we first fit a Gaussian to the samples
of either distribution and then compute the closed-form Wasserstein-2 distance between the two
Gaussians.

For the porous medium equation (Section 4.3), the total variation distance is used in Figure 4
and Figure 8 to compare the estimated and ground-truth solutions. It is approximated by the L1

distance between the densities calculated over 50000 samples uniformly distributed on the compact
[−1.25xmax, 1.25xmax] with xmax = C/

(
β(t+ t0)

−2α
d

)
being the bound of the support of p∗t .

D Additional Experimental Details

D.1 Ornstein-Uhlenbeck process

The OU process is the Wasserstein gradient flow of the KL divergence with respect to a Gaussian
µ∗ = N (β,Γ−1) where β ∈ Rd and Γ is a d×d positive-definite matrix. When the initial distribution
is µ∗

0 = N (0, Id), the gradient flow at time t is known to be a Gaussian distribution G(t) with mean
(Id − e−tΓ)β and covariance Γ−1(Id − e−2tΓ) + e−2tΓ. We set the total time T = 2.

D.2 Porous medium equation

This flow has as closed-form solution given by the Barenblatt profile Vázquez [2007] when initialized
accordingly:

p∗t (x)=(t+ t0)
−α

(
C − β∥x∥2(t+ t0)

−2α
d

) 1
m−1

+
, (16)

where t0 > 0 is the starting time, α = m
d(m−1)+2 , β = (m−1)α

2dm , and C > 0 is a free constant. Similar
to Fan et al. [2021], we choose m = 2 and total time T = 0.025. The initial measure follows a
Barenblatt distribution supported in [−0.25, 0.25]d (C is chosen accordingly) with t0 = 10−3. We
use Metropolis-Hastings to sample from µ0.

0.005 0.010 0.015 0.020 0.025
Time t (d = 3)

10−3

10−2

T
V

di
st

an
ce

JKO-ICNN

SCVM-TIPF

0.005 0.010 0.015 0.020 0.025
Time t (d = 3)

10−4

10−3

10−2

10−1

100

S
ym

m
et

ri
c
f

-d
iv

er
ge

nc
e

JKO-ICNN

SCVM-TIPF

0.005 0.010 0.015 0.020 0.025
Time t (d = 3)

10−2

3× 10−3

4× 10−3

6× 10−3

W
as

ss
er

st
ei

n-
2

di
st

an
ce

JKO-ICNN

SCVM-TIPF

0.005 0.010 0.015 0.020 0.025
Time t (d = 6)

10−6

10−5

10−4

T
V

di
st

an
ce

JKO-ICNN

SCVM-TIPF

0.005 0.010 0.015 0.020 0.025
Time t (d = 6)

10−5

10−3

10−1

101

S
ym

m
et

ri
c
f

-d
iv

er
ge

nc
e

JKO-ICNN

SCVM-TIPF

0.005 0.010 0.015 0.020 0.025
Time t (d = 6)

3× 10−2

4× 10−2

W
as

ss
er

st
ei

n-
2

di
st

an
ce

JKO-ICNN

SCVM-TIPF

Figure 8: Metrics (TV, Symmetric f -divergence and Wasserstein-2 distance) across time for dimen-
sions 3 and 6 between the estimated µt and the ground-truth µ∗

t when solving the Porous Medium
Equation.

D.3 Time-Dependant Fokker-Planck equation

We consider a time-dependent Fokker-Planck equation of the form (4) with the velocity field
ft(X,µt) = Γt(X − βt)−Dt∇ log pt(X). (17)

When the initial measure p0 is Gaussian, the solution µt can again be shown to be Gaussian with
mean mt and covariance Σt solutions of the differential equations:{

m′
t = −Γt(mt − βt)

Σ′
t = −ΓtΣt − ΣtΓ

⊤
t + 2Dt.

(18)

In practice, we experiment with constant Γt = diag(1, 3) and Dt = σ2Id. We also experience in
dimension 3 by considering and Γt = diag(1, 3, 1). We set a = 3, ω = 1, σ =

√
0.25 and pick as

initial distribution p0 a Gaussian with mean b0 and covariance σ2Id. We set the total time to T = 10.

