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Abstract

We introduce two data-driven procedures for optimal estimation and inference in
nonparametric models using instrumental variables. The first is a data-driven choice
of sieve dimension for a popular class of sieve two-stage least squares estimators.
When implemented with this choice, estimators of both the structural function hg
and its derivatives (such as elasticities) converge at the fastest possible (i.e., min-
imax) rates in sup-norm. The second is for constructing uniform confidence bands
(UCBSs) for hg and its derivatives. Our UCBs guarantee coverage over a generic class
of data-generating processes and contract at the minimax rate, possibly up to a log-
arithmic factor. As such, our UCBs are asymptotically more efficient than UCBs
based on the usual approach of undersmoothing. As an application, we estimate
the elasticity of the intensive margin of firm exports in a monopolistic competition
model of international trade. Simulations illustrate the good performance of our
procedures in empirically calibrated designs. Our results provide evidence against
common parameterizations of the distribution of unobserved firm heterogeneity.
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1 Introduction

With easier access to large data sets, there is increasing interest in estimating flexible, non-
parametric structural functions and their derivatives, such as elasticities or other marginal
effects. In many applications, the structural function Ay is identified by a conditional mo-
ment restriction

E[Y — ho(X)|W] =0 (almost surely), (1)

where Y (a scalar) and/or some elements of X (a vector) are endogenous, W is a vector
of instrumental variables, and the conditional distribution of (X,Y") given W is otherwise
unspecified. Examples include consumer demand (Blundell, Chen, and Kristensen, 2007,
Blundell, Horowitz, and Parey, 2017), demand for differentiated products (Berry and
Haile, 2014; Compiani, 2022), and international trade (Adao, Costinot, and Donaldson,
2017; Adao, Arkolakis, and Ganapati, 2020).! Uniform confidence bands (UCBs) are very
helpful for inferring the true shape, slope, or curvature of hg, as they graphically convey
sampling uncertainty about the estimated structural function and its derivatives.

In applications involving policy counterfactuals, researchers care about estimating and
constructing UCBs for hg or its derivatives. For instance, Adao et al. (2020, AAG here-
after) derive (1) via a semiparametric gravity equation for the intensive margin of firm
exports in a monopolistic competition model based on Melitz (2003). In that context, the
derivative of hg is the elasticity of the intensive margin of firm-level exports to changes
in bilateral trade costs. Moreover, Compiani (2022) performs policy experiments using
nonparametric estimates of price elasticities in differentiated product demand models.

As is the case for almost all nonparametric and machine learning (ML) methods,
researchers must choose tuning parameters—such as bandwidths, sieve dimensions, or
penalty parameters—when estimating or performing inference on hy and its derivatives.
Poor choice of tuning parameters can lead to estimators that converge unnecessarily slowly
and confidence bands with poor coverage. But “good” choices of tuning parameters typ-
ically require knowledge of key model regularities, such as the smoothness of hy and the
strength of the instruments, which are unknown ex ante. It is therefore important to
have data-driven methods that adapt to unknown model regularities and yield estimators
and confidence bands with desirable properties. Data-driven methods for choosing tuning

parameters also help to improve the transparency of nonparametric and ML methods,

1Other applications include causal inference (Miao, Geng, and Tchetgen Tchetgen, 2018) and rein-
forcement learning (Chen and Qi, 2022; Chen, Xu, Gulcehre, Paine, Gretton, De Freitas, and Doucet,
2022). Model (1) also nests nonparametric regression when W = X in which case hg is the conditional
mean of Y given X.



removing a degree of freedom with which the researcher can manipulate results. Unfor-
tunately, popular methods for choosing tuning parameters for nonparametric regression,
such as standard cross validation, may not be valid in models with endogeneity—see
Section 2.2.

In this paper, we propose simple, data-driven procedures for choosing tuning param-
eters for estimating and constructing UCBs for hg and its derivatives. Our methods are
developed for the popular class of sieve nonparametric IV estimators.? That is, hg is ap-
proximated by a linear combination of several basis functions (e.g., B-splines), with the
coefficients estimated by Two Stage Least Squares (TSLS) regression of Y on the basis
functions of X, using functions of W as instruments (see Section 2.1 for a detailed de-
scription). The key tuning parameter to be chosen by a researcher is the number of basis
functions, say J, used to approximate hg. If J is too small, then estimators may be badly
biased and UCBs may under-cover. But if J is too large, estimators may be very noisy
and UCBs may be uninformatively wide. Before precisely stating our theoretical results

in Section 4, we describe our methods and their practical importance.

Our Methods and the Practical Implications. Our first contribution is a data-
driven choice of sieve dimension, which we denote by .J. This choice is simple to compute.
Under suitable regularity conditions, we show that sieve estimators implemented with J,
which we denote h 7, converge at the fastest possible (i.e., minimax) rate in sup-norm.?

That is, the maximum error over the support of X, namely
sup | 5(x) — ho(x)].

vanishes as fast as possible—among all estimators of hop—as the sample size increases,
uniformly over a class of data-generating processes (DGPs), for both nonparametric IV
and nonparametric regression models. Formally, we refer to J as sup-norm rate-adaptive:
it adapts to features of the DGP that are unknown ex ante, such as the smoothness of hg
and strength of the instruments, so that the resulting estimator h 7 converges as fast as

possible in sup-norm. We further show that the same data-driven choice J is sup-norm

2See Ai and Chen (2003), Newey and Powell (2003), Blundell et al. (2007), and Horowitz (2011).

3We focus on the sup-norm rather than L? norm (i.e., mean-square error) primarily because our
objective is to construct UCBs for hg and its derivatives. The sup-norm is essential for this purpose, as
we require the entire function (or its derivatives) to lie inside the bands with desired coverage probability.
The sup-norm also provides a stronger, more informative sense in which the estimator is converging as it
measures the maximal, rather than average, error over the support of X.



rate-adaptive for estimating derivatives of hy as well.* Hence, J should be very useful for
researchers interested in estimating elasticities or other marginal effects. We illustrate this
usefulness in our empirical application revisiting AAG, where we use J to estimate the
elasticity of the intensive margin of firm-level exports from aggregate bilateral trade data.
We also demonstrate the good performance of J across a variety of simulation designs for
both nonparametric IV estimation and nonparametric regression.

Our second main contribution is a data-driven approach to constructing UCBs for hg
and its derivatives. The term “uniform” indicates that the entire function lies within the
bands with desired asymptotic coverage probability. The UCBs for hy and its derivatives
are also simple to compute and have strong theoretical justification. They are honest in
the sense that they guarantee coverage for hy and its derivatives uniformly over a generic
class of DGPs, and adaptive in the sense that they contract at, or within a logarithmic
factor of, the minimax rate. As such, they provide efficiency improvements relative to
UCBs based on the usual approach of undersmoothing, in which a sub-optimally large J
is chosen in the hope that bias is negligible relative to sampling variation. Of course, in
empirical work, a researcher does not know the true function, and therefore doesn’t know
which J is truly large enough that sampling uncertainty dominates bias.

Our UCBs for hy and its derivatives are useful for inferring the true shape of the struc-
tural function and its derivatives. They complement existing approaches for testing shape
restrictions, as they allow the researcher to read off the shape of the function without
imposing a specific null (e.g. monotone increasing) a priori. In our empirical application
to AAG we construct UCBs for the elasticity of the intensive margin of firm exports. As
emphasized by AAG, this is an important, policy-relevant function yet its shape is not
restricted by theory in a nonparametric setting. Our UCBs exclude constant functions and
downwards-sloping functions. Hence, they provide evidence against the Pareto specifica-
tion for unobserved firm productivity used by Chaney (2008), which leads to a constant
elasticity, as well as other parameterizations used, e.g., by Eaton, Kortum, and Kramarz
(2011), Head, Mayer, and Thoenig (2014), and Melitz and Redding (2015), for which the
elasticity is downwards-sloping. Empirically-calibrated simulation studies based on the
models of Chaney (2008) and Head et al. (2014) demonstrate valid coverage of our UCBs

for hg and its derivatives and efficiency improvements relative to undersmoothing.

Related Literature and our Theoretical Contributions. Early work on nonpara-
metric IV estimation includes Newey and Powell (2003), Hall and Horowitz (2005), Blun-

4This is in contrast to kernel estimation, in which different bandwidths must be used for rate-adaptive
estimation of a function and its derivatives.



dell et al. (2007), Darolles, Fan, Florens, and Renault (2011), Horowitz (2011) and others.

We complement prior work by Horowitz (2014) for near-adaptive estimation of hg in
L? norm, Breunig and Johannes (2016) for near-adaptive estimation of linear functionals
of hg, and Breunig and Chen (2021) for adaptive estimation of quadratic functionals of
hg. Our procedure builds on the bootstrap-based implementation of Lepski’s method of
Chernozhukov, Chetverikov, and Kato (2014) for kernel density estimation and Spokoiny
and Willrich (2019) for linear regression with Gaussian errors. But our procedure does
not follow easily from theirs due to several challenges present in the conditional moment
restriction (1), in which hg is identified by E[Y|W] = E[ho(X)|W] (a.s.). The degree of
difficulty of inverting E[ho(X)|W] to recover hy is a nonparametric notion of instrument
strength and plays an important role in determining minimax rates for estimators of hg
and its derivatives.” While adaptive procedures for nonparametric density estimation or
regression deal only with unknown smoothness of the estimand, our procedures must also
deal with the unknown degree of difficulty of the inversion problem. The literature has
typically classified the difficulty of the inversion problem into “mild” and “severe” regimes.
Minimax rates in the mild regime are achieved by a choice of sieve dimension that balances
bias and sampling uncertainty, much like standard nonparametric problems. But minimax
rates in the severe regime are obtained by a bias-dominating choice of sieve dimension.
Our procedure for data-driven choice of sieve dimension delivers the minimax sup-norm
rate for hy and its derivatives across the whole spectrum of models, from nonparametric
regression to nonparametric IV models in the severe regime.

Our procedure improves significantly on and supersedes a modified Lepski procedure
from Section 3 of Chen and Christensen (2015a) on sup-norm rate-adaptive estimation
of (1). Ours uses a multiplier bootstrap to avoid selection of several constants and per-
forms much better in practice. Moreover, our rate-adaptivity guarantees encompass non-
parametric regression and nonparametric IV in both mild and severe regimes.

Recent work on (non data-driven) UCBs for hy and functionals thereof via under-
smoothing includes Horowitz and Lee (2012), Chen and Christensen (2018) and Babii
(2020). Our UCBs build on prior work on honest, adaptive UCBs for nonparametric den-
sity estimation (Giné and Nickl, 2010; Chernozhukov et al., 2014) and Gaussian white
noise models (Bull, 2012; Giné and Nickl, 2016). But none of these works allows for
nonparametric models with endogeneity, and our procedures do not follow easily from

these existing methods due to the above-mentioned challenges present in model (1). Our

5See Hall and Horowitz (2005), Chen and Reiss (2011), and Chen and Christensen (2018) for minimax
rates for nonparametric IV estimation. When the conditional density of X given W is continuous, these
rates are slower than the corresponding rates for nonparametric regression.



UCBs for hg and its derivatives apply to nonparametric regression with non-Gaussian,
heteroskedastic errors as a special case, which appears to be a new contribution.

Finally, our work also compliments several recent papers on (non data-driven) estima-
tion and inference for nonparametric IV models with shape constraints; see for example
Blundell et al. (2017), Chetverikov and Wilhelm (2017), Freyberger and Reeves (2019)
and Chernozhukov, Newey, and Santos (2023). These works all assume a deterministic
sequence of tuning parameters satisfying regularity conditions that depend on unknown
model features such as the smoothness of hy and instrument strength. An exception is
Breunig and Chen (2020) who study L? rate-adaptive testing of a specific null hypothesis
(e.g., monotone increasing, or a parametric functional form). Our approach is conceptu-
ally different from theirs: our UCBs graphically convey sampling uncertainty about an
estimate of hy and its derivatives. Hence, our UCBs are very useful for inferring the true
shape of hg in situations—such as our trade application—where there are no specific prior

shape restrictions suggested by economic theory.

Outline. Section 2 introduces our methods. Section 3 presents the application to inter-
national trade. Section 4 contains the main theoretical results. Section 5 provides addi-
tional simulation results for difficult designs. Section 6 presents extensions to additive and
partially linear models, and Section 7 concludes. Appendix A presents a simplified version
of our procedures for nonparametric regression. Appendix B provides additional details
for the trade application and simulations. In the online supplement, Appendix C presents
additional simulations to an empirically calibrated Engel curve design, Appendix D gives
details on basis functions and nonparametric function classes, and Appendix E contains

technical results and proofs.

Notation. Let X be the support of X, d the dimension of X, and L% and L%, the
space of functions of X and W with finite second moments. Let ||h|o := sup,cy |h(2)]
be the sup-norm of h : X — R. Let N be the set of integers and Ny := N U {0} the
non-negative integers. Let [a] = min{n € N: n > a} and |a] = max{n € Ny : n < a}.
For a multi-index a = (ay, ...,aq) € (No)* with order |a| = S_% | a;, the a-derivative of &

is defined as Sl @)
“h(x
0%h(x) = .
(z) 0%gy...0%x,

Let A~ denote the generalized (or Moore Penrose) inverse of a matrix A and A~'/2 the

inverse of the positive-definite square root of A.



2 Procedures

We begin in Section 2.1 by briefly reviewing sieve nonparametric IV estimation and UCBs
with a deterministic sieve dimension. Section 2.2 explains why standard cross validation
for regression fails in models with endogeneity. Section 2.3 presents our data-driven choice
of sieve dimension and Section 2.4 presents our data-driven UCBs. These methods extend
naturally to partially linear and partially additive models (see Section 6). Both procedures

apply to nonparametric regression as well (see Appendix A).

2.1 Review: Estimators and UCBs with a Deterministic J

Estimators. Consider approximating hy by a linear combination of J basis functions:
ho(x) = (¥ (x))'cy, (2)

where 7 (z) = (¥1(x),...,1%;5(x)) is a vector of basis functions and ¢; = (cj1,...,crs)

is a vector of coefficients. Combining (1) and (2), we obtain
Y = (7 (X)) ey +biasy +u, Eu/W]=0,

where u =Y — ho(X) and bias; = ho(X) — (¢7(X))’c;. Provided the bias term is “small”
relative to u in an appropriate sense, we have an approximate linear IV model where 17 (X)
is a J x 1 vector of “endogenous variables” and c; is a vector of unknown “parameters”.
One can then estimate c; using TSLS or GMM using a K x 1 vector of basis functions
WVE(W) = (bgcr (W), ..., b (W))" of W as instruments. Evidently, K > J is necessary to
estimate c;.

Given data (X;,Y;, W;)’,, the TSLS estimator of ¢, is simply

ey = (WP, WiPLY,

where ¥ ; = (¢7(X7),..., v’/ (X,)) and Bg = (b5 (W), ..., b5 (W,)) are nx J and nx K
matrices, Px = B (BB ) B is the projection matrix onto the instrument space, and

Y = (Y3,...,Y,) is an x 1 vector. Estimators of hy and its derivative 9%hq are given by

A~

hy(x) = (W7 (x))éy, and  8%hy(x) = (%7 (x))éy

where 07 (x) = (0%bn(x), ..., 0%bss(x)).



Sieve Bases. Many linear sieves, such as polynomial splines, B-splines, wavelets, Fourier
series, and various polynomials, can be used as the instrument basis {bxy, < ,. However,
only B-splines and Cohen-Daubechies-Vial (CDV) wavelet bases for {¢;;}7_, have been
shown to achieve the optimal minimax sup-norm rates under a suitable choice of J (Chen
and Christensen, 2018).%5 As our objective is to have estimators that converge as fast
as possible in sup-norm—which is essential for constructing UCBs that are as narrow
and informative as possible—we restrict attention to B-splines and CDV wavelets for
{4 }37:1 in our theory that follows. Moreover, since B-splines are easy to compute, much
less collinear than polynomials and polynomial splines, and available in standard software
packages, we confine our presentation to B-spline bases for both {t;}/_; and {bxs}j_,
in the main text.

Key tuning parameter J. Based on simulations and theoretical studies in Blundell
et al. (2007), Chen and Christensen (2018) and others, the performance of the sieve TSLS

estimator for Ay is sensitive to the choice of J and not sensitive to K as long as K > J. We

introduce a data-driven method for choosing J in Section 2.3. The choice of K is pinned
down by J in our procedure, so we write K(J) > J, b)(W), B (s and Pg(yy in what
follows. Let My = (W), P ;¥ ;) ¥, Py ;) be a J x n matrix. We can equivalently write

~

hy(x) = (07 (@) MY, 0%hy(z) = (0" (2)) MY . (3)

“Undersmoothed” UCBs. We now review the usual approach of constructing “un-
dersmoothed” UCBs for hy and its derivatives based on a deterministic J. Let Gy =
(Q1,7, ..., Up,) denote the nx 1 vector of residuals whose ith element is @; ; = Y; —iLJ(Xi).
Then hy(z) — ho(z) and 8%h(x) — 8ho(x) can be estimated by

Dy(x) = (7 (2))Myiy ,  Di(x) = (007 (x)) M,y , (4)
and their variances can be estimated by
73(x) = (v (2))M, U, ;M (), 65%(x) = (0™ (2))M, U, ,M,(0*¢” (z))  (5)

where U ; is a n X n diagonal matrix whose ith diagonal entry is ; s, ;.

6Bases for hy must have bounded Lebesgue constant to attain the minimax sup-norm rate for non-
parametric regression (see, e.g., Belloni, Chernozhukov, Chetverikov, and Kato (2015) and Chen and
Christensen (2015b)). B-splines and CDV wavelets have this property. Bases without this property, such
as polynomials and Fourier series, cannot attain the minimax sup-norm rate and hence cannot lead to
sup-norm rate-adaptive estimators or UCBs.



Let 0 = (4 w1,..., 0, jw,) denote a multiplier bootstrap version of t;, where
(w;)i, are IID N(0, 1) draws independent of the data. Then

Dj(x) = (7 (2)) M), D(z) = (0" («)) M, 1} (6)

are bootstrap versions of D;(x) and D4(x). For each independent draw of (w;)?_;, compute

the sup t-statistics:
Dj(x)

~

()

Dy (x)

75 ()

Let 27, ; and z{*, ; denote the (1 — a) quantile of these sup statistics across a large

(7)

sup
zeX

) sup
reX

number (say 1000) independent draws of (w;)!" ;. Chen and Christensen (2018) construct
100(1 — @)% UCBs for hg and 9%hg as follows:

Co(a) = [iw(a:) (), ha(@)+ zr_a,mx)] ,

© (2) = [a“%(x) i 60(a), o (e) + zf*a,ﬁf;(x)} .

The above UCBs are theoretically justified provided J increases faster than the oracle
Jo (the optimal sieve dimension for estimating h or its derivatives in sup-norm), so that
the bias is of smaller order than sampling uncertainty. Unfortunately, Jy is unknown in
practice since it depends on the unknown smoothness of hy and other unknown model

regularities of (1). This motivates us to propose the new data-driven UCBs in Section 2.4.

2.2 Problems with Standard Cross Validation

We briefly explain why the usual approach of cross validation (CV) for regression is not
a valid method for choosing J in models with endogeneity. Consider the standard CV
criterion
CV(J) = = > (Vi = hyy(X0))%, (8)
i=1
where n is the sample size and ﬁ,@ s denotes version of h s computed from a sub-sample
that excludes the ith observation. Let u; = Y; — ho(X;). We may then expand (8) as
CV) = 23 () — b (X0 + 23 23 o) — s (X)
i —1, A n < 4 n o % i —1, i)).

n“
=1



The first term in the expansion is an estimate of the MSE E[(ho(X) — h;(X))?] of h; and
the second term is independent of J. The third term is an estimate of E[u(ho(X)—hy(X))].
This term is asymptotically negligible without endogeneity (i.e., when E[u|X] = 0) as is
the case for nonparametric regression, making CV(.J) a suitable sample analogue of the
mean-square error of iy in that case (see, e.g., Li (1987)). But in models with endogeneity
(i.e., when E[u|X] # 0), there is no guarantee that E[u(ho(X) — hys(X))] = 0 and so this
third term—which depends on .J—may be non-negligible even asymptotically. If so, cross
validation gives a biased estimate of the MSE of h; and is therefore not a meaningful
criterion by which to choose J in models with endogeneity. Indeed, a cross-validated
choice of J may not even lead to a consistent estimator of hg in model (1).

In addition, even for nonparametric regression, the J chosen by CV balances bias and
sampling uncertainty in L? norm. Such as choice is not optimal for estimation of hy and

its derivatives in sup-norm, nor is it sutiable for adaptive UCBs for hy and its derivatives.

2.3 Procedure 1: Data-driven Choice of Sieve Dimension

We now present our data-driven choice J of sieve dimension using B-spline bases. B-splines
are characterized by their order r. In the simulations and empirical application, we use a
cubic B-spline (r = 4) for {1;;}7_, and a quartic B-spline (r = 5) for {bx}i_;.”

Let T ={J = 2" +7r—1):1 € Ny} denote a dyadic grid of candidate values of
J, where the integer r is the order of the B-spline basis for {ij}jzl (i.e., each v ; is
a piecewise polynomial of degree r — 1). For example, T = {J = 2! +3 : [ € Ny} =
{4,5,7,11,19,35,...} for a scalar X (d = 1) and cubic B-splines (r = 4).® The index [
is the resolution level. We construct {bgy}& | similarly, using B-splines of order (r + 1)
because the reduced form is smoother than hg. Given the resolution level [ for the basis
for X, the resolution level for the basis for W is [, = [(I +¢)d/d, ] for some ¢ € Ny where
dy, is the dimension of W. Linking /,, to [ in this manner defines a mapping K (.J) that
satisfies lim ;oo K(J)/J = ¢ € [1,00). We recommend taking ¢ as the second- or third-
smallest value for which K(J) > J holds for all J (i.e., ¢ = 1 or ¢ = 2 if both X and W are
of the same dimension). We advise against choosing ¢ any larger, as the number of basis
functions increases exponentially in the resolution level. Let J© = min{j € T : j > J} be

the smallest sieve dimension in 7 exceeding .J.

"In the first submitted version we also used a quadratic B-spline (r = 3) for {¢;; }]J:y In additional
simulations we obtained very similar results with a Fourier basis for {bxx}H< .

8Letting .J vary over 7 ensures there is enough separation that we can accurately compare the bias
and variance of estimators with different J € 7. This helps improve the numerical stability of the method,
coherent with implementations of Lepski’s method in other nonparametric contexts.

10



For J, J, € T with J, > .J, the contrast D (z)— D, () is an estimate of hy(z)—h., (),

whose variance can be estimated by
53,J2 (z) = 5?}@) + 632 (z) — 25J,J2(95)7 5J,J2(~’B) = (¢J(x))/MJUJ,J2M&2¢J2($)7 9)

where 6%(z) is defined in (5) and U 7.0, 18 a n x n diagonal matrix whose ith diagonal

entry is ; j; j,. Moreover, the multiplier bootstrap version of D;(x) — D, (z) is

Dj(x) = D, (w) = (¥ (x))M i) — (v (2))' M, 13,.
Finally let $; be the smallest singular value of (B’K(J)BK(J))_1/2(B’K(J)\IIJ)(\Ilf]\IlJ)_l/Q.

Procedure 1: Data-driven Choice of Sieve Dimension

1. Compute

Jnax = min {J €T :J\/logJs;' <10v/n < JTy/log J+§;i} (10)

J= {J €T :0.1(log Jua)? < J < jmax} . (11)

2. Let & = min{0.5, (10g(Jimax)/ Jmax)/2}. For each draw of (w;)",, compute

Dj(x) — D, (z)

G7,.0,(7)

sup
{(2,0,J2)EXX T x T J2>J}

(12)

Let 07, denote the (1 — &) quantile of (12) across independent draws of (w;)" ;.

3. Let J, = max{J € T J< jmax} and

~ ~

hi(z) — hy,(x)

A

J—min{Jej: sup
(z,J2)

< 1.19%} . (13)

EXXTiJa>J 0.0 (x)
The data-driven choice of sieve dimension is
J = min{J, J,}. (14)

Remark 2.1 In practice, the supremums over x in Steps 2 and 3 can be replaced by the
maximum over a fine grid of x values as the functions are continuous in . We have used

1000 draws of (w;) ; in our empirical and simulation studies. Note the (w;)?_, are held

11



fixed when computing the supremum over (z, J, J3) for each draw. Our theory allows for

constants other than 10 and 0.1 in Step 1 as long as they ensure J contains several values

of J to search over. Our theory also allows for any constant larger than 1 in Step 3; the

value 1.1 performed well in simulations and is used in other implementations of Lepski’s
method (see, e.g., Chernozhukov et al. (2014)).

We present the theoretical results on the adaptivity of J in Section 4.2.

2.4 Procedure 2: Data-driven UCBs

Let p > d/2 denote the minimal degree of smoothness assumed for hg. For instance, if X

is scalar and hg is Lipschitz, then one could take p = 1 even through the true smoothness

of hg is unknown. Let A = loglog J and

4’

J =,

) JeJ J<J,) i
ra {A J
J i

>

f
f

SN
Il

n-

Procedure 2: Data-driven UCBs for h

For each (w;)! ;, compute
Dj(x)

~

o(x)

sup (15)

(z,J)eXx T

Let z]_,, denote the (1 — a) quantile of (15) across independent draws of (w;) ;.

Construct the 100(1 — a)% UCB

Cn(z) = |hj(x) — v (x)65(x), hj(x)+cv'(z)oj(z)], (16)
where
*,a‘i_Ae*_& fj: j,
cv¥(z) = a ! . 1 . (17)
2i o+ Amax{0; ., J Y 655(2)} if J =,

Procedure 2': Data-driven UCBs for 0*hy (0 < |a| < p)

For each (w;)!" ;, compute
Dy ()|

~

54(a) (18)

sup
(x,J)eXxT—

Let 2{*, denote the (1 — a) quantile of (18) across independent draws of (w;)!" ;.

12



5. Construct the 100(1 — )% UCB

A~ ~

Co(x) = |0%hj(x) — cv¥(x) 6%4(z), 0%hj(x) + v (z) 04(z)|, (19)

where

S
I

20 4+ AfT if
v (z) =
if

. N (20)
2% 4+ Amax{0;_,, J(|a‘_9)/d/6§(x)}

J

J,
.
Remark 2.2 Procedures 1 and 2 require choosing the B-spline order r and Procedure 2
requires specifying the minimal degree of smoothness p. For sup-norm estimation and

UCBs for first derivatives one can take » > 3 and p>1; for second derivatives and cross

elasticities one can take r > 4 and p=>2.

Remark 2.3 We establish that J = J with probability approaching one (wpal) in the
mild regime; and that .J, J € [cJ,, J,,] wpal in the severe regime (for a constant ¢ € (0,1)).
Nevertheless, we find J = J in the empirical application and in the vast majority (between
99.6% and 100% depending on the design and sample size) of all simulations. In particular,

J = J across all simulations in the Engel curve design which is in the severe regime (see
Appendix C).

Theoretical properties of these UCBs are presented in Sections 4.3 and 4.4. We show that
the Procedures 2 and 2’ UCBs are honest and adaptive for models in the mild regime
(including nonparametric regression as a special case). For models in the severe regime,
we show that the Procedures 2 and 2 UCBs with critical values corresponding to J = J,
have valid (actually conservative) coverage. Nevertheless, the Engel curve simulation in
Appendix C shows that the Procedure 2 UCBs still have valid (actually conservative)

coverage for a severe regime design.

3 International Trade: Simulations and Application

Adao, Arkolakis, and Ganapati (2020, hereafter AAG) derive semiparametric gravity equa-
tions for the extensive and intensive margins of firm exports in a monopolistic competition
model of international trade. Importantly, and in sharp contrast with the existing litera-
ture (Melitz, 2003; Chaney, 2008; Eaton et al., 2011; Head et al., 2014; Melitz and Redding,

2015), AAG do not impose any parametric assumptions on the distribution of unobserved
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firm heterogeneity. The gravity equations identify functions which characterize the elas-
ticities of the extensive and intensive margins of firm-level exports to changes in bilateral
trade costs. AAG emphasize the importance of these elasticities for counterfactuals.

In this section, we apply our procedures to estimate and construct UCBs for the in-
tensive margin and its elasticity using AAG’s baseline model and data. We also present
simulation studies based on empirical calibrations of two workhorse trade models to illus-

trate the sound performance of our procedures.

3.1 Model and Data

We begin by briefly summarizing the empirical framework of AAG. They use a monopolis-
tic competition model of international trade—see Melitz and Redding (2014) for a review.
There are a continuum of firms in each country. Firm w in country ¢ is characterized by
an entry potential e;;(w) and a revenue potential 7;;(w) for selling in country j. Firms
draw e;;(w) from a distribution H;(e) then r;;(w) from a (possibly degenerate) distribu-
tion Hj;(r|e). Firm w in country 7 exports to country j if and only if e;;(w) exceeds a
threshold. The proportion of firms in country 7 that export to country j is denoted m;;.
The extensive margin is characterized by the inverse distribution of entry potential,
ie., €;(m;) = (H)~ (1 — m;). Assuming homogeneity (so Hf; = H® and ¢;; =€), AAG’s

gravity equation for the extensive margin is
log e(m;;) = log(fi;75) + 65 + ¢,

where 7;; and f;; are variable and fixed trade costs from i to j and ¢ and (5 are exporter

and importer fixed effects (FEs). Costs depend linearly on a cost shifter z;;:

10g7_'2'j = liTZZ'j + 5: + <]T + T]Z—J,
log fi; = v’ 2 +5Zf —l—CJf +77£-,

where the idiosyncratic error terms 7;; and nlfj are conditionally mean-zero and indepen-

dent of z;; and the FEs. This yields the estimating equation
log e(mij) = (k! + 6K7) 2y + (8] + 607 +65) + (¢ +6¢7 + &) + 0l + o). (21)

Note that m;; depends (possibly nonlinearly) on z;; and the error terms 77ij and 7.

The intensive margin is characterized by the average revenue potential of exporting
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firms: g
pii(m) = —/ Elr|e = €;(v)] dv,
™ Jo

where the expectation is taken under HJ;(r|e). Assuming homogeneity (so Hj; = H" and

pij = p), AAG’s gravity equation for the intensive margin is
log Z;; — log p(m;;) = 10g(7"§) + 07 + (7,
where Z;; are average firm exports and ¢ and Cf are FEs. With 7;; as above, AAG obtain

log Z;; + 0K z;; = log p(mij) + (0 — 607) + (C]’? —0(j) —anj;. (22)

More concisely,

Yij = log p(Tij) + 0; + G + wij (23)
where y;; := log Z;; + K7 2;; is the dependent variable,” 7;; := log m;; is the endogenous
regressor, log p(7) := log p(e™) is the unknown structural function, §; := ¢/ — 567 and
G =¢ ;’ —0o(j are exporter and importer FEs, and the idiosyncratic error term u;; := —an;;
is conditionally mean-zero and independent of the instrumental variable z;;.

Our goal is to use (23) to estimate logp and its derivative, as 8102753(%) = 8}905);’(:)

characterizes the elasticity of the intensive margin of firm-level exports to changes in
bilateral trade costs. We use the same data that AAG use for their baseline estimates,
which consists of Z;;, z;;, and 7;; for a sample of 1522 country pairs for the year 2012. We

refer the reader to AAG for a detailed description of the data and its construction.

3.2 Implementation

Model (23) differs from model (1) due to the presence of FEs. AAG estimate log p and
FEs jointly, using both z;; and exporter and importer country dummies as instruments.
As such, they estimate a partially linear model with a large number of linear regressors
(due to the country dummies) and, similarly, a large number of instrumental variables.!°
Our methods and theoretical results are not formally developed for such a setting.!!

Therefore, we maintain their assumption that z;; and origin and destination FEs are

9AAG construct yi; from data on Z;; and z;; based on external estimates of & and k7.
10These comments are based on the November 2020 version of AAG, which is currently under revision.
Some of their implementation and findings may differ in future versions.

1 QOur approach extends to partially linear models—see Section 6. But with bilateral trade data the
number of dummy variables representing origin and destination FEs is increasing with the sample size n.
This “many regressors/many instruments” asymptotic framework falls outside the scope of our analysis.
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exogenous, but we further assume that E[log 5(7;;)|zi;,0i, ;] = Ellog p(7i;)|2i5] (a.s.).
That is, the intensive margin is conditional mean independent of exporter- and importer-
specific factors given cost shifters. Note, however, that we are not imposing that average
firm exports are conditional mean independent of exporter- and importer-specific factors.

The reduced form for y;; is
Yij = 9(2ij) + 0i + ¢ + €45, (24)

where ¢(z;;) = Ellog p(7:;)|2:;] and Ele;;|2i5, 6;, ;] = 0. We estimate §; and ¢; from (24) by
partially linear series regression. That is, we regress y;; on origin and destination dummies
and functions bg1,...,bxx of z; at dimension K (jmax). We then apply our procedures
using Yi; = v —5; —fj as the dependent variable (Y'), 7;; as the endogenous regressor (X),
and z;; as the instrumental variable (W). We present simulations below for models with
and without FEs and show that this first-stage estimation of ¢; and ¢; does not affect the

performance of our procedures. Appendix B provides further details on implementation.

3.3 Empirical Results

We implement our procedures using AAG’s data. Our data-driven choice of sieve dimen-
sion is J = 4 for this sample. Figure 1 plots our estimate of log p and the elasticity of the
intensive margin, together with their 95% UCBs that are constructed as in displays (16)
and (19), respectively. We report results over the interval [0.1%, 50%], as in AAG.

UCBs for log p and the elasticity of p are both narrow and informative. Figure 1 also
plots a linear IV estimate of log p and the corresponding (constant) elasticity estimate.!?
These both lie outside the UCBs for much of the support of 7;;. As such, our UCBs for the
elasticity provide evidence against the Pareto specification for unobserved firm produc-
tivity used, e.g., by Chaney (2008), under which the elasticity of p is constant. Whereas
Figure 1 of AAG shows that several conventional parameterizations of the distribution
of unobserved firm heterogeneity used by Eaton et al. (2011), Head et al. (2014), and
Melitz and Redding (2015) all imply a decreasing elasticity over [0.1%,50%]. By con-
trast, decreasing elasticities necessarily fall outside our 95% UCBs over [0.1%, 50%], as
the right-most point of the lower UCB lies above the upper UCB for smaller values of ;.

To show that our results are not sensitive to first-stage elimination of fixed effects, we
also estimate log p and the FEs jointly, using our data-driven choice J = 4 and instrument-

ing with bK(j)1(zij>7 o ,bK(j)K(j)(zij) and the origin and destination dummies, and using

12For the linear IV estimates, we estimate log p jointly with the FEs as in AAG.
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Figure 1: Estimates of the intensive margin logp (left panel) and its elasticity (right
panel) using AAG’s data set (1522 observations). Note: Solid black lines are estimates;
dashed black lines are 95% UCBs; dot-dash grey lines are nonparametric estimates with
FEs estimated jointly with log p as in AAG; dotted grey lines are linear IV estimates.

yi; as the dependent variable. Estimates using this approach are also shown in Figure 1
(labeled Joint NPIV + FEs). There is a vertical shift in the estimate of log p between the
two approaches due to the different treatment of FEs, but the estimated elasticity—which
is the focus of AAG—Iies entirely within our 95% UCB for the elasticity and is very close

to our data-driven elasticity estimate over the whole range [0.1%, 50%].

3.4 Simulation Results

We now present simulation studies based on empirical calibrations of two workhorse trade
models. The first design is based on Head et al. (2014) who assume a log-normal distri-
bution for latent firm productivity. The second design is based on Chaney (2008) who
assumes a Pareto distribution. In the first design the elasticity of p is decreasing whereas
in the second design log p(7) = plogm and hence the elasticity is constant. For brevity
we only present results for elasticity estimates in the log-normal design here. Additional
results for the Pareto design and estimation of log p are deferred to Appendix B.2.

We generate data by first sampling z;; independently with replacement from its em-
pirical distribution. We then generate data on ;; and Z;; by simulating from equations
(21) and (22), using the expressions for log e(m) and log p(7) implied by the log-normal
assumption—see Appendix B.2. As the empirical application has n = 1522, we investigate
the performance of our procedures across 1000 samples of size 761, 1522, 3044, and 6088.

Plots for a representative sample of size 1522 are presented in Figure 2(a). We generate

the results in Table 1 and Figure 2 by implementing our procedures as in the empirical
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application. That is, the dependent variable is Y;; = v;; — o — é’j, where §; and fj are first-
stage estimates of the exporter and importer fixed effects. We construct basis functions as
in the application; see Appendix B for details. We also compute estimates and confidence
bands over the range 0.1% to 50% for m;; as reported in the application.

The first panel in Table 1 presents the average and median (across simulations) of

dlog 1 dl
sup ogp(m)  dlogp(m)

7€[0.001,0.5] dlogm dlogm |

which is the maximal error of estimates of the elasticity of p for m;; over [0.1%, 50%]. We
compare estimates using J to estimates that use a deterministic choice of sieve dimension,
namely J =4, 5, 7, and 11 (these are the first few values of J over which our procedure
searches). In each simulation, the maximal error is generally smallest with J =4 or J = 5.
The average J is between 4.1 and 4.2 depending on the sample size. The maximal error
of J is at least half that with J = 7, and ten times smaller than with J = 11.

Turning to the coverage properties of UCBs for the elasticity, the second panel of
Table 1 shows our data-driven UCBs have correct but somewhat conservative coverage.
Some conservativeness is to be expected, as our UCBs have uniform coverage guarantees
over a class of DGPs. We also present coverage of UCBs based on the usual approach of
“undersmoothing” from Section 2.1. These UCBs use a deterministic J and have valid
coverage provided J is chosen sufficiently large that bias is negligible relative to sampling
uncertainty. Of course, in any empirical application a researcher does not know the true
function, and therefore doesn’t know which values of J are sufficiently large that sampling
uncertainty dominates bias. As can be seen from Table 1, J = 4 or J = 5 seems too small,
and consequently these bands under-cover. Bands with J = 7 have coverage closer to
nominal coverage, but these bands are more than 70% wider than the data-driven bands.
Comparing the UCBs in Figures 2(a) and 2(c), we see the efficiency improvement of our
bands relative to undersmoothed bands with J = 7, for estimating both p and its elasticity.

The fact that our UCBs are based on an optimal choice of J, and therefore contract
faster than bands based on undersmoothing, has important practical consequences. Con-
sider the data-driven UCBs for the elasticity of p reported in Figure 2(a). These bands
do not contain any constant function because the upper limit of the lower band exceeds
the lower limit of the upper band. This provides evidence against the Pareto specification

of productivity used by Chaney (2008), for which the elasticity of p is constant.!® Note

13Table 1 presents the frequency that such a test rejects the constant elasticity specification.
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Table 1: Simulation Results for the Elasticity of p, Log-normal Design

Data-driven Deterministic
J=4 J=25 J="7 J=11

Sup-norm Loss
n mean med. mean med. mean med. mean med. mean med.

761 0.268 0.187 0.207 0.178 0.314 0.281 0.579 0472 2.063 1.902
1522 0.184 0.129 0.144 0.125 0.216 0.191 0.382 0.339 1.823 1.650
3044 0.143 0.099 0.106 0.095 0.149 0.139 0.283 0.254 1.562 1.385
6088 0.111 0.071 0.076 0.068 0.105 0.096 0.202 0.185 1.367 1.218

UCB Coverage
90%  95% 90% 95% 90% 95% 90% 95%  90% 95%

761 0.989 0.997 0.861 0.921 0.841 0.911 0.871 0.930 0.906 0.965
1522 0.994 0.997 0.872 0.924 0.857 0.921 0.889 0.936 0.940 0.976
3044 0.993 0.998 0.833 0.899 0.869 0.929 0.899 0.943 0.947 0.979
6088 0.993 0.994 0.800 0.890 0.868 0.936 0.899 0.952 0.949 0.982

Frequency 95% UCB Relative Width (Deterministic/Data-driven)
reject mean med. mean med. mean med. mean  med.
761 0.088 0.624 0.651 0.922 0.932 1.750 1.568 6.398  6.140
1522 0.344 0.632 0.657 0.906 0.911 1.739 1.599 8295 8.098
3044 0.822 0.638 0.657 0.888 0.902 1.746 1.625 10.340 10.071
6088 0.959 0.634 0.660 0.865 0.893 1.722 1.690 12.783 12.665

Note: Column “reject” reports the proportion of simulations in which constant functions are
excluded from data-driven 95% UCBs for the elasticity.

this is despite the fact that our bands tend to be a bit conservative. The undersmoothed
bands with J = 7 have coverage closer to nominal coverage. But for the sample shown
in Figure 2, the undersmoothed bands with J = 7 are sufficiently wide that constant
functions lie entirely within the bands. Hence, the researcher could not reject a constant
elasticity specification on the basis of the undersmoothed bands in this sample. In fact,
the undersmoothed bands with J = 7 only reject the constant elasticity specification in
15.8% of simulations with 1522 observations whereas the rejection rate for the data-driven
bands is 34.4%. This difference in rejection rates illustrates the general phenomenon that
undersmoothed bands sacrifice efficiency for coverage. The undersmoothed bands are also
quite wiggly, making it difficult to infer the shape of the true elasticity.

We note in closing that our procedures can equally be applied to other IV-based

nonparametric analyses in international trade; see, e.g., Adao et al. (2017).
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(c) Estimates and UCBs with J =7
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Figure 2: Log-normal design: Plots for a representative sample of size 1522. Left panels
correspond to the intensive margin, right panels correspond to its elasticity. Note: Solid
grey lines are the true curves; solid black lines are estimates; dashed black lines are 95%
UCBs; dotted grey lines are linear IV estimates.

4 Theory

We first outline the main regularity conditions in Section 4.1. Section 4.2 shows that .J
leads to minimax convergence rates for estimators of both hg and its derivatives. We then

present the main results for UCBs in Sections 4.3 and 4.4.
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4.1 Assumptions

We first state and then discuss the assumptions that we impose on the model and sieve
space. We require these to hold for some constants ay, c, C,Cr,Cg,0,5>0and vy € (0,1).
Let T : L% — L%, denote the operator Th(w) = E[h(X)|W = w]. For nonparametric

regression we have W = X and so T reduces to the identity.

Assumption 1 (i) X has support X = [0,1]? and its distribution has Lebesgque density
fx which satisfies a;l < fx(x) < ay on X; (ii)) W has support W = [0,1]% and its
distribution has Lebesque density fw which satisfies aJIl < fw(w) