Downloaded from https://www.pnas.org by 184.181.96.164 on March 15, 2023 from IP address 184.181.96.164.

RESEARCH ARTICLE ENGINEERING

PNAS

L)

mf' OPEN ACCESS
Check for
updates

Decoding the metabolic response of Escherichia coli for sensing

trace heavy metals in water

Hong Wei®

Sunny C. Jiang"® abeh?

ab,2

, Allon |. Hochbaum , and Regina Ragan

L Yixin Huangb, Peter J. Santiago®, Khachik E. Labachyan®, Sasha Ronaghid“, Martin Paul Banda Magana®, Yen-Hsiang Huangf :

Edited by Catherine Murphy, University of lllinois at Urbana-Champaign, Urbana, IL; received June 11, 2022; accepted December 28, 2022

Heavy metal contamination due to industrial and agricultural waste represents a grow-
ing threat to water supplies. Frequent and widespread monitoring for toxic metals in
drinking and agricultural water sources is necessary to prevent their accumulation in
humans, plants, and animals, which results in disease and environmental damage. Here,
the metabolic stress response of bacteria is used to report the presence of heavy metal
ions in water by transducing ions into chemical signals that can be fingerprinted using
machine learning analysis of vibrational spectra. Surface-enhanced Raman scattering
surfaces amplify chemical signals from bacterial lysate and rapidly generate large, repro-
ducible datasets needed for machine learning algorithms to decode the complex spectral
data. Classification and regression algorithms achieve limits of detection of 0.5 pM for
As®* and 6.8 pM for Cr®, 100,000 times lower than the World Health Organization
recommended limits, and accurately quantify concentrations of analytes across six orders
of magnitude, enabling early warning of rising contaminant levels. Trained algorithms
are generalizable across water samples with different impurities; water quality of tap
water and wastewater was evaluated with 92% accuracy.

bacterial metabolism | machine learning | vibrational spectroscopy | environmental sensors

Like all living organisms, bacteria are equipped with biochemical machinery to survive
and adapt in diverse and changing environments all over the world. These responses to
dynamic conditions elicit changes in bacteria metabolic networks, and their metabolite
profiles can shift on timescales as short as minutes (1). Many of these environmental
changes constitute stresses, which trigger physiological responses within the cell. Stresses,
ranging from nutrient restriction (2) to exposure to antibiotics (3), elicit profound met-
abolic consequences in bacteria. The resulting changes in metabolite profiles can be
detected by conventional (3) and next-generation (4) metabolomic techniques.
Consequently, we hypothesize and demonstrate that bacterial cultures can be used as
whole-cell sensors of environmental stressors by the detection and decoding of their
metabolic responses to these stressors. Specifically, the bacterial metabolic response trans-
duces heavy metal ions in water into chemical (metabolite) signals that are amplified with
surface-enhanced Raman scattering (SERS) surfaces. When decoding the spectral signals
using machine learning (ML) algorithms, a sensitive and accurate sensing platform for
ensuring water safety results.

Heavy metal contamination from natural and anthropogenic sources is a serious threat
to human and ecosystem health, and heavy metal use in a wide variety of industrial and
agricultural processes is growing exponentially (5, 6). Contaminated water is a major
source of exposure leading to toxic heavy metal accumulation in humans, plants, and
livestock. The development of portable and low-cost sensors which can be broadly deployed
to locally and frequently monitor the quality of drinking and irrigation water, agricultural,
and industrial runoff is needed to safeguard sensitive ecosystems and human health.
Arsenic, cadmium, chromium, copper, lead, and mercury rank among the priority metals
of public health significance (5). Currently, monitoring water quality typically requires
samples to be sent to specifically certified laboratories for inductively coupled plasma-mass
spectrometry analysis for quantification (7) to determine if contaminants are below safety
guidelines set by the World Health Organization (WHO) (8) or regulatory agencies. Other
laboratory methods with the necessary limit of detection (LOD) and dynamic range rely
on similarly sophisticated and centralized analytical instruments, such as atomic absorp-
tion, X-ray fluorescence, or atomic emission spectrometries (7).

Alternatively, biosensors, using physicochemical signal transduction, such as optical,
electrochemical, piezoelectric, and thermal signal outputs, represent low-cost solutions
that are compatible for integration in portable systems to detect heavy metal ions.
Molecular recognition labels include enzymes (9), antibodies (10), whole cells (11), aptam-
ers (12), molecularly imprinted polymers (13, 14), and DNA (15). Encapsulation of
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enzymes in hydrogels yields sensors with a LOD needed for mon-
itoring water quality, but they have limited shelf life (9). Aptamers,
on the other hand, exhibit high specificity and stability but are
not easily engineered to detect a variety of analytes. Antibodies,
relying on the formation of metal-chelated complexes, are versatile
sensing elements, yet cross-reactivity with other ions leads to lack
of specificity (16). Whole cell-based biosensors rely on mature cell
culturing technology and can be incorporated in a range of phys-
icochemical sensor platforms for multiple assays. Whole-cell bio-
sensors have received increasing attention as an ultrasensitive
means of detecting hazardous contaminants as they can be engi-
neered to be responsive to different toxins (17).

