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ABSTRACT
Shared electric scooters (e-scooters) have been increasingly popular
because of their characteristics of convenience and eco-friendliness.
Due to their shared nature and widespread usage, e-scooters usually
have a short lifespan (e.g., two to five months [2]), which makes it
important to predict the remaining lifespan accurately, ensuring
timely replacements. While several studies have focused on the
lifespan prediction of various systems, such as batteries and bridges,
they present a two-fold drawback. Firstly, they require significant
manual labor or additional sensor resources to ascertain the ex-
plicit status of the object, rendering them cost-ineffective. Secondly,
these studies assume that future usage is similar to historical usage.
To solve these limitations, we aim at accurately predicting the re-
maining lifespan of e-scooters without extra cost, and its essence is
to accurately represent its current status and anticipate its future
usage. However, it is challenging because: i) lack of explicit rules
for the e-scooters’ status representation; and ii) e-scooters’ future
usage may significantly differ from their historical usage. In this
paper, we design a framework called RLIFE, whose key insight is
modeling user behaviors from trip transactions is of great impor-
tance in predicting the Remaining LIFespan of shared E-scooters.
Specifically, we introduce an unsupervised contrastive learning
component to learn the e-scooters’ status representation over time
considering degradation, where user preferences are served as a
status reflector; We further design an LSTM-based recursive com-
ponent to dynamically predict uncertain future usage, upon which
we fuse the current status and predicted usage of the e-scooter
for its remaining lifespan prediction. Extensive experiments are
conducted on large-scale, real-world datasets collected from an
e-scooter company. It shows that RLIFE improves the baselines by
35.67% and benefits from the learned user preferences and predicted
future usage.
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1 INTRODUCTION
Shared electrical micromobility have become increasingly pop-
ular in recent years. Let take e-scooters as a concrete example.
Lime [4] served more than 55 million customers in 2021 and is
projected to serve 124.8 million users in 2026 [1]. Compared with
traditional human-powered bikes, e-scooters provide a faster and
easier way to solve the first and last-mile problem during com-
muting, using battery-powered motors with speeds of up to 50 km
per hour [3]. Due to their shared nature and widespread usage,
e-scooters typically suffer from a short lifespan, ranging from two
to five months [2]. Such a short lifespan makes it necessary to
maintain or replace e-scooters timely in order to ensure a positive
customer experience and prevent potential safety hazards before
they become unserviceable. To this end, it is important to predict
the remaining lifespan of e-scooters accurately.

To date, the remaining lifespan prediction problem has been
studied in many systems, e.g., rail infrastructures [22], batteries [9],
and bridges [23]. Existing works heavily rely on deploying ded-
icated sensors to collect explicit status indicators, e.g., state of
health (SOH) in batteries [9]. Based on the sequentially collected
data, [9, 38, 39] leverage neural networks(e.g., RNN, LSTM), to learn
the non-linear degradation curve for the measured target, e.g., bat-
tery life curves [9]. However, those frameworks cannot be applied
in our scenario directly, because: 1) the learned life curve typically
works in ideal environments without considering uncertain noise;
2) e-scooters are sophisticated machines with multiple components
(i.e., wheels, batteries, etc.) and different kinds of sensors are needed
for status monitoring. Sensor deployment requires significant labor
efforts and expensive fees, rendering it cost-effective. The limi-
tations of the existing works motivate us to answer a research
question: can we predict the remaining lifespan of shared e-scooters
without additional dedicated sensor deployment?

 

3544

https://nam02.safelinks.protection.outlook.com/url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C01%7Cwenjun.lyu%40rutgers.edu%7Cd84b387cdff14d1b903a08dba53e7f3c%7Cb92d2b234d35447093ff69aca6632ffe%7C1%7C0%7C638285460453805918%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=4A7g5zfm6WYyyTndfbNuKy0jiE9XkazlyjfM%2FB%2BPAQk%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C01%7Cwenjun.lyu%40rutgers.edu%7Cd84b387cdff14d1b903a08dba53e7f3c%7Cb92d2b234d35447093ff69aca6632ffe%7C1%7C0%7C638285460453805918%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=4A7g5zfm6WYyyTndfbNuKy0jiE9XkazlyjfM%2FB%2BPAQk%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C01%7Cwenjun.lyu%40rutgers.edu%7Cd84b387cdff14d1b903a08dba53e7f3c%7Cb92d2b234d35447093ff69aca6632ffe%7C1%7C0%7C638285460453805918%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=4A7g5zfm6WYyyTndfbNuKy0jiE9XkazlyjfM%2FB%2BPAQk%3D&reserved=0
https://doi.org/10.1145/3583780.3615037
https://doi.org/10.1145/3583780.3615037
https://doi.org/10.1145/3583780.3615037
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3615037&domain=pdf&date_stamp=2023-10-21


CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Shuxin Zhong et al.

In this work, we collaborate with an e-scooter company to learn
the degradation process of e-scooters in a data-driven manner. This
collaboration offers us the opportunity to predict the remaining
lifespan based on large-scale operational data without extra labor
or sensor deployment. Through detailed data analysis, we found
that it is important to consider both e-scooters’ current status and
predicted future usage in lifespan prediction (supported by Fig-
ures 2, 3, 4). Though it sounds straightforward, there are two chal-
lenges:
• Lack of explicit rules for e-scooters’ status representation and
lack of explicit correlations between status and remaining lifes-
pan. One straightforward approach is to leverage the served
distance to estimate the status of e-scooters. Intuitively, a longer
served distance leads to more significant wear and tear, conse-
quently leading to a shortened lifespan. However, we found the
correlation coefficient between the served distance and corre-
sponding remaining lifespan is only 0.6302 (as depicted in Section
2). This relatively modest correlation is because of the fact that
the longevity of e-scooters is not only affected by the used dis-
tance, but affected by other non-observable factors, e.g., weather
conditions, riding habits, and accidents [2].

