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Abstract
We study strategic behavior in iterative plurality
voting for multiple issues under uncertainty. We in-
troduce a model synthesizing simultaneous multi-
issue voting with local dominance theory, in which
agents repeatedly update their votes based on sets
of vote profiles they deem possible, and determine
its convergence properties. After demonstrating
that local dominance improvement dynamics may
fail to converge, we present two sufficient model
refinements that guarantee convergence from any
initial vote profile for binary issues: constraining
agents to have O-legal preferences, where issues
are ordered by importance, and endowing agents
with less uncertainty about issues they are modify-
ing than others. Our empirical studies demonstrate
that while cycles are common for agents without
uncertainty, introducing uncertainty makes conver-
gence almost guaranteed in practice.

1 Introduction
Consider a wedding planner who is deciding a wedding’s ban-
quet and wants to accommodate the party invitees’ prefer-
ences. 1 There are three issues with two candidates each: the
main course (chicken or beef), the paired wine (red or white),
and the cake flavor (chocolate or vanilla). How should the
planner proceed? On the one hand, they could request each
attendee’s (agent’s) full preference ranking over the 2p alter-
natives, for p binary issues. However, this is computationally
prohibitive and imposes a high cognitive cost for agents.

On the other hand, the planner could solicit only agents’
votes and decide each issue simultaneously. Although sim-
pler, this option admits multiple election paradoxes whereby
agents can collectively select each of their least favored out-
comes. For example, suppose three agents prefer (1, 1, 0),
(1, 0, 1), and (0, 1, 1) first, respectively on the issues, and all
prefer (1, 1, 1) last. Then the agents select (1, 1, 1) by major-
ity rule on each issue independently [Lacy and Niou, 2000].

A third approach is to decide the issues in sequence and
have agents vote for their preferred alternative on the current

1The full version of the paper may be found on the archive at:
https://arxiv.org/abs/2301.08873

issue given the previously chosen outcomes. Still, the joint
outcome may depend on the voting agenda and agents may be
uneasy voting on the current issue if their preference depends
on the outcomes of later issues [Conitzer et al., 2009].

In this work, we study iterative voting (IV) as a differ-
ent yet natural method for deciding multiple issues [Meir et
al., 2010]. We elicit agents’ most preferred alternatives and,
given information about others’ votes, allow agents to update
their reports before finalizing the group decision. This ap-
proach combines the efficiency of simultaneous voting with
the dynamics of sequential voting, thus incorporating infor-
mation about agents’ lower-ranked preferences without di-
rectly eliciting them. Like the former approach, agents only
report their most preferred alternative. Like the latter ap-
proach, agents only update one issue at a time but are un-
restricted in the order of improvements.

IV is an effective framework for its adaptability to vari-
ous information and behavioral schemes. First, we consider
agents with full information about the real vote profile, such
as in online Doodle polls [Zou et al., 2015], who update their
votes to the best response of all others. Second, we consider
agents with access only to a noisy signal about the real vote
profile, such as from imprecise opinion polls [Reijngoud and
Endriss, 2012] or latency in a networked system if they can
only periodically retrieve accurate vote counts. These agents
update their votes to those that locally dominate their prior
reports – votes that achieve weakly better outcomes for all
possible vote profiles and strictly better outcomes for some
possible vote profile [Meir et al., 2014].

We ask two primary questions: (1) Under what conditions
does multi-issue IV converge? (2) How does introducing and
increasing uncertainty affect the rate of convergence?

Prior work in single-issue IV offers mixed answers, as it-
erative plurality and veto have strong convergence guarantees
but many other rules do not [Meir et al., 2017]. This leaves us
with mixed hope in the multi-issue plurality case, and if so,
that it can solve other problems like multiple election para-
doxes. Furthermore, in contrast to prior work, uncertainty
for multiple issues plays a double role. First, like the single-
issue case, agents consider themselves as possibly pivotal on
any issue that is sufficiently close to a tie. Second—and this
part is new—agents may be uncertain whether changing their
vote on an issue would improve or degrade the outcome, as
this may depend on the outcomes of other uncertain issues.
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1.1 Our Contribution
On the conceptual side, we introduce a novel model that syn-
thesizes prior work in local dominance strategic behavior, it-
erative plurality voting, and simultaneous voting over mul-
tiple issues. This generalized model naturally captures both
types of uncertainty discussed above.

On the technical side, we first show that IV with or without
uncertainty may not converge. We then present two model re-
finements that prove sufficient to guarantee convergence for
binary issues: restricting agent preferences to have O-legal
preferences and alternating uncertainty, in which agents are
more certain about the current issue than others. The former
converges because agents’ preferences on issues are not inter-
dependent; the latter because fewer preference rankings yield
valid improvement steps. These convergence results do not
extend to the multi-candidate issues setting, as IV may cycle
if agents have partial order preference information.

Our convergence results for binary issues also hold for a
nonatomic variant of plurality IV in which agents are part of
a large population and arbitrary subsets of agents may change
their vote simultaneously, establishing more general conver-
gence results. This is discussed separately in Appendix C.

We conclude with empirical evidence corroborating our
findings that introducing uncertainty eliminates almost all cy-
cles in IV for multiple binary issues. Our experiments fur-
ther suggest IV improves the quality of equilibrium vote pro-
files relative to their respective truthful profiles, thus reduc-
ing multiple election paradoxes. Increasing uncertainty yields
faster convergence but degrades this welfare improvement.

1.2 Related Work
Our model pulls insights from research across multi-issue
voting, IV, and local dominance strategic behavior. Multi-
issue voting is an extensively studied problem in economics
and computer science with applications in direct democracy
referendums, group planning and committee elections (see
e.g., [Lang and Xia, 2016] for a survey). Our work follows
research in agent strategic behavior by Lang [2007], Lang and
Xia [2009], Conitzer et al. [2009], and Xia et al. [2011].

Single-issue IV was initially studied by Meir et al. [2010]
for best response dynamics and the plurality social choice
rule, whose authors bounded its guaranteed convergence rate.
Subsequent work demonstrated that iterative veto converges
[Reyhani and Wilson, 2012; Lev and Rosenschein, 2012],
although many other voting rules do not [Koolyk et al.,
2017] unless agents are additionally restricted in their be-
havior [Reijngoud and Endriss, 2012; Grandi et al., 2013;
Obraztsova et al., 2015; Endriss et al., 2016].

This review already narrows down the possibility of con-
vergence in the multi-issue setting. We therefore restrict our
attention to plurality, extending the models of Meir et al.
[2014] and Meir [2015]. Their research found broad condi-
tions for voting equilibrium to exist and guaranteed conver-
gence for iterative plurality. In particular, Meir [2015] stud-
ied a nonatomic model variation where agents have negligible
impact on the outcome but multiple agents update their votes
simultaneously, greatly simplifying the dynamics.

Bowman et al. [2014] and Grandi et al. [2022] empirically
demonstrated for multiple binary issues that IV improves the

social welfare of voting outcomes using computer simula-
tions and human experiments respectively. Our work aug-
ments this research by characterizing convergence in settings
where agents do not have complete information.

Related research studied strategic behavior in epistemic
voting games when agents have uncertainty about the prefer-
ences or votes of others (see e.g., [Meir, 2018] for a survey).
Notably, Chopra et al. [2004], Conitzer et al. [2011], Reijn-
goud and Endriss [2012], and Van Ditmarsch et al. [2013]
focused on the susceptibility and computational complex-
ity of voting rules to local dominance improvement steps.
Game-theoretic properties of strategic behavior for Gibbard-
Satterthwaite games were studied by Myerson and Weber
[1993], Grandi et al. [2019], and Elkind et al. [2020]. Other
forms of IV include work from Airiau and Endriss [2009],
Desmedt and Elkind [2010], and Xia and Conitzer [2010].

2 Preliminaries
Basic model. Let P = {1, 2, . . . , p} be the set of p issues
over the joint domain D = ×p

i=1Di, where Di is the finite
value domain of candidates for issue i. We call the issues
binary if Di = {0, 1} for each i ∈ P or multi-candidate
otherwise. Each of n agents is endowed with a preference
ranking Rj ∈ L(D), the set of strict linear orders over the∏p

i=1 |Di| alternatives. We call the collection of agents’ pref-
erences P = (R1, . . . , Rn) a preference profile and each
agent’s most preferred alternative their truthful vote. A vote
profile a = (a1, . . . , an) ∈ Dn is a collection of votes, where
aj = (a1j , . . . , a

p
j ) ∈ D collects agent j’s single-candidate

vote per issue. A resolute voting rule f : Dn → D maps vote
profiles to a unique outcome. We call a ∈ D and ai ∈ Di for
i ∈ P an alternative or outcome synonymously.
Simultaneous plurality voting. A local voting rule, ap-
plied to each issue independently, is simultaneous if issues’
outcomes are revealed to agents at the same time. It is sequen-
tial according to the order O = {o1, . . . , op} if outcomes of
each issue oi are revealed to agents prior to voting on the next
issue oi+1 [Lacy and Niou, 2000]. We focus on simultaneous
plurality voting and adapt the framework of Xia et al. [2011].

The plurality rule f i(a) applied to vote profile a on issue
i only depends on the total number of votes for each of its
candidates. We define the score tuple s(a) := (si(a))i∈P as
a collection of score vectors si(a) = (si(c; a))c∈Di , which
compose the score of a candidate c ∈ Di as si(c; a) = |{j ≤
n : aij = c}|. We use the plurality rule f(a) = (f i(a))i∈P ∈
D, where f i(a) = argmaxc∈Di

si(c; a), breaking ties lexi-
cographically on each issue.

Let a−j denote the vote profile without agent j and
(a−j , âj) the profile a by replacing j’s vote with the prospec-
tive vote âj . Then s−j and s−j + âj denote corresponding
adjusted score tuples without j and upon replacing j’s vote.
We may interchange s, s(a), and a for ease of notation.
Preferential dependence. A preference ranking is called
separable if the relative ordering of candidates in each is-
sue’s domain Di is consistent across all outcomes of the
other issues. That is, an agent prefers one outcome over an-
other if they prefer the former’s candidates on each issue in-
dependently. Such rankings have the advantage that agents
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may express their preferences on individual issues and avoid
multiple-election paradoxes, but it is a very demanding as-
sumption [Xia et al., 2011; Hodge, 2002]. Relaxing rankings
to be O-legal maintains representation compactness without
permitting arbitrary preferential dependencies. Then agents
may declare their preferences over an issue’s candidates once
given the “previous” outcomes.

Formally, for some order O = {o1, . . . , op} over the is-
sues, the preference ranking R is called O-legal if, given the
outcomes of the prior issues {fo1 , fo2 , . . . , foi−1}, the rela-
tive ordering of candidates in Doi is constant for any combi-
nation of outcomes of the later issues {foi+1 , . . . , fop} [Lang
and Xia, 2009]. Hence, the ranking of candidates Doi in R
depends only, if at all, on outcomes of issues prior to it in O.

The preference profile P is called O-legal if every ranking
is O-legal for the same order O; the ranking R is separable
if it is O-legal for any order O.
Example 1. Consider p = 2 binary issues and n = 3 agents
with preference profile P = (R1, R2, R3) such that:

R1 : (1, 0) %1 (0, 0) %1 (0, 1) %1 (1, 1),
R2 : (1, 1) %2 (0, 0) %2 (0, 1) %2 (1, 0), and
R3 : (0, 0) %3 (0, 1) %3 (1, 0) %3 (1, 1).
The truthful vote profile a = ((1, 0), (1, 1), (0, 0)) consists

of each agent’s most preferred alternative. The score tuple is
then s(a) = {(1, 2), (2, 1)}, so with plurality f(a) = (1, 0).

Note that R1 is O-legal for O = {2, 1}: the agent always
prefers 0 % 1 on the second issue, yet their preference for
the first issue depends on f2. R3 is separable, as the agent
prefers 0 % 1 on each issue independent of the other issue’s
outcome. R2 is neither separable nor O-legal for any O.

Furthermore, agent 2 can improve the outcome for them-
selves by voting for â2 = (0, 1) instead of a2 = (1, 1). The
adjusted score tuple is s−2 = {(1, 1), (2, 0)}, so s−2 + â2 =
{(2, 1), (2, 1)} and f(s−2 + â2) = (0, 0) %2 (1, 0) = f(a).

Improvement dynamics. We implement iterative voting
(IV) as introduced by Meir et al. [2010] and refined for
uncertainty by Meir et al. [2014] and Meir [2015]. Given
agents’ truthful preferences P and an initial vote profile a(0),
we consider an iterative process of vote profiles a(t) =
(a1(t), . . . , an(t)) that describe agents’ reported votes over
time t ≥ 0. For each round t, a scheduler φ chooses an agent
j to make an improvement step over their prior vote aj(t)
by applying a specified response function gj : Dn → D.
Each agent’s response implicitly depends on their preferences
and belief about the current real vote profile, but they are not
aware of others’ private preferences. All other votes besides
j’s remain unchanged.

A scheduler is broadly defined as a mapping from se-
quences of vote profiles to an agent with an improvement step
in the latest vote profile [Apt and Simon, 2015]. An improve-
ment step must be selected if one exists, and a vote profile
where no improvement step exists (i.e., gj(a) = aj ∀j ≤ n)
is called an equilibrium. The literature on game dynamics
considers different types of response functions, schedulers,
initial profiles, and other assumptions (see e.g., Fudenberg
and Levine [2009], Marden et al. [2007], Bowling [2005],
Young [1993], and Meir et al. [2017]). This means that there
are multiple levels in which a voting rule may guarantee con-

vergence to an equilibrium. In this work, we study two re-
sponse functions: best response (BR), without uncertainty,
and local dominance improvements (LDI), with uncertainty.
For both dynamics, we restrict agents to only changing their
vote on a single current issue i ∈ P per round, as determined
by the scheduler φ. We therefore have the following form of
convergence, as described by Kukushkin [2011], Monderer
and Shapley [1996], and Milchtaich [1996]:
Definition 1. An IV dynamic has the restricted-finite im-
provement property if every improvement sequence is finite
from any initial vote profile for a given response function.

Under BR dynamics, agents know the real score tuple s(a).
Definition 2 (Best response). Given the vote profile a,
gj(a) := âj which yields agent j’s most preferred outcome
of the set {f(a−j , ãj) : ãij ∈ Di, ãkj = akj ∀k (= i} unless
there is no change in the outcome; then gj(a) := aj .

LDI dynamics are based on the notions of strict uncertainty
and local dominance [Conitzer et al., 2011; Reijngoud and
Endriss, 2012]. Let S ⊆ ×p

i=1N|Di| be a set of score tuples
that, informally, describes agent j’s uncertainty about the real
score tuple s(a). An LDI step to a prospective vote âj is one
that is weakly better off than their original aj for every v ∈ S
and strictly better off for some v ∈ S, as follows.
Definition 3. The vote âj S-beats aj if there is at least one
score tuple v ∈ S such that f(v + âj) %j f(v + aj). The
vote âj S-dominates aj if both (I) âj S-beats aj; and (II) aj
does not S-beat âj .
Definition 4 (Local dominance improvement). Given the
vote profile a and agent j, let LDi

j be the set of votes that
S-dominate aj , only differ from aj on the ith issue, and are
not themselves S-dominated by any other vote differing from
aj only on the ith issue. Then gj(a) = aj if LDi

j = ∅ and
âj ∈ LDi

j otherwise.
This definition distinguishes from (weak) LDI in Meir

[2015] in that agents may change their votes consecutively
but only on different issues. Note that S-dominance is transi-
tive and antisymmetric, but not complete, so an agent j may
not have an improvement step. To fully define the model, we
need to specify S for every a. For example, if S = {s(a−j)}
and each j has no uncertainty about the real score tuple, then
LDI coincides with BR and an equilibrium coincides with
Nash equilibrium. Therefore, LDI broadens BR dynamics.
Distance-based uncertainty. Agents in the single-issue
model construed their uncertainty sets using distance-based
uncertainty, in which all score vectors close enough to the
current profile were believed possible [Meir et al., 2014;
Meir, 2015]. We adapt this to the multi-issue setting by as-
suming agents uphold candidate-wise distance-based uncer-
tainty over score vectors for each issue independently.

For any issue i ∈ P , let δ(si(a), s̃i(a)) be a distance mea-
sure for score vectors for any vote profile a. This measure
is candidate-wise if it can be written as δ(si(a), s̃i(a)) =
maxc∈Di δ̂(s

i(c; a), s̃i(c; a)) for some monotone function δ̂.
For example, the #∞ metric, where δ̂(s, s̃) = |s − s̃|, is
candidate-wise.
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Given the vote profile a and issue i ∈ P , we model agent
j’s uncertainty about the adjusted score vector si−j by the
uncertainty score set S̃i

−j(s; r
i
j) :=

{
vi : δ(vi, si−j) ≤ rij

}

with an uncertainty parameter rij . That is, given other votes
ai−j , agent j is not sure what the real score vector is within
S̃i
−j(s; r

i
j). We define S̃−j(s, rj) := ×p

i=1S̃
i
−j(s; r

i
j) for

rj = (rij)i∈P , and drop the parameters if the context is clear.
Example 2. Consider p = 2 binary issues and n = 13 agents
with the vote profile a defined such that seven agents vote
(0, 0), three agents vote (1, 1), two agents vote (1, 0), and the
last agent, which we label j, votes aj = (0, 1). The score
tuple is then s(a) = {(8, 5), (9, 4)}, so f(a) = (0, 0).

Under BR dynamics, j has complete information about
s(a) and can compute s−j(a) = {(7, 5), (9, 3)}. Clearly,
no prospective vote âj can change the outcome f(a−j , âj).

Under LDI dynamics, agent j has incomplete information
about s(a). Suppose that j uses the #∞ uncertainty metric
with uncertainty parameters (r1j , r2j ) = (1, 1). By the above
definitions, the uncertainty score set for issue i ∈ {1, 2} is

S̃i
−j(s; r

i
j) = {vi : |vi − si−j | ≤ rij}

= {(6, 7, 8)× (4, 5, 6)}× {(8, 9, 10)× (2, 3, 4)}

which is a bandwidth of rij = 1 around each real score si−j .
Finally, consider the prospective vote âj = (1, 1). Then

S̃−j + âj = {(6, 7, 8)× (5, 6, 7)}×{(8, 9, 10)× (3, 4, 5)}
so that {f(v + âj) : v ∈ S̃−j} = {(0, 0), (1, 0)}.

3 Best-Response Dynamics
Given the vote profile a, consider agent j changing their vote
aj on issue i to the prospective vote âj . Under BR dynamics,
without uncertainty, j changes their vote only if they can fea-
sibly improve the outcome f(a) to one more favorable with
respect to Rj . This happens under two conditions. First, j
must be pivotal on the ith issue, meaning that changing their
vote will necessarily change the outcome. Second, j must be
preferential to change i by voting for âij over aij given the out-
comes of the other issues P\{i}. Agent j’s preferences are
always well-defined since they know every issue’s real out-
come. Thus BR dynamics behave similar to the single-issue
setting, which we recall converges [Meir et al., 2010]. How-
ever, in the multi-issue setting, agents’ preferences on each
issue may change as other issues’ outcomes change. This en-
tails the possibility of a cycle, as declared in the following
proposition and proved with the subsequent example.
Proposition 1. BR dynamics for multiple issues may not con-
verge, even if issues are binary.
Example 3. Let there be p = 2 binary issues and n = 3
agents without uncertainty and the following preferences:

R1 : (0, 1) %1 (1, 1) %1 (1, 0) %1 (0, 0),
R2 : (0, 0) %2 (0, 1) %2 (1, 1) %2 (1, 0), and
R3 : (1, 0) %3 (1, 1) %3 (0, 0) %3 (0, 1).
Table 1 demonstrates a cycle via BR dynamics from the

truthful vote profile a(0). The order of improvement steps is
j = (1, 2, 1, 2). No other BR step is possible from any profile
in the cycle, so no agent scheduler can lead to convergence.

Agent j aj(0) aj(1) aj(2) aj(3)

1 (0, 1) (1, 1) (1, 1) (0, 1)
2 (0, 0) (0, 0) (0, 1) (0, 1)
3 (1, 0) (1, 0) (1, 0) (1, 0)

f(a) (0, 0) (1, 0) (1, 1) (0, 1)

Table 1: Agents’ votes for a(0) (truthful), a(1), a(2), and a(3).

4 Local Dominance Improvement Dynamics
LDI dynamics broadens best-response since agents’ uncer-
tainty score sets contain the true score tuple, by definition, but
it is initially unclear how uncertainty affects the possibility of
cycles. Seemingly, greater uncertainty over an agent’s current
issue increases the possibility of having LDI steps over that
issue, whereas greater uncertainty over other issues decreases
this possibility. We demonstrate in Section 4.1 below that this
relationship holds only for binary issues, but it does not elim-
inate the possibility of cycles, as declared in the following
proposition and proved with Example 5 in Appendix B.
Proposition 2. LDI dynamics with multiple issues may not
converge, even if agents have the same constant uncertainty
parameters and issues are binary.

This finding contrasts convergence guaranteed in the
single-issue setting with uncertainty [Meir, 2015]. After ex-
plaining the effect of uncertainty on LDI steps, we conclude
the section with two model refinements that prove sufficient
to guarantee convergence for binary issues: O-legal prefer-
ences and a form of dynamic uncertainty.

4.1 Effect of Uncertainty on LDI Steps
Given the vote profile a among binary issues, consider agent
j changing their vote aj on issue i to the prospective vote âj .
Under LDI dynamics, j changes their vote only if two con-
ditions hold, similar to BR dynamics: if (I) they believe they
may be pivotal on issue i and (II) they can improve the out-
come with respect to Rj . Notice that if the agent is pivotal on
the binary issue i with respect to an uncertainty parameter rij ,
it is pivotal with respect to all larger parameters r̃j : r̃ij > rij
over i. Furthermore, recall that j’s preference over candidates
of issue i may depend on the outcomes of other issues, which
j may be uncertain about. It stands to reason that the more
uncertainty j has over other issues, the less clarity the agent
has over their own preference for issue i’s candidates.

We realize the following monotonic relationship between
the magnitude of agents’ uncertainty parameters and whether
they have an LDI step over an issue: increasing uncertainty
on issue i may only add LDI steps over issue i but may only
eliminate LDI steps over each other issue. This is stated tech-
nically in the following proposition. First, we define three
uncertainty parameters αj , rj , and βj such that: rj and αj

only differ on issue k (= i such that rkj < αk
j ; rj and βj only

differ on issue i such that rij < βi
j . Let LDi

j(rj) denote agent
j’s possible LDI steps as in Definition 4 with respect to the
uncertainty parameter rj .
Proposition 3. Given binary issues, consider agent j chang-
ing their vote on issue i in vote profile a with one of three
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uncertainty parameters – αj , rj , or βj – as defined above.
Then LDi

j(αj) ⊆ LDi
j(rj) ⊆ LDi

j(βj).
The theorem is proved in two parts by demonstrating that

if a vote âj S̃−j(a;αj)-dominates aj , then it must hold
that âj S̃−j(a; rj)-dominates aj ; likewise, this implies that
âj S̃−j(a;βj)-dominates aj . Each of these relationships arise
as a result of S̃−j(a; rj) ⊆ S̃−j(a;αj) and S̃−j(a; rj) ⊆
S̃−j(a;βj). This is sufficient to prove since issues are binary.
The full proof may be found in Appendix A.

We find that this relationship between agents’ uncertainty
parameters and their LDI steps is not monotonic in the gen-
eralized case of multi-candidate issues, as Example 6 in Ap-
pendix B demonstrates that different sets of prospective votes
LDi

j may not be comparable for an agent j with different un-
certainty parameters even from the same vote profile a.

4.2 Strategic Responses and O-legal Preferences
We are motivated by observing in Examples 3 and 5 that cy-
cles appear due to agents’ interdependent preferences among
the issues. Specifically, in Table 1, a cycle is formed as agents
1 and 2 switch their preferences among candidates for one is-
sue when the other issue changes outcomes, and this holds for
opposite issues. It therefore stands to reason that eliminating
interdependent preferences by fixing agents with a O-legal
preference profile would guarantee convergence.

We prove that this is the case in Theorem 1. To state this
result technically, we first introduce a characterization about
agents’ strategic responses, extending a lemma from Meir
[2015] to the multi-issue setting.
Definition 5. Agent j believes a candidate c on issue i is a
possible winner if there is some score vector where c wins:

W i
j (a) := {c ∈ Di : ∃v ∈ S̃−j(a; rj) s.t. f i(v+aj) = c}

In contrast, j calls c a potential winner if there is some score
vector in which they can vote to make c win:

Hi
j(a) = {c ∈ Di : ∃v ∈ S̃−j(a; rj) and âj s.t. âij =

c, âkj = akj ∀k (= i, s.t. f i(v + âj) = c}. The set of real
potential winners is denoted: Hi

0(a) = {c ∈ Di : f i(s−j +
âj) = c where âij = c, âkj = akj ∀k (= i}.

By this definition, W i
j (a) ⊆ Hi

j(a). 2 Denote by
W−i(a; rj) = ×k∈P\{i}W

k
j (a) the set of possible winning

candidates on all issues besides i, from agent j’s perspective
with uncertainty parameter rj .

Lemma 1. Consider an LDI step aj
j−→ âj over issue i from

vote profile a by agent j with uncertainty parameter rj . Then
either (1) aij /∈ Hi

j(a); or for every combination of possible
winners in W−i(a; rj), either (2) aij ≺j b for all b ∈ Hi

j(a)
or (3) rij = 0, {aij , âij} ⊆ Hi

0(a) and âij %j aij .
The proof of this lemma directly follows that of Lemma 3

in Meir [2015]; see Appendix A for the full proof.
2Without uncertainty,Hi

j(a) (orHi
j(a)∪{ai

j} if adding a vote to
ai
j makes it win) is also known as the chasing set (excluding f(a))

[Rabinovich et al., 2015] or potential winner set (including f(a))
[Kavner and Xia, 2021] on issue i. Hi

j(a) coincides with Meir et al.
[2014] and Meir [2015]’s definition of a possible winner “Wj(s).”

Theorem 1. LDI dynamics converge over binary issues when
all agents haveO-legal preferences for the common orderO.

Proof. Fix an initial vote profile a(0). Suppose for contra-
diction that there is a cycle among the vote profiles C =
{a(t1), . . . , a(tT )}, where a(tT + 1) = a(t1) and a(t1) is
reachable from a(0) via LDI dynamics. Let i be the highest
order issue in O for which any agent changes their vote in C.

Let t∗ ∈ [t1, tT ) be the first round that some agent j takes
an LDI step on issue i, where aj

j−→ âj from vote profile
a(t∗); let t∗∗ ∈ (t∗, tT ] be the last round that j switches their
vote on i back to aij . It must be the case that aij ∈ Hi

j(a(t
∗)),

since issues are binary and otherwise, |Hi
j(a(t

∗))| = 1 and
j would not have an improvement step. Hence by Lemma
1, âij %j aij for every combination of possible winners in
W−i(a(t∗); rj). Likewise, on round t∗∗, aij %j âij for every
combination of possible winners in W−i(a(t∗∗); rj). Thus
for some issue k and outcomes x, y ∈ {0, 1}, x (= y, we have
W k

j (a(t
∗)) = {x} andW k

j (a(t
∗∗)) = {y}.

Since j has O-legal preferences, k must be prior to is-
sue i in the order O. However, no agent changed their vote
on issue k between rounds t∗ and t∗∗ so it must be that
x ∈ W k

j (a(t
∗∗)), even if j’s uncertainty parameters changed.

This forms a contradiction, so no such cycle can exist.

The intuition behind Theorem 1 is that as an LDI sequence
develops, there is some “foremost” issue i in which no LDI
step takes place on any issue prior to i in the orderO. Agents’
relative preferences for the candidates in i are fixed because
their preferences areO-legal: score vectors for issues prior to
i in O do not change, while scores of issues afterward do not
affect agents’ preferences for i. Hence, agents’ improvement
steps over the issue i converge, whereas any cycle must have
a sub-sequence of vote profile whose votes for issue i cycles.

Note that O-legality is not necessary for convergence, as
BR dynamics induced from the truthful vote profile in Exam-
ple 1 converge. Although O-legality is a strict assumption,
loosening this even slightly may lead to cycles. Example
3 demonstrates a cycle in which each agent has an O-legal
ranking but orders differ between agents.

Separately, the theorem describes that LDI steps over the
issue i eventually terminate, thus enabling each subsequent
issue in O to converge. This seems to suggest that IV under
O-legal preferences is the same as truthful sequential voting,
where agents vote for their preferred alternative on each is-
sue oi given the known previous outcomes of {o1, . . . , oi−1}
[Lang and Xia, 2009]. Although the procedures’ outcomes
could be the same, there are two notable differences. First,
the initial vote profile could have an issue whose outcome
differs from the truthful sequential outcome and no agent has
an improvement step on that issue. Second, depending on
the scheduler, agents may not have further improvement steps
over an issue intermediately before IV reaches the same out-
come as in truthful sequential voting.

This convergence result does not extend to the multi-
candidate case, as declared in the following proposition and
proved with the subsequent example.
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Proposition 4. LDI dynamics may not converge for multiple
issues, even if agents have the same constant uncertainty pa-
rameters and O-legal preferences for the common order O.
Example 4. Consider p = 2 issues and n = 15 agents who
each use the #∞ uncertainty metric with common fixed un-
certainty parameters (r1j , r

2
j ) = (2, 1) ∀j ≤ n. Label the

candidates {0, 1} and {a, b, c, d} respectively. Agent j has
preferences: if f1 = 0 then b %j c %j a %j d on the second
issue; otherwise c %j b %j a %j d. Agent k always prefers
a %k d %k b %k c on the second issue. These preferences
are O-legal for O = {1, 2}.

Define a(0) so s(a(0)) = {(7, 8), (3, 5, 5, 2)} and aj(0) =
ak(0) = (0, a). There are four LDI steps involved in this
cycle: (i) (0, a) j−→ (0, d), (ii) (0, a) k−→ (0, d), (iii) (0, d) j−→
(0, a), and (iv) (0, d) k−→ (0, a). We prove these steps are
valid in Appendix B.

Note that H2
j (a(0)) = {a, b, c} and H2

j (a(2)) = {b, c, d}.
In contrast to the single-issue setting (see Lemma 4 of Meir
[2015]), agent j takes LDI steps to candidates not in the po-
tential winning set. This results from j’s uncertainty over
whether b or c is most-preferred, even as both are preferable
to a and d. Hence, we get the following corollary:
Corollary 1. LDI dynamics may not converge for plurality
over a single issue for agents with partial order preferences.

4.3 Alternating Uncertainty
In Proposition 3 we found that for binary issues, agents may
have fewer LDI steps over an issue i if that issue has less
uncertainty and other issues have more. This suggests that
LDI steps occur from a relative lack of information about the
current issue’s score vector than for other issues. If agents
can gather more information about the current issue before
changing their vote, thereby decreasing its uncertainty rela-
tive to other issues, then they may not have an LDI step.

We therefore consider a specific form of dynamics over
agents’ uncertainty parameters where agents can gather this
information and consider themselves pivotal only with re-
spect to the lowered uncertainty. Agents are assumed to sub-
sequently forget this relative information since it may be out-
dated by the time they change their vote again. We show in
the following theorem that this eliminates cycles.
Definition 6. (Alternating Uncertainty.) Fix two parame-
ters rcj , roj for each agent j such that rcj < roj . Define each
agent j’s uncertainty parameters such that whenever they are
scheduled to change their vote on issue i, j’s uncertainty for
i is rcj and for each other issue k (= i the uncertainty is roj .
Theorem 2. Given binary issues, LDI dynamics converges
for agents with alternating uncertainty.

Proof. Fix an initial vote profile a(0) and uncertainty pa-
rameters rcj , roj for each agent j ≤ n. Suppose for contra-
diction that there is a cycle among the vote profiles C =
{a(t1), . . . , a(tT )}, where a(tT + 1) = a(t1) and a(t1) is
reachable from a(0) via LDI dynamics. Without loss of gen-
erality, suppose all issues and agents are involved in the cycle.

Consider the agent j with the largest roj = maxu≤n rou.
Let t∗ ∈ [t1, tT ) be the first round that j takes an LDI step

on issue i, where aj
j−→ âj from vote profile a(t∗); let t∗∗ ∈

(t∗, tT ] be the last round that j switches their vote on i back
to aij . It must be the case that aij ∈ Hi

j(a(t
∗)), since issues

are binary and otherwise, |Hi
j(a(t

∗))| = 1 and j would not
have an improvement step. Hence by Lemma 1, âij %j aij
for every combination of possible winners inW−i(a(t∗); rj).
Likewise, on round t∗∗, aij %j âij for every combination of
possible winners in W−i(a(t∗∗); rj). Thus for some issue k
and outcomes x, y ∈ {0, 1}, x (= y, we have W k

j (a(t
∗)) =

{x} andW k
j (a(t

∗∗)) = {y}.
Let t′ ∈ (t∗, t∗∗) be the first round since t∗ that some agent

h changes their vote on issue k. Then Hk
h(a(t

′)) = {0, 1}.
SinceW k

j (a(t
′)) = W k

j (a(t
∗)) = {x} ! {0, 1} and distance

functions are candidate-wise, rch ≥ roj . This entails roh > roj
by definition of alternating uncertainty, which contradicts the
assertion that j is the agent u with the largest rou.

This convergence result does not extend to the multi-
candidate case, as Example 4 also covers this setting.

5 Experiments
Our computational experiments investigate the effects of un-
certainty and numbers of binary issues and agents on LDI
dynamics. Specifically, we ask how often truthful vote pro-
files are themselves in equilibrium, how often LDI dynamics
do not converge, and the path length to equilibrium given that
LDI dynamics do converge. Our inquiry focuses on whether
cycles are commonplace in practice even though convergence
is not guaranteed.

We answer these questions for a broad cross-section of in-
puts, with n ∈ {7, 11, 15, 19} agents, p ∈ {2, 3, 4, 5} binary
issues, and r ∈ {0, 1, 2, 3} uncertainty that is constant for
all agents, issues, and rounds. We generate 10, 000 prefer-
ence profiles for each combination by sampling agents’ pref-
erences uniformly and independently at random. We simulate
LDI dynamics from the truthful vote profile using a scheduler
that selects profiles uniformly at random from the set of valid
LDI steps among all agents and issues. If there are no such
steps, we say the sequence has converged. Otherwise, we
take 50, 000 rounds as a sufficiently large stopping condition
to declare the sequence has cycled.

Our results are presented in Figures 1 – 3 with respect to
n. As uncertainty is introduced and r increases, given p = 5,
the availability of LDI steps diminishes significantly from the
initial vote profile (Figure 1) and throughout the dynamics to
eliminate (almost) all cycles and shorten the path length to
convergence (Figure 3). Figure 2 presents the number of ini-
tial vote profiles whose LDI sequence cycles for r = 0, given
that they are not themselves in equilibrium; only five of the
sampled r ≥ 1 profiles’ sequences cycle. Therefore, cycles
with uncertainty are the exception rather than the norm.

These findings corroborate our theoretical analysis. As un-
certainty increases, more issues are perceived by agents to
have more than one possible winner. Since issues are inter-
dependent for many preference rankings, fewer agents have
LDI steps. On the other hand, as n increases, more agents
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Figure 1: Percentage of truthful vote profiles not in equilibrium as
n increases.

Figure 2: Number of truthful vote profiles whose LDI sequences
cycle as n increases.

have rankings without these interdependencies, thus increas-
ing the availability of LDI steps.

As an additional inquiry, we studied how IV affects the
quality of outcomes by comparing the social welfare of equi-
librium to truthful vote profiles.3 We find in Figure 4 that IV
improves average welfare, but at a rate decreasing in r. This
finding agrees with experiments by Bowman et al. [2014] and
Grandi et al. [2022], suggesting that IV may reduce multiple-
election paradoxes by helping agents choose better outcomes.
However, further work will be needed to generalize this con-
clusion, as it contrasts experiments of single-issue IV byMeir
et al. [2020] and Koolyk et al. [2017].

6 Discussion and Open Questions
We have introduced a novel model of strategic behavior in it-
erative voting (IV) for multiple issues under uncertainty. We
find that for binary issues, the existence of cycles hinges on
the interdependence of issues in agents’ preference rankings.
Specifically, once an agent j takes an LDI step on an issue
i, they only subsequently revert their vote if their preference
for i changes. This occurs if the possible winning candidates
among other issues that affect j’s preference for i change.
Without this interdependence, agents’ preference over indi-

3Measured by the percent change in Borda welfare. The Borda
utility of outcome a for ranking R is 2p minus the index of a’s posi-
tion in R; the Borda welfare is the sum of utilities across agents.

Figure 3: Average number steps for LDI sequences to converge
as n increases; log scale; 95% CI (too small to show).

Figure 4: Average percent change in Borda welfare as n increases;
95% CI (too small to show).

vidual issues change only finite times, so LDI dynamics con-
verge (Theorem 1). We also find that as uncertainty increases
over issues other than the one agents are changing, fewer pref-
erence rankings admit LDI steps, eliminating cycles (Theo-
rem 2). Convergence does not extend to multi-candidate is-
sues since LDI dynamics may cycle if agents only have par-
tial order preference information (Corollary 1). Our experi-
ments confirm that convergence is practically guaranteed with
uncertainty, despite its possibility, and suggests IV improves
agents’ social welfare over truthful outcomes.

There are several open directions for future work. First, our
empirical study was limited by sampling agents’ preferences
from the impartial culture preference distribution and mea-
suring additive social welfare (see e.g., [Tsetlin et al., 2003;
Sen, 1999]). Proving IV’s welfare properties for more realis-
tic preference distributions and welfare functions may follow
the research in dynamic price of anarchy of Brânzei et al.
[2013] and Kavner and Xia [2021] and in smoothed analysis
of Xia [2020]. Second, IV is useful for protecting agents’ pri-
vacy, in part, as it does not explicitly reveal agents’ truthful
preferences. However, agents implicitly reveal partial infor-
mation through their improvement steps. Studying IV when
agents account for others’ preferences based on current infor-
mation is an interesting open direction. A third direction is
detailing the axiomatic properties of multi-issue IV rules that
may be inherited by the decision rule used locally on each
issue, as studied for sequential voting by Xia et al. [2011].
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