

the birth time (b) and the death time (d), |d −b|, the persistence of the
feature. See Fig. 2.

Extended persistence. In the sublevel set filtration, the homol-
ogy group of every topological space is captured by going upward in
function value. However, this filtration may be insufficient in some
contexts to encode the topology of domain X . For example, let X be a
graph, in the case where X contains cycles, the homology group of X
remains unchanged as the cycles never die.

To address this limitation, an extended persistence diagram [13]
is proposed using an extended filtration. This approach ensures that
every feature that appears in the space eventually disappears. We use
relative homology theory and consider both upward and downward
directions. Specifically, we compute the homology group going upward
and the relative homology group coming back down. This results in
paired births and deaths, where every feature that appears in the space
eventually dies, and all births are paired with corresponding deaths.

In persistent homology, the extended filtration distinguishes between
three categories of topological features: ordinary features that are born
and die going upward, relative features that are born and die going
downward, and extended features that are born going upward and die
coming downward.

This approach is best illustrated with a simple example. See Fig. 3
(a) with a graph with a scalar height function on the nodes. First, we
compute the persistence diagram using standard filtration by going
upward. The corresponding topological features with finite lifetime
under this filtration are defined as ordinary features, which capture two
0D features (i.e., connected components). Specifically, one feature is
born at height c and dies at e, while the other is born at height d and
dies at e. These two features are represented by the yellow and green
lines in the ordinary barcode of Fig. 3 (b).

Additionally, three topological features are born and never die under
this filtration, namely one 0D feature born at height a and two 1D
features born at height e and g. We utilize relative homology theory
to pair the death time of these topological features. Intuitively, if such
feature is also created by going downward, then the corresponding time
denotes the death time. This is because the downward-created feature
represents a relative death time with respect to the upward-created
feature that disappears. In the extended barcode of Fig. 3 (b), there is
a 0D feature that is born at height a going upward and dies at height
f coming downward (shown in blue line). Additionally, there are two
unpaired 1D features: one is born at height e going upward and dies
at height b going downward, while the other is born at height g going
upward and dies at height d going downward (shown in purple and
orange). Note that 1D features are born by going "up" and die by going
"down." Therefore their birth time is larger than their death time. These
features are encoded below the diagonal of the persistence diagram, as
represented by the purple and orange diamonds in Fig. 3 (c).

Comparing with the persistence diagram under standard filtration in
Fig. 3 (d), we observe that the extended persistence diagram in Fig. 3
(c) captures additional topological features. Specifically, the extended
persistence diagram pairs three 0D and 1D topological features not
paired in the standard filtration.

Wasserstein Distance. The classic distance between persistence
diagrams is the p-Wasserstein distance [12]. At a high level, given
two diagrams, this distance accumulates the cost of optimal point-
wise matching between points of two diagrams. The diagonals of the
persistence diagrams are also viewed as having an infinite number of
points. As low persistence points are close to the diagonal, they do
not significantly add to the accumulation when not matched. High
persistence features are far from the diagonal and therefore incur a
steeper penalty when they do not have a good match. Therefore, this
distance naturally encodes persistence as a measure of importance.

2.2 Weighting Topological Features

Weighting topological features is essential in extracting more mean-
ingful and relevant information from complex topological structures.
Traditionally, the weight function is defined as the persistence of a
feature, but as mentioned, persistence may not always be the most

appropriate weight. Moreover, uniformly weighting all data does not
account for any variance in the importance of topological features with
respect to a dataset or class label. For instance, Hofer et al. [25] also
noticed that the weight function of a persistence diagram should not
be pre-fixed (i.e., weighting based on persistence). Similarly, both
Harish et al. [16] and Hamish et al. [9] proposed methods that enable
users to interactively define the importance of topological features.
However, these methods require prior domain knowledge and do not
integrate with any learning approaches. Zhao et al. [56] also has shown
a real-world scenario in the atomic configurations of molecules where
low persistence features are most important and, therefore, should be
given a larger weight. Finally, Riihimäki and Licón-Saláiz [43], also
highlighted the significance of low persistence features in topological
persistence in their design of a contour metrics for topological features.

2.3 Persistence Images

In order to utilize topological features for downstream tasks, such as
machine learning, it is necessary to transform them into vector repre-
sentations. To accomplish this, several methods have been proposed
that convert topological features into vectors [1, 2, 7, 10, 31]. One such
vectorization is a persistence image, which is used by our approach.