• The future usage of e-scooters deviates considerably from their
historical patterns. Specifically, the daily trip distance decreases
as the “age” of e-scooters increases (as shown in Section 2). For
example, the average daily trip distance during the first 10% of
the lifespan is 14.3% more than that in the last 10%.
To solve these challenges, we design a framework called RLIFE

to predict the Remaining LIFespan of shared E-scooters. The key
insight is that modeling user behaviors from trip transactions is of
great importance in remaining lifespan prediction (detailed in Sec. 2).
The rationale behind this insight is two-fold: i) the user behavior
patterns indirectly reflect e-scooter status; and ii) user behavior
trends can also provide valuable insights into future e-scooter usage.
For instance, when faced with multiple nearby e-scooters, users
typically opt for those in better condition, such as those without
broken parts or with a pristine appearance. Furthermore, frequent
usage is associated with accelerated wear and tear, ultimately re-
sulting in a shortened lifespan. Drawing from this insight, we have
devised two main components for our approach, including (i) self-
supervised e-scooters status representation learning, and (ii) user
preference evolution prediction. In component (i), we design a
un-supervised contrastive learning, which learns the e-scooter’s
degradation status representation over time, where the trip records
and user preferences are served as the direct and indirect reflec-
tors, respectively. For component (ii), we train a recursive layer
to project the user preferences after Δ days. Finally, we fuse the
learned current status and Δ-day user preference to estimate the
future status. By varying the value of Δ, we can estimate the future
status of the e-scooter. Once the estimated status indicates that the
end of life is approaching, we consider Δ as the remaining lifespan
starting from the present moment. The key contributions of this
paper are summarized as follows:
• We for the first time study the remaining lifespan prediction
problem for e-scooters without extra dedicated sensors. It in-
corporates the current status representation learning and future
usage estimation from operational data.

• We highlight the importance of modeling user preferences from
transactions in the status learning and usage estimation. Specifi-
cally, we design an unsupervised contrastive learning framework
to discriminate the lifespan status representation without anno-
tations and a recursive layer to predict the dynamic future usage
in a given Δ-day.

• We evaluate RLIFEwith 9-month data collected from an e-scooter
company in two cities. The results show RLIFE improves pre-
diction accuracy by 35.67% and 29.81% compared with the SoA
methods in the two cities. The code and the data are available 1.

The rest of the paper is organized as follows. In Section 2, we
introduce the data sets, analyze the challenges and the key insight,
and provide the formal definition of this problem. We show the
technical design in Section 3, including the overview of RLIFE,
and the detailed design. In Section 4, we evaluate the performance
of RLIFE to show the effectiveness compared with baselines. We
provide related works in Section 5. Finally, we discuss the lesson
learned, the limitations, future works and privacy issues in Section 6
and conclude the paper in Section 7.

2 BACKGROUND AND MOTIVATION
2.1 Data
In this work, we mainly use two datasets, including an e-scooter
trip record dataset and a weather dataset.

2.1.1 E-scooter Dataset. By collaborating with an e-scooter com-
pany , one of the major shared e-scooter service providers, we have
access to real-world datasets in two cities of New Jersey, USA:

• In New Brunswick, the data is collected with 1, 179 e-scooters
and 118, 609 trips in 9 months from April to December in 2021;

• In Newark, the data is collected with 639 e-scooters and 50, 631
trips in 4 months from August to December in 2021.

Each trip record captures data from the point a user picks up an
e-scooter until the point the user drops it off, including vehicle ID,
trip start and end time, and trip routes (i.e., GPS traces). All the data
are obtained legally under the users’ consents [6]. The detailed data
format is listed in Table 1.

Table 1: Trip Record Format and Example

Field Value
Vehicle ID 50109575
Trip ID d0980b1f-59af-5944-980c-4ebb5336fdbe
Trip duration 211
Trip distance 232
Start time August 7, 2021 8:57:29 PM
End time August 7, 2021 8:59:49 PM

Routes
August 7, 2021 8:57:30 PM, [-74.448150, 40.499419],
August 7, 2021 8:57:32 PM, [-74.448144, 40.499345],
...

1https://www.dropbox.com/s/2muo5q6gge0wd51/rlife-src.tar.gz
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2.1.2 Weather Datatset. The weather condition data were collected
from 2, 400 stations in National Oceanic and Atmospheric Admin-
istration (NOAA) [5]. We utilize weather data from April 2021 to
December 2021, including temperature, relative humidity, precipi-
tation, wind speed and direction, visibility, atmospheric pressure,
and duration of different weather types (e.g., rain, snow, etc.).

2.2 Problem Formulation
Suppose an e-scooter has been in service for 𝑡 days, generating
time-ordered trip records denoted as 𝑅𝑡 = [𝑟1, 𝑟2, . . . , 𝑟𝑡 ], where
𝑟𝑖 ∈ R𝑁𝑟 and 𝑁𝑟 is the dimension of record.

Given those records, we aim to predict the remaining lifespan of
this e-scooter. Formally, it is defined as:

remaining lifespan = maxΔ|𝐹 (𝑅𝑡 ,Δ) ≥ 𝐹𝑡ℎ (1)

where Δ is the number of days, and 𝐹 is the function that returns
the probability of the e-scooter still in service in Δ days, 𝐹𝑡ℎ is a
given probability threshold.

Because the remaining lifespan is affected by its current degra-
dation status and future usage, Equation 1 is further extended to:

remaining lifespan = maxΔ|𝐹 (𝑓𝑑 (𝑅𝑡 ), 𝑓𝑠 (𝑅𝑡 ,Δ)) ≥ 𝐹𝑡ℎ (2)

where 𝑓𝑑 (𝑅𝑡 ) returns the status representation at 𝑡 , 𝑓𝑠 (𝑅𝑡 ,Δ) returns
future usage during 𝑡 to 𝑡 + Δ.

Figure 1: Correlations be-
tween ServedDistance andRe-
maining Lifespan.
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Figure 2: Daily Trips Distance
vs. Percentage of Lifespan.

2.3 Key Insight
Our system RLIFE is based on one key insight: modeling user be-
haviors from trip transactions is of great importance in reflecting
current status and future usage for remaining lifespan prediction. The
rationale behinds it: i) the current user behavior patterns indirectly
reflect e-scooter status; and ii) user behavior trends can also offer
valuable insights into future e-scooter’s usage. To visualize it, we
quantify the user preference as selection probability, which is cal-
culated as the total selected times over the total available times (as
in Sec. 3.2). For example, if an e-scooter is available for 10 trips in
a time period (e.g., within 10 meters to the start locations of these
10 trips) and it is selected twice, then the selection probability of
this e-scooter is 0.2. Figure 3 shows that the e-scooters with long
remaining days have a higher selection probability, which proofs
that user behavior reflects the e-scooter’s status. Figure 2 and Fig-
ure 4 shows that the selection probability and daily usage decreases

with the increase of the e-scooters’ “age", which validates the future
usage is different from historical usage.
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2.4 Two Challenges
Even though the idea sounds straightforward, there are still two
challenges, including a lack of explicit status representation and
uncertain future usage. We perform data analysis to show the above
two challenges as follows.
• Lack of explicit rules for e-scooters’ status representation.
Different from previous works [9, 29, 30, 39] that deployed sen-
sors to monitor the operation status of machines, we lack the
explicit factors to directly evaluate the e-scooters’ status and the
explicit relationships between status and remaining lifespan. The
simplest way is that we can leverage the total served distance
to reflect the remaining lifespan. Intuitively, a longer served dis-
tance may indicate a shorter remaining lifespan. However, when
we investigate the correlation coefficient between the served
distance and remaining lifespan (as shown in Figure 1), where
each point is an e-scooter. We found that the coefficient between
the total served distance and remaining lifespan is only 0.6302,
which means the e-scooters with the same served distance may
have significantly different remaining lifespans. In reality, the
longevity of e-scooters is simultaneously affected by multiple
factors, e.g., weather, riding habits, and accidents, which are non-
observable sometimes [2]. Thus, it is inaccurate to directly use
one single explicit data, e.g., the total served distance or duration,
to represent the status of e-scooters.

• E-scooters’ future usages are significantly different from
the historical usages. As shown in Figure 2, the average trip
distance continuously decreases as their “age" increases, which
indicates a shift in usage patterns over time. Typically, we analyze
the usage of e-scooters(i.e., average daily trip distance) during
their different lifespan stages(i.e., from the first 10% to the last
10%). Future usage is one of the factors that affect the remaining
lifespan. In this case, the remaining lifespan prediction works
that do not explicitly consider the future usage patterns [22, 35]
cannot achieve satisfying performance.

2.5 Motivation
Why do we choose contrastive learning? To better illustrate our
motivation, we first introduce contrastive learning. It is an unsu-
pervised framework that learns the general feature representations
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from input data without explicit labels or categories. By comparing
similar and dissimilar data pairs, the method can differentiate the
two data types from the representations it learns. Typically, data
augmentation techniques are designed and applied to generate sim-
ilar data pairs, while other data points are treated as dissimilar pairs.
In our research, as there are no clear indicators to represent the
status of e-scooters, we utilize contrastive learning to investigate
possible representations of the e-scooters’ status. Using it, we aim
to identify and differentiate the status of e-scooters by comparing
similar and dissimilar pairs of data and learning representations
that distinguish between them. Our assumption is that e-scooters
that have similar trip records, such as similar locations and weather
conditions, should have similar statuses. To take advantage of this,
we use contrastive learning to optimize the alignment of the repre-
sentations of e-scooters’ status with similar trip records without
the need for human annotations.

The key technical improvement. As described in literature [7,
11–13, 17, 18, 36], data augmentation is a critical element in con-
trastive learning. It plays an important role in creating semantically
similar pairs of e-scooters’ records, which in turn affects the quality
of the learned representations of their status. However, traditional
augmentation methods such as rotation or cropping, which are
suitable for time-invariant data such as images or graphs, do not
take into account temporal correlations and are not appropriate for
sequential trip records. This highlights the need for specialized and
tailored data augmentation techniques for our sequential data. To
address these limitations, we have developed three specialized data
augmentation techniques that take into account the time, geograph-
ical, and usage aspects of e-scooters’ trip record simultaneously.
These methods are called record masking, record shifting, and trip
drifting, and they will be described in more detail in Section 3.3.

3 DESIGN OF RLIFE

3.1 Overall Architecture
Fig. 5 shows the overall architecture of RLIFE including Pre-processing,
Status Representation Learning, Future Usage Prediction, and Re-
maining Lifespan Prediction.

3.1.1 Pre-processing. We extract features based on the aggregation
of trip records, weather, and road networks. Specifically, we extract
trip features (e.g., distance and duration) and user preference fea-
tures (e.g., selection probability), and trip intervals for the status
representation learning and future usage prediction, respectively.

3.1.2 Status Representation Learning. We process sequential trip
features as explicit observation and user preference as an implicit
reflection to learn e-scooters’ current status representation. Specifi-
cally, we leverage a self-supervised contrastive learning component
to discriminate the lifespan status representation. Different from
traditional contrastive learning, we mainly have two improvements:
i) the augmentation method perturbs the input in three aspects,
i.e., time, geographical, and usage domain, simultaneously; ii) the
similarity is guided by both degradation status and user preferences.

3.1.3 Future Usage Prediction. We model the dynamic evolution of
user preference, which predicts the future embedding trend of user
preference. This is done by leveraging an attention-based layer to
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∆
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Figure 5: The Architecture of RLIFE. It consists of four com-
ponents: Data Pre-processing, Status Learning, Future Usage
Prediction, and Remaining Lifespan Prediction. In data pre-
processing, we first clean the data, e.g., remove the outliers,
and extract the features, including trip and user preference
features(detailed in Sec.III.B). In status learning, we design
an unsupervised contrastive learning framework to leverage
the extracted features to discriminate the lifespan status rep-
resentationwithout human annotations(detailed in Sec.III.C).
In future usage prediction, we predict the future usage con-
sidering the given query time Δ(detailed in Sec.III.D). In the
remaining lifespan prediction, we output the probability that
an e-scooter is still in service after timeΔwith the learned sta-
tus representation from Sec.III.B. By computing the queries
for multiple Δ, the final output is the Δ with the maximum
probability.

project the embedding of user preference after a time lapse Δ. The
projected embedding is used for downstream tasks, i.e., predicting
the future usage at a given query time Δ.

3.1.4 Remaining Lifespan Prediction. We formulate the remaining
lifespan prediction as a query task whose inputs are the e-scooters’
current status and predicted future usage during time [𝑡, 𝑡 +Δ]. The
output is the probability that an e-scooter is still in service after
time Δ. By computing the queries for multiple Δ, we can derive the
distribution of the probability.

3.2 Pre-processing
We mainly clean the raw data, e.g., outliers removal, and extract
features from them.

3.2.1 Data Cleaning. Since data collected from real-world sources
may contain noise, we eliminate trip records with improbable speed
and distance values. For example, e-scooters have a maximum speed
of 30 mph [3]. So we remove the trips with an average speed of
over 30 mph. Further, we identify and remove a set of trips with a
distance over 25 miles that are abnormal in our dataset considering
the service areas in the city.

3.2.2 Features Extraction. We first map the GPS points on the
road network and obtain the sequence of passed regions. We then
aggregate the records with weather information and derive the
features from two aspects, i.e., trip features and user preference
features.
• Trip Features. represent the trip features within one trip, in-
cluding its start time and end time, origin and destination, trip
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duration and distance, passed regions, and current weather situ-
ation (e.g., temperature, relative humidity, wind, etc.).

• User Preference Features. represent the trip features between
consecutive trips, i.e., selection probability and idle intervals.
Specifically, the selection probability 𝑝 for an e-scooter is cal-
culated by 𝑝 = 𝑛

𝑁
where 𝑁 is the total potential trips for this

e-scooter (i.e., this e-scooter is within a certain distance of the trip
origin and can be potentially selected by users), 𝑛 is the number
of actually selected times. The idle intervals of an e-scooter are
the interval between two consecutive trips, which also reflects
its popularity.

3.3 E-scooter Status Representation Learning

3.3.1 Data Augmentation. Data augmentation is a critical step
in contrastive learning. It helps to construct semantically similar
e-scooters’ record pairs and affects the quality of learned status rep-
resentations. Current augmentation methods, e.g., rotation or crop-
ping, are designed for time-invariant data, e.g., images or graphs,
which do not consider temporal correlations and are not suitable
for sequential trip records. Thus, we design three types of data
augmentation methods for the e-scooters’ record data.

Record Masking. Intuitively, the status of an e-scooter should
be more similar to itself than to others, even though its historical
usage is slightly adjusted. To reflect this, we disturb input data by
selectively masking (deleting) the trip records for certain days.

Record Shifting. Similar trip records, e.g., used distance, frequen-
cies, and regions, probably have a similar impact on status represen-
tation. Thus, we provide a record-shifting method that augments
the data by shifting the trip records in the time domain. Specifi-
cally, this method involves selecting the trip records at random and
shifting them to the neighboring days.

Trip Drifting. As we derive the geographical information from
GPS sensors which may naturally have noise and drifting, such
drifting should not impact our results too much. Therefore, we
introduce a trip drifting augmentation, i.e., randomly disturbing
the trip’s passed region to some neighboring regions.

In our work, for each e-scooter, we treat the augmented trip
records from the same e-scooter as the positive samples and the
trip records from other e-scooters in the batch as negative samples.

Encoder

Encoder

LSTM

LSTM 𝑑!

ℎ! Predictor 𝑢"

⨁ Projector𝑠!
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Figure 6: Contrastive Status Representation Learning. Based
on trip records, each e-scooter is fed into an LSTM to generate
the trip embedding. Then we encode the trip embeddings to
get the corresponding degradation status and historical usage
status. We then use a predictor to estimate the user prefer-
ence based on historical usage status. Combining the user
preference and degradation status, we project the e-scooter
status which is then used to compare similar/dissimilar pairs.

3.3.2 Contrastive Learning. Fig. 6 shows the architecture of status
representation learning. For each e-scooter 𝑥𝑖 and its augmented
sample 𝑥 𝑗 , we first embed them using an LSTM to generate trip
embeddings. Then the embeddings are fed into an encoder 𝑓𝑒 (·)
(or 𝑓 ′𝑒 (·)) to get the corresponding degradation status 𝑑𝑖 (or 𝑑 𝑗 ).
We adopt an MLP as the encoder. Following the design in [18],
we call 𝑓𝑒 (·) the query encoder and 𝑓 ′𝑒 (·) the momentum encoder
respectively. The degradation status representation 𝑑𝑖 and 𝑑 𝑗 are
extracted as:

𝑑𝑖 = 𝑓𝑒 (𝐿𝑆𝑇𝑀 (𝑥𝑖 ))
𝑑 𝑗 = 𝑓 ′𝑒 (𝐿𝑆𝑇𝑀 (𝑥 𝑗 ))

(3)

where 𝑥𝑖 and 𝑥 𝑗 are the input trip features.
Instead of directly calculating the similarity of the learned status

representations, we introduce two projectors to project the status
representations to different spaces. One is for the status comparison
of similar/dissimilar e-scooters (i.e., self with its augmented pos-
itive samples and negative samples) and the other is for the user
preference estimation. The motivation is that different views of the
learned status representations in different spaces make it robust for
different tasks.

Status comparison.We leverage an MLP as projector for status
comparison and the process is formulated as:

𝑙𝑖 = 𝑔(𝑑𝑖 ) =𝑊 (2)𝜎 (𝑊 (1)𝑑𝑖 ) (4)

where 𝜎 is a ReLU non-linearity. After obtaining the output, we
apply a loss function, following the form of InfoNCE [27], where
one e-scooter is encouraged to be close to those with similar expe-
riences.

L𝑐
𝑙𝑖
= −𝑙𝑜𝑔

𝑒𝑥𝑝 (𝑙𝑖 · 𝑙+𝑗 /𝜏)
𝑒𝑥𝑝 (𝑙𝑖 · 𝑙+𝑗 /𝜏) +

∑
𝑙−
𝑗
𝑒𝑥𝑝 (𝑙𝑖 · 𝑙−𝑗 /𝜏)

(5)

where 𝑙+
𝑗
is known as 𝑙𝑖 ’s positive sample and the 𝑙−

𝑗
is regarded as

𝑙𝑖 ’s negative sample. 𝜏 is a temperature hyper-parameter for 𝑙𝑖 and
𝑙 𝑗 with 𝑙2 normalization [34].

User preference estimation.Meanwhile, we use user preference
estimation to guide the status representation learning. We apply
another projector to map the status representation 𝑑𝑖 to the user
preference space as 𝑝𝑖 . We utilize an MSE loss function to calculate
the loss between the projected user preference 𝑝𝑖 and the ground-
truth user preference 𝑝𝑦

𝑖
. Formally, the user preference estimation

loss is defined as

L𝑝 (𝑝𝑖 , 𝑝𝑦𝑖 ) =
1
𝑛
·

𝑛∑︁
𝑡=1

(𝑝𝑖,𝑡 − 𝑝
𝑦

𝑖,𝑡
) (6)

Finally, we combine the contrastive loss function and the user pref-
erence estimation loss function as the total loss of our contrastive
status representation learning. Formally, the total loss is defined as

L = L𝑝 +𝑤𝑙L𝑐
𝑙𝑖

(7)

where𝑤𝑙 is a learnable weight.
Momentum Update. After computing the total loss, we conduct

back-propagation and update the parameters of the momentum
encoder following the momentum update [18]. Specifically, given
the momentum𝑚, we update the 𝑓 ′𝑒 by the following equation:

𝑓 ′𝑒 =𝑚 · 𝑓 ′𝑒 + (1 −𝑚) · 𝑓𝑒 (8)
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3.4 Future Usage Prediction
After learning the status representation, the next step is to predict
the future usage of the e-scooters. Traditional ways to predict fu-
ture usage generally purely rely on the historical usage [22], while
ignoring the degradation of the e-scooters. It makes the prediction
sub-optimal because the usage would decrease with the gradual
degradation of the e-scooters. In our work, we introduce the dynam-
ically changed user preference (i.e., predicted future user prefer-
ences) in the prediction to represent the impacts of the degradation
of the e-scooters on future usage.

3.4.1 Single-step Prediction. We consider the current e-scooter
status and the user preference evolving process in the future usage
prediction. As the user preference is influenced by the degradation
status, we incorporate learned status representation to predict the
future user preference and its influence on future usage.

We first apply an LSTM-based feature extractor to extract the trip
features 𝑥𝑡𝑟𝑖𝑝

𝑖
, which will be put into the encoder for the current

status 𝑑𝑡 generation. We then put the 𝑑𝑡 into the user-preference
projector to estimate the user preference 𝑝𝑡

𝑖
. The estimated user

preference will be combined with the trip feature hidden states to
predict future usage at time 𝑡 + 1.

ℎ𝑡 = 𝐿𝑆𝑇𝑀 (𝑥𝑡𝑟𝑖𝑝𝑡 )
𝑝𝑡 = 𝑔′ (𝑓𝑒 (ℎ𝑡 ))

𝑥
𝑡𝑟𝑖𝑝

𝑡+1 = 𝐿𝑆𝑇𝑀 (ℎ𝑡 ⊕ 𝑝𝑡 )

(9)

3.4.2 Multi-step Prediction. Given the output from the single-step
prediction, we further design a recursive way for multi-step predic-
tion. Similar to the single-step prediction, we first generate 𝑥𝑡𝑟𝑖𝑝

𝑡+1 by
Equation (9). Then, we treat 𝑥𝑡𝑟𝑖𝑝

𝑡+1 as the input to generate 𝑥𝑡𝑟𝑖𝑝
𝑡+2 in

the same way. Given a future time slot parameter Δ, we can predict
the future usage in the following Δ time slots 𝑥𝑡𝑟𝑖𝑝

𝑡+1 , 𝑥
𝑡𝑟𝑖𝑝

𝑡+2 , . . . , 𝑥
𝑡𝑟𝑖𝑝

𝑡+Δ .

3.4.3 Multi-step Fusion. After predicting the future usage of the
e-scooter in the following Δ time slots, we fuse the multi-step future
usage to represent the future usage for this e-scooter. We apply
an MLP network where the input is the predicted future usages
𝑥
𝑡𝑟𝑖𝑝

𝑡+1 , 𝑥
𝑡𝑟𝑖𝑝

𝑡+2 , . . . , 𝑥
𝑡𝑟𝑖𝑝

𝑡+Δ and the output is the fused future usage fea-
ture at the following Δ days as follows:

𝑢Δ = 𝜙 (x̂𝑡𝑟𝑖𝑝Δ ,𝑤𝑢 ) (10)

where x̂𝑡𝑟𝑖𝑝Δ = {𝑥𝑡𝑟𝑖𝑝
𝑡+1 , 𝑥

𝑡𝑟𝑖𝑝

𝑡+2 , . . . , 𝑥
𝑡𝑟𝑖𝑝

𝑡+Δ },𝑤𝑢 are learnable parameters,
and 𝑢Δ is the predicted future usage.

