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Abstract. Deep learning based PET image reconstruction methods have
achieved promising results recently. However, most of these methods fol-
low a supervised learning paradigm, which rely heavily on the avail-
ability of high-quality training labels. In particular, the long scanning
time required and high radiation exposure associated with PET scans
make obtaining these labels impractical. In this paper, we propose a
dual-domain unsupervised PET image reconstruction method based on
learned descent algorithm, which reconstructs high-quality PET images
from sinograms without the need for image labels. Specifically, we unroll
the proximal gradient method with a learnable l2,1 norm for PET image
reconstruction problem. The training is unsupervised, using measure-
ment domain loss based on deep image prior as well as image domain
loss based on rotation equivariance property. The experimental results
demonstrate the superior performance of proposed method compared with
maximum-likelihood expectation-maximization (MLEM), total-variation
regularized EM (EM-TV) and deep image prior based method (DIP).

Keywords: Image reconstruction · Positron emission tomography
(PET) · Unsupervised learning · Model based deep learning ·
Dual-domain

1 Introduction

Positron Emission Tomography (PET) is a widely used modality in functional
imaging for oncology, cardiology, neurology, and medical research [1]. However,
PET images often suffer from a high level of noise due to several physical degra-
dation factors as well as the ill-conditioning of the PET reconstruction problem.
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As a result, the quality of PET images can be compromised, leading to difficulties
in accurate diagnosis.

Fig. 1. Diagram of the proposed DULDA for PET image reconstruction. The LDA was
unrolled into several phases with the learnable l2,1 norm, where each phase includes
the gradient calculation of both likelihood and regularization.

Deep learning (DL) techniques, especially supervised learning, have recently
garnered considerable attention and show great promise in PET image recon-
struction compared with traditional analytical methods and iterative meth-
ods. Among them, four primary approaches have emerged: DL-based post-
denoising [2,3], end-to-end direct learning [4–6], deep learning regularized itera-
tive reconstruction [7–10] and deep unrolled methods [11–13].

DL-based post denoising methods are relatively straightforward to implement
but can not reduce the lengthy reconstruction time and its results are significantly
affected by the pre-reconstruction algorithm. End-to-end direct learning methods
utilize deep neural networks to learn the directing mapping from measurement
sinogram to PET image. Without any physical constraints, these methods can be
unstable and extremely data-hungry. Deep learning regularized iterative recon-
struction methods utilize a deep neural network as a regularization term within
the iterative reconstruction process to regularize the image estimate and guide
the reconstruction process towards a more accurate and stable solution. Despite
the incorporation of deep learning, the underlying mathematical framework and
assumptions of deep learning regularized iterative methods still rely on the con-
ventional iterative reconstruction methods. Deep unrolled methods utilize a DNN
to unroll the iterative reconstruction process and to learn the mapping from sino-
gram to the reconstructed PET images, which potentially result in more accurate
and explainable image reconstruction. Deep unrolled methods have demonstrated
improved interpretabillity and yielded inspiring outcomes.

However, the aforementioned approaches for PET image reconstruction
depend on high quality ground truths as training labels, which can be diffi-
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cult and expensive to obtain. This challenge is further compounded by the high
dose exposure associated with PET imaging. Unsupervised/self supervised learn-
ing has gained considerable interest in medical imaging, owing to its ability to
mitigate the need for high-quality training labels. Gong et al. proposed a PET
image reconstruction approach using the deep image prior (DIP) framework [15],
which employed a randomly initialized Unet as a prior. In another study, Fumio
et al. proposed a simplified DIP reconstruction framework with a forward projec-
tion model, which reduced the network parameters [16]. Shen et al. proposed a
DeepRED framework with an approximate Bayesian framework for unsupervised
PET image reconstruction [17]. These methods all utilize generative models to
generate PET images from random noise or MRI prior images and use sinogram
to design loss functions. However, these generative models tend to favor low
frequencies and sometimes lack of mathematical interpretability. In the absence
of anatomic priors, the network convergence can take a considerable amount of
time, resulting in prolonged reconstruction times. Recently, equivariant prop-
erty [18] of medical imaging system is proposed to train the network without
labels, which shows the potential for the designing of PET reconstruction algo-
rithms.