Many cellular metabolites have high Raman cross-sections (18),
which can be detected in SERS measurements (4, 19). SERS is a
highly sensitive and label-free detection scheme (20), which offers
single molecule LOD when using carefully designed nanoarchi-
tectures (21-23). Indeed, SERS signals from Au-decorated nano-
fiber probes inserted into breast cancer cells have been shown to
detect toxic metal exposure at a LOD of 5 nM for mercury and
100 nM for silver (24). Obtaining reproducible responses in bio-
sensors is a longstanding challenge (25). In particular, the repro-
ducibility of SERS surfaces depends on nanoparticle (NP)
morphology, nanogap distance, and surface chemistry (26). Our
previously demonstrated chemically assembled SERS surfaces com-
posed of spherical NPs with a controlled nanogap spacing of 0.9
nm and chemistry exhibit reproduc1ble billion-fold signal enhance-
ments over areas of 1 cm? (27). Chemical assembly of NPs with
molecular control of nanogap spacing over large areas (27) allows
for characterization with portable systems with large beam diam-
eters. Comparison of spectral data from a self-assembled monolayer
of benzenethiol on a chemically assembled sensor surface using a
BWTek i-Raman Plus portable spectrometer and Renishaw
InVia™ confocal Raman microscope demonstrates the C-H ring
bending mode, with a small Raman cross-section (28, 29), is
observable with both systems, and both systems have comparable
signal to noise (SI Appendix, Fig. S1). Sensor surfaces are able to
detect metabolites from bacterial communities on a time scale of
minutes (4, 30) and accurately quantify analyte concentrations
down to 10 fM when using ML analysis of spectral data (21). In
this work, the sensitivity of the Escherzc/)za coli (E. coli) stress
response is used to transduce the signal of Cr®* and As™ ions into
chemical signals that are detected with chemically assembled SERS
surfaces. Arsenite is one of the most common toxic valence states
(I1I) of As, and high arsenite concentrations are indicators of phy-
toplankton bloom, high microbial populations, and pollution from
mining activity (31). Cr pollution is largely related to industrial
applications in the field of energy production, manufacturing of
metals and chemlcals, and subsequent waste and wastewater man-
agement (32). Cr® is much more toxic than Cr** (8). A support
vector machine (SVM) model achieves higher than 97% classifi-
cation accuracy for decoding E. coli stress response to different
concentratlons of metal i ions for concentrations as low as 68 pM
for Cr** and 5 pM for As™. Due to their distinct mechanisms of
toxicity in bacteria, this sensmg platform also distinguishes the
metabolic response of As®* and Cr®* with high accuracy when
analyzed with SVM models. In addition, convolutional neural
networks (CNN) show sensitive and quantitative determination
of concentratlons across a dynamlc range of 0.68 pM—68 uM for

% and 5 fM—5 mM for As”", well below WHO recommended
hmlts of 10 pg/L for As®* and 50 pg/L for Cr™, respectively (8).
At the lowest concentrations investigated, the metabolic response
is detectable when the ratio of metal ions to bacterium in solution
is 0.6 for As™ and 8.2 for Cr*. Finally, by using a pretrained model
for analysis of previously unseen tap water and wastewater samples
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spiked with As™, SERS detection and ML analysis requires only
80 spectra per class (40 s total acquisition time) to achieve greater
than 92% accuracy for classifying concentrations above or below
the WHO recommended limit.

Results

Biochemical Signal Transduction of Metal lons into Vibrational
Spectra. The inherent metabolic stress response of E. coli cultures
is used to transduce the presence of heavy metal ions in water into
metabolites. We then fingerprint the metabolic response with a
combination of SERS detection and ML analysis (SERS +ML).
E. coli cultures were exposed to Cr®* or As™ ions (K,Cr,O, or
NaAsO,) in minimal media for 2 h (Fig. 14). Metabolites from the
cells were extracted by thermal lysis, and the lysate was deposited
on SERS surfaces composed of Au NP clusters for spectral data
acquisition (Fig. 1 B and C). SERS surfaces were fabricated in
microfluidic channels with electrodes in a capacitor architecture
to achieve reproducible billion-fold signal enhancements (Fig. 1
Eand F) (27). SERS spectra of control samples prepared under
the same conditions without Ct® or As>* in the exposure medium
were used to determine the limit of blank (LOB) (33). The full
concentration range of samples was collected over the course of
several experiments. Each subset of concentrations was collected
with a control group included which was not exposed to any metal.
To avoid training the algorithm to classify based on background
fluctuations, inherent biological variation, or manufacturing
variations of SERS surfaces, control samples were measured in
biological duplicates and on multiple SERS surfaces (see Methods
for more details).

'The exposure of bacterial cultures to toxic metal ions is expected
to result in significant changes in metabolite concentrations. Such
metabolic shifts resulting from stress responses often involve dif-
ferential regulation of nucleotides central to biosynthetic pro-
cesses within the cell. Metabolic changes in response to antibiotic
stress have been reported to be detectable within 30 min of expo-
sure by mass spectrometry (3). Some metabolic stress responses
are general, for example, those triggered by the sigma factor reg-
ulon, RpoS, which can be regulated by proteins dependent on
concentrations of the nucleotide adenosine triphosphate
(ATP) (34). ATP accumulates in E. coli as part of its stress response
to antibiotics (35) and ATP-coupled pumps are associated with
As’* transport out of cells in response to toxic exposure (36).
Uracil, another nucleotide, is a building block of RNA and thus
related to protein translation, and its concentration is closely cor-
related with oxidative stress responses in bacteria (3, 37). Another
nucleotide, adenine, regulates the cell cycle in bacteria, including
cell division and DNA repair, and processes modulated in stress
conditions (38). To verify that SERS surfaces are sensitive to these
and similarly Raman active metabolites associated with bacterial
stress response, SERS spectra of 1 mM aqueous solutions of key
nucleotides ATP, uracil, and adenine were acquired, and repre-
sentative spectra are shown in Fig. 1D.

Training Data Acquisition for Fingerprinting Bacterial Stress
Response. SERS spectra were acquired from lysate from E. coli
cells exposed to heavy metal ion solutions at various concentrations
untreated (control). The concentration range investigated
with SERS + ML for NaAsO, was 0.65 pg/L to 650 mg/L (13
concentrations) and for K,Cr,0, was 0.1 ng/L to 10 mg/L (9
concentrations). The corresponding molarmes are 5 fM to 5 mM
for As** and 0.68 pM to 68 uM for Cr®". The concentration range
was chosen to span the WHO recommended limit for these metals
in drinking water, which are 10 pg/L (0.13 pM) and 50 pg/L
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Fig. 1. Heavy metal detection scheme and SERS spectra of key metabolites. (4) E. coli is cultured in growth media supplemented with Cr® or As®" salts. (B) Cells
are thermally lysed, and (C) lysate supernatant is deposited on SERS surfaces. (D) Representative SERS spectra of key nucleotides involved in bacterial stress
responses, ATP, uracil, and adenine. () Schematic of fabrication of SERS surfaces: a microfluidic cell with an AC electric field across electrodes induces EHD
flow to drive lateral assembly and subsequent cross-linking reactions between Au NP. (F) Scanning electron microscopy image shows Au NP form close-packed

clusters of various sizes. Field of view is 2 pm x 2 um.

(0.96 uM) for As®* and Cr®", respectively. SERS spectra acquired
from pure solutions of Cr* (6.8 pM) and As™ (0.5 pM) without
E. coli cells show that the vibrational peaks observed from lysate
samples are due to the cellular metabolites instead of heavy metal
ions themselves (S Appendix, Fig. S2).

Average SERS spectra of E. coli lysate after metal ion exposure
show spectral feature differences to the eye (Fig.2 A and B).
Principal component (PC) analysis (PCA), used for dimensional
reduction of SERS spectra, more clearly highlights spectral feature
changes associated with different metal exposure conditions.
Analysis of the entire spectral range, versus individual peaks, has
been reported to improve analysis of SERS data of complex sam-
ples (39-41). Before PCA, SERS spectra undergo baseline correc-
tion, data smoothing, and normalization (Methods). We found that
22 PCA components, shown in S/ Aé»pendix, Fig. S3, capture
93.3% and 94.8% of variances for Cr** and As®* concentration
data, respectively. The scores are plotted in S7 Appendix, Fig. S4.
In Fig. 2 C'and D, the first three PC loadings, which account for
greater than 75% of spectral variance used for sample classification,
are shown in a heat map. For example, the heat map of Fig. 2D
shows the largest loading value of PC1, which accounts for 58%
of the variance, between 700 and 750 cm™", which is a band con-
sistent with SERS features associated with DNA methylation (42)
associated with the stress response of E. coli (43). The stress response
to metal toxins involves differential regulation of nucleotides related
to biosynthetic processes within the cell. Metabolite vibrational
mode assignments are shown in S/ Appendix, Table S1. The largest
loading features in PC1, PC2, and PC3 correlate with energy
nucleotides, which are associated with energy metabolism pathways
involved in toxic metal stress response in bacteria (44-46), sug-
gesting that changes in nucleotide concentrations in response to
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metal exposure are consistent with the features upon which the
algorithm is classifying the different exposure conditions. Thus,
this platform is promising to identify biochemical networks
involved in toxin stress response when combined with network
models as performed by Yang et al. to identify metabolic mecha-
nisms of antibiotic lethality (47).

Classifying Lysate Spectral Concentrations by SVM. We
hypothesized that while differences in lysate spectra associated
with heavy metal exposure might be diflicult to identify by eye,
ML algorithms could accurately classify these differences as a
function of metal concentration. An unsupervised ML algorithm,
t-distributed stochastic neighbor embedding (tSNE), is used
for comparing similar data points in lower dimensional space.
The tSNE plots show clear differences in the spectral data that
correlate with exposure concentration (S Appendix, Fig. S5).
These plots represent preliminary validation of our hypothesis
that the differences in metabolic responses observed in the cell
lysate are evident in spectral data and not a result of algorithm
training. These components are used as inputs for trainin(g two
independent SVM discriminative ML models, one for Cr™* and
one for As™*, in order to demonstrate the ability to accurately
distinguish different heavy metal exposure concentrations as a
means to evaluate water safety. The classes in each discriminative
model are the concentrations of metal ions: the model for Cr®*
has 10 classes (for nine metal concentrations + control) and for
As there are 14 classes (for 13 metal concentrations + control).

The training datasets are imbalanced since the size of the control
class (measured in biological duplicate) dataset (9,600 spectra) is
eight times larger than the classes corresponding to a single con-
centration (1,200 spectra). The synthetic minority over-sampling
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Fig. 2. Concentration-dependent averaged SERS spectra (vertically offset with standard deviation shaded above and below each spectrum) acquired from E.
coli cultured in media with indicated (A) K,Cr,0, and (B) NaAsO, concentrations. PC1, 2, and 3 heat map of (C) the Cr® dataset and (D) the As** dataset containing
spectra of lysate from control and the full range of metal concentration exposure.

technique (SMOTE) is a standard method to manage imbalanced
data sets by performing data augmentation (Methods) (48).
SMOTE is performed after dataset division to prevent data leak-
age. The model is trained with 80% of the spectral data, and the
resulting classification accuracy is determined by algorithm pre-
dictions on a holdout set (not seen by the SVM model during
training) composed of the remaining 20% of the data. The clas-
sification accuracy of the holdout set is plotted in the confusion
matrices for Ccr (Flg 3A4) and As** (Fig. 3B). The concentration
label of Cr®* and As®* datasets is transformed to logarithmic scale.

The LOD was determined to be at the value when the prediction
accuracy was higher than 98% in dlstmgulshmg from the control
sample At concentrations of 6.8 pM for Cr** and 0.5 pM for
As™*, there are less than 0.3% false predictions of control rather
than the true concentration (Flg 3 A and B). Thus, SERS + ML
yields a LOD of 6.8 pM for Cr**and 0.5 pM for As’*. The SVM
classification model was also evaluated by traditional sensor per-
formance metrics of sensitivity, specificity, and accuracy (S/
Appendix, Table §2). Overall, above the LOD, the sensitivity,
spec1ﬁc1ty, and accuracy are all hlgher than 97% for both As’* and
Cr®". In order to put these metrics in perspective, we compare the
analysis from SVM models to analysis of the culture optical den-
sity (OD) data (Fig. 3 C—F) used for assessing cell growth and
inhibition by stressors. There is no significant difference in culture
OD 2 h after exposure to Cr®* even at concentratlons of 340 pM,

and there is a significant difference in OD for As’* compared to
control only at concentrations greater than 100 uM. At an OD
of 0.5, the LOD determmed from the SVM model corresponds
to approximately 0.6 As* ions per bacterium in solution and 8.2
Cr® ions per bacterium in solution. Thls correlates well with the
recommended safe concentration of Cr® being 10 times higher
than As’*. Thus, SERS + ML achieves six orders of magnitude

https://doi.org/10.1073/pnas.2210061120

lower concentration detection versus methods based on growth
inhibition.

Classification of Type of Heavy Metal lon Contaminants. We
hypothesized that the metabolic consequences of As** and Cr®*
exposure should be differentiable by SERS + ML of cell lysate due
to differences in the mechanism of toxicity of these two metals.
An SVM binary classification model was trained on lysate from
cells exposed to Cr6 at concentrations in the range of 0.68 pM—
0.68 uM and As®* at concentrations 0.5 pM—0.5 uM, at 10-fold
concentration increments. These ranges span the LOD achieved
with SERS + ML for each of the two metals. The algorithm
training process follows an analogous flow (baseline correction,
smoothing, normalization, data reduction) as described for the
classification of concentratlon in the prior section (Methods). Using
this approach, Cr®* and As®* contamination can be distinguished
with a high classification accuracy of 98.8% (Fig. 44). The ability
to distinguish between different types of heavy metal ions in water
is of great importance for determining the pollution source and
water treatment process. Analysis of the two metal data sets with
tSNE shows that there are clear differences in spectral data even
when the data are not labeled during training (Fig. 4B).

CNN Regression for Sensitive Quantification of Heavy Metal
Concentrations. In addition to evaluating how SERS + ML is
able to assign a concentration to a particular class (Fig. 3), we also
demonstrate that algorithms can predict the actual concentration
of heavy metal ions in water. Monitoring concentration changes
below Environmental Protection Agency (EPA) regulatory and
WHO recommended limits is important for early detection of
contaminants entering water supplies before adverse effects occur.
CNN was used for regression analysis as it outperforms SVM in
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in biological duplicate.

terms of throughput and regression error (49). Two 1ndependent
1-dimensional (1D) CNN regression models are trained on Cr® and
As™ concentration- dependent cell lysate spectral data The same 10
and 14 metal concentration classes for Cr®* and As™, respectively,
were used as before (Fig. 3). The CNN model architecture

-

B

(Fig. 54) contains four 1D convolutlonal layers with inputs of 22
PCA components representing the Cr® and As®* concentration
data. The first convolutional layer has the same padding and a
stride of 1 to preserve the spatial dimensions of the input data.
Each convolutional layer uses a rectified linear (ReLU) activation
function and is followed with batch normalization and dropout
with 20% random dropout rate to avoid overfitting (Methods).
As before, the spectral data are baseline corrected, smoothed,
normalized, and dimensionally reduced using PCA before input
into the model. The holdout set for validation is composed of 20%
of the data, and the remainder is used for training.

First, we use 10-fold cross-validation for hyperparameter tuning
and model performance evaluation. The number of epochs (train-
ing cycles) in the 1D CNN was determined by monitoring the
convergence of the training and validation loss. The loss function
is calculated to determine the mean square error (MSE) error
between the predicted values and the true values. As one can see
in the S7 Appendix, Fig. S8, the algorithm converges to a loss value
of approximately 0.1 at an epoch of 35. In order to utilize SERS +
ML for a variety of contaminants in practice, it is important to
evaluate required data set size achieving accurate results. A ran-
domly chosen subset of the data composed of 100 spectra per class
is first analyzed. The coefficient of determination (R?) of linear
regression was also calculated as a complementary metric to MSE
to evaluate model performance (50). MSE and R? score were cal-
culated as a function of training data size and plotted in Fig. 5
Band C. As one can see the MSE (R? score) values are high (low)
for this smaller dataset and exhibit high fluctuations. The training
dataset includes 960 spectra per class per exposure condition, this
requires 10 min for acquisition. The control dataset contains 7,680
spectra. As before SMOTE is used for data augmentation for the
concentration classes to balance with control data. When the train-
ing dataset has 1,000 spectra per class, which contains only 40
generated spectra, the model achieved an MSE value of 0.17 (0.23)
for As®* (Cr®*) and R? score of 0.98 (0.97) for As®* (Cr*). If
further augmentation is performed using SMOTE to produce
7,680 spectra per class to balance with control, the MSE reduces
to 0.09 (0.11) for As™ (Cr®) and R? score increases to 0.99 for
both As®* and Cr®". Thus, we can achieve robust model perfor-
mance using SERS spectra, which can be acquired rapidly.

The 1D CNN regression model performance on the balanced
data set is plotted in Fig. 5 D and E. The results are presented as
box plots where the data in the boxes contain 50% of the predicted
values of the holdout data, vertical lines extend to include up to
99% of predicted values, and the remaining outliers are represented
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1D CNN regression model for quantitative concentration determination. (A) Schematic of process flow in training 1D CNN architectures using 22 PC

from Cr®" and As>* concentration data. The 1D CNN model is 4 layers deep. The flatten layer is used to convert the data into a 1D array for inputting it to the fully
connected dense layer. The output layer has one node with linear activation function to produce a predicted value. The MSE and R? variance as a function of
training class size for (B) Cr®*, and (C) As®". The training data size from each class is 100, 1,000, 3,000, and 7,680. Each training algorithm runs 10 times to generate
a mean value and SD for MSE and R%. CNN regression boxplots for (D) Cr® and () As>*. Boxes contain 50% of predicted concentration values, and vertical lines
indicate the range containing 99% of predicted concentration values. Blue dots show the remaining 1% outliers.

individually by blue dots. The narrow height of the box plots show
that SERS + ML provides concentration quantification with high
precision. The gray shaded region at the bottom of figures high-
lights the LOB. The resulting LOD is highlighted with a vertical
dashed line and is defined as having less than 0.5% overlap with
control data. The values are in agreement with that determined by
the SVM model (Fig. 3 A and B) demonstrating robust perfor-
mance of SERS + ML regardless of algorithm type. The 1D CNN
regression model also allows for determining a limit of quantifi-
cation (LOQ), highlighted with a vertical dashed line, where the
overlap between neighboring concentrations is less than 0.5%.
The values of LOQ are 68 pM for Cr®* and 5 pM for As®*. The
dynamic range spans from the LOQ to 68 uM for Cr* and LOQ
to 5 mM for As>*. Chronic exposure at doses of 50 pg/L of arsenic
in drinking water is correlated with disease, such as cancer (51).
In addition to regulatory limits, the US EPA defines a maximum
contaminant level goal in drinking water that is known to have
no adverse effects on the health of people. For arsenic, this value
is zero, The EPA regulatory limit (10 pg/L for As’* and 100 pg/L
for Cr) is the value that is enforceable and provides a buffer for

https://doi.org/10.1073/pnas.2210061120

health safety. There is value, therefore, in detection at concentra-
tions lower than the regulatory limit.

Determination of Contaminant Levels in Tap Water and
Wastewater Samples. Water samples from different sources
unseen by the trained algorithm are analyzed to demonstrate
that SERS + ML is generalizable. Drinking water, water used
in agriculture, and wastewater will contain different types of
impurities, which may perturb the stress response of E. coli. It is
not feasible to fully train a new model for every different water
sample. Transfer learning is an effective method to analyze similar
systems with small datasets while still achieving high prediction
accuracy. During transfer learning, the weights and bias of the
first and second convolutional layers are adjusted and other layers
are fixed. In practice, this method could be applied by spiking
contaminants in water samples for fine-tuning the model for the
water sample of interest. In order to demonstrate this principle, a
1D CNN model was pretrained with spectra from deionized (DI)
water samples spiked with As®* at 0.05, 0.5, and 5 nM (below
WHO recommended level) and 5, 50, and 500 pM (above WHO
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recommended level). Then, unseen tap water samples are spiked
with As’* at concentrations of 1.3 nM, 13 nM, and 1.3 uM. A
binary model is assembled to predict if tap samples contain As**
above or below WHO recommended levels. The number of spectra
per class needed to fine-tune the model is 80, which takes only 2
min of acquisition time for the entire training dataset. The results
are shown in Fig. 6B where the model was able to categorize
tap water samples as above or below regulatory limits with 99%
accuracy. It is worth noting that the different As* concentrations
in the tap water samples is not the same as in the DI water samples.
This is important to determining accuracy of evaluating unknown
samples.

In order to analyze more complex samples, As** was also spiked
in secondary treated wastewater from a local wastewater treatment
plant. These samples are more complex as they contain heavy metal
contaminants in the background. S7 Appendix, Table S3 shows the
primary pollutant analysis summary from the sanitation district
where the As concentration in the background is approximately
19.4 nM. The process of determining if the concentration in the
unspiked sample is above or below WHO level for As is shown in
Fig. 7. Wastewater samples are spiked with concentrations of 1.3
nM, 13 nM, 1.3 uM, and 13 pM. Again spanning above and
below WHO recommended levels, 130 nM, for model fine-tuning
of the above pretrained DI model used for tap water. Fig. 7 shows
classification accuracy of differentiating the different classes used
for training. When applying the model to the unspiked sample,
the model predicts that the As’* concentration is below WHO
level with 92% accuracy. The total data acquisition time is 8 min;
thus, acquiring samples in the field to fine-tune a model in a short
amount of time produces high accuracy.

Discussion

The E. coli whole-cell sensors are shown to transduce metal ions
into chemical signals using the inherent metabolic stress response.
Robust and sensitive SERS surfaces with high enhancement factors
(21, 27, 30) are able to gather large, reproducible datasets needed
for ML analysis. The dataset size per class for training and valida-
tion is composed of 1,200 spectra, which requires 10 min when
using the SERS surfaces developed by the authors. Thus, we can
achieve robust model performance using SERS spectra which can
be acquired rapidly. Changes in the metabolite profile in E. coli
cell lysate associated with a stress response to heavy metal toxins
in water are observable in SERS spectra even when using unsu-
pervised feature extraction methods such as tSNE, which com-
putes similarity of data in lower dimensional space. There are clear
differences in the spectral response across the entire range of

A

0]

?

Predicted label

concentrations to which cells were exposed (S Appendix, Fig. S5).
These plots represent validation of our hypothesis that the differ-
ences in metabolic responses observed in the cell lysate are evident
in spectral data and not a result of algorithm training.

When using SVM, a supervised algorithm, for data analysis,
the resulting changes in metabolite concentrations in E. coli cell
lysate are observable in SERS spectra and differentiable across
exposure concentrations with a dynamic range of 10° (Fig. 3). The
spectral changes are distinct from control samples (unexposed)
down to concentrations at which the number of As™ in solution
per cell is approximately 1. For Cr® exposure, this number is
approximately 10 ions per cell. These values correlate well with
the fact that the EPA regulatory limit of Cr®" is ten times higher
than As®*. Overall, the LOD of SERS + ML is 100,000 lower than
the WHO recommended and US EPA regulatory levels (Fig. 3).
Detection well below regulatory limits is beneficial because the
EPA maximum contaminant level goal for As™ is zero.
Consequently, this platform is promising for monitoring changes
in water quality below regulatory limits to provide early warning
of water contamination and accurate longitudinal tracking of
contaminant concentrations. The metabolite changes detected by
this system can also distinguish between Cr®*- and As**-induced
responses in water with a classification accuracy of 99% (Fig. 4).
Identifying the type of metal contamination is critical to locating
the source and determining necessary treatment (52). When using
1D CNN re%ression algorithms, the LOQ is 68 pM for Cr®" and
5 pM for As™* with a dynamic range of 6 orders of magnitude
(Fig. 5). The 1D CNN regression model yields the same LOD as
SVM (Fig. 3 A and B) demonstrating robust performance of SERS +
ML regardless of algorithm type.

Monitoring the quality of tap water and water discharged from
water treatment facilities will require analysis of samples with a
distribution of impurities, which may perturb the stress response
of E. coli. It is not feasible to fully train a new model for every
type of water sample in the field. Transfer learning is shown to be
an effective method to analyze similar systems with smaller train-
ing datasets while still achieving high prediction accuracy. By
obtaining water samples and spiking with known concentrations
of contaminants, a new model can be quickly fine-tuned with a
smaller data set. Transfer learning using data obtained in several
seconds is sufficient to determine if drinking water or wastewater
is unsafe (Fig. 6), i.c., above or below WHO recommended limits
with greater than 96% accuracy. For more complex samples, sec-
ondary treated wastewater, the fine-tuned models can determine
if the unspiked waste water sample is above or below recom-
mended safety limits with 92% accuracy. While here we demon-
strated that transfer learning is an effective way to evaluate one

Above

Below
True label

Fig. 6. Performance of SERS + ML on unseen tap water samples. (A) E. coli is cultured in growth media and added to tap water supplemented with As*" salts at
concentrations of 1.3nM, 13 nM, and 1.3 uM for 2 h. (B) CNN confusion matrix of binary classification of spectral lysate data exposed to tap water at concentrations

above and below WHO standard for drinking water for As>*.

PNAS 2023 Vol.120 No.7 e2210061120

https://doi.org/10.1073/pnas.2210061120 7 of 11


http://www.pnas.org/lookup/doi/10.1073/pnas.2210061120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210061120#supplementary-materials

Downloaded from https://www.pnas.org by 184.181.96.164 on March 15, 2023 from IP address 184.181.96.164.

8 of 11

A B

@)

Pretrained model Fine tuning
g 3
, A 3
s a

——

EAEY 50 6.5

il 5.0 B 1.0 00
w30 35 [E¥] o5

w 05 00 00 [N

Unknown sample

@ 92 %

ok 8%

PSS

I 1T v
True label

Fig. 7. Performance of SERS + ML on unseen wastewater samples. (A) The model is pretrained on DI water (B) is fine-tuned with waste water samples spiked
with (1) 1.3 nM, (I1) 13 nM, (I11) 1.3 pM, and (IV) 13 uM As*". (C) The accuracy of differentiating the different As*" concentrations in spiked wastewater samples after
pretraining. (D) The fine-tuned model is able to determine that the concentration of As®* in the original wastewater sample is below the WHO recommended

level with 92% accuracy.

type of metal contaminant in an ‘unknown’ samples with multiple
background contaminants, we envision an assay approach could
be used to examine water samples for the presence of other toxins.
Opverall, we demonstrate that trained algorithms are rapidly gen-
eralizable across different water samples. The whole-cell SERS +
ML platform is promising for application to other water sources,
such as recycled water, and to other metals of concern such as lead,
mercury, and cadmium.

Materials and Methods

Sensor Fabrication. SERS surfaces are fabricated in microfluidic channels with
a capacitor architecture to apply an AC potential across electrodes (Fig. 1) to
induce electrohydrodynamic (EHD) flow. Fabrication is performed silicon sub-
strates (NOVA Electronic Materials, P-type, boron doped <100> with resistivity
of 0.001 to 0.005 € cm) with dimensions of 15 mm x 15 mm that are spin
coated with poly(styrene-b-methyl methacrylate) (PS-b-PMMA, Mn S-b-MMA
170000-b-145000 g mol™") thin films of approximate thickness of 25 nm; Si
substrates serve as the working electrode. Indium tin oxide (ITO)-coated glass
slides (DeltaTechnologies) serve as the counter electrode. EHD, which results as
Au NPs attach to the working electrode and locally perturb the surface potential,
is used as an external driving force for cross-linking reactions between 40 nm
lipoic acid-functionalized Au NPs (Nanocomposix, 0.13 nM) to form the anhy-
dride linking group, which define nanogap spacings. Chemical cross-linking
reactions between NP leads to Au NP clusters with reproducible SERS signal
overa large area (28).

Silicon substrates were cleaned by 20% v/v hydrofluoric acid (HF, Fisher
Scientific, 48%) / DI water (Milli-Q Millipore System, 18.2 MQ cm™") for 5 min
to remove the native oxide layer and then immersed in DI water to regrow a
thin oxide layer. The potential of HF to cause severe injury mandates extreme
caution during usage. Random copolymer poly(styrene-co-methyl-methacrylate)-
a-hydroxyl-w-Tempo moiety (PS-r-PMMA, Polymer Source, Mn = 7,400, Mw =
11,800, Mw /Mn = 1.60, 59.6 mol% polystyrene content) random copolymer
dissolved in toluene (Fisher Scientific), 1 wt%, was spin-coated at 3,000 rpm for 45
sonsilicon substrates. PS--PMMA films were annealed under vacuum at 170 °C
for48 h followed by a rinse with toluene to leave a brush layer. PS-b-PMMAis spin
coated at 5,000 rpm for 45 s and then annealed for 72 h at 170 °C. In order to
selectively functionalize PMMA domains on PS-b-PMMA diblock copolymer films
with amine functional groups for cross-linking with Au NPs, PS-b-PMMA/Si were
immersed in dimethyl sulfoxide (DMSO, Sigma-Aldrich) for 5 min and then 5 %
vol ethylenediamine (ED, Sigma-Aldrich) in DMSO for another 5 min. ITO counter
electrodes were cleaned using ethanol (Sigma-Aldrich), isopropyl alcohol (IPA),
and DI water and then dried using N, before attaching a platinum wire and silver
paste (Epoxy Technology) to make electrical contact.

Amicrofluidic cell was formed between electrodes using a 90-um spacer layer
composed of 3M 9816L. A solution of 2 pL N-hydroxysulfosuccinimide (s-NHS,
Sigma-Aldrich), 20 mM, and 2 pL 1-ethyl-3-(3-dimethyl aminopropyl) carbodiim-
ide (EDC, Sigma-Aldrich), 8 mM, in a 2-(Nmorpholino) ethane sulfonicacid buffer
(MES, Sigma-Aldrich, 0.1 M, pH = 4.7) was added to a 0.25 mLsolution of 2.6 nM
lipoic acid-functionalized Au NP solution. Then, 20 pL of the solution containing
Au NP, s-NHS, and EDC is added to the microfluidic cell. An AC electrical stimuli
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with a potential of 5V, and frequency of 100 Hz is applied for 2 min to deposit
a seed layer to induce EHD flow. The second deposition step was conducted at
a potential of 5V, and frequency of 1,000 Hz for 2 min to grow Au NP clusters.
After deposition, the electrode cell was dismantled and the sensor surface was
thoroughly rinsed with DI water and IPA (Sigma-Aldrich) and then dried with
N,. SI Appendix, Fig. S9 shows reproducible intensity across the SERS surface
and S/ Appendix, Fig. S10 compares to intensity from a benzenethiol monolayer
obtained from samples fabricated using EHD and drop casting, where the latter
has lower signal and highly variable intensity.

Media, Heavy Metal, and Carbon Source Supplement. M63 media (VWR
Life Science) solution was made by first diluting 1 liter of presterilized M63 5x
(BioWORLD, GenelLinx International Inc.) stock solution using autoclaved Millipore
water. Filter-sterilized magnesium sulfate anhydrous (MgSO,, Fisher Scientific)
water solution, of volume 1 mL and molarity of 1 M, was added to the diluted
media solution following standard protocol. Sodium arsenate stock solution
(RICCA Chemical Company, 100 mM) was first filter-sterilized and then diluted
with sterilized DI water to reach concentrations of 0.1 mMand 0.1 uM and stored
under 4 °C. Potassium dichromate (Fisher Scientific) solution was made by first dis-
solving sodium dichromate crystal into sterilized DI water to reach concentrations
of 17 mM, and then, the solution was filter-sterilized and diluted with sterilized
DI water again to reach concentrations of 0.34 mM and 0.34 uM and stored at
4°C. Prior to exposure to bacterial cultures, working solutions were placed at room
temperature for 30 min to equilibrate to ambient temperature and then titrated to
the culture to target exposure concentration. Anhydrous dextrose (glucose, Fisher
Scientific), 1 g, was dissolved in 10 mL DI water and filter-sterilized to form 10%
(whv) glucose stock solution, which was added into the media solution later to
provide energy source for bacteria.

Growth and Subculture Condition. A sterilized wooden applicator was used
to streak E. coli K12 strain MG1655 (Yale Stock Center via the Goulian Lab) frozen
stock onto an lysogeny broth (LB, IBI scientific) agar plate. The plate was then
placed into an incubator and incubated stationarily for 18 h. A single colony
was picked from the plate after incubation and used to inoculate 5 mL sterile LB
solution in a test tube. The inoculated culture tube was then placed in the shaking
incubator (| series 24R, New Brunswick) set at 37 °C and speed of 250 rpm for
18 h. After incubation, the final OD was approximately 1.5 as measured with a
colorimeter (WPA CO7500 colorimeter, Biochrom Ltd.). From the shaking culture,
3 mLwas transferred to a 50 mL conical centrifuge tube and centrifuged at the
speed of 5,000 rpm for 5 min (Sorvall Legend X1R centrifuge, Fisher Scientific).
Then, the supernatant was disposed and the pellets were resuspended in 1 mL
of 1x phosphate-buffered saline (PBS, Fisher Scientific, 10x solution) solution.
The pellet-PBS mixture was transferred to 1 mL centrifuge tubes, centrifuged at
5,000 x g for 5 min (accuSpin Micro 17, Fisher Scientific), and the supernatant
was disposed. The washing step was repeated. After, the pellet was resuspended in
1 mLM63 defined media, resulting in a milky M63-pellet mixture with very high
0D. M63 media supplemented with 1% (w/v) glucose was pipetted into sterilized
test tubes and the pellet-M63 mixture was titrated into the test tubes to reach
the final OD of 0.5. The total volume of liquid in each test tube was 5 mL. Three
tubes, having a 15 mL culture, were prepared fora single colony. These tubes were
then moved to the shaking incubator for subculturing with the shaking speed
setat 250 rpm and temperature at 37 °Cfor 6 h.Then, the 15 mLsubculture was
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transferred to 50 mL centrifuge tubes, centrifuged twice ata speed of 5,000 rpm
for 5 min, and washed with 1 mL of PBS twice. The subculture was resuspended
in 1 mLM63 defined media before being exposed to heavy metals.

Bacterial Exposure to Heavy Metal and Growth Curve Measurement. £. coli
(K12 MG1655 strain) is cultured in defined media M63 to achieve an OD of 0.5
and supplemented with 1% (w/v) glucose to mitigate conflating stress from heavy
metal stress ions with nutrition limitation. The subcultures prepared as described
in the prior section were washed with T mL PBS twice and resuspended in M63
defined media. M63 media supplemented with 1% glucose (w/v) was pipetted
into wells of white-opaque 96-well microplates. Different concentrations of heavy
metal (NaAsO, or K,Cr,0;) were added to the wells. Specifically, 0, 1,10, 100, and
1,000 uM of NaAsO, and 0, 0.34, 3.4, 34,and 170 uM of K,Cr,0, were exposed
to cultures for 2 h.The resuspended culture was pipetted into the wells to make
the OD of the culture 0.5. Each condition was done in biological duplicates. After
pipetting, the microplate was placed in the Skanlt Microplate Reader (Thermo
Scientific) at 37 °Cand shaken ata speed of 300 rpm and high force. The OD of the
culture in each well was measured every 5 min for 6 h to generate growth curves.

Preparation of cultures exposed to tap water and wastewater from Orange
County Sanitation District (OCSD) involves similar steps as those exposed to
DI water spiked with As**, except after washing with PBS, the subculture was
resuspended in tap water or wastewater supplemented with 1% (w/v) glucose
atan 0D of 0.5, and the heavy metal salts were dissolved in tap water or
wastewater instead of the defined media. The secondary treated wastewater
was treated by primary sedimentation followed by an activated sludge pro-
cess with nitrification and denitrification at OCSD. Before spiking with As®*,
the secondary treated wastewater was filtered with 0.45 ym MCE Membrane
(MF-Millipore).

Lysate Sample Preparation. Thermal lysis was chosen for our sample prepa-
ration process due to its convenience, minimal equipment requirements, speed,
and extensive prevalence in microfluidic devices as a method for bacterial mem-
brane disruption (53-59). While thermal treatments can influence the metabolite
profile of a sample (60), every method of cell disruption has some effect on
cellular contents associated with it (53, 54), and in this study, we only aim to show
that machine learning analysis of whole-cell sensors accurately distinguishes
between identically prepared samples.

After exposure to metal solutions, the bacterial cultures were washed, as
described in the growth and subculturing methods section, to remove residual
metals from the pellet and avoid their mixing with metabolites released during
lysing. The pellet was then resuspended in 100 pL Millipore water and heated
to a temperature of 97 °C for 30 min to lyse the cells. The lysed culture solution
was centrifuged at 12,000 x g for 10 min.Then, 100 pL supernatantin each tube
was evenly divided into four parts by pipetting into four different 1 mL sterile
centrifuge tubes, 25 pl each transfer. These supernatant samples were placed in
the —20 °C freezer to store for further analysis.

Data Acquisition. Spectral data of lysate samples are acquired by placing a
droplet with a volume of 25 pL of lysate from E. coli cells untreated (control) or
exposed to heavy metal ion solutions atvarious concentrations on SERS surfaces.
The measured concentration range for NaAsO, was 0.65 pg/L to 650 mg/L (13
concentrations) and for K,Cr,0; was 0.1 ng/L to 10 mg/L (nine concentrations)
spaced by one order of magnitude as shown in Table 1.The corresponding con-
centrations in molarity of As** and Cr®* are shown in Table 1.

For each exposure concentration, a dataset of 1,200 SERS spectra is acquired
using a Renishaw InVia™ micro Raman system with an integration time of 0.5s, 146
pW laser power at 785 nm excitation wavelength, and a 60 x waterimmersion lens
with 1.2 NA(beam diameter of 292 nm). Raman maps were acquired in an array of
20 x 20 with 3 um steps between measurement points, resulting in 400 spectra
per map. Three maps were acquired over different regions of the sample surface
resulting in a total of 1,200 spectra per concentration for each metal ion defining a

class for initial training of machine learning algorithms (61). The dataset acquisition
takes 10 min, and the droplet does not evaporate during this period of time. In order
to ensure that the algorithm is not being trained to detect batch-to-batch variations
of SERS surfaces, concentration classes between two and six, including control sam-
ples, were acquired on different regions of the same SERS surface (droplets exposed
to isolated regions), indicated by superscripts in Table 1. Furthermore, the control
group, prepared underthe same conditions in the absence of Cr°* orAs®* exposure,
was measured from lysate samples prepared in biological duplicates on different
days, from the eight different SERS surfaces, also fabricated on different days, used
for the other metal concentrations exposure conditions to train algorithms to not
identify differences based on normal variability of experimental conditions such as
culture growth, device fabrication, and processing steps.

Preprocessing of SERS Spectra Data. For data preprocessing, asymmetric
least square correction is utilized for baseline correction, and a Savitzky-Golay
filter is used for data smoothing. In order to normalize the data, the vibrational
band of silicon at 520 cm™" is used as an internal standard and set to 1. The
diblock copolymer layer, between Si and NP clusters, is 25 nm thick, and thus,
Si surfaces are not affected by the signal enhancement of Au NP clusters. The
metal ion concentration unit was labeled with a log scale since concentrations
investigated span several orders of magnitude. PCA was performed for dimen-
sional reduction. We determined that 22 PCA components captured 93.3% and
94.9% of variances for Cr°* and As** concentration data, respectively. tSNE was
also performed to visualize the concentration data in lower dimensional space
and show that there are spectral differences in the data observed without labeling
data for algorithms.

SVM Classification Model. Two independent SVM discriminative models are
trained on Cr®* and As®* exposed lysate spectra data for the classes shown in
Table 1. The training datasets are imbalanced since the size of the control class
dataset (9,600 spectra) is eight times larger than the classes corresponding to a
single concentration (1,200 spectra). The SMOTE is used to oversample skewed
classes in the dataset and achieve a balanced dataset. SMOTE works by selecting
arandom example from the minority class, and then, k of the nearest neighbors
forthat example is found. Arandomly selected neighboris chosen and a synthetic
example is created at a randomly selected point between the two examples in
feature space. SMOTE can alleviate overfitting by increasing stability with respect
to random fluctuations and thereby increase the generalization capability of the
classifier (35). SMOTE is performed after data split within each cross-validation
fold to prevent data leakage.

The SYM models are trained using 22 PCA components. A holdout set is com-
posed of 20% of the data that is used for final validation and not seen at all
during training. The model is trained with the remaining 80% of the spectral
data labeled with their appropriate class to define a hyperplane separating data
into the correct classes. SYM models are trained with Scikit-learn using default
parameters, with radial basis function kernel, Margin parameter (C) = 1,and y
= scale. In order to evaluate SYM model performance, sampling cross-validation
is performed using 10-fold stratified sampling on the training dataset for the
initial evaluation of model performance. Here, each fold is shuffled and used as
validation data to estimate prediction accuracy. The cross-validation results are
in the S/ Appendix, Figs. S6 and S7.The final model is trained with 80% training
data and tested with 20% holdout set.

Statistical Analysis. The statistical significance between the OD when exposed
for 2 h to different heavy metal concentrations (Fig. 3 £ and F) was calculated
using two-tailed Student's t test. All growth experiments were done with biological
duplicates (n = 2)in 96-well plates. The OD after 2 h of exposure was calculated
as the average of three replicate wells, and the error bars represent the standard
deviation of the OD of the three wells. The degrees of freedom for all statistical
calculationsin the two plots are 2. The t values and Pvalues are shown in Table 2.

Table 1. Cr° (10 classes) and As** (14 classes) for machine learning models

8 9 10 11 12 13 14

1 2 3 4 5 6 7
Cr® C 0.68 pM* 6.8 pM* 68 pM* 680pM' 6.8nM' 68nM'
Ast ¢ 5fM°  50fM® 500fMT  5pMT 50 pmT 500 pMT

680 nM* 6.8 pMm*
5nMT

68 pM* X X X X

50 nM" 500 nM* 5 uM!l 50 UMl 500 pMmIT 5 MM

Cis the control class. Superscripts indicate SERS data acquired on the same SERS surface.
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Table 2. Accuracy of SERS + ML measurement of metal
concentration: t values and P values of final OD after 2-h
exposure to heavy metals

[AS®] (uM) 0 0.68 6.8 68 340

t value N/A  0.1677 0.3912 30.5232 5.8938
P value N/A  0.8822 0.7334 0.0011  0.0276
[Cr%T (uM) 0 1 10 100 1,000
t value N/A 04158 03767 1.0135 1.1834
P value N/A 07179 0.7426  0.4175  0.3583

10 of 11

CNN Regression Model. The 1D CNN model architecture utilizes Keras frame-
work with Tensorflow backend. Twenty-two PCA components are used as input for
both Cr** (0.68 pM to 68 uM) and As** (5 fM to 5 mM) exposed lysate spectra
datasets, respectively. The first convolutional layer is the data input layer, which
has 22 kernels with sizes 7 and 1 stride to preserve the spatial size with the same
padding.The second convolutional layer also has 22 kernels with size 7.The third
and fourth convolutional layers are identical, with 44 kernels with size 7. Each
convolutional layer is followed by a batch normalization layer and a dropout
layer with 20% random dropout rate. Batch normalization mitigates changes in
the distribution of network activations due to the change in network parameters
during training. Dropout layers are used to prevent overfitting. Followed by con-
volutional layers, a flatten layer is added to reshape the 2D extracted feature into
a 1D vector followed by a dropout layer. Fully connected layers with 22 nodes
with an L2 norm regularization (0.007) and ReLU activation function are applied
to process the 1D vector. Finally, using the linear function, the weighted sum of
the flatten layer is condensed into a one-unit neuron containing the prediction
result between zero and nine (Cr**) or 13 (As>*), where the continuous score
supplies predicted concentrations.

Hyperparameters of the 1D CNN regression model including number of hid-
den layers and units, activation function, dropout rate, batch size, kernel size,
and number of epochs are optimized by monitoring training and validation loss
during 10-fold cross-validation. To be specific, EarlyStopping was used by mon-
itoring the increase in validation loss to determine the number of epochs. Early
termination was determined when the validation loss was increasing for 10 con-
secutive epochs, indicating that the 1D CNN had reached maximum convergence.
During 10-fold cross-validation, they all reach the convergence at approximately
35 epochs, which was thus chosen for the final model. During 10-fold cross-val-
idation, the loss function is calculated to determine the average of the squared
differences between the predicted and true values. The overlaid learning curve
from 10-fold cross-validation shows no obvious gap between training loss and
validation loss, which shows the absence of overfitting (S/ Appendix, Fig. S8).

Due to the large size of control dataset acquired to capture variability of exper-
imental conditions, including biological culture conditions and device fabrication,
the data classes are imbalanced. Again SMOTE is used to balance the training
dataset, and here, the training dataset size is varied to contain 100, 1,000, 3,000,
and 7,680 randomly selected spectra from each class to determine the size of
needed training data for accurate predictions. As before, 20% of the spectral data
is set aside as a holdout set, i.e., not used in training. The performance of the
1D CNN regression model is evaluated by calculating MSE and coefficient of
determination (R?) scores for four different dataset sizes. The RZ metricis the ratio
of explained sum of squares and the total sum of squares and is sensitive in the
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Transfer Learning. The transferred CNN is built by Tensorflow 1.8 in Python 3.6.
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