16

We plot in Figure 9, for dimension 2, snapshots at different time steps of particles following the
flow given by our method with TIPF parametrization. We only show SCVM-TIPF because SCVM-
NODE gives visually indistinguishable trajectories. We also plot in Figure 10 the evolution of
particles simulated by Euler-Maruyama (EM-SDE) discretization of the Fokker-Planck equation.
Corresponding animated GIFs be found at this link.

t = 0.0 t = 0.5 t = 1.0 t = 1.5 t = 2.0

t = 2.5 t = 3.0 t = 3.5 t = 4.0 t = 4.5

Figure 9: Evolution of particles (in blue) following the flow learned with SCVM-TIPF for the
time-dependent OU process (Section 4.4). In red is the moving attraction trap.

t = 0.0 t = 0.5 t = 1.0 t = 1.5 t = 2.0

t = 2.5 t = 3.0 t = 3.5 t = 4.0 t = 4.5

Figure 10: Evolution of particles (in blue) obtained by SDE-EM discretization for the time-dependent
OU process (Section 4.4). In red is the moving attraction trap.

D.4 Flock of birds

We model the dynamics of a flock of birds by augmenting the time-dependent Fokker-Planck equation
(11) with an interaction term:

ft(X,µt) = Γt(βt −X) + αt(X −E[µt])−D∇ log pt(X).

This is similar to the harmonically interacting particles experiment in Boffi and Vanden-Eijnden
[2023], but we use a population expectation E[µt] instead of an empirical one in modeling the repul-
sion from the mean. Since ft needs to access E[µt], the resulting PDE is not a Fokker-Planck equation
(4) and hence not solvable using the method in Boffi and Vanden-Eijnden [2023] but can be solved
with our method by estimating E[µt] using Monte Carlo samples from µt. We use a similar setup
as in Section 4.4, except we now use an “infinity sign" attraction βt = a(cos(2πωt), 0.5 sin(2πωt))
along with a sinusoidal αt = 2 sin(πwt). Depending on the sign of αt, particles are periodically
attracted towards or repulsed from their mean. Both SCVM-TIPF and SCVM-NODE produce similar
visual results as shown in Figure 11 and Figure 12.

We use a constant Γt = Id and a constant diffusion matrix D = σ2Id. We set a = 3, ω = 0.5, and
σ =
√
0.25. We pick as initial distribution p0 a Gaussian with mean (0, 0) and covariance σ2Id. We

set the total time to T = 10.

17

https://drive.google.com/drive/folders/1uKHA_t35-vk9u5IlO8dM8_z0sRqndmrU?usp=sharing

We respectively show in Figure 11 and Figure 12 simulations of particles following the flow learned
with SCVM-TIPF and SCVM-NODE. Corresponding animated GIFs be found at this link.

t = 0.0 t = 0.5 t = 1.0 t = 1.5 t = 2.0

t = 2.5 t = 3.0 t = 3.5 t = 4.0 t = 4.5

Figure 11: Evolution of particles following the flow trained with TIPF parametrization on the flock of
birds PDE (Section 4.5). In red shows the moving attraction mean.

t = 0.0 t = 0.5 t = 1.0 t = 1.5 t = 2.0

t = 2.5 t = 3.0 t = 3.5 t = 4.0 t = 4.5

Figure 12: Evolution of particles following the flow trained with NODE parametrization on the flock
of birds PDE (Section 4.5). In red shows the moving attraction mean.

D.5 Flow splashing against obstacles

We use the following formulation for modeling the flow. Each obstacle is modeled as a line segment.
The endpoints of the three obstacles are:

((0, 3), (3, 0.5)), ((1, 0), (1.5, 0)), ((−2,−4), (6, 0)).

We model the dynamics as a Fokker-Planck equation where ft of the form (4) is defined as

bt(x) = (qsink − x) + 20
3∑

i=1

x− πOi
(x)

∥x− πOi(x)∥
pN (0,0.04)(∥x− πOi(x)∥),

Dt(x) = I2,

where qsink = (4, 0), and πOi
(x) is the projection of x onto obstacle i represented as a line segment,

and pN (0,0.04) is the density of an 1-dimensional Gaussian with variance 0.04.

The initial distribution is chosen to be N (0, 0.25I2). We train SCVM-NODE for 104 with an initial
learning rate of 10−4. Training takes 5.4 minutes. The time step size for SDE-EM used to produce
Figure 14 is 0.005. Corresponding animated GIFs be found at this link.

18

https://drive.google.com/drive/folders/1orihlMZu8hfFaRr3kBdMbDABQcHaskTF?usp=sharing
https://drive.google.com/drive/u/2/folders/1XwYVDYRbaJC_YKblDhSzUfouTUQKrucB

Figure 13: Trajectory of 200 random particles across time using the same setup as in Figure 6. Left
are sample paths obtained by our method, and right are sample paths obtained by DFE [Boffi and
Vanden-Eijnden, 2023].

Figure 14: Same setup as in Figure 6 but with SDE-EM. We see the paths of the particles are not
continuous. Moreover, the particles spill over the obstacle on the bottom right due to a finite time
step size. In comparison, SCVM-NODE does not have such a problem.

D.6 Smooth interpolation of measures

Suppose we are to smoothly interpolate M measures ν1, . . . , νM with densities q1, . . . , qM , and we
want the flow to approximate νi at time ri. To achieve this goal, we present two formulations using
different choices of ft. We use SCVM-NODE in this section.

Measure interpolation using time-dependent Fokker-Planck equations. We model the dynamics
as a Fokker-Planck equation where ft of the form (4) is taken to be

bt(x) =
M∑
i=1

ϕ(t− ri)(∇ log qi(x)−∇ log pt(x))

Dt(x) = I2,

where ϕ(t) is defined as the continuous bump function

ϕ(t) =

{
1.0 |t| < 0.5h
(0.6h− |t|)/(0.1h) |t| < 0.6h
0.0 otherwise,

for bandwidth h = 1.0.

Below we provide details for the MNIST interpolation result in the top row of Figure 7. We use the
first three images of 1, 2, 3 from the MNIST dataset. To construct νi from a digit image, we use a
mixture of Gaussians where we put one equally-weighted Gaussian with covariance 0.022I2 on the
pixels with values greater than 0.5 (images are first normalized to have values in [0, 1]). The initial
distribution is N ((0.5, 0.5), 0.04I2). To train SCVM-NODE, we use an initial learning rate of 10−4

with cosine decay for a total of 105 iterations. This takes roughly 1 hour to train.

Measure interpolation using optimal transport. An alternative way to interpolate measures using
our framework is to use optimal transport to define ft. Recall µt denotes the probability flow at time
t. We then define

ft(x) =
M∑
i=1

ϕ(t− ri)∇W2
W 2

2 (µt, νi),

19

where W 2
2 is the squared Wasserstein-2 distance and ∇W2W

2
2 is its Wasserstein gradient. In practice,

we compute∇W2W
2
2 using sample access and we employ the debiased Sinkhorn divergence [Genevay

et al., 2018, Feydy et al., 2019] implemented in the JAX OTT library [Cuturi et al., 2022]. This
formulation differs from the one in Zhang et al. [2022] in that here we prescribe the precise PDE
based on ft, whereas in Zhang et al. [2022] an optimal transport loss is used to fit the keyframes
along with many regularizers on the velocity field vt to promote the smoothness and other desirable
properties. In contrast, we do not use any regularizer on vt.

To train SCVM-NODE to produce the hand-hand-ball animation sequence in the bottom row of
Figure 7, we first sample 20000 points from the interior of the three meshes (a hand mesh, a hand mesh
in a different pose, and a ball mesh), and we set νi to be the empirical measure of the corresponding
point cloud. Note that different from the first formulation using Fokker-Planck equations, in the
optimal transport formulation, throughout we only require sample access from each νi. We use an
initial learning rate of 10−4 with cosine decay for a total of 5× 104 iterations. This takes 4.5 hours,
which is significantly longer than the training time in Zhang et al. [2022] (reported to be 15 minutes).
We leave further improvement of our method to interpolate measures faster as future work.

To render the animation, we sample 20000 points and render the point cloud at each time step using
metaballs along with smoothing, similar to the procedure in Zhang et al. [2022]. We did not use
the barycentric interpolation postprocessing step in Zhang et al. [2022] which makes sure the key
measures vi’s are fit exactly in the resulting animation. We also did not use unbalanced optimal
transport, which as reported in Zhang et al. [2022] can make the fingers of the hand more separated,
but requires careful parameter tuning.

20

	Introduction
	Related Works
	Self-Consistent Velocity Matching
	Probability flow of the continuity equation
	Parametrizing probability flows
	Formulation

	Experiments
	Sampling from mixtures of Gaussians
	Ornstein-Uhlenbeck process
	Porous medium equation
	Time-Dependent Fokker-Planck equation
	Additional qualitative low-dimensional dynamics

	Conclusion
	Biased Gradient Interpretation
	Integration-by-Parts Trick
	Implementation Details
	Network architectures for SCVM.
	Hyperparameters.
	Implementation of JKO methods.
	Implementation of ADJ method.
	Implementation of DFE method.
	Evaluation metrics

	Additional Experimental Details
	Ornstein-Uhlenbeck process
	Porous medium equation
	Time-Dependant Fokker-Planck equation
	Flock of birds
	Flow splashing against obstacles
	Smooth interpolation of measures