3.5 Remaining Life Prediction
After learning the status representation and predicting the future
usage, we predict the remaining life. Different from general machine
learning tasks that directly output lifespan, we design a query
scheme to output the probability of the predicted lifespan given
Δ. In this way, we can introduce negative samples such as a very
large lifespan but with a probability of 0. Formally, the remaining
life prediction is defined as:

remaining lifespan = maxΔ|𝐹 (𝑑𝑡 , 𝑢Δ,Δ) ≥ 𝐹𝑡ℎ (11)

Considering a relatively small search space of Δ, we simply iterate
all the possible Δ in a certain range (e.g., historically maximum
lifespan of all the e-scooters) to obtain the optimal remaining lifes-
pan.

4 EXPERIMENTS
4.1 Evaluation Settings
4.1.1 Baselines. We start this subsection by describing the base-
lines for comparison, followed by evaluation metrics. Then we
summarize the implementation details. We include the following
eight benchmark methods for evaluation, each of which serves as a
representative framework for predicting the remaining lifespan of
the e-scooter.

• Historical Average (HA): We calculate the average length of
lifespan for all the e-scooters and obtain the remaining lifespan
of each e-scooter by subtracting the duration of service.

• XGBoost [10]: It is a boosting tree-based method that achieved
outstanding performance in many prediction tasks. In our imple-
mentation, the input is the trip features, and the output is the
remaining days.

• LSTM [38]: The Long Short-Term Memory Network is a suitable
model for sequential data learning, i.e., sensors in manufactur-
ing machines. The input of our baseline is the trip features in
sequences, and the output is the same as that in XGBoost.

• TCN [19]: It is for rolling bearing remaining lifespan prediction.
The input and output of the temporal convolutional network
(TCN) are the same as that of LSTM. The difference between
LSTM and TCN is that LSTM emphasizes long-term and short-
term influences while TCN focuses on the neighboring influences
determined by kernel size 𝑘 . We set 𝑘 to 5.

• Linear Regression [26]: It is a straightforward approach that
uses a linear function to model the correlation between the input
and the output. The input is the aggregated trip records, which
is the same input used in the XGBoost method.

• Auto-encoder [25]: Auto-encoder uses the encoder-decoder
framework with multiple-layer neural networks for the bearing
lifespan prediction. It takes in the same input data as XGBoost and
captures the complex, non-linear relationships for more accurate
predictions.

• Belief Network [21]: It is a model for the machine’s remain-
ing lifespan prediction. It consists of multiple stacked restricted
Boltzmann machines for greedy layer-by-layer training. Its input
is the same as that of the XGBoost model.

• AdaCare [20]: The model is a general health-status representa-
tion learning model. It first adopts dilated convolutional layers
as short, medium, and long-term convolutional layers for various
time scales, where the kernel size 𝑘 is set to 1, 2, and 3, respec-
tively. Then, it adopts two fully-connected layers to learn the
nonlinear dependencies between features explicitly.

4.1.2 Metrics. We introduce three metrics to evaluate the predic-
tion performance, i.e., Mean Absolute Errors (MAE), Root Mean
Squared Errors (RMSE), andMeanAbsolute Percentage Error (MAPE).
In particular, we use a day as the unit of the lifespan, which is
consistent with the minimum operational intervals, such as daily
rebalancing or charging.
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Table 2: Overall Prediction Performance of Different Methods on the Newark and New Brunswick Datasets.

Newark New Brunswick
RMSE MAE MAPE(%) RMSE MAE MAPE(%)

HA 33.04±1.21 29.63±1.15 48.52±2.86 35.54±1.27 32.64±1.18 49.61±3.14
XGBoost [10] 26.47±1.18 19.29±1.16 35.31±2.93 29.70±1.22 21.18±1.15 44.83±3.07
LSTM [38] 25.73±0.94 23.13±1.01 28.14±1.87 28.90±0.98 24.27±1.02 33.81±2.37
TCN [19] 26.17±0.97 22.52±0.99 28.65±1.77 29.02±1.09 22.53±1.11 34.69±1.98

Regression [26] 17.23±1.09 12.13±0.98 20.87±0.95 21.06±1.12 13.57±1.07 21.43±0.96
Auto-encoder [25] 15.33±0.56 10.25±0.43 19.83±0.97 18.43±0.45 12.13±0.51 20.58±1.03
Belief Network [21] 19.23±0.43 14.09±0.37 21.32±1.06 19.98±0.52 14.47±0.48 22.90±1.26

AdaCare [20] 12.56±0.35 10.86±0.28 18.64±1.03 15.35±0.27 12.82±0.35 19.68±1.01
RLIFE 6.51±0.21 4.97±0.11 13.96±0.94 7.23±0.17 5.46±0.13 15.74±0.82

4.1.3 Implementation Details. The implementation details of each
component are described as follows.
Contrastive learning. For the experiments, we split all datasets
into training, validation, and testing sets with a 6:3:1 ratio. For e-
scooter’s trip records, we apply the methods introduced in Sec. 3.3.1
to construct positive samples. Similarly, we process other e-scooters’
trip records as negative samples.
Future usage prediction. In order to dynamically explore future
usage, we formulate it as a query task with a time variable Δ. Δ
changes from 1 to the maximum threshold, which we set 50 in the
experiments.
Remaining lifespan prediction. For each Δ, the output is the probabil-
ity that this e-scooter is still alive in service in Δ days. By comparing
the query results on multiple Δ to the given probability threshold,
we find the largest one as our predicted remaining lifespan. Intu-
itively, the probability threshold is set to be 0.5.

We implement RLIFE with Keras 2.4 and test it on a server with
NVIDIA A4000 GPU with Intel(R) Xeon(R) CPU E5-2650 v4 @
2.20GHz, 256GB memory. For the hyper-parameters, the batch size
is 256, and the decay weight is 10−6 for all datasets. The momentum
coefficient is set as 0.5 and 0.9 for Newark data and New Brunswick
data, respectively (detailed in Sec. 4.4). For contrastive learning,
the learning rate is set as 1.5 × 10−5, as the momentum mecha-
nism requires a relatively smooth parameter update [14]. For the
remaining life prediction, we set the learning rate as 0.01. The di-
mension of status representation is optimized as 1, 024. We optimize
it with the Adam optimizer for 100 epochs and do not apply any
non-mentioned optimization techniques. All the experiments are
repeated 5 times, and the performances are presented using the
“mean±standard deviation" format.

4.2 Overall Performance
From Table 2, we observe that:

• In general, the models [21, 25] that focus on capturing the inte-
grated features of e-scooters’ status (i.e., total served distance, and
total served duration) achieve better performance than that [19,
38] explore the accumulated influences of time-series trip records.
It is because the integrated results have a stronger representative
power of e-scooters’ status, and the models learned by individual
records may drop partial information.

• AdaCare [20] outperforms others [19, 38] because it integrates
the status representation considering the temporal correlation.

• RLIFE gains 35.67% and 29.81% improvement compared with
AdaCare [20] by leveraging user behavior as an implicit input
for the degradation status representation learning.

Moreover, different from previous work [19, 25], we explore the
influences of dynamic future usage on the remaining days of service.
The results show that the remaining lifespan of the e-scooter is
determined by both its current degradation status and dynamic
future usage.

4.3 Ablation Studies
We conduct a comprehensive ablation study to further evaluate
the status representation learning component, the future usage
prediction component, and the impact of the user preference. We
build the following variants of RLIFE.

• RLIFE-lstm removes the LSTM module and replaces it with the
integrated trip records, i.e., total served distance and duration, to
evaluate the strength of the degradation learning process.

• RLIFE-FU removes the future usage predictionmodule (i.e., Sec. 3.4)
and predicts the remaining lifespan according to historical usage.

• RLIFE-UP removes the contributions of user preferences by (i)
removing the user preference estimation loss in the status learn-
ing part and (ii) using LSTM only in the future usage prediction
part without the user preferences.

We present the results in Fig. 7 and find that:

• RLIFE outperforms RLIFE-lstm, which demonstrates the impor-
tance of the degradation process (i.e., daily trip records).

• RLIFE outperforms RLIFE-FU, which shows the future usage is
inconsistent with the historical usage and predicting the future
usage strengthens the prediction performance.

• RLIFE outperforms RLIFE-UP, which verifies our intuition that
the user preferences can serve as an implicit input to imply the
overall status, and then improve the performance.

Overall, the results show that the learning of the degradation
process (i.e., LSTM module), the future usage prediction, and the
users’ preference should be considered to improve the prediction
performance.
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Figure 7: The Performance of Different Variants.
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Figure 8: The Impact of Momentum Coefficients.

The Momentum Coefficient. One key parameter in RLIFE is the
momentum coefficient𝑚, which influences the degradation condi-
tion representation learning. In general, the momentum coefficient
adjusts the update rate or the encoders’ consistency. If it is set to
0, it means the parameters of the momentum encoder are always
updated with the query encoder. Such drastic updates influences the
consistency of the encoded positive and negative samples, which
eventually affects the representation learning. A relatively larger
value indicates the samples are encoded by a slowly progressing
encoder, which ensures consistency for better learning. However,
if it is set close to 1 (e.g., 0.99), the encoders tend to keep the origi-
nal parameters, which may also affect the representation learning.
Thus, the optimal momentum coefficient needs to be neither too
small nor too large. Fig. 8(a) and 8(b) show the effects of different
momentum coefficients in the New Brunswick and Newark datasets,
respectively. We observe that RLIFE achieves the best performance
when the coefficient is set to be 0.9 and 0.5 in the New Brunswick
and Newark dataset, respectively. This is mainly because the New
Brunswick dataset has a much larger data capacity than the Newark
dataset, which needs a larger momentum coefficient. Compared to
not using the momentum encoder (i.e., set the coefficient to 0), the
momentum encoder improves the performance by 13.6%.
Dimension of Learned Representation Vector. Another critical
parameter in RLIFE is the dimension of the learned status represen-
tation vector, which indicates the information diversity. Fig. 9(a) and
Fig. 9(b) show the effects of dimensions of representation vector on
the Newark and New Brunswick datasets. We observe that on one
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Figure 9: The Impact of Representation Dimension.

hand, a larger dimension benefits to contain more information and
learn more accurate status representation; on the other hand, a too
large dimension significantly increases the number of parameters,
leading to overfitting and low performance.

5 RELATEDWORK
5.1 Remaining Lifespan Prediction.
There are lots of works exploring the information in operational
records for remaining lifespan prediction such as trips, billing, and
medical records. It can be further categorized into model-based and
data-drivenmethods. Formodel-basedmethods, they usemathemat-
ical models to fit a degradation curve of the target, e.g., battery life
curves [9]. However, they typically work in an ideal environment
without noise and uncertainty. For data-driven methods, neural net-
works [38, 39] are applied to historical data to learn the non-linear
degradation trend of sequential data. For example, MLP is useful
for learning non-linear degradation patterns [39], but it lacks the
ability to incorporate temporal information. Then, the RNN-based
frameworks, e.g., RNN [39], LSTM [38], have been applied to learn
the degradation trend of sequential data. Zhang et al. [39] utilized
the long short-term memory (LSTM) recurrent neural network
(RNN) to learn the long-term dependencies among the degraded
capacities of lithium-ion batteries.

However, those methods heavily rely on sensors to collect ex-
plicit status indicators, e.g., state of health(SOH) in batteries [9],
which incurs two limitations in our problem. First, existing sensors
are designed to monitor only certain components of e-scooters,
such as batteries [39], while other components, such as wheels and
brakes, cannot be well monitored (or need more sophisticated and
expensive sensors). Second, the cost of sensors is proportional to
the number of e-scooters, so it is expensive to deploy sensors at a
large scale.

5.2 Representation Learning
Representation learning aims to learn a low-dimensional vector for
data representation, such as graphs[33], and hidden status [15, 20,
37]. For instance, AdaCare [20] depicted the health status by captur-
ing the long and short-term variations of biomarkers and modeled
the correlation between clinical features to enhance the ones which
indicate the health status. GRASP [37] proposed a generic frame-
work for healthcare models which aims to solve data sparsity or
low-quality data. Med2Vec [15] learned the representations for both
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medical codes and visits from large EHR datasets with over a mil-
lion visits. PNRL [33] proposed a predictive network representation
for the structural link prediction. PTARL [31] explored the peer and
temporal dependencies of driving behavior with GPS trajectories
data.

However, those frameworks focus on individual status learning
rather than learning similar or dissimilar representations from data
organized into similar or dissimilar pairs.

5.3 Contrastive Learning.
Contrastive representation learningmade a great success in practice
in classifying groups of images unsupervisedly [7, 11–13, 18, 36].
It benefits to identify two key properties related to the contrastive
loss: (1) alignment (i.e., closeness) of features from positive pairs,
and (2) uniformity of the induced distribution of the normalized
features [28, 32]. For example, SimCLR [11] proposed two major
components to enable the contrastive prediction tasks to learn use-
ful representations, including data augmentation and learnable non-
linear transformation. MoCo V2 [12] used an MLP projection head
and more data augmentation with Momentum Contrast (MoCo),
which outperformed SimCLR and did not require large training
batches. BYOL [16] introduced a new framework for self-supervised
representation learning, which relies on two neural networks, in-
cluding online and target networks that interact and learn from
each other. However, contrastive methods typically have real-time
requirements and need many explicit pairwise feature comparisons,
which incur a high computational cost. For efficiency, SwAV [7]
is an online algorithm without being required to compute pair-
wise comparisons. SimSiam [13] simplified the BYOL framework by
removing: (i) negative sample pairs, (ii) large batches, (iii) momen-
tum encoders, and achieved surprising empirical results. BARLOW
TWINS [36] did not require large batches nor asymmetry between
the network twins, i.e., a predictor network, gradient stopping, or
a moving average on the weight updates.

In summary, Contrastive learning is a great self-supervised ap-
proach that benefits learning similar or dissimilar representations
from data. It is suitable to learn the similar or dissimilar degrada-
tion status of e-scooters without explicit status measures. In this
work, we enhance the generic contrastive learning with a new data
augmentation method for sequential data and introduce user pref-
erences as implicit feedback to improve representation learning.

6 DISCUSSION
6.1 Lessons Learned
Based on the design, implementation, and evaluation of RLIFE, we
learned the following lessons:
• User behavior performs well as an implicit input to mea-
sure e-scooters status. The key insight of RLIFE is that user
behavior, i.e., user preferences, can be utilized as the implicit input
to learn the e-scooters’ degradation status. That is, a less-selected
e-scooter (i.e., low selection probability) or longer idle time e-
scooter (i.e., long idle intervals between consecutive trips) gener-
ally has a worse condition. Supported by Fig. 7, we found that
introducing user preferences helps our model gain 24.96% and
7.95% improvement in the New Brunswick and Newark datasets,
respectively.

• Future usage dynamics should be considered in the remain-
ing lifespan prediction. Different from the existing lifespan
prediction that the future usage generally is consistent with the
historical usage, e-scooters’ usage changes as the degradation
status changes. Our ablation study validates the necessity of
considering changed future usage for the remaining lifespan pre-
diction. Supported by Fig. 7, we observed that the future usage
prediction component leads to the performance improvement of
47.16% and 26.31%.

• User preferences can be used to improve future usage pre-
diction. Predicting future usage can be challenging if a dynamic
degradation process is involved. In our work, we use the learned
status representation as an opportunity to estimate future user
preference, which in turn supports future usage prediction. Sup-
ported by Fig. 7, we observed that the introduction of user pref-
erence estimation in the future usage prediction improves the
performance by 27.25% and 26.39%.

6.2 Practical Implications of the results
In this work, we focus on modeling e-scooters’ current status and
future usage to provide a more accurate prediction about the re-
maining lifespan. The potential implications include that the results
(i.e., estimated remaining lifespan) can be utilized to further study
the e-scooters’ re-balancing problem [8, 24]. For instance, we can
re-balance the e-scooters with longer lifespan (i.e., good condition)
to the areas with higher demand to increase the users’ satisfaction.
And we can also re-balance the e-scooters with shorter lifespan to
low-demand areas to increase overall lifespan.

6.3 Ethics and Privacy
During the data analysis and data mining of the trip records, we
took careful steps to address ethical and privacy concerns. First, all
the e-scooter users have digested the Terms of Services and consent
the platform can collect their trip trajectories for research and ser-
vice improvement. Second, all the raw data has been pre-processed
into aggregated anonymous statistics based on the privacy protec-
tion requirements during the data collection process. All the user
identifiers are removed, and all the auxiliary information is strictly
limited to GPS traces.

7 CONCLUSION
In this work, we design a framework called RLIFE for remaining
lifespan prediction of e-scooters with user preferences considera-
tion. Our RLIFE validates that the user preference is beneficial to
be explored as the implicit input for the e-scooters’ degradation
status representation learning. Moreover, future usage prediction
contributes to prediction performance. Based on the experiment re-
sults, RLIFE can improve the performance by up to 35.67% compared
with the baseline methods. We also demonstrate the effectiveness of
our RLIFE with different ablation studies and parameters analysis.
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