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Fig. 1: {a) A common task in topological data analysis: extracting a persistence diagram of topological features. In this case, features
are based on the sublevel set filtration of pathology images with class labels (Gleason grade) that define the progression of prostate
cancer [32]. Knowing which features are important for each class is commonly an educated guess with the lifetime of a feature
(persistence) often assumed to define importance. (b) Our approach, based on a learned metric classifier, takes as input the unweighted
density of persistence points and reweighs this density based on what best defines a class. This allows us to build a field of importance
for regions of a diagram. (c) This importance field can be used to create visualizations to illuminate which features drive a classification.
For example, it can highlight what points are important directly in a diagram or, in the case of sublevel set filtrations, visualize the
important structure directly in an image. Consider that a hallmark of prostate cancer is gland degeneration as the disease progresses.
Calcifications (red arrow) are only present in well-structured glands and are highlighted as important structures for Gleason 3, an
earlier stage of the disease.

Abstract—

This paper presents the first approach to visualize the importance of topological features that define classes of data. Topological
features, with their ability to abstract the fundamental structure of complex data, are an integral component of visualization and analysis
pipelines. Although not all topological features present in data are of equal importance. To date, the default definition of feature
importance is often assumed and fixed. This work shows how proven explainable deep learning approaches can be adapted for use in
topological classification. In doing so, it provides the first technique that illuminates what topological structures are important in each
dataset in regards to their class label. In particular, the approach uses a learned metric classifier with a density estimator of the points
of a persistence diagram as input. This metric learns how to reweigh this density such that classification accuracy is high. By extracting
this weight, an importance field on persistent point density can be created. This provides an intuitive representation of persistence
point importance that can be used to drive new visualizations. This work provides two examples: Visualization on each diagram directly
and, in the case of sublevel set filtrations on images, directly on the images themselves. This work highlights real-world examples of
this approach visualizing the important topological features in graph, 3D shape, and medical image data.

Index Terms—Topological Data Analysis, Persistence Diagrams, Metric Learning, Classification
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INTRODUCTION

Topological data analysis (TDA) [17] is a crucial component of many
data analysis and visual analytics pipelines. Features from TDA,
extracted using persistent homology [18], contour trees [8], Reeb
graphs [4, 40], and Morse(—Smale) complexes [14, 22], provide im-
portant abstractions of data structure in applications ranging from
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physics [6,21, 28,36] and chemistry [3,20] to medicine [32-34,45],
to name a few. As a natural consequence of the importance of these
features, researchers often want to use data topology to drive analysis
tasks such as classification.

Although, there is little intuition about which topological features
are important to define a class, or to what degree. For example, it is
commonly assumed that the persistence (lifetime in function value) of
a feature is a good weight for importance, as low-persistence features’
ephemeral lifetimes are often attributed to noise. But, contrary to this
assumption, work [7,41] has shown that low-persistence features are
more important for some types of data. Therefore, the current practice
of determining which features to target and which to discount is to
assume persistence, make an educated guess, or, worse, determine the
correct weights for features as the result of a trial-and-error process.
In response to the diversity of datasets, it is necessary to develop a
visualization approaches that can aid users in understanding which
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Fig. 2: The progression of a sublevel-set (L;") of a scalar field for in-
creasing function values (i). The green feature is born at the minimum
introduced at 2, and dies when it merges with an older feature (shown in
purple) at 5. The birth and death are represented as a point in the 0D
persistence diagram (2,5). The lifetime (5 — 2 = 3} of this feature is its
persistence.

features define important structures in a dataset.

In this work, we introduce an approach to provide such visualiza-
tions. The core of our work is to use proven, explainable deep learning
methods from computer vision on unweighted, vectorized density es-
timators of the points in persistence diagrams. Our metric learning
approach automatically learns the regional importance of topological
features in a diagram and the weights on densities that are necessary for
accurate classification. Rather than assume importance weights (persis-
tence) or find them through trial-and-error, we learn them. As a result of
using explainable deep learning, our approach provides an importance
field over a diagram that allows TDA researchers for the first time to
determine which features define a class and which do not matter. As an
initial step towards interpreting topological features, understanding the
importance field across a diagram has dual benefits. It enhances both
the field of TDA-based machine learning and TDA-based visualization
by encoding more meaningful topological information. Using this field,
new visualizations can be designed to illuminate the critical features
but also challenge any preconceived assumptions about fundamental
structure in data. For example, as our results will show, the commonly
assumed single, uniform weighting strategy on diagram points is in-
sufficient as importance varies by both class and dataset. While using
deep learning for classification with interpretation is not new, this work
is the first to apply such an approach to topological features and use
said result to visualize topological importance.

This work has the following novel contributions:

¢ A field over the space of a dataset’s persistence diagram that
highlights regions of importance in defining a class;

¢ An approach that utilizes this field to visualize feature importance
directly for zero-dimensional features of a sublevel-set filtration
of a scalar field;

¢ A deep metric learning approach for classification using topologi-
cal features that outperforms the accuracy of the state-of-the-art;
and

« Examples of our visualization approach highlighting, for the first
time, the importance of topological features for classes of graph,
shape, and medical data.

2 BACKGROUND AND RELATED WORK

In this section, we begin with a brief introduction to an abstraction of
topological features widely used in TDA, persistence diagrams. We
then detail how these diagrams are extended to encode a richer set of
features. For more details on this concept, we refer the reader to [17].
Next, we discuss the weight functions on topological features and the
need to learn these weights, vectorizations of persistence diagrams, and
a brief overview of the approaches to visualize topological features.

2.1 Topological Features and Persistence Diagrams

Homology is a concept from algebraic topology that describes the holes
(connected components, cycles, voids, etc.) of a topological space.
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Fig. 3: An illustration of an extended persistence diagram. (a) A graph
with height filtration, where each node is associated with a filter value.
(b) The ordinary and extended barcode.! (c) The persistence diagram
with extended filtration. (d) The persistence diagram with standard fil-
tration. The extended persistence diagram highlights the effectiveness
of the extended filtration function in capturing the additional topological
information beyond the standard filtration.

Notationally, for each integer k, we let H;(X) denote the k-th homology
group of a domain, X; see [23,37] for details. For our purposes, we
use Zo coefficients, and so, the k-dimensional homology groups are
vector spaces that describe the k-dimensional holes of X.

A filtration is an ordered family of topological spaces, connected
by inclusion maps between them. For example, if we let X; := {x €
X|f(x) < a} w.rt. o € R denote sublevel set of f, we get a nested
sequence of topological spaces, X; C X, C --- C X, = X. The inclu-
sion X; < X; for i < j induces a linear map between the homology
groups Hy(X;) — Hy(X;) on the corresponding k-th homology. The
two most common filtrations are the sublevel sets of scalar functions
(e.g., for image data) or the evolution of a Vietoris—Rips complex for
unstructured data (e.g., for point clouds) [24,51].

Persistent homology [17], roughly, encodes the lifetime of a homo-
logical feature in this nested sequence. Homology provides a static
description of topology, while persistent homology captures topology
evolution over multiple scales through filtration and tracks changes
in homology groups. This is accomplished by recording where a fea-
ture first appears (birth) and where it is subsumed by an older feature
(dearh). Plotting this lifetime in R? (birth as the x-coordinate and death
as the y-coordinate) gives a persistence diagram. The diagram D is
composed of a set of points in the plane, where each point (b,d) repre-
sents a feature. The feature corresponds to a k-dimensional homological
structure that is created at the filtration value X}, and destroyed at the
filtration value Xj;. In the case of a sublevel set filtration of a scalar
field, these coordinates are always function values of critical points. For
example, births for zero-dimensional (0D) features (Hy, i.e.. connected
components) occur at local minima. We call the difference between

'The barcode in the extended filtration comprises three categories: ordinary,
relative, and extended. For simplicity, we omit the relative barcode in this
example since it is empty.



the birth time (b) and the death time (d), |d — b|, the persistence of the
feature. See Fig. 2.

Extended persistence. In the sublevel set filtration, the homol-
ogy group of every topological space is captured by going upward in
function value. However, this filtration may be insufficient in some
contexts to encode the topology of domain X. For example, let X be a
graph, in the case where X contains cycles, the homology group of X
remains unchanged as the cycles never die.

To address this limitation, an extended persistence diagram [13]
is proposed using an extended filtration. This approach ensures that
every feature that appears in the space eventually disappears. We use
relative homology theory and consider both upward and downward
directions. Specifically, we compute the homology group going upward
and the relative homology group coming back down. This results in
paired births and deaths, where every feature that appears in the space
eventually dies, and all births are paired with corresponding deaths.

In persistent homology, the extended filtration distinguishes between
three categories of topological features: ordinary features that are born
and die going upward, relative features that are born and die going
downward, and extended features that are born going upward and die
coming downward.

This approach is best illustrated with a simple example. See Fig. 3
(a) with a graph with a scalar height function on the nodes. First, we
compute the persistence diagram using standard filtration by going
upward. The corresponding topological features with finite lifetime
under this filtration are defined as ordinary features, which capture two
0D features (i.e., connected components). Specifically, one feature is
born at height ¢ and dies at e, while the other is born at height d and
dies at e. These two features are represented by the yellow and green
lines in the ordinary barcode of Fig. 3 (b).

Additionally, three topological features are born and never die under
this filtration, namely one 0D feature born at height a and two 1D
features born at height ¢ and g. We utilize relative homology theory
to pair the death time of these topological features. Intuitively, if such
feature is also created by going downward, then the corresponding time
denotes the death time. This is because the downward-created feature
represents a relative death time with respect to the upward-created
feature that disappears. In the extended barcode of Fig. 3 (b), there is
a 0D feature that is born at height a going upward and dies at height
f coming downward (shown in blue line). Additionally, there are two
unpaired 1D features: one is born at height e going upward and dies
at height b going downward, while the other is born at height g going
upward and dies at height d going downward (shown in purple and
orange). Note that 1D features are born by going "up" and die by going
"down." Therefore their birth time is larger than their death time. These
features are encoded below the diagonal of the persistence diagram, as
represented by the purple and orange diamonds in Fig. 3 (c).

Comparing with the persistence diagram under standard filtration in
Fig. 3 (d), we observe that the extended persistence diagram in Fig. 3
(c) captures additional topological features. Specifically, the extended
persistence diagram pairs three OD and 1D topological features not
paired in the standard filtration.

Wasserstein Distance. The classic distance between persistence
diagrams is the p-Wasserstein distance [12]. At a high level, given
two diagrams, this distance accumulates the cost of optimal point-
wise matching between points of two diagrams. The diagonals of the
persistence diagrams are also viewed as having an infinite number of
points. As low persistence points are close to the diagonal, they do
not significantly add to the accumulation when not matched. High
persistence features are far from the diagonal and therefore incur a
steeper penalty when they do not have a good match. Therefore, this
distance naturally encodes persistence as a measure of importance.

2.2 Weighting Topological Features

Weighting topological features is essential in extracting more mean-
ingful and relevant information from complex topological structures.
Traditionally, the weight function is defined as the persistence of a
feature, but as mentioned, persistence may not always be the most

appropriate weight. Moreover, uniformly weighting all data does not
account for any variance in the importance of topological features with
respect to a dataset or class label. For instance, Hofer et al. [25] also
noticed that the weight function of a persistence diagram should not
be pre-fixed (i.e., weighting based on persistence). Similarly, both
Harish et al. [16] and Hamish et al. [9] proposed methods that enable
users to interactively define the importance of topological features.
However, these methods require prior domain knowledge and do not
integrate with any learning approaches. Zhao et al. [56] also has shown
a real-world scenario in the atomic configurations of molecules where
low persistence features are most important and, therefore, should be
given a larger weight. Finally, Riihiméki and Licén-Saldiz [43], also
highlighted the significance of low persistence features in topological
persistence in their design of a contour metrics for topological features.

2.3 Persistence Images

In order to utilize topological features for downstream tasks, such as
machine learning, it is necessary to transform them into vector repre-
sentations. To accomplish this, several methods have been proposed
that convert topological features into vectors [1,2,7,10,31]. One such
vectorization is a persistence image, which is used by our approach.

Given a persistence diagram D in birth-death (b,d) coordinates. Let
T : R? — R be the linear transformation: T'(b,d) = (b,d — b), and let
T (D) be the transformed multiset in birth-persistence coordinates 2.
Set ¢y, : R? — R be a differentiable probability distribution with mean
u = (tp, tg) € R? and bandwidth o.

The corresponding persistence surface is a function @ : RZ — R
defined by ®(T(D)) = Yyer(p) W(H)9u(z) for any z € R?, where
¢u(-) is the Gaussian kernel function as described above. w(-) is a
weight function, which is typically a piecewise linear function. The
persistence image [1] is obtained by discretizing ®(7'(D)) and taking
samples over a fixed regular grid. To be precise, we choose a rectangular
region in the plane with a collection of n X n pixels, and compute the
value of each pixel over the region within the bounding box of the
interval by I(D) := [[ ®(T (D))dydx, where x and y are the direction
of the grid. The resulting image is denoted as I(D). For simplicity, we
drop the function notation and refer to a persistence image as just /.

In the original paper, the weight function w(-) is defined as the per-
sistence of a feature. Persistence images with such a weight, we refer
to as persistence-weighted persistence images. This weight function is
also commonly utilized in other proposed methods for vectorizing topo-
logical features. As previously mentioned, persistence may not always
be the appropriate weight. To enable a more flexible weight function,
Divol et al. [15] first proposed a cross-validation method to select a
better weight function of persistence images for different datasets, their
result showed customized weight function for each dataset leads to
better accuracy when using topological representation in classification.

In this work, we also do not assume persistence is the measure of
importance but build models to learn the correct weight. Similar work
has also been pursued by Zhao et al. [56] where they proposed a kernel
method to learn a similarity metric for persistence images based on
class labels. The learned metric on persistence images is then applied to
graph classification. However, this work only investigated a non-deep
distance metric of topological features without consideration of inter-
preting the importance of topological features. In contrast, we propose
a deep metric learning model, which combines a deep neural network
and metric learning. As we show, our deep network approach outper-
forms this previous work concerning classification accuracy. More
importantly, using a deep metric allows explainable deep learning ap-
proaches to extract the importance of topological features used in the
classification. We use this importance to provide, for the first time, a
visualization of what topological features define a class.

2In our experiments, we exclude points that correspond to features with
infinite persistence since they are less informative than features with a defined
birth and death time.



2.4 Visualizing Topological Features

Persistence diagrams are specialized scatter plots, therefore their visu-
alization is straightforward and generally has not changed from their
inception. The majority of work on visualizing topological features
has focused on features that have a direct geometric interpretation. For
instance, it is common to visualize manifolds and cells of uniform
gradient flow in a Morse-Smale complex or the branching structures of
contour trees [8] and Reeb graphs [4,40]. There has also been working
to visualize the generators from homology groups [27,38] (or coho-
mology groups [52]) as a way of aiding the analysis of data. Finally,
systems [39, 50] for topological analysis allow the visualization of the
topological features (critical point pairs) embedded directly in the scalar
fields that produce them. As mentioned previously, persistence is often
the default measure of importance. Therefore, visualizations produced
by users of these systems commonly color or resize these pairs based
on persistence [19,30]. In this work, we provide the first approach to
visualize a proxy for the actual importance of topological features in
classification. In addition, we show how our work can drive in-image
visualizations with an approach to illustrating the importance of 0D
features of sublevel-set filtrations.

3 LEARNING AND VISUALIZING TOPOLOGICAL IMPORTANCE

As we discussed Section 2, persistence as a weight for importance is
not the best choice for some applications. Rather than assume that
importance can be guessed in advance, it is better to build an approach
that learns the best weight for topological features. Since we need a
basis to learn these weights, we restrict our approach to the classifica-
tion of known and unknown class labels. A learned weight function
will also provide insight into which topological features are important
in determining class label. To accomplish our goal, we propose a deep
metric model using a convolutional neural network (CNN) with an
attention module. After this model is trained, we utilize explainable
machine learning techniques to visualize the importance of topological
features. At a high level, our approach has two parts: learning a weight
on topological features in Section 3.1 and visualizing the learned weight
in Section 3.2.

3.1 Metric Learning for Topological Classification

We use persistence images [1] as initial vectorized density estimators
of diagram points. Rather than use the typical persistence weights, we
use a uniform weight, w(-) = 1. This allows our CNN to learn how to
re-weight the pixels of these unweighted persistence images such that
classes are well-separated.

To achieve this goal, we introduce our deep metric learning frame-
work as shown in Fig. 4 that contains the following modules: a CNN
with a metric learning loss function as described in Section 3.1.1 and
an attention module as outlined in Section 3.1.2.

3.1.1

Here we give a more concrete overview of the deep metric model used
in this work. Given a set of labeled unweighted persistence images,
the goal is to learn a weight that can distinguish between similar and
dissimilar samples. This learned weight is used as the basis for our
visualization of topological feature importance. Our model uses a deep
neural network to learn a feature vector and then uses a metric loss
function to learn a similarity metric based on these features.

We tested two potential CNNs for our deep metric model: one
standard CNN and VGGI16 [46] containing 13 convolutional layers.
For both of our CNN architectures, we applied an attention module (see
Section 3.1.2 ) for refinement. In our testing, we found that the feature
vectors produced for unseen data by the standard CNN were slightly
more accurate (+1%) than VGG16. Therefore, our deep metric model
uses the smaller, 6 convolutional layered CNN as shown in Fig. 4.

We use triplet loss as the metric loss function in our model due to its
aptitude for learning meaningful feature representations. Triplet loss
excels in comparing instances, making it ideal for capturing topological
structures. By utilizing anchor, positive, and negative examples, it
guides the model to create embeddings that respect data topology. This
aligns with our goal of visualizing and classifying topological features.

Deep Metric Learning

Additionally, triplet loss enables us to integrate domain-specific knowl-
edge by selecting instances strategically, enhancing interpretability and
performance.

Triplet Loss. This loss is computed using three input examples,
chosen at random: 1) a target image I7; 2) a positive example Ip that
has the same class label as the target; and 3) a negative example Iy that
has different class label as the target. Following the previous work [26],
the triplet loss function L(-) can be formulated as:

L(Ir.,Ip,1y) := max(|| f(Ir) — f(Ip)|[*—
£ (a) — fUn)] >+ @,0),

where f(-) is the learned weight function of the deep learning model
and « is the margin for the loss, which sets the minimum distance
between positive and negative examples. In the training, positive and
negative examples are randomly sampled, given a target image.

3.1.2 Attention Module

In order to improve the learned weight of our model, an attention mod-
ule is applied to re-weight the activation map of the CNN, which gives
attentional importance to each neuron. An activation map in a CNN is
a 2D representation of the output of a specific layer in the network. It
shows the level of activation of each neuron in the layer. The attention
module integrated into CNN enables the network to assign different
weights to various regions of the activation map, allowing it to concen-
trate on the most informative areas that were crucial in determining
the final classification decision. Attentional importance is inspired by
visual neuroscience where the most informative neurons suppress the
activities of the surrounding neurons. This concept is applied to our
CNN through an energy function e that calculates the linear separa-
bility between a target neuron and others to estimate the importance
of individual neurons. See [54] for a more detailed description of
the energy function and approximate solution. The energy function
enhances our learned weights and visualization by determining the
importance of each neuron and re-weighting them accordingly. Specifi-
cally, in our testing, we observed that using this function led to a higher
classification result (+3%) compared to not using it.

Given an activation map A € RE*W where C is the number of
channels and W, H are the width and height of the convolutional layer,
respectively. An attention module is applied to a CNN to re-weight the
activation map. The new A € RE*#>*W can be calculated as:

A 1
A= sigmoid(E) OA,

where © is a scaling operator (multiplication) and E aggregates all
energy function e values across the channel and spatial dimensions. We
add this attention module to the third and last two CNN layers similar
to the original paper.

Parameter Details. Our deep metric learning model is trained from
scratch without fine-tuning. We randomly initialize the model’s weights
to fully explore its parameter space without the biases or constraints
imposed by a pre-existing model. The model inputs are unweighted
persistence images with the size of 40 x 40 and ¢ = 0.1, which are
the same parameters used in [56]. Both the ordinary and extended
persistence diagrams can be used to generate persistence images for
our input. To train our deep metric model, we set the learning rate as
0.001 and batch size as 64. Adam optimizer is used to speed up the
gradient calculation and the dropout regularization method is also used
to avoid over-fitting. The Rectified Linear Unit (ReLU) function is
used as our activation function, max(0,x), where x is the value of the
activation map, because we are only interested in features that have
a positive impact on the class label. We use a standard setting for
the triplet loss hyperparameters: a margin of 0.1 and cosine similarity
distance to measure the distance between examples in the embedding
space. An L, regularizer term is applied in the triplet loss calculation.
For the attention module, we use the same parameter setting as [54].
Our implementation is based on PyTorch.
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Fig. 4: The architecture of our deep metric model includes a CNN with attention modules and a metric loss function (triplet loss), where input is
unweighted persistence images. The number at the bottom of a layer denotes the number of channels. FC means fully-connected layer and rectified
linear activation function (ReLU) is a piecewise linear function. In training, a target is chosen with a randomly sampled positive and negative example.

3.2 Visualization of Topological Importance

As a direct benefit of using a CNN in our deep metric model, we provide
the first approach to visualize the importance of topological features in
classification. Note that this approach can be applied to not only our
seen, training data, but also any unseen, new data. In particular, we
leverage an explainable CNN method to highlight regions in our input
persistence images that contribute the most to the model’s decision-
making. In this section, we introduce the explainable CNN technique
used by our approach, Grad-CAM [44] and how it can be used to
create a field describing the importance of topological features. This
importance field can be visualized directly, mapped back to the original
points in the persistence diagram, or even mapped to features in the
original data as shown below.

3.2.1

To visualize the learned weight function in our model such that the most
significant regions of topological features in the persistence image are
highlighted, we apply the Grad-CAM method in the last convolutional
layer. The last is chosen as its activation maps are the most meaningful
as it combines information from all other layers.

Grad-CAM [44] Given our attentionally weighted activation maps
A € RExH XW, where C is the number of channels and W, H are the
width and height of the convolutional layer, respectively. A° C A refers
to the activation map in the c-th channel produced by the last convolu-
tional layer. We first calculate the gradient of class label score for ¥ as

Field of Topological Importance

%, where k is the class label, y* is the predicted probability of k given
by the network.

Then the average gradient of the class label score, ¢, can be com-
puted under global-average-pooling as:

ak:i W H dyk
1j=1 dA?j

¢ M£E

i=

where i and j are the index of width W and height H, Afj is the activation
weight at location (i, j) of the activation map, A°, and M = H x W.

Finally, we can weigh the activation maps across all channels in the
CNN through a linear combination with ReLU:

C
ReLU(Y af -A°),

c=1

where the ReLLU function is added to filter out negative influences on
the pixel of interest.

The resulting weighted activation map provides a field over the space
of a persistence image that defines regions of importance. This field can

then be used as a proxy to define the importance of topological features.
The following paragraphs will describe how to design visualizations of
this field, including how it can be used to drive an in-image visualization
of pixel importance for sublevel set filtrations.

3.2.2 Visualization of Importance Field.

We can visualize the importance field of topological features by directly
displaying the weighted activation map as a colored (magma) heatmap,
similar to how it is done in other works on explainable CNNs. To help
orient the visualization in regards to the original persistence diagram,
we add the standard diagonal line on our map visualization. To give
better intuition on the shape and amount of importance of each region,
we overlay green isocontours. We draw contours for three isovalues
set to be 50%, 70%, and 90% of the maximum importance weight. For
example, the region of the inner contour line means the feature value
in this region inside is greater than 90% of the maximum importance
weight. We can visualize the map directly (see Fig. 6) or as an overlay
on the plot of the persistence diagram (see Fig. 7).

In-image Visualization of the Topological Importance. To provide
better insight into what topological features drive a classification, we
show how our importance field can be used to design an in-image
visualization of topological feature importance. We target the most
interpretable dimension and filtration: OD features via a sublevel set
filtration of an image.

In this case, there is a natural correspondence between 0D topo-
logical features and critical pairs (minima and saddles) that define
them. This correspondence, combined with our importance field over
the space of a diagram, can provide an intuitive visualization of what
structure defines a class in original data.

Given an image and its persistence diagram, we can use the diagram
to obtain critical pair information for each point (b,d) in the diagram,
which corresponds to a interlevel set in the image. Specifically, let p
be the sublevel set in the image corresponding to the grayscale value
b (the minimum point), and let p; be the sublevel set corresponding
to the grayscale value d (the saddle point). Each point, (b,d), can
be used to look up the importance directly in our importance field
(discrete, but linearly interpolated). Based on these pixel values, the
corresponding pixel locations can be plotted and visualized directly,
say by picking each minimum for each point like previous work [11,19,
30,47]. Although this only provides an intuition of the extremes in a
feature, not the OD topological feature each pair represents. Therefore,
for our approach, we visualize features by drawing the interlevel set
between pp, and p, for each pair.

We now discuss how to visualize the interlevel set of 0D topological
features. To begin, we consider the sublevel set filtration for the image,
which can be used to construct a nested sequence of topological spaces
based on the image’s grayscale values. Specifically, let an image with



grayscale values ranging from 0 to 255. A continuous function can be
defined that assigns to each pixel its grayscale value. The sublevel set
filtration of the image is then defined as the nested sequence of sublevel
sets: po C p1 C --- C prss, where the sublevel sets p; correspond to
the set of pixels in the image with grayscale values less than or equal to
k.

Given a point (b,d) in the persistence diagram, the corresponding
interlevel set can be determined as p;, C --- C p,, where p, and p, are
critical pairs in the image. This interlevel set captures the birth and
death of a OD topological feature in the image, providing insight into
its lifetime. By visualizing the interlevel set, we aim to gain a deeper
understanding of the topological features present in the image.

We color each interlevel set based on the importance value of the
diagram point in our field, again, using the magma color map. In cases
where an older feature subsumes a younger feature in the filtration, we
assign the same color to both features. This is because the older feature
includes the OD feature of the interlevel set of the younger feature in
our extraction.

To highlight high-importance regions we process the set of persis-
tence points, rendering their OD features of interlevel sets, in inverse
order of importance. Thus, the most important regions are in front.
Given that our image data has discrete function values, there will be
the potential of several sets getting the same importance value. Since
they share the same color, their relative ordering does not matter.

4 RESULTS

In this section, we demonstrate the effectiveness of our approach in:
(1) learning a metric for topological features, such that features are
weighted for accurate classification and; (2) visualizing topological
importance such that key structures for the classification are highlighted.
The real-world datasets evaluated in our approach are detailed in Sec-
tion 4.1. We begin with a study in Section 4.2 with a scenario where we
assume to have prior knowledge of the meaningful importance weight
function (persistence), and show that our method can learn that weight.
In practice, however, this prior knowledge cannot be assumed there-
fore, importance must be learned. We evaluate our learned weight
on a variety datasets and provide topological classification results in
Section 4.3. We compare and show these results are more accurate than
other state-of-the-art approaches. Finally, we provide examples of us-
ing the importance field extracted from the learned weight to visualize
topological importance in Section 4.4. All examples in the following
figures use unseen data to our model. Our code is available in an OSF
repository. Our importance field is presented with a magma colormap,
but to keep our results distinct, we present all other persistence images
(weighted, unweighted) using viridis.

4.1 Evaluation Datasets

We evaluate our approach on five datasets from graph, shape, and
medical imaging, which includes a range of filtration functions and
dimensions of topological features.
3D Shape [48] This dataset contains 6 different 3D shape classes
including faces, human heads, camels, horses, cats, and elephants.
There are 1,200 persistence diagrams in total with 200 persistence
diagrams for each class. Diagrams of OD features are produced using
the implementation of [11] that uses a Vietoris—Rips filtration.
PROTEINS [5]: This graph dataset of protein molecules contains
1,113 graphs with 2 classes: enzymes and non-enzymes. Nodes of
each graph are amino acids and edges connect pairs that are less than 6
Angstroms apart. Following [56], the Jaccard-index function on graph
edges allows extended persistence diagrams to be computed using
sublevel-set and superlevel-set filtration to extract OD and 1D features.
COLLAB [53]: This is a graph dataset denoting scientific collabo-
rations in High Energy Physics, Condensed Matter Physics, and Astro
Physics. This set has 5,000 graphs with 3 labels that indicate the re-
search area. Similar to the PROTEINS dataset, extended persistence
diagrams with OD and 1D features were produced for each graph.
Prostate Cancer [32]: This set includes 5,182 region-of-interest
images from hematoxylin & eosin (H&E) stained histological images
with 3 classes, that denote the progression of cancer (Gleason score 3,

Example
PD

@) ) © ()

Importance
Field

Fig. 5: (a) Example persistence diagrams (PD) for 2 classes. Each class
has one high persistence point and a random distribution of many low
persistence points. In this case, a persistence weight would be ideal
for classification. (b) A persistence weighted persistence image (Pl). (c)
Given a uniform density distribution, (d) our approach can learn to weight
by persistence.

4, and 5). Persistence diagrams of 0D features were produced for each
image via sublevel set filtration using the Giotto-tda library [49].

Colorectal Cancer [29]: This is a set of 1,800 region-of-interest
images from H&E stained histological images with 9 classes. Similar to
the prostate images, diagrams are obtained for 0D features via sublevel
set filtration using Giotto-tda library [49].

4.2 Learning Persistence Weights

Our deep metric model is designed to learn the best weight for dia-
gram point density for classification. We present a scenario in which
persistence is the appropriate weighting for topological features, and
demonstrate how our learned weight can effectively capture "persis-
tence". To evaluate this ability, we generated two synthetic datasets,
each containing diagrams of a distinct class, with one high persistence
feature present in all members of that class. Additionally, each diagram
contains 100 randomly generated low persistence points, representing
random noise. This scenario tests the efficacy of using persistence as
a measure of importance when one high-persistence feature defines a
class amidst low-persistence noise.

Fig. 5 illustrates our results. Fig. 5 (a) gives an example diagram
from each class where the important high persistence feature is denoted
with a red arrow. Fig. 5 (b) shows the average for all class members
of the standard persistence-weighted persistence image where the high
persistence features receive a larger weight. Fig. 5 (c) is the average
unweighted persistence image that gives the density of points, where
all points are considered equal. This is the average image of the inputs
to our approach. Note that the diagonal noise dominates as it contains
the highest density of points. As persistence is the ideal weight for this
scenario, if our approach works as it should, the average importance
field produced should be similar to the average persistence-weighted
persistence image. Fig. 5 (d) shows that this is the case since high
persistence features are deemed important and low persistence features
are discounted. Therefore, our approach can learn persistence weighting
if that weight is the right one for a dataset, but it is not limited to only
considering that measure of importance.

We provide another, real-world example of our approach learning
a persistence-based weight in Fig. 6. This dataset consists of 3D
shapes and has been previously used for feature tracking based on
high-persistence topological features [11]. Given this prior use, we
can assume that standard persistence-based weighting would yield
satisfactory results. This assumption is supported by the accuracy
of persistence-based weighting strategies in our classification results,
which are discussed in Section 4.3. As shown in Fig. 6, our deep
metric model indeed learns to assign importance based on persistence.
High-persistence features are given more weight, while low-persistence
features are discounted.



Fig. 6: 3D Shape examples along with a visualization of topological
importance for their classification. The top portion of each figure shows
the persistence diagram for the 3D shape example, while the bottom
portion shows our visualization of the importance field. In this case, our
deep learning model leans a persistence-like weight of features.

Table 1: Classification accuracy percentage using topological features,
comparing our approach with 1-Wasserstein distance (W1), persistence-
weighted persistence images (PWPI), weighted persistence image ker-
nel (WKPI), Betti curves (BC), persistence-weighted Gaussian kernels
(PWGK), and sliced Wasserstein kernel (SWK).

Dataset w1l PWPI WKPI BC PWGK SWK Ours
3D Shape 092 0.89 1.0 091 09 0.88 1.0

COLLAB 0.76 0.73 077 0.76 0.71 0.78  0.84
PROTEINS 0.77 0.76 079  0.76 0.72 0.76  0.87
Prostate 0.82 0.85 088 0.86 0.83 0.84  0.95
Colorectal ~ 0.77 0.78  0.81 0.77 0.78 0.75 0.85

4.3 Learned Weight Accuracy

For our visualization to be effective, the deep metric classifier on which
it is based should be accurate. To this end, we evaluate the accuracy of
our learned weight by comparing it to other commonly used topological
representations in classification. Similar to the state-of-the-art approach
in learned topological classification [56], we employ an SVM-kernel
classifier and adopt a 90/10 training-test data split. In order to ensure a
fair comparison, we use the same training and testing dataset for both
our deep metric model and the classifier. Accuracy results are based on
the classification of the unseen, test data.

We compare our method to other topological representations fre-
quently used in classification, such as persistence diagrams using 1-
Wasserstein distance (W 1), persistence-weighted persistence images
(PWPI) [1], Betti curves (BC) [42], persistence-weighted Gaussian
kernels (PWGK) [31], and sliced Wasserstein kernels (SWK) [10]. Ad-
ditionally, we compare our method to the previous state-of-the-art in
learned weights for topological classification: the weighted persistence
image kernel (WKPI) [56]. We use the same parameter settings for
persistence images (size 40 x 40, o = 0.1) and Betti curves (BC) size
(40 x 40) as described in [56]. A sensitivity analysis was conducted
to evaluate how changes in parameter settings affect the persistence
images and Betti curves in Prostate cancer image classification. The
size of persistence images and Betti curves were varied of the range
[10 x 10, 100 x 100] in increments of 1, and o of persistence image
was varied of the range [0.001, 1] in steps of 0.001. The results showed
that the classification accuracy was not significantly affected, with a
difference of less than 1%.

The classification results in Table 1 demonstrate that our approach
outperforms traditional W1 distance of persistence diagrams in terms of
accuracy. In fact, our approach achieves a significant improvement in
accuracy over the next best method in the graph classification task for
the COLLAB dataset, with an increase of +6%. Although W1 already

provides accurate results for 3D shape classification, our method further
improves accuracy to achieve perfect classification results. For the
prostate imagery dataset, our method achieves an increase in accuracy
of +7% over the next best method, resulting in an overall classification
accuracy of 95%. Our approach also yields a +4% improvement in
classification accuracy for the colorectal cancer dataset.

Of particular note is our accuracy for the PROTEINS graph classifi-
cation (87%). This not only outperforms the other representations (an
increase of +8% compared to the next best), it outperforms the best-
known machine learning approach [55] (85%) according to the Papers
with Code website at the time of submission.

Our results illustrate how our learned weight outperforms approaches
that assume persistence as the measure of importance (PWPI, BC,
PWGK, SWK). This implies that persistence is not the ideal weight
in these datasets. In addition, our approach is comparable or better
than the state-of-the-art in learned weights for topological classification,
WKPIL. This indicates that our approach’s use of a deep learning network
is more effective than the previous work.

The accuracy of our classification results motivates our next step:
visualizing the importance of topological features in order to understand
what topological features are key to defining classes.

4.4 Visualization Results

In this section, we present both the visualizations of our proposed topo-
logical importance field and an in-image visualization of the topological
significance. The former allows for a clear representation of the learned
topological importance, while the latter highlights the significance of
topological features within the data itself.

We demonstrate the effectiveness of our visualization by answering
the following questions: (1) Can our visualization show different im-
portance regions in different classes while persistence cannot?; (2) Can
our visualization indicate similar topological importance regions in the
same class while persistence cannot?; and (3) Can our visualization
show examples with varied importance regions but with similar and
meaningful structures in the data itself?

The importance field visualization for PROTEIN answers the first
question in Fig. 7, providing the importance field obtained from the
learned weight and persistence weight of example classes: non-enzyme
and enzyme. We randomly selected an enzyme example from the test-
ing data, and the non-enzyme example was obtained by calculating
the 1-Wasserstein (W1) distance across the testing data, which had the
smallest W1 distance compared with the enzyme example. In other
words, a traditional uniform, persistence-based approach would not con-
sider these two datasets to be in separate classes. Our results show that
their persistence-weighted persistence images look virtually identical.
Hence, the pre-assumed and fixed weight function (persistence) is not
an appropriate metric to distinguish these two examples. However, our
visualization of the importance field indicates a significant difference
between the two classes. Specifically, the non-enzyme example high-
lights the importance of both 0D and 1D features in classification, with
a mix of low and medium persistence 0D features and low persistence
1D features. In contrast, in the enzyme example, the OD features are
born at low function values and are the most important in classification,
with a negligible contribution from 1D features.

To attempt to answer the second question, we used the PROTEIN
dataset as evidence, as shown in Fig. 8. This result presents the impor-
tance field obtained from our learned weight and persistence weight
of the same class, enzyme, where these two examples have the largest
W1 distance. In other words, we found a dataset where a traditional
persistence-based weight would likely treat these two datasets as being
from separate classes. This is further illustrated by the two examples
showing notable differences in their persistence-weighted persistence
images. These differences indicate that the persistence weight function
alone is an insufficient metric for classification.

However, our importance field visualization highlights that the most
important features for classification are the 0D features that are born at
the low function value, which are similar in both examples. Therefore,
our learned metric is superior for classification, and the evaluation
results in Table 1 support this conclusion.



Fig. 7: PROTEINS graph classification with two classes: enzymes and
non-enzymes. (left) Example persistence diagrams overlaid with our
visualization of the importance field for each class, which has the smallest
W1 distance. (right) Visualization of the corresponding persistence-
weighted persistence images.

Fig. 9 shows the importance field visualization for graph exam-
ples from scientific collaboration networks in High Energy Physics,
Condensed Matter Physics, and Astro Physics (COLLAB). For each
class, the plots show two example persistence diagrams from each class
overlaid with the importance field visualization.

For High Energy Physics in Fig. 9, the first example demonstrates
that the classification is determined by both low persistence 0D and
1D features that are born and die at low function values. The second
example highlights the significance of both low persistence 0D and
1D features as well, while they are born and die at medium function
values. In Condensed Matter Physics, both examples have a simi-
lar importance field, with low-medium persistence 0D features born
at low-medium function values being the most significant. In Astro
Physics, both examples show that the 1D features (lower triangle in
the diagram) are important in classification, despite being in different
ranges of persistence and birth-death locations. This implies that col-
laboration loops between authors are likely more indicative in Astro
Physics than other classes (i.e., Condensed Matter Physics). These ex-
amples illustrate the use of a mix of high, medium, and low persistence
features in classification, suggesting that a single weighting scheme
(persistence, inverse-persistence, or other) would not yield high-quality
classifications. This is supported by our quality measures in Table 1.

Our visualization results for medical imaging datasets provide an
answer to the third question by demonstrating the in-image visualization
of topological importance, which effectively highlights the medically
significant structures within the data.

In Fig. 1 and Fig. 10, we present the visualization results for digital
pathology images of prostate cancer. The dataset includes examples
of Gleason 3 to 5, where higher grades correspond to more advanced
stages of the disease. A hallmark of this disease is that well-formed
prostate glands deteriorate and lose structure, such that at more ad-
vanced stages, no glandular structure is present. As our visualization
shows, this is indeed the case as the stroma defining the glandular
structure are the most important features in the classification of Glea-
son 3. As cancer progresses to Gleason 4 and as the glands break
down, the important features become more cellular, involving both the
semi-structural stroma and nuclei. At the final stage of progression
in Gleason 5 where glands have entirely deteriorated, no structure is
present, and the important features become local/cellular information.
These important features are not captured by common measures of

Fig. 8: PROTEINS graph classification with class enzymes. (left) Exam-
ple persistence diagrams overlaid with our visualization of the importance
field for same class, which has the largest W1 distance. (right) Visualiza-
tion of the corresponding persistence-weighted persistence images.

importance, such as persistence, and can be identified and visualized
for the first time with our approach. For example, prostate calcifica-
tions only occur in well-formed glands. In Fig. 1, these are important
features in our field (red arrow). Furthermore, as Fig. 10 illustrates,
important regions in the diagram vary in different examples, while our
in-image visualizations show that they correspond to similar structures.
This provides further evidence that a single weighting strategy is not
ideal for this dataset. This is supported by the fact that our learned
weight achieves 95% accuracy, as shown in Table 1.

Our final example, shown in Fig. 11, demonstrates the application
of our method to colorectal cancer image classification with 9 classes.
Each class has various of structural arrangements and distributions. Our
visualization provides the first step to interpret the structural difference
between them by highlighting the importance of topological features
in distinguishing their classes. For instance, normal colon mucosa
(NORM) features a uniform and regular arrangement of epithelial
cells with glandular structure, while cancer-associated stroma (STR)
displays a more disorganized arrangement that disrupts the normal
tissue structure. As shown in this figure, our visualization emphasizes
such structural importance. Moreover, in comparison with NORM
class, colorectal adenocarcinoma epithelium (TUM) also has glandular
structure, but with abnormal epithelial cells. Our in-image visualization
highlights the glandular structure in both NORM and TUM, indicating
the normal cells in NORM and the abnormal cells in TUM.

Other examples further demonstrate how our visualization aligns
with the important structural characteristics of each class. For instance,
the background (BACK) example shows that the important features
are mainly artifacts, indicating that this class is predominantly noise.
Adipose (ADI) tissue comprises adipocytes and connective tissue, and
our in-image visualization highlights the connective tissue structure.
Debris (DEB) refers to damaged tissue that has broken down, which is
also reflected in the lack of structure in the in-image visualization. Next,
our importance visualization highlights the fibers of found in smooth
muscle (MUS) and the sparse tissue of mucus (MUC). Lymphocytes
(LYM) are a type of white blood cell, and our in-image visualization
emphasizes that the cell structure is crucial in determining class.

All persistence diagrams overlaid with our learned importance in this
example are distinct, indicating the need to learn the weight function
instead of relying on a pre-fixed one (i.e. persistence). This exam-
ple demonstrates how our visualization can effectively highlight the
medically significant structures in a complex dataset.
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Fig. 9: COLLAB graph classification with three classes. (left} Example
persistence diagrams overlaid with our visualization of the importance
field from 3 collaboration networks in physics. (right) Example persis-
tence diagrams overlaid with our visualization of the importance field for
the same class.

5 DiIscuUssION

In this paper, we introduced the first visualization of the importance of
topological features, which includes the visualization of an importance
field through the learned weight function and in-image visualization of
topological significance. This allows TDA researchers to gain insight
into the topological features that drive dataset classification for the
first time. Rather than an assumed, fixed weighting our novel deep
metric model optimizes the weight function given labeled data. Fur-
thermore, our model outperforms other topological representations,
including those that use persistence-based weights or learned kernel
weight functions.

However, our novel approach also has its limitations. The persistence
image, a density estimator, accumulates density through a smoothed
representation of feature points. This smoothing may cause density and
importance to bleed across the diagonal, which may pose challenges
for points near the diagonal on extended diagrams. Next, we showed
how our field can drive in-image visualization of the OD features of a
sublevel set filtration on an image. While our field is agnostic to the
dimension of or the filtration used, mapping diagram points back to
the original data is not always straightforward. For example, how to
best visualize the generators for even just 1D features is still an active
area of research [27, 35, 38]. Moreover, it is an open question of how
to visualize the importance of unstructured datasets. These are topics
are exciting areas for future study. For instance, our approach could be
used to extend the ongoing work on the visualization of 1D features or
could augment visualizations of the Morse-Smale Complex.

Overall, our results show that what is topologically important can
vary by domain, class, and dataset. Therefore a single, static weighting
strategy is likely not ideal for many datasets. This indicates that more
study in this area is warranted, for which our approach provides the
first visualization tool.

ACKNOWLEDGMENTS

DOE ASCR DE-SC0022873,
RO1GM143789.

NSF-IIS 2136744, NIH

REFERENCES

[1] H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman,
S. Chepushtanova, E. Hanson, F. Motta, and L. Ziegelmeier. Persistence
images: A stable vector representation of persistent homology. Journal of
Machine Learning Research, 18,2017. 3, 4,7

[2] E. Berry, Y.-C. Chen, J. Cisewski-Kehe, and B. T. Fasy. Functional
summaries of persistence diagrams. 4:211-262, 2020. 3

[3] H. Bhatia, A. G. Gyulassy, V. Lordi, J. E. Pask, V. Pascucci, and P.-T.

Bremer. Topoms: Comprehensive topological exploration for molecular

and condensed-matter systems. Journal of Computational Chemistry,

39(16):936-952, 2018. 1

S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb graphs for

shape analysis and applications. Theoretical Computer Science, 392(1-

3):5-22,2008. 1, 4

[5] K. M. Borgwardt, C. S. Ong, S. Schonauer, S. Vishwanathan, A. J. Smola,
and H.-P. Kriegel. Protein function prediction via graph kernels. Bioinfor-
matics, 21(suppl_1):147-i56, 2005. 6

[6] P-T.Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell. Inter-
active exploration and analysis of large-scale simulations using topology-
based data segmentation. [EEE Transactions on Visualization and Com-
puter Graphics, 17(9):1307-1324, 2010. 1

[7]1 P. Bubenik, M. Hull, D. Patel, and B. Whittle. Persistent homology detects
curvature. Inverse Problems, 36(2):025008, 2020. 1, 3

[8] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimen-
sions. Computational Geometry, 24(2):75-94,2003. 1,4

[9] H. Carr, J. Snoeyink, and M. Van De Panne. Simplifying flexible isosur-

faces using local geometric measures. In IEEE Visualization 2004, pp.

497-504. IEEE, 2004. 3

M. Carriere, M. Cuturi, and S. Oudot. Sliced wasserstein kernel for

persistence diagrams. In International conference on machine learning,

pp- 664-673. PMLR, 2017. 3,7

M. Carriere, S. Y. Oudot, and M. Ovsjanikov. Stable topological signatures

for points on 3d shapes. In Computer graphics forum, vol. 34, pp. 1-12.

Wiley Online Library, 2015. 5, 6

D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence

diagrams. In Proceedings of the twenty-first annual symposium on Com-

putational geometry, pp. 263-271, 2005. 3

D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Extending persistence

using poincaré and lefschetz duality. Foundations of Computational Math-

ematics, 9(1):79-103, 2009. 3

L. De Floriani, U. Fugacci, F. Iuricich, and P. Magillo. Morse complexes

for shape segmentation and homological analysis: Discrete models and

algorithms. Computer Graphics Forum, 34(2):761-785,2015. 1

V. Divol and F. Chazal. The density of expected persistence diagrams

and its kernel based estimation. Journal of Computational Geometry,

10(2):127-153, 2019. 3

H. Doraiswamy, N. Shivashankar, V. Natarajan, and Y. Wang. Topological

saliency. Computers & Graphics, 37(7):787-799, 2013. 3

H. Edelsbrunner and J. Harer. Computational Topology: An Introduction.

American Mathematical Soc., 2010. 1, 2

H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persis-

tence and simplification. In Foundations of Computer Science, 2000.

Proceedings. 41st Annual Symposium on, pp. 454-463. IEEE, 2000. 1

G. Favelier, N. Faraj, B. Summa, and J. Tierny. Persistence atlas for critical

point variability in ensembles. IEEE transactions on visualization and

computer graphics, 25(1):1152-1162, 2018. 4, 5

D. Giinther, R. A. Boto, J. Contreras-Garcia, J.-P. Piquemal, and J. Tierny.

Characterizing molecular interactions in chemical systems. IEEE Transac-

tions on Visualization and Computer Graphics, 20(12):2476-2485, 2014.

1

A. Gyulassy, P.-T. Bremer, R. Grout, H. Kolla, J. Chen, and V. Pascucci.

Stability of dissipation elements: A case study in combustion. Computer

Graphics Forum, 33(3):51-60, 2014. 1

A. Gyulassy, P-T. Bremer, B. Hamann, and V. Pascucci. A practical

approach to morse-smale complex computation: Scalability and generality.

IEEE Transactions on Visualization and Computer Graphics, 14(6):1619—

1626, 2008. 1

A. Hatcher. Algebraic Topology. Cambridge University Press, 2005. 2

[4

[}

(10]

(11]

(12]

(13]

(14]

[15]

[16]
(17]

(18]

(19]

(20]

(21]

(22]

(23]



Gleason 4

Gleason 5

Fig. 10: Prostate cancer medical image classification. Each class has two examples in Gleason 3,4 and 5. From top to bottom are the original image,
its persistence diaaram overlaid with our learned importance. and in-image visualization of topoloaical importance.

Fig. 11: Colorectal cancer image examples from 9 classes. Each column is
learned importance, and in-image visualization of topological importance.

[24]

[25]

[26]

[27]

(28]

[29]

(30]

J.-C. Hausmann. On the Vietoris-Rips complexes and a cohomology theory
for metric spaces. In Prospects in Topology: Proceedings of a Conference
in Honor of William Browder, vol. 138 of Annals of Mathematics Studies,
pp- 175-188. Princeton University Press, 1995. 2

C. Hofer, R. Kwitt, M. Niethammer, and A. Uhl. Deep learning with
topological signatures. Advances in neural information processing systems,
30,2017. 3

E. Hoffer and N. Ailon. Deep metric learning using triplet network. In
International workshop on similarity-based pattern recognition, pp. 84-92.
Springer, 2015. 4

F. Turicich. Persistence cycles for visual exploration of persistent homology.
IEEE Transactions on Visualization and Computer Graphics, 2021. 4,9
J. Kasten, J. Reininghaus, . Hotz, and H.-C. Hege. Two-dimensional
time-dependent vortex regions based on the acceleration magnitude. JEEE
Transactions on Visualization and Computer Graphics, 17(12):2080-2087,
2011. 1

J. N. Kather, N. Halama, and A. Marx. 100,000 histological images of
human colorectal cancer and healthy tissue, Apr. 2018. 10.5281/zen-
0do.1214456. 6

M. Kontak, J. Vidal, and J. Tierny. Statistical parameter selection for
clustering persistence diagrams. In 2019 IEEE/ACM HPC for Urgent
Decision Making (UrgentHPC), pp. 7-12.IEEE, 2019. 4, 5

(31]

(32]

(33]

(34]

[35]

[36]

(37]

. SR % 3 e v
"dv\'- MMM BLAR R

an example image per class, its persistence diagram overlaid with our

o

G. Kusano, Y. Hiraoka, and K. Fukumizu. Persistence weighted gaus-
sian kernel for topological data analysis. In International Conference on
Machine Learning, pp. 2004-2013. PMLR, 2016. 3,7

P. Lawson, A. B. Sholl, J. Q. Brown, B. T. Fasy, and C. Wenk. Persis-
tent homology for the quantitative evaluation of architectural features in
prostate cancer histology. Scientific Reports, 9(1):1-15,2019. 1, 6

H. Lee, M. K. Chung, H. Kang, B.-N. Kim, and D. S. Lee. Discriminative
persistent homology of brain networks. In 2011 IEEE international sym-
posium on biomedical imaging: from nano to macro, pp. 841-844. IEEE,
2011. 1

H. Lee, M. K. Chung, H. Kang, and D. S. Lee. Hole detection in metabolic
connectivity of Alzheimer’s disease using k-Laplacian. In International
Conference on Medical Image Computing and Computer-Assisted Inter-
vention, pp. 297-304. Springer, 2014. 1

L.Li, C. Thompson, G. Henselman-Petrusek, C. Giusti, and L. Ziegelmeier.
Minimal cycle representatives in persistent homology using linear pro-
gramming: An empirical study with user’s guide. Frontiers in artificial
intelligence, 4:681117, 2021. 9

D. Maljovec, B. Wang, P. Rosen, A. Alfonsi, G. Pastore, C. Rabiti, and
V. Pascucci. Topology-inspired partition-based sensitivity analysis and
visualization of nuclear simulations. Proc. of [EEE PacificVis, 2016. 1

J. R. Munkres. Elements of Algebraic Topology. CRC Press, 2018. 2



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53

[54]

[55]

[56

1. Obayashi. Volume-optimal cycle: Tightest representative cycle of a
generator in persistent homology. SIAM Journal on Applied Algebra and
Geometry, 2(4):508-534, 2018. 4,9

I. Obayashi, T. Nakamura, and Y. Hiraoka. Persistent homology analysis
for materials research and persistent homology software: Homcloud. arXiv
preprint arXiv:2112.03610, 2021. 4

V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust on-
line computation of reeb graphs: simplicity and speed. ACM Transactions
on Graphics (TOG), 26(3):58-es, 2007. 1,4

V. Patrangenaru, P. Bubenik, R. L. Paige, and D. Osborne. Challenges in
topological object data analysis. Sankhya A, 81(1):244-271,2019. 1

B. Rieck, F. Sadlo, and H. Leitte. Topological machine learning with
persistence indicator functions. In Topological Methods in Data Analysis
and Visualization, pp. 87-101. Springer, 2017. 7

H. Riihiméki and J. Licén-Saldiz. Metrics for learning in topological
persistence. arXiv preprint arXiv:1906.04436, 2019. 3

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra. Grad-cam: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE international conference
on computer vision, pp. 618-626, 2017. 5

D. Shnier, M. A. Voineagu, and I. Voineagu. Persistent homology anal-
ysis of brain transcriptome data in autism. Journal of the Royal Society
Interface, 16(158):20190531, 2019. 1

K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 4
M. Soler, M. Petitfrere, G. Darche, M. Plainchault, B. Conche, and
J. Tierny. Ranking viscous finger simulations to an acquired ground
truth with topology-aware matchings. In 2019 IEEE 9th Symposium on
Large Data Analysis and Visualization (LDAV), pp. 62-72. IEEE, 2019. 5
R. W. Sumner and J. Popovi¢. Deformation transfer for triangle meshes.
ACM Transactions on graphics (TOG), 23(3):399—-405, 2004. 6

G. Tauzin, U. Lupo, L. Tunstall, J. B. Pérez, M. Caorsi, A. Medina-
Mardones, A. Dassatti, and K. Hess. giotto-tda: A topological data
analysis toolkit for machine learning and data exploration, 2020. 6

J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux. The
topology toolkit. IEEE transactions on visualization and computer graph-
ics, 24(1):832-842, 2017. 4

L. Vietoris. Uber den hoheren Zusammenhang kompakter Riume und eine
Klasse von zusammenhangstreuen Abbildungen. Mathematische Annalen,
97(1):454-472, 1927. 2

B. Wang, B. Summa, V. Pascucci, and M. Vejdemo-Johansson. Branching
and circular features in high dimensional data. [EEE Transactions on
Visualization and Computer Graphics, 17(12):1902-1911, 2011. 4

P. Yanardag and S. Vishwanathan. Deep graph kernels. In Proceedings of
the 21th ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 1365-1374, 2015. 6

L. Yang, R.-Y. Zhang, L. Li, and X. Xie. Simam: A simple, parameter-
free attention module for convolutional neural networks. In International
Conference on Machine Learning, pp. 11863—11874. PMLR, 2021. 4

Z. Zhang, J. Bu, M. Ester, J. Zhang, C. Yao, Z. Yu, and C. Wang.
Hierarchical graph pooling with structure learning. arXiv preprint
arXiv:1911.05954, 2019. 7

Q. Zhao and Y. Wang. Learning metrics for persistence-based summaries
and applications for graph classification. Advances in Neural Information
Processing Systems, 32,2019. 3,4, 6,7