In this paper, we propose a dual-domain unsupervised learned descent algo-
rithm for PET image reconstruction, which is the first attempt to combine unsu-
pervised learning and deep unrolled method for PET image reconstruction. The
main contributions of this work are summarized as follows: 1) a novel model
based deep learning method for PET image reconstruction is proposed with
a learnable l2,1 norm for more general and robust feature sparsity extraction
of PET images; 2) a dual domain unsupervised training strategy is proposed,
which is plug-and-play and does not need paired training samples; 3) without
any anatomic priors, the proposed method shows superior performance both
quantitatively and visually.

2 Methods and Materials

2.1 Problem Formulation

As a typical inverse problem, PET image reconstruction can be modeled in a
variational form and cast as an optimization task, as follows:

minφ(x;y,θ) = −L(y|x) + P (x;θ) (1)

L(y|x) =
∑

i

yi log yi −
∑

i

yi (2)

y = Ax + b (3)

where y is the measured sinogram data, y is the mean of the measured sinogram.
x is the PET activity image to be reconstructed, L(y|x) is the Poisson log-
likelihood of measured sinogram data. P (x;θ) is the penalty term with learnable
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parameter θ. A ∈ R
I×J is the system response matrix, with Aij representing

the probabilities of detecting an emission from voxel j at detector i.
We expect that the parameter θ in penalty term P can be learned from the

training data like many other deep unrolling methods. However, most of these
methods directly replace the penalty term [14] or its gradient [11,13] with a
network, which loses some mathematical rigor and interpretablities.

Fig. 2. Reconstruction results of MLEM, EMTV, DIP, proposed DULDA, DeepPET,
FBSEM and proposed SLDA on different slices of the test set.

2.2 Parametric Form of Learnable Regularization

We choose to parameterize P as the l2,1 norm with a feature extraction operator
g(x) to be learned in the training data. The smooth nonlinear mapping g is used
to extract sparse features and the l2,1 norm is used as a robust and effective
sparse feature regularization. Specifically, we formulate P as follows [19]:

P (x;θ) = ||gθ (x)||2,1 =
m∑

i=1

||gi,θ (x)|| (4)

where gi,θ (x) is i-th feature vector. We choose g as a multi-layered CNN with
nonlinear activation function σ, and σ is a smoothed ReLU:

σ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if x � −δ,

1
4δ

x2 +
1
2
x +

σ

4
, if − δ < x < δ,

x, if x � δ,

(5)

In this case, the gradient ∇g can be computed directly. The Nesterov’s smoothing
technique is used in P for the derivative calculation of the l2,1 norm through
smooth approximation:

Pε(x) =
∑ 1

2ε
||gi(x)||2 +

∑
(||gi(x) − ε

2
||) (6)
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∇Pε(x) =
∑

∇gi(x)
T gi(x)

ε
+

∑
∇gi(x)

T gi(x)
||gi(x)|| (7)

where parameter ε controls how close the approximation Pε to the original P .

Algorithm 1. Learned Descent Algorithm for PET image reconstruction
Input: Image initialization x0, ρ, γ ∈ (0, 1), ε0, σ, τ > 0, maximum number of itera-

tion I, total phase numbers K and measured Sinogram y
1: for i ∈ [1, I] do
2: rk = xk−1 + αk−1(

∑ A T y
A xk−1+b

− ∑
AT1)

3: uk = rk − τk−1∇Pεk−1
(rk)

4: repeat
5: vk = xk−1 − αk−1∇(−L(y|xk−1)) − αk−1∇Pεk−1(xk−1)
6: until φεk−1(vk) � φεk−1(xk−1)
7: If φ(uk) � φ(vk), xk = uk; otherwise, xk = vk

8: If ||∇φεk−1(xk)|| < σγεk−1, εk = γεk−1; otherwise, εk = εk−1

9: end for
10: return xK;

2.3 Learned Descent Algorithm for PET

With the parametric form of learnable regularization given above, we rewrite
Eq. 1 as the objective function:

minφ(x;y,θ) = −L(y|x) + Pε(x;θ) (8)

We unrolled the learned descent algorithm in several phases as shown in Fig. 1.
In each phase k − 1, we apply the proximal gradient step in Eq. 8:

rk = xk−1 − αk−1∇(−L(y|x)) = xk−1 + αk−1(
∑ AT y

Axk−1 + b
−

∑
AT1) (9)

xk = proxαk−1Pεk−1
(rk) (10)

where the proximal operator is defined as:

proxαP (r) = argmin
x

{ 1
2α

||x − r||2 + P (x)} (11)

In order to have a close form solution of the proximal operator, we perform a
Taylor approximation of Pεk−1 :

P̃εk−1(x) = Pεk−1(rk) + (x − rk) · ∇Pεk−1
(rk) +

1
2βk−1

||x − rk||2 (12)

After discarding higher-order constant terms, we can simplify the Eq. 10 as:

uk = proxαk−1P̃εk−1
(rk) = rk − τk−1∇Pεk−1

(rk) (13)
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where αk−1 and βk−1 are two parameters greater than 0 and τk−1 = αk−1βk−1
αk−1+βk−1

.
We also calculate a close-form safeguard vk as:

vk = xk−1 − αk−1∇(−L(y|xk−1)) − αk−1∇Pεk−1(xk−1) (14)

The line search strategy is used by shrinking αk−1 to ensure objective function
decay. We choose the uk or vk with smaller objection function value φεk−1 to
be the next xk. The smoothing parameter εk−1 is shrinkage by γ ∈ (0, 1) if the
||∇φεk−1(xk)|| < σγεk−1 is satisfied. The whole flow is shown in Algorithm 1.

Fig. 3. The robust analysis on proposed DULDA with one clinical patient brain sample
with different dose level. From left to right: MLEM results and DULDA results with
quarter dose sinogram, half dose sinogram and full dose sinogram.

2.4 Dual-Domain Unsupervised Training

The whole reconstruction network is indicated by fθ with learned parameter θ.
Inspired by Deep image prior [20] and equivariance [18] of PET imaging system,
the proposed dual-domain unsupervised training loss function is formulated as:

Ldual = Limage + λLmeasure (15)

where λ is the parameter that controls the ratio of different domain loss function,
which was set to 0.1 in the experiments. For image domain loss Limage, the
equivariance constraint is used. For example, if the test sample xt first undergoes
an equivariant transformation, such as rotation, we obtain xtr. Subsequently, we
perform a PET scan to obtain the sinogram data of xtr and xt. The image
reconstructed by the fθ of these two sinogram should also keep this rotation
properties. The Limage is formulate as:

Limage = ||Tr fθ(y)︸ ︷︷ ︸
xt

−fθ(A(Tr(fθ(y))︸ ︷︷ ︸
xtr

))||2 (16)
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Table 1. Quantitative analysis and bias-variance analysis for the reconstruction results
of MLEM, EM-TV, DIP, Proposed DULDA, DeepPET, FBSEM and proposed SLDA.

Methods PSNR(dB)↑ SSIM↑ RMSE↓ CRC↑ Bias↓ Variance↓
MLEM 20.02 ± 1.91 0.889 ± 0.015 0.160 ± 0.045 0.6517 0.5350 0.2311
EM-TV 20.28 ± 2.21 0.904 ± 0.014 0.154 ± 0.044 0.8027 0.5389 0.2340
DIP 19.96 ± 1.50 0.873 ± 0.012 0.187 ± 0.047 0.8402 0.2540 0.20470.20470.2047
Our DULDA 20.80 ± 1.7720.80 ± 1.7720.80 ± 1.77 0.910 ± 0.0110.910 ± 0.0110.910 ± 0.011 0.148 ± 0.0110.148 ± 0.0110.148 ± 0.011 0.87680.87680.8768 0.22780.22780.2278 0.2449
DeepPET 23.40 ± 2.87 0.962 ± 0.011 0.135 ± 0.021 0.8812 0.1470 0.14650.14650.1465
FBSEM 23.59 ± 1.50 0.954 ± 0.008 0.122 ± 0.017 0.8825 0.1593 0.2034
Our SLDA 24.21 ± 1.8324.21 ± 1.8324.21 ± 1.83 0.963 ± 0.0070.963 ± 0.0070.963 ± 0.007 0.104 ± 0.0130.104 ± 0.0130.104 ± 0.013 0.92780.92780.9278 0.12840.12840.1284 0.1820

where Tr denotes the rotation operator, A is the forward projection which also
can be seen as a measurement operator. For sinogram domain loss Lmeasure, the
data argumentation with random noise ξ is performed on y:

Lmeasure = ||(y + ξ) − Afθ(y + ξ)||2 (17)

2.5 Implementation Details and Reference Methods

We implemented DULDA using Pytorch 1.7 on a NVIDIA GeForce GTX Titan
X. The Adam optimizer with a learning rate of 10−4 was used and trained for
100 epochs with batch size of 8. The total unrolled phase was 4. The image x0

was initialized with the values of one. The smoothing parameter ε0 and δ were
initialized to be 0.001 and 0.002. The step-size α0 and β0 were initialized to
be 0.01 and 0.02. The system matrix was computed by using Michigan Image
Reconstruction Toolbox (MIRT) with a strip-integral model [21]. The proposed
DULDA was compared with MLEM [22], total variation regularized EM (EM-
TV) [23] and deep image prior method (DIP) [16]. For both MLEM and EM-
TV, 25 iterations were adopted. The penalty parameter for EM-TV was 2e−5.
For DIP, we used random noise as input and trained 14000 epochs with the
same training settings as DULDA to get the best results before over-fitting.
The proposed method can also be trained in a fully supervised manner (we
call it SLDA). The loss is the mean square error between the output and the
label image. To further demonstrate the effectiveness, we compared SLDA with
DeepPET [5] and FBSEM [11], the training settings remained the same.
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Table 2. Ablation study for different phase numbers and loss function type of DULDA
on the test datasets.

Settings PSNR↑ SSIM↑ MSE↓
phase numbers 2 14.53 ± 1.45 0.769 ± 0.024 0.314 ± 0.047

4 20.80 ± 1.77 0.910 ± 0.011 0.148 ± 0.011
6 20.29 ± 1.16 0.903 ± 0.014 0.156 ± 0.016
8 19.94 ± 1.31 0.884 ± 0.012 0.180 ± 0.013
10 15.33 ± 0.65 0.730 ± 0.020 0.313 ± 0.050

only Limage 15.41 ± 0.69 0.729 ± 0.008 0.324 ± 0.048
only Lmeasure 19.61 ± 1.49 0.881 ± 0.012 0.181 ± 0.011
Limage + Lmeasure 20.80 ± 1.77 0.910 ± 0.011 0.148 ± 0.011

3 Experiment and Results

3.1 Experimental Evaluations

Forty 128× 128× 40 3D Zubal brain phantoms [24] were used in the simula-
tion study as ground truth, and one clinical patient brain images with different
dose level were used for the robust analysis. Two tumors with different size
were added in each Zubal brain phantom. The ground truth images were firstly
forward-projected to generate the noise-free sinogram with count of 106 for each
transverse slice and then Poisson noise were introduced. 20 percent of uniform
random events were simulated. In total, 1600 (40 × 40) 2D sinograms were gen-
erated. Among them, 1320 (33 samples) were used in training, 200 (5 samples)
for testing, and 80 (2 samples) for validation. A total of 5 realizations were
simulated and each was trained/tested independently for bias and variance cal-
culation [15]. We used peak signal to noise ratio (PSNR), structural similarity
index (SSIM) and root mean square error (RMSE) for overall quantitative anal-
ysis. The contrast recovery coefficient (CRC) [25] was used for the comparison
of reconstruction results in the tumor region of interest (ROI) area.

3.2 Results

Figure 2 shows three different slices of the reconstructed brain PET images using
different methods. The DIP method and proposed DULDA have lower noise
compared with MLEM and EM-TV visually. However, the DIP method shows
unstable results cross different slices and fails in the recovery of the small cortex
region. The proposed DULDA can recover more structural details and the white
matter appears to be more sharpen. The quantitative and bias-variance results
are shown in Table 1. We noticed that DIP method performs even worse than
MLEM without anatomic priors. The DIP method demonstrates a certain ability
to reduce noise by smoothing the image, but this leads to losses in important
structural information, which explains the lower PSNR and SSIM. Both DIP
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method and DULDA have a better CRC and Bias performance compared with
MLEM and EM-TV. In terms of supervised training, SLDA also performs best.

4 Discussion

To test the robustness of proposed DULDA, we forward-project one patient
brain image data with different dose level and reconstructed it with the trained
DULDA model. The results compared with MLEM are shown in Fig. 3. The
patient is scanned with a GE Discovery MI 5-ring PET/CT system. The real
image has very different cortex structure and some deflection compared with the
training data. It can be observed that DULDA achieves excellent reconstruc-
tion results in both details and edges across different dose level and different
slices.Table 2 shows the ablation study on phase numbers and loss function for
DULDA. It can be observed that the dual domain loss helps improve the perfor-
mance and when the phase number is 4, DULDA achieves the best performance.

5 Conclusions

In this work, we proposed a dual-domain unsupervised model-based deep learn-
ing method (DULDA) for PET image reconstruction by unrolling the learned
descent algorithm. Both quantitative and visual results show the superior perfor-
mance of DULDA when compared to MLEM, EM-TV and DIP based method.
Future work will focus more on clinical aspects.
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