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Abstract— Neural networks have already demonstrated at-
tractive performance for solving motion planning problems,
especially in static and predictable environments. However, effi-
cient neural planners that can adapt to unpredictable dynamic
environments, a highly demanded scenario in many practical
applications, are still under-explored. To fill this research gap
and enrich the existing motion planning approaches, in this pa-
per, we propose DynGMP, a graph neural network (GNN)-based
planner that provides high-performance planning solutions in
unpredictable dynamic environments. By fully leveraging the
prior exploration experience and minimizing the replanning
cost incurred by environmental change, DynGMP achieves high
planning performance and efficiency simultaneously. Empirical
evaluations across different environments show that DynGMP
can achieve close to 100% success rate with fast planning speed
and short path cost. Compared with existing non-learning and
learning-based counterparts, DynGMP shows very significant
planning performance improvement, e.g., at least 2.7x, 2.2x,
2.4x and 2x faster planning speed with low path distance in
four environments, respectively.

I. INTRODUCTION

Motion planning is a fundamental robotic task toward
finding a collision-free path from a start state to an end
state within the robot’s free configuration space. Consid-
ering that robots in the real world typically operate in
dynamic environments, in practice, deployed motion planners
are typically required to provide strong dynamic planning
capability to ensure the fast adjustment of the planned
trajectory preserving high path quality. To that end, several
dynamic motion planners, such as ERRT, Dynamic RRT*,
and DRRT [1][2][3], have been proposed to operate in
rapidly changing environments. However, as variants of
conventional sampling-based planners (e.g., RRT [4], PRM
[5], and RRT* [6]), existing dynamic planners naturally
inherit a challenging limitation — the high computational
costs incurred by the sequential and expensive invocations
of sampling and collision-check sub-routines. Even worse,
because obstacles in the dynamic environments often move
randomly and unpredictably [7][3], the replanning process
of existing dynamic planners require much more sampling
and collision-checking calls to deal with high levels of
uncertainty, further increasing the computational burden.

Recently, motivated by the widespread adoption of deep
neural networks in many Al applications, learning-based
motion planners have attracted much attention. By leveraging
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powerful learning and representation capabilities of neu-
ral networks, the state-of-the-art neural planners [8][9][10]
can directly learn the suitable planning heuristics/policies
from data, leading to superior performance than their non-
learning-based counterparts in the static environment. In-
spired by these encouraging successes, performing dynamic
planning in a data-driven way, by its nature, is an apparently
attractive solution. Unfortunately, to date, very few efforts
have been reported toward designing neural dynamic plan-
ners. To our knowledge, only [11] proposes a graph neural
network (GNN)-based dynamic motion planning solution.
However, its approach is built upon the assumption that
the movement of obstacles is fully predictable, making it
less practical in real-world environments. Overall, high-
performance motion planning for unpredictable dynamic
environments is still under-explored and calls for an efficient
solution.

To respond to this important demand, in this paper,
we propose DynGMP, a GNN-based motion planner that
can work in practical unpredictable dynamic environments.
DynGMP is built on the key observations surrounding the
limitations of existing solutions. As illustrated in Fig. 1, for
non-learning-based dynamic motion planners, e.g., Dynamic
RRT#, their inherent tree-based exploration process makes
the trimming operation incurred by the collision with the
changing obstacles very costly. This is because for many
visited nodes of the exploration tree, even if they do not
directly collide with obstacles, they are still discarded as
long as their parent nodes are in the obstacle space. Such
an aggressive trimming strategy, by its nature, causes even
more expensive regrowth of the exploration tree, a process
that already suffers high costs incurred by sequential and
extensive sampling and collision checks. On the other hand,
if we adopt the state-of-the-art neural planners, e.g., GNN
explorer [10], for the unpredictable dynamic environments, it
has to repeat the generation of the exploration tree each time
when a moving obstacle causes a new collision. According
to our performance profiling results measured on modern
GPU (Nvidia RTX 3090), the tree exploration (including
edge priority sorting and collision checking) takes most of
the planning time (> 70%), making such tree regeneration-
based dynamic neural planners very expensive.

From the analysis above, it is seen that the high replanning
cost, as a fundamental limitation of existing dynamic plan-
ners, is mainly caused by the regeneration of the exploration
tree. We argue that such expensive re-generation incurred by
the aggressive tree trimming and abandonment is inefficient
since many discarded nodes contain essential and useful
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Fig. 1: Different schemes of motion planners when handling dynamic environmental changes. Both the existing non-learning
and learning-based (Dynamic RRT* and Dynamic GNN explorer) aggressively invalidate a large portion of the exploration
tree; while DynGMP aims to maximally preserve the already explored information to reduce replanning cost.

exploration information, and thus they should be preserved
and re-used during the replanning phase. Motivated by the
insight, our proposed DynGMP is designed to fully leverage
the prior exploration experience to adapt to dynamically
changing environments. As shown in Fig. 1, DynGMP aims
to maximize the reuse of the exploration tree, bringing low-
cost tree repairing and re-growth, simultaneously achieving
good replanning performance and efficiency. More details of
DynGMP are shown in Fig. 2 and described in Section IV.
Overall, the key contributions of this paper are summarized
as follows:

o We propose DynGMP, a GNN-based motion planner that
adapts to unpredictable dynamic environments. To the best
of our knowledge, this is the first neural dynamic planner
that can work in challenging scenarios with multiple
unpredictably moving obstacles.

o We develop a set of strategies and approaches, including
minimization of trimming scope and shortcut smoother, to
dramatically improve planning performance while simul-
taneously reducing planning overhead.

o Empirical evaluations of DynGMP across a broad set of
environments confirm that DynGMP can achieve close to
100% success rate with fast planning speed and small path
cost. Compared with existing non-learning and learning-
based counterparts, DynGMP shows very significant plan-
ning performance improvement.

II. RELATED WORK

Dynamic Motion Planning. Dynamic planners aim to
find collision-free paths in dynamically changing environ-
ments. To achieve this, many existing solutions are based
on sampling-based planners (such as RRT/RRT*) that have

been successful in static environments. For example, ERRT
[1] proposes to adapt to environmental changes by storing
waypoints and regrowing search trees. DRRT [3] places
the root of the search tree at the goal location to reduce
replanning costs by minimizing the number of invalidated
branches. Multipartite RRT [12], as a combination of ERRT
and DRRT, maintains a set of subtrees that can be pruned and
reconnected under the guidance of previous states. Inspired
by the superior performance of RRT* over RRT, Dynamic
RRT* [2] is designed to perform dynamic planning in
working environments containing obstacles with random and
unpredictable movement.

Learning-based Motion Planning. Learning-based plan-
ners have obtained much attention in recent years. For
instance, LSTM is employed to learn to imitate oracle and
encode the trajectory history in [13]. [14] integrates known
dynamics of robots into the policy neural network and
performs model-based reinforcement learning. Following a
similar reinforcement learning-based strategy, [9] develops
a neural planner with a proper balance between exploration
and exploitation. In addition, [15] and [16] propose to learn
sampling distributions to guide the search process better,
and [8] and [17] utilize different types of neural networks
to process structured and unstructured inputs, respectively.
Also, considering that a motion planning problem can be
interpreted from the perspective of graph search, several
GNN-based planners have been reported in recent litera-
ture. [18] leverages GNNs to identify critical samples, and
[10] adopts a GNN-based solution to reduce the demand
for collision checks. However, most existing learning-based
planners are designed for static environments. To date, only
[11] studies the neural planner in dynamic environments.
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Fig. 2: The overall procedure of DynGMP. In the initial planning phase (¢ = 0), the exploration tree is built on the GNN-
generated edge priority. In the replanning phase (each time when environmental change occurs, e.g., t = k and t = p),
the exploration tree is trimmed and repaired carefully to maximize the original tree structure, lowering replanning cost. A

shortcut smoother is always adopted to improve path quality.

However, their proposed GNN-based temporal encoding can
only work when the environmental change is predictable, an
assumption that does not hold in many real-world scenarios.

III. PRELIMINARIES

Notation. Let C € R? represent the d-dimensional config-
uration space of the robot. The obstacle and free space are
denoted as Cyps and Cypep = C\ C,ps, respectively. Generally,
a motion planning problem can be interpreted as the search
process over a graph G = (V,E), where V and E are the
node and edge sets, respectively. Specifically, each node
vi € V C C represents a configuration state of the robot,
and each edge e;; connecting v; and v; is a collision-free
transition/movement between two states. v, and v, represent
the robot’s start and goal states.

Problem Definition. In practice, obstacles in the environ-
ment may have unpredictable dynamic changes. Therefore,
obstacles and free space in such scenarios can be parameter-
ized as Cops(r) and Ciree(t) = C\ Cops (1), respectively, where
t is time. Dynamic motion planning aims to find a continuous
path connecting v, and v,, where the robot’s configuration at
t is always collision-free. More specifically, the planned path
in the dynamic environment is denoted as © = {vg,vy,...v7 },
where vy = Vs, V7 = Vg, €;it1(f) € Crree(t), Vi€ [0,T —1].

IV. METHOD

Overall Framework. Fig. 2 shows the overall framework
of the proposed DynGMP. In the initial planning phase, i.e.,
the state of the robot is vy at t = 0, the random geometric
graph (RGG) generated by the random sampling in Cye(0),
is processed by a GNN-based explorer [10] to predict the
edge priority. Then, an exploration tree is built by connecting

the collision-free edges with the high priority greedily. A fea-
sible path can be identified upon constructing this exploration
tree. To optimize the path quality, the shortcut smoother and
GNN smoother [10] can be optionally applied to reduce path
cost further. Then, the robot begins its operation following
this initially planned path. After the unpredictable random
movement of the obstacles at r = k, the robot needs to
adjust its path to adapt to the dynamic change of the
environment in the re-planning phase. To that end, the current
exploration tree is first trimmed to remove the nodes and
edges involved with collision incurred by the environmental
change. Unlike the trim performed in existing works shown
in Fig. 1, DynGMP adopts a collision check-free trimming
operation (detailed later), maximally preserving the original
tree structure and reducing the computational cost. After that,
the disconnected exploration tree is repaired and forms a
new collision-free path for the current environment, and the
path smothers are optionally applied to optimize path quality
further. Notice that such operations in the re-planning phase
are repeated each time of the environmental change, updating
the exploration tree when necessary.

Building Initial Exploration Tree. The exploration tree
is initialized at # = 0. It is then partially updated each time an
environmental change causes a new collision. Following [10],
the exploration tree is built on the predicted edge priority in
the raw RGG. More specifically, two multilayer perceptrons
(MLPs) first embed node and edge into latent space as x; )
and yg-)). Then, a GNN updates the embedding information
by aggregating the local information of each node from its
neighbors in an iterative way. Denoted RGG by G = (V,E),
the update procedure is as follows:
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where k is the iteration index, €D is an aggregation function,
i.e. max operation, Concat is a concatenating function, N,,
represents a set of neighbors of node v;, and f,, f; and f, are
two-layer MLPs. After multiple iterations (e.g., 5), one MLPs
can be applied to the updated edge embedding information
to achieve exploration priority for every edge in RGG. We
leverage edge priority to build an initial exploration tree.
Specifically, we initialize the exploration tree with a single
state, e.g., the goal state. Then, the initial exploration tree
is built by iteratively choosing one edge with the highest
priority from the edge subset of RGG that connect with
the current exploration tree and adding the edge to the
exploration tree if collision-free. This procedure is terminated
until the exploration tree reaches the start state.

Trimming Exploration Tree. As shown in Fig. 2, in
the event of obstacle movement at t = k, the current ex-
ploration tree may not be collision-free anymore, requiring
the corresponding adjustment for the new environment. To
that end, a trimming operation is performed first to remove
all the potential collision nodes and edges in C,p(k). A
straightforward solution is to perform collision checks on
all the edges and nodes and identify the targeted ones, but
this strategy brings high computational overhead incurred by
extensive collision checks. Instead, DynGMP adopts a simple
yet efficient solution to invalidate collision-involved nodes
and edges without explicit collision checks.

As shown in Fig. 3, all the nodes within the range of
a radius of the moved obstacles and their corresponding
edges are removed from the exploration tree. Here the radius
is determined by the summation of the robot and obstacle
sizes. For instance, for a 7D Snake robot, the robot size
is defined as the length of the snake, and the obstacle size
is the maximum length of the obstacle’s bounding box.
By using this method, DynGMP achieves a good balance
between maximally preserving the prior exploration record
and minimally incurring the computational overhead. Notice
that there exists a rare case that two out-of-range nodes are
connected via an edge that is in collision with obstacles.
To eliminate this risk, we impose a constraint when building
the exploration tree — each edge is shorter than the minimum
length of the obstacle size. Another benefit brought by this
constraint is it also avoids the invalidation of a long collision-
free edge due to the small overlap with the obstacles,
reducing the demands of the collision check.

Repairing Exploration Tree. Once nodes and edges
involved in collisions are trimmed from the exploration tree,
DynGMP further performs the repairing operation to make
the tree regrow and adapt to a new environment. As shown in
Fig. 4, the goal of tree repair is to re-connect the two disjoint

Algorithm 1: Repairing Exploration Tree

Input : Start v,(¢), Goal v,, Exploration tree T (r)

Output: New path 7(¢), Repaired tree T'(t)

Data: Raw RGG G, New obstacles Oy

Notation: Start subtree .7;, Goal subtree .7, and Other
subtrees 90/

1 Derive connected components from 7'(¢) as 7, J, and T
Predict_priority(G, Opew);

/* Repair from goal subtree x/
Initialize exploration tree Ty = Jg;

Initialize edge candidate E with edges of G;

(5]

3
4
5 E::lf\Ej); // exclude explored edges
¢ while True do
7 Select e = (v,v'),v € Ty from E with highest priority;
s | E=E\{e);
9 if e € Cype.(t) then
10 add edge e to Tp;
1 if v € 7, then
/* connect to start subtree x/
12 T()=T(t)UTy;
13 break;
14 if v €%, then
/x connect to other subtrees */
15 T(t)=T(1)UT,;
/* Sample new RGG if edge candidate set is
empty */

16 if E == 0 then
Re-sample and generate new RGG G;
Predict_priority(G, Opep);

19 E=E\Ey
20 if is_reach_sample_budget() then
21 | break;

IS4
]

7(t) = Dijkstra(T(t),vs(t),ve);
23 return (7(r),T(t))

subtrees that contain the start and goal nodes without colli-
sion as obstacles move. Considering the previously predicted
edge priority is prepared for the planning task in the old
environment, the edge priority prediction is updated with the
latest obstacle information. Upon that, the subtree containing
the goal node (v,) starts to grow by selecting the highest
priority edge among all the unexplored nodes connected to
that subtree. Notice that sometimes the selected node belongs
to another subtree (Case 2 in Fig. 4). In such a scenario, these
two subtrees are merged as a new one. Such tree expanding
process continues until the growing subtree connects to the
subtree containing the starting node (vy), forming a complete
tree. Then, the feasible path for the changed environment can
be identified from this repaired exploration tree. Algorithm 1
describes the overall scheme of the tree-repairing procedure.

Shortcut Smoother. The re-planned path after repairing
the exploration tree, though indeed free of collision, may not
have high quality because of potential detours. As shown
in Fig. 5, it is very common that the path identified from
the newly re-connected exploration tree contains unnecessary
detours, especially in complicated environments. To address
the issue, path smoothing is typically required to reduce
detours and improve path quality. However, as shown in
Fig. 5(b), after using GNN smoother [10], the customized



'+ Potential Collision Range <---» Radius of Range

O Start QO valid

,,O Goal . Invalid

O==Q Invalid Edge

O=—Q valid Edge
=

! “ji Moving
i___1 Obstacles

Fig. 3: Thé scope for trimming exploration tree. All the nodes
and the corresponding edges within a radius (maximum
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path smoother for GNN-based planning, detour issues still
exist, causing very limited performance improvement of
path quality. We hypothesize one potential reason for this
phenomenon is that the existing neural path smoother is
designed for planning in the static environment, lacking
sufficient generality for unpredictable dynamic changes. To
that end, we propose a shortcut smoother to quickly im-
prove path quality at a low cost. As shown in Fig. 5, a
smooth window is slid over the found path. Potential shorter
edges within the window are examined. Once a shortcut
is identified, the smoother adds the shortcut edge to the
exploration tree, effectively eliminating unnecessary detours.
Notice that following the path diversification methodology
[19], [20], DyGMP still preserves the original longer path
and the corresponding nodes as a backup to prepare for future
dynamic environmental changes. In addition, considering the
added shortcut may introduce a long edge, some additional
nodes may be interpolated along the edge to satisfy the
constraint of the edge length.

Algorithm 2: The Procedure of Shortcut Smoother
Input : Path w(r) ={(v;)|i €[t,T],0<t < T} and
Exploration tree 7 (z)
Config: Window size w
Output: Smoothed path 7(r) and Exploration tree T'(t)

1 @ = deepcopy(n(1));
2 for i:0— (k—w) do
for j: (i+w)— (i+2) do
if (Vi:Vj) € Cfree(t) then
delete {v,|z € (i,j)} from 7;
add e; : (v;,v;) to T(1);
break;

3
4
5
6
7
8 return (7,7 (1))

V. EVALUATION
A. Dataset and Experimental Setup

We demonstrate the effectiveness of DynGMP on four
types of planning tasks: (1) 2D Easy Maze: a 2 DoF robot in
2D map of size 15 x 15, (2) 2D Hard Maze: a 2 DoF robot
in 2D map of size 15 x 15, (3) 3D Maze: a 3 DoF robot in
2D workspace of size 15 x 15; and (4) 7D Snake: a 7 DoF
snake robot in 3D workspace of size 15 x 15 x 1. Here the
difference between Easy Maze and Hard Maze is that the
distance between the start and goal points in Hard Maze is

much longer than that in Easy Maze, making the planned
path much more susceptible to being blocked by the moving
obstacles. To simulate the random and unpredictable change,
in each working environment four obstacles are set to be able
to move independently in eight random directions or remain
static. To avoid the potential unsolvability of the planning
task incurred by the environmental change, the obstacles are
forbidden to move to the goal configuration. In addition, for
each environment type, we prepare 2000 planning problem
instances to train the GNN model. Each instance contains
a different set of random obstacles and a pair of start/goal
configurations. The evaluation is performed on another 1000
unseen planning problems with randomly chosen dynamic
obstacles. We report evaluation performance by averaging
the performance metrics over all the 1000 unseen problems.

B. Baseline

We evaluate the performance of DynGMP and compare
it with one non-learning-based dynamic planner (dynamic
RRT#*[2]) and two learning-based solutions (Dynamic NEXT
and Dynamic GNN Explorer). Here because currently there
are no reported learning-based planners designed for un-
predictable dynamic environments, we modify two neural
planners (NEXT [9] and GNN explorer [10]) that are for
static environments to adapt for dynamic environments.
More specifically, we develop Dynamic NEXT via trimming
and re-building the exploration tree of the original NEXT
method, and the adopted trimming and regrowing strategy
follows the scheme used in Dynamic RRT*, making NEXT
capable of dynamic planning. The Dynamic GNN explorer
is built on re-executing the original GNN explorer each
time when the environment changes. In other words, by
interpreting the re-planning task as planning in the new
environment with different start configurations and obstacle
information, the original GNN explorer can be extended for
dynamic planning.

C. Implementation Details

The GNN component of our proposed DynGMP follows
the same architecture used in [10]. To be specific, The nodes
and edges are encoded into embeddings of 32 dimensions
using the separate two-layer MLPs, and the three-loop atten-
tion modules encode the obstacle information into the node
and edge embedding with the output dimensions of 32 and
32, respectively. The message passing procedure of the GNN
aggregates and updates the node and edge embeddings from
their local neighbors for five loops, with output dimensions
of 32 and 32, respectively. At the output end of the GNN,
three-layer MLPs are used to predict the single-value edge
priority for each edge. To train GNN, we select ADAM
optimizer [21] with a learning rate of 0.001 and batch size
of 8. The experiments are conducted on a computer with
AMD Ryzen 5600x and GeForce RTX 3090. The dynamic
NEXT and Dynamic GNN Explorer are implemented based
on the modification of the open source code of [22] and [23],
respectively.
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D. Evaluation Metrics

In our experiments, we evaluate the following performance
metrics of different dynamic planners.

1) Success rate is the percentage of planning tasks that are
solved with a feasible path that connects the start and
goal states without collision with the dynamic obstacles.

2) Collision check is the number of collision checks per-
formed during the entire planning procedure, including
both initial planning and re-planning phases until a fea-
sible path is found or the maximum budget is reached.

3) Planning time is the computation time used in the entire
planning procedure, including both initial planning and
re-planning phases until a feasible path is found or the
maximum budget is reached.

4) Travel distance is the average of the robot’s actual
moving distance guided by the dynamic motion planner.

5) Travel distance with failure penalty is the adjusted
travel distance that penalizes the planners with lower
success rates. The reason for evaluating this metric is
that the planners are more likely to solve easier tasks
with shorter travel distance, but fails in the more difficult
tasks with longer distance. For a fair comparison of the
travel distance, we introduce a failure penalty which is

equal to the multiplication of the maximum robot step
size and the number of simulation loops, as the travel
distance of the failed tasks.

E. Dynamic Planning Performance

Fig. 6 shows the performance of DynGMP and other
baseline dynamic planners. Notice that since GNN explorer
is typically concatenated with a GNN smoother [10] for
higher path quality, in our evaluation the performance of the
Dynamic GNN explorer considers the use of additional GNN
smoother. Correspondingly, we evaluate two configurations
of DynGMP, as only using its own shortcut smoother and
using an additional GNN smoother.

Comparison with Baselines. Overall our proposed solu-
tion, no matter with or without GNN smoother, shows very
promising performance, guiding the robot to reach the goal
on 100%,99.9%,99%,98.9% dynamic planning problems
with very low collision check demand and short re-planning
time in 2D Easy Maze, 2D Hard Maze, 3D Maze, and
7D Snake environments, respectively. More specifically, as
shown in Fig. 6 (a), DynGMP improves the success rate
by 3%, 6.5%, 3.2%, and 2% on four environments over the
Dynamic GNN explorer. Compared with Dynamic RRT* and
Dynamic NEXT, the advantage of our method on success rate
is even more significant. Also, Fig. 6 (b) shows that DynGMP
requires much fewer number of collision checks in the
planning procedure. Compared with Dynamic GNN explorer,
DynGMP reduces the demand of collision checks by 72%,
76%, 64%, and 79% in four environments. Compared with
dynamic RRT* and Dynamic NEXT, DynGMP reduces colli-
sion checks by at least 47%, 61%, 55%, and 66% in different
environments. Such a huge reduction further translates to a
significant speedup in planning speed. As shown in Fig. 6(c)),
DynGMP accelerates the replanning procedure by 2.7x,
2.2%, 2.4%, and 2x in the four environments as compared
with dynamic RRT*. Even higher speedups are achieved
when comparing DynGMP with Dynamic NEXT and Dy-
namic GNN explorer. Another benefit brought by DynGMP
is the short travel distance. As shown in Fig. 6(d), DynGMP
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Fig. 7: The planning performance of DynGMP with different numbers of dynamically moved obstacles.
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Fig. 8: Visualization of replanning process of DynGMP in

2D Hard Maze environment.

achieves similar travel distances to the baseline dynamic
planners. With a much higher success rate, DynGMP shows
much shorter travel distance with failure penalty as compared
to other non-learning and learning-based dynamic planners
(see Fig. 6(e)).

Impact of Path Smoother. Prior works have shown that

(a) Initial Planning & Obstacle Moves (b) Replanning
Fig. 9: Visualization of replanning process of DynGMP in

7D Snake environment.

the proper use of path smoother can improve path quality, es-
pecially in a static environment. For instance, GNN smoother
is adopted in GNN explorer [10] to reduce path cost. For
our proposed DynGMP, the impact of using additional GNN



smoother is very negligible (see Fig. 6). This is because the
built-in shortcut smoother in DynGMP can effectively solve
the detour problems that GNN smoother does not work well
on (see Fig. 5). We also perform an ablation study to compare
DynGMP only using shortcut smoother and DynGMP only
using GNN smoother. As shown in Table I, adopting the
shortcut smoother brings a very significant reduction in the
path cost, demonstrating its advantage.

Varying Number of Moving Obstacles. To better un-
derstand the capacity of DynGMP, we also evaluate its
performance with various numbers of moving obstacles. As
shown in Fig. 7, DynGMP can ensure a relatively high
success rate for dynamic planning ( > 80%) even with 10
obstacle changes in the challenging 7D Snake environment.
For 2D environments, DynGMP can achieve above 90%
success rate even with more than 30 moving obstacles.
Meanwhile, the corresponding time cost is still affordable.
For instance, in the scenario of 50 dynamic obstacles in the
7D Snake environment, DynGMP only uses less than 1.5s
for the entire planning, demonstrating its fast planning speed.

TABLE I: The impact of using different path smoothers on
the travel distance of the robot.

Without With GNN  With Shortcut
Smoother  Smoother Smoother
2D Easy Maze 2.18 2.15 1.14
2D Hard Maze 2.96 3.01 2.22
3D Maze 2.50 2.36 1.48
7D Snake 6.14 6.05 6.12

F. Visualization

Fig. 8 illustrates the re-planning process of DynGMP in
2D Hard Maze environment. After one dynamic obstacle
blocks the current path, DynGMP first trims the tree and
enables the exploration tree to be collision-free in Fig. 8(b).
Then, DynGMP repairs this exploration tree and finds a new
collision-free path (see Fig. 8(c)). The visualization of a
similar process in 7D Snake environment is shown in Fig. 9.

VI. CONCLUSION

This paper proposed DynGMP, a GNN-based motion plan-
ning algorithm for unpredictable dynamic environments. Em-
pirical experiments demonstrate that DynGMP achieves close
to 100% success rates and delivers competitive path quality
with the help of a carefully designed shortcut smoother.
Comprehensive experiments suggest DynGMP is a very
promising GNN-based dynamic motion planner that can
provide at least 2x over the existing solutions.

In future work, we plan to push the ceiling on the number
of supported dynamic obstacles higher by designing more
intelligent approaches for trimming the exploration tree.
When identifying collision nodes and edges, our current
design sacrifices the false positive rate to guarantee a 100%
true positive rate. This leads to some unnecessary removal
of collision-free states and edges. We plan to design a
learning-based method to decrease the false positive rate and
simultaneously guarantee 100% true positive rate.
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