Given a persistence diagram D in birth-death (b,d) coordinates. Let
T : R2 → R be the linear transformation: T (b,d) = (b,d −b), and let
T (D) be the transformed multiset in birth-persistence coordinates 2.
Set φµ : R2 → R be a differentiable probability distribution with mean

µ = (µb,µd) ∈ R
2 and bandwidth σ .

The corresponding persistence surface is a function Φ : R2 → R

defined by Φ(T (D)) = ∑µ∈T (D) w(µ)φµ (z) for any z ∈ R
2, where

φµ (·) is the Gaussian kernel function as described above. w(·) is a
weight function, which is typically a piecewise linear function. The
persistence image [1] is obtained by discretizing Φ(T (D)) and taking
samples over a fixed regular grid. To be precise, we choose a rectangular
region in the plane with a collection of n×n pixels, and compute the
value of each pixel over the region within the bounding box of the
interval by I(D) :=

∫∫
Φ(T (D))dydx, where x and y are the direction

of the grid. The resulting image is denoted as I(D). For simplicity, we
drop the function notation and refer to a persistence image as just I.

In the original paper, the weight function w(·) is defined as the per-
sistence of a feature. Persistence images with such a weight, we refer
to as persistence-weighted persistence images. This weight function is
also commonly utilized in other proposed methods for vectorizing topo-
logical features. As previously mentioned, persistence may not always
be the appropriate weight. To enable a more flexible weight function,
Divol et al. [15] first proposed a cross-validation method to select a
better weight function of persistence images for different datasets, their
result showed customized weight function for each dataset leads to
better accuracy when using topological representation in classification.

In this work, we also do not assume persistence is the measure of
importance but build models to learn the correct weight. Similar work
has also been pursued by Zhao et al. [56] where they proposed a kernel
method to learn a similarity metric for persistence images based on
class labels. The learned metric on persistence images is then applied to
graph classification. However, this work only investigated a non-deep
distance metric of topological features without consideration of inter-
preting the importance of topological features. In contrast, we propose
a deep metric learning model, which combines a deep neural network
and metric learning. As we show, our deep network approach outper-
forms this previous work concerning classification accuracy. More
importantly, using a deep metric allows explainable deep learning ap-
proaches to extract the importance of topological features used in the
classification. We use this importance to provide, for the first time, a
visualization of what topological features define a class.

2In our experiments, we exclude points that correspond to features with
infinite persistence since they are less informative than features with a defined
birth and death time.

2.4 Visualizing Topological Features

Persistence diagrams are specialized scatter plots, therefore their visu-
alization is straightforward and generally has not changed from their
inception. The majority of work on visualizing topological features
has focused on features that have a direct geometric interpretation. For
instance, it is common to visualize manifolds and cells of uniform
gradient flow in a Morse-Smale complex or the branching structures of
contour trees [8] and Reeb graphs [4, 40]. There has also been working
to visualize the generators from homology groups [27, 38] (or coho-
mology groups [52]) as a way of aiding the analysis of data. Finally,
systems [39, 50] for topological analysis allow the visualization of the
topological features (critical point pairs) embedded directly in the scalar
fields that produce them. As mentioned previously, persistence is often
the default measure of importance. Therefore, visualizations produced
by users of these systems commonly color or resize these pairs based
on persistence [19, 30]. In this work, we provide the first approach to
visualize a proxy for the actual importance of topological features in
classification. In addition, we show how our work can drive in-image
visualizations with an approach to illustrating the importance of 0D
features of sublevel-set filtrations.

3 LEARNING AND VISUALIZING TOPOLOGICAL IMPORTANCE

As we discussed Section 2, persistence as a weight for importance is
not the best choice for some applications. Rather than assume that
importance can be guessed in advance, it is better to build an approach
that learns the best weight for topological features. Since we need a
basis to learn these weights, we restrict our approach to the classifica-
tion of known and unknown class labels. A learned weight function
will also provide insight into which topological features are important
in determining class label. To accomplish our goal, we propose a deep
metric model using a convolutional neural network (CNN) with an
attention module. After this model is trained, we utilize explainable
machine learning techniques to visualize the importance of topological
features. At a high level, our approach has two parts: learning a weight
on topological features in Section 3.1 and visualizing the learned weight
in Section 3.2.

3.1 Metric Learning for Topological Classification

We use persistence images [1] as initial vectorized density estimators
of diagram points. Rather than use the typical persistence weights, we
use a uniform weight, w(·) = 1. This allows our CNN to learn how to
re-weight the pixels of these unweighted persistence images such that
classes are well-separated.

To achieve this goal, we introduce our deep metric learning frame-
work as shown in Fig. 4 that contains the following modules: a CNN
with a metric learning loss function as described in Section 3.1.1 and
an attention module as outlined in Section 3.1.2.

3.1.1 Deep Metric Learning

Here we give a more concrete overview of the deep metric model used
in this work. Given a set of labeled unweighted persistence images,
the goal is to learn a weight that can distinguish between similar and
dissimilar samples. This learned weight is used as the basis for our
visualization of topological feature importance. Our model uses a deep
neural network to learn a feature vector and then uses a metric loss
function to learn a similarity metric based on these features.

We tested two potential CNNs for our deep metric model: one
standard CNN and VGG16 [46] containing 13 convolutional layers.
For both of our CNN architectures, we applied an attention module (see
Section 3.1.2) for refinement. In our testing, we found that the feature
vectors produced for unseen data by the standard CNN were slightly
more accurate (+1%) than VGG16. Therefore, our deep metric model
uses the smaller, 6 convolutional layered CNN as shown in Fig. 4.

We use triplet loss as the metric loss function in our model due to its
aptitude for learning meaningful feature representations. Triplet loss
excels in comparing instances, making it ideal for capturing topological
structures. By utilizing anchor, positive, and negative examples, it
guides the model to create embeddings that respect data topology. This
aligns with our goal of visualizing and classifying topological features.

Additionally, triplet loss enables us to integrate domain-specific knowl-
edge by selecting instances strategically, enhancing interpretability and
performance.

Triplet Loss. This loss is computed using three input examples,
chosen at random: 1) a target image IT ; 2) a positive example IP that
has the same class label as the target; and 3) a negative example IN that
has different class label as the target. Following the previous work [26],
the triplet loss function L(·) can be formulated as:

L(IT , IP, IN) := max(|| f (IT)− f (IP)||
2−

|| f (IA)− f (IN)||
2 +α,0),

where f (·) is the learned weight function of the deep learning model
and α is the margin for the loss, which sets the minimum distance
between positive and negative examples. In the training, positive and
negative examples are randomly sampled, given a target image.

3.1.2 Attention Module

In order to improve the learned weight of our model, an attention mod-
ule is applied to re-weight the activation map of the CNN, which gives
attentional importance to each neuron. An activation map in a CNN is
a 2D representation of the output of a specific layer in the network. It
shows the level of activation of each neuron in the layer. The attention
module integrated into CNN enables the network to assign different
weights to various regions of the activation map, allowing it to concen-
trate on the most informative areas that were crucial in determining
the final classification decision. Attentional importance is inspired by
visual neuroscience where the most informative neurons suppress the
activities of the surrounding neurons. This concept is applied to our
CNN through an energy function e that calculates the linear separa-
bility between a target neuron and others to estimate the importance
of individual neurons. See [54] for a more detailed description of
the energy function and approximate solution. The energy function
enhances our learned weights and visualization by determining the
importance of each neuron and re-weighting them accordingly. Specifi-
cally, in our testing, we observed that using this function led to a higher
classification result (+3%) compared to not using it.

Given an activation map A ∈ R
C×H×W , where C is the number of

channels and W , H are the width and height of the convolutional layer,
respectively. An attention module is applied to a CNN to re-weight the
activation map. The new Â ∈ R

C×H×W can be calculated as:

Â = sigmoid(
1

E
)⊙A,

where ⊙ is a scaling operator (multiplication) and E aggregates all
energy function e values across the channel and spatial dimensions. We
add this attention module to the third and last two CNN layers similar
to the original paper.

Parameter Details. Our deep metric learning model is trained from
scratch without fine-tuning. We randomly initialize the model’s weights
to fully explore its parameter space without the biases or constraints
imposed by a pre-existing model. The model inputs are unweighted
persistence images with the size of 40× 40 and σ = 0.1, which are
the same parameters used in [56]. Both the ordinary and extended
persistence diagrams can be used to generate persistence images for
our input. To train our deep metric model, we set the learning rate as
0.001 and batch size as 64. Adam optimizer is used to speed up the
gradient calculation and the dropout regularization method is also used
to avoid over-fitting. The Rectified Linear Unit (ReLU) function is
used as our activation function, max(0,x), where x is the value of the
activation map, because we are only interested in features that have
a positive impact on the class label. We use a standard setting for
the triplet loss hyperparameters: a margin of 0.1 and cosine similarity
distance to measure the distance between examples in the embedding
space. An Lp regularizer term is applied in the triplet loss calculation.
For the attention module, we use the same parameter setting as [54].
Our implementation is based on PyTorch.

grayscale values ranging from 0 to 255. A continuous function can be
defined that assigns to each pixel its grayscale value. The sublevel set
filtration of the image is then defined as the nested sequence of sublevel
sets: p0 ⊆ p1 ⊆ ·· · ⊆ p255, where the sublevel sets pk correspond to
the set of pixels in the image with grayscale values less than or equal to
k.

Given a point (b,d) in the persistence diagram, the corresponding
interlevel set can be determined as pb ⊆ ·· · ⊆ pd , where pb and pd are
critical pairs in the image. This interlevel set captures the birth and
death of a 0D topological feature in the image, providing insight into
its lifetime. By visualizing the interlevel set, we aim to gain a deeper
understanding of the topological features present in the image.

We color each interlevel set based on the importance value of the
diagram point in our field, again, using the magma color map. In cases
where an older feature subsumes a younger feature in the filtration, we
assign the same color to both features. This is because the older feature
includes the 0D feature of the interlevel set of the younger feature in
our extraction.

To highlight high-importance regions we process the set of persis-
tence points, rendering their 0D features of interlevel sets, in inverse
order of importance. Thus, the most important regions are in front.
Given that our image data has discrete function values, there will be
the potential of several sets getting the same importance value. Since
they share the same color, their relative ordering does not matter.

4 RESULTS

In this section, we demonstrate the effectiveness of our approach in:
(1) learning a metric for topological features, such that features are
weighted for accurate classification and; (2) visualizing topological
importance such that key structures for the classification are highlighted.
The real-world datasets evaluated in our approach are detailed in Sec-
tion 4.1. We begin with a study in Section 4.2 with a scenario where we
assume to have prior knowledge of the meaningful importance weight
function (persistence), and show that our method can learn that weight.
In practice, however, this prior knowledge cannot be assumed there-
fore, importance must be learned. We evaluate our learned weight
on a variety datasets and provide topological classification results in
Section 4.3. We compare and show these results are more accurate than
other state-of-the-art approaches. Finally, we provide examples of us-
ing the importance field extracted from the learned weight to visualize
topological importance in Section 4.4. All examples in the following
figures use unseen data to our model. Our code is available in an OSF
repository. Our importance field is presented with a magma colormap,
but to keep our results distinct, we present all other persistence images
(weighted, unweighted) using viridis.

4.1 Evaluation Datasets

We evaluate our approach on five datasets from graph, shape, and
medical imaging, which includes a range of filtration functions and
dimensions of topological features.

3D Shape [48] This dataset contains 6 different 3D shape classes
including faces, human heads, camels, horses, cats, and elephants.
There are 1,200 persistence diagrams in total with 200 persistence
diagrams for each class. Diagrams of 0D features are produced using
the implementation of [11] that uses a Vietoris–Rips filtration.

PROTEINS [5]: This graph dataset of protein molecules contains
1,113 graphs with 2 classes: enzymes and non-enzymes. Nodes of
each graph are amino acids and edges connect pairs that are less than 6
Angstroms apart. Following [56], the Jaccard-index function on graph
edges allows extended persistence diagrams to be computed using
sublevel-set and superlevel-set filtration to extract 0D and 1D features.

COLLAB [53]: This is a graph dataset denoting scientific collabo-
rations in High Energy Physics, Condensed Matter Physics, and Astro
Physics. This set has 5,000 graphs with 3 labels that indicate the re-
search area. Similar to the PROTEINS dataset, extended persistence
diagrams with 0D and 1D features were produced for each graph.

Prostate Cancer [32]: This set includes 5,182 region-of-interest
images from hematoxylin & eosin (H&E) stained histological images
with 3 classes, that denote the progression of cancer (Gleason score 3,

-

(a) (b)

Avg
Persistence

Weighted PI
Importance

Field

(c)

Avg
Uniform

Weighted PI

(d)

Example
PD

Fig. 5: (a) Example persistence diagrams (PD) for 2 classes. Each class
has one high persistence point and a random distribution of many low
persistence points. In this case, a persistence weight would be ideal
for classification. (b) A persistence weighted persistence image (PI). (c)
Given a uniform density distribution, (d) our approach can learn to weight
by persistence.

4, and 5). Persistence diagrams of 0D features were produced for each
image via sublevel set filtration using the Giotto-tda library [49].

Colorectal Cancer [29]: This is a set of 1,800 region-of-interest
images from H&E stained histological images with 9 classes. Similar to
the prostate images, diagrams are obtained for 0D features via sublevel
set filtration using Giotto-tda library [49].

4.2 Learning Persistence Weights

Our deep metric model is designed to learn the best weight for dia-
gram point density for classification. We present a scenario in which
persistence is the appropriate weighting for topological features, and
demonstrate how our learned weight can effectively capture "persis-
tence". To evaluate this ability, we generated two synthetic datasets,
each containing diagrams of a distinct class, with one high persistence
feature present in all members of that class. Additionally, each diagram
contains 100 randomly generated low persistence points, representing
random noise. This scenario tests the efficacy of using persistence as
a measure of importance when one high-persistence feature defines a
class amidst low-persistence noise.

Fig. 5 illustrates our results. Fig. 5 (a) gives an example diagram
from each class where the important high persistence feature is denoted
with a red arrow. Fig. 5 (b) shows the average for all class members
of the standard persistence-weighted persistence image where the high
persistence features receive a larger weight. Fig. 5 (c) is the average
unweighted persistence image that gives the density of points, where
all points are considered equal. This is the average image of the inputs
to our approach. Note that the diagonal noise dominates as it contains
the highest density of points. As persistence is the ideal weight for this
scenario, if our approach works as it should, the average importance
field produced should be similar to the average persistence-weighted
persistence image. Fig. 5 (d) shows that this is the case since high
persistence features are deemed important and low persistence features
are discounted. Therefore, our approach can learn persistence weighting
if that weight is the right one for a dataset, but it is not limited to only
considering that measure of importance.

We provide another, real-world example of our approach learning
a persistence-based weight in Fig. 6. This dataset consists of 3D
shapes and has been previously used for feature tracking based on
high-persistence topological features [11]. Given this prior use, we
can assume that standard persistence-based weighting would yield
satisfactory results. This assumption is supported by the accuracy
of persistence-based weighting strategies in our classification results,
which are discussed in Section 4.3. As shown in Fig. 6, our deep
metric model indeed learns to assign importance based on persistence.
High-persistence features are given more weight, while low-persistence
features are discounted.

Fig. 6: 3D Shape examples along with a visualization of topological
importance for their classification. The top portion of each figure shows
the persistence diagram for the 3D shape example, while the bottom
portion shows our visualization of the importance field. In this case, our
deep learning model leans a persistence-like weight of features.

Table 1: Classification accuracy percentage using topological features,
comparing our approach with 1-Wasserstein distance (W1), persistence-
weighted persistence images (PWPI), weighted persistence image ker-
nel (WKPI), Betti curves (BC), persistence-weighted Gaussian kernels
(PWGK), and sliced Wasserstein kernel (SWK).

Dataset W1 PWPI WKPI BC PWGK SWK Ours

3D Shape 0.92 0.89 1.0 0.91 0.9 0.88 1.0

COLLAB 0.76 0.73 0.77 0.76 0.71 0.78 0.84

PROTEINS 0.77 0.76 0.79 0.76 0.72 0.76 0.87

Prostate 0.82 0.85 0.88 0.86 0.83 0.84 0.95

Colorectal 0.77 0.78 0.81 0.77 0.78 0.75 0.85

4.3 Learned Weight Accuracy

For our visualization to be effective, the deep metric classifier on which
it is based should be accurate. To this end, we evaluate the accuracy of
our learned weight by comparing it to other commonly used topological
representations in classification. Similar to the state-of-the-art approach
in learned topological classification [56], we employ an SVM-kernel
classifier and adopt a 90/10 training-test data split. In order to ensure a
fair comparison, we use the same training and testing dataset for both
our deep metric model and the classifier. Accuracy results are based on
the classification of the unseen, test data.

We compare our method to other topological representations fre-
quently used in classification, such as persistence diagrams using 1-
Wasserstein distance (W1), persistence-weighted persistence images
(PWPI) [1], Betti curves (BC) [42], persistence-weighted Gaussian
kernels (PWGK) [31], and sliced Wasserstein kernels (SWK) [10]. Ad-
ditionally, we compare our method to the previous state-of-the-art in
learned weights for topological classification: the weighted persistence
image kernel (WKPI) [56]. We use the same parameter settings for
persistence images (size 40×40, σ = 0.1) and Betti curves (BC) size
(40× 40) as described in [56]. A sensitivity analysis was conducted
to evaluate how changes in parameter settings affect the persistence
images and Betti curves in Prostate cancer image classification. The
size of persistence images and Betti curves were varied of the range
[10× 10, 100× 100] in increments of 1, and σ of persistence image
was varied of the range [0.001,1] in steps of 0.001. The results showed
that the classification accuracy was not significantly affected, with a
difference of less than 1%.

The classification results in Table 1 demonstrate that our approach
outperforms traditional W1 distance of persistence diagrams in terms of
accuracy. In fact, our approach achieves a significant improvement in
accuracy over the next best method in the graph classification task for
the COLLAB dataset, with an increase of +6%. Although W1 already

provides accurate results for 3D shape classification, our method further
improves accuracy to achieve perfect classification results. For the
prostate imagery dataset, our method achieves an increase in accuracy
of +7% over the next best method, resulting in an overall classification
accuracy of 95%. Our approach also yields a +4% improvement in
classification accuracy for the colorectal cancer dataset.

Of particular note is our accuracy for the PROTEINS graph classifi-
cation (87%). This not only outperforms the other representations (an
increase of +8% compared to the next best), it outperforms the best-
known machine learning approach [55] (85%) according to the Papers
with Code website at the time of submission.

Our results illustrate how our learned weight outperforms approaches
that assume persistence as the measure of importance (PWPI, BC,
PWGK, SWK). This implies that persistence is not the ideal weight
in these datasets. In addition, our approach is comparable or better
than the state-of-the-art in learned weights for topological classification,
WKPI. This indicates that our approach’s use of a deep learning network
is more effective than the previous work.

The accuracy of our classification results motivates our next step:
visualizing the importance of topological features in order to understand
what topological features are key to defining classes.

4.4 Visualization Results

In this section, we present both the visualizations of our proposed topo-
logical importance field and an in-image visualization of the topological
significance. The former allows for a clear representation of the learned
topological importance, while the latter highlights the significance of
topological features within the data itself.

We demonstrate the effectiveness of our visualization by answering
the following questions: (1) Can our visualization show different im-
portance regions in different classes while persistence cannot?; (2) Can
our visualization indicate similar topological importance regions in the
same class while persistence cannot?; and (3) Can our visualization
show examples with varied importance regions but with similar and
meaningful structures in the data itself?

The importance field visualization for PROTEIN answers the first
question in Fig. 7, providing the importance field obtained from the
learned weight and persistence weight of example classes: non-enzyme
and enzyme. We randomly selected an enzyme example from the test-
ing data, and the non-enzyme example was obtained by calculating
the 1-Wasserstein (W1) distance across the testing data, which had the
smallest W1 distance compared with the enzyme example. In other
words, a traditional uniform, persistence-based approach would not con-
sider these two datasets to be in separate classes. Our results show that
their persistence-weighted persistence images look virtually identical.
Hence, the pre-assumed and fixed weight function (persistence) is not
an appropriate metric to distinguish these two examples. However, our
visualization of the importance field indicates a significant difference
between the two classes. Specifically, the non-enzyme example high-
lights the importance of both 0D and 1D features in classification, with
a mix of low and medium persistence 0D features and low persistence
1D features. In contrast, in the enzyme example, the 0D features are
born at low function values and are the most important in classification,
with a negligible contribution from 1D features.

To attempt to answer the second question, we used the PROTEIN
dataset as evidence, as shown in Fig. 8. This result presents the impor-
tance field obtained from our learned weight and persistence weight
of the same class, enzyme, where these two examples have the largest
W1 distance. In other words, we found a dataset where a traditional
persistence-based weight would likely treat these two datasets as being
from separate classes. This is further illustrated by the two examples
showing notable differences in their persistence-weighted persistence
images. These differences indicate that the persistence weight function
alone is an insufficient metric for classification.

However, our importance field visualization highlights that the most
important features for classification are the 0D features that are born at
the low function value, which are similar in both examples. Therefore,
our learned metric is superior for classification, and the evaluation
results in Table 1 support this conclusion.

[38] I. Obayashi. Volume-optimal cycle: Tightest representative cycle of a
generator in persistent homology. SIAM Journal on Applied Algebra and

Geometry, 2(4):508–534, 2018. 4, 9
[39] I. Obayashi, T. Nakamura, and Y. Hiraoka. Persistent homology analysis

for materials research and persistent homology software: Homcloud. arXiv

preprint arXiv:2112.03610, 2021. 4
[40] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust on-

line computation of reeb graphs: simplicity and speed. ACM Transactions

on Graphics (TOG), 26(3):58–es, 2007. 1, 4
[41] V. Patrangenaru, P. Bubenik, R. L. Paige, and D. Osborne. Challenges in

topological object data analysis. Sankhya A, 81(1):244–271, 2019. 1
[42] B. Rieck, F. Sadlo, and H. Leitte. Topological machine learning with

persistence indicator functions. In Topological Methods in Data Analysis

and Visualization, pp. 87–101. Springer, 2017. 7
[43] H. Riihimäki and J. Licón-Saláiz. Metrics for learning in topological

persistence. arXiv preprint arXiv:1906.04436, 2019. 3
[44] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and

D. Batra. Grad-cam: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE international conference

on computer vision, pp. 618–626, 2017. 5
[45] D. Shnier, M. A. Voineagu, and I. Voineagu. Persistent homology anal-

ysis of brain transcriptome data in autism. Journal of the Royal Society

Interface, 16(158):20190531, 2019. 1
[46] K. Simonyan and A. Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 4
[47] M. Soler, M. Petitfrere, G. Darche, M. Plainchault, B. Conche, and

J. Tierny. Ranking viscous finger simulations to an acquired ground
truth with topology-aware matchings. In 2019 IEEE 9th Symposium on

Large Data Analysis and Visualization (LDAV), pp. 62–72. IEEE, 2019. 5
[48] R. W. Sumner and J. Popović. Deformation transfer for triangle meshes.

ACM Transactions on graphics (TOG), 23(3):399–405, 2004. 6
[49] G. Tauzin, U. Lupo, L. Tunstall, J. B. Pérez, M. Caorsi, A. Medina-

Mardones, A. Dassatti, and K. Hess. giotto-tda: A topological data
analysis toolkit for machine learning and data exploration, 2020. 6

[50] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux. The
topology toolkit. IEEE transactions on visualization and computer graph-

ics, 24(1):832–842, 2017. 4
[51] L. Vietoris. Über den höheren Zusammenhang kompakter Räume und eine

Klasse von zusammenhangstreuen Abbildungen. Mathematische Annalen,
97(1):454–472, 1927. 2

[52] B. Wang, B. Summa, V. Pascucci, and M. Vejdemo-Johansson. Branching
and circular features in high dimensional data. IEEE Transactions on

Visualization and Computer Graphics, 17(12):1902–1911, 2011. 4
[53] P. Yanardag and S. Vishwanathan. Deep graph kernels. In Proceedings of

the 21th ACM SIGKDD international conference on knowledge discovery

and data mining, pp. 1365–1374, 2015. 6
[54] L. Yang, R.-Y. Zhang, L. Li, and X. Xie. Simam: A simple, parameter-

free attention module for convolutional neural networks. In International

Conference on Machine Learning, pp. 11863–11874. PMLR, 2021. 4
[55] Z. Zhang, J. Bu, M. Ester, J. Zhang, C. Yao, Z. Yu, and C. Wang.

Hierarchical graph pooling with structure learning. arXiv preprint

arXiv:1911.05954, 2019. 7
[56] Q. Zhao and Y. Wang. Learning metrics for persistence-based summaries

and applications for graph classification. Advances in Neural Information

Processing Systems, 32, 2019. 3, 4, 6, 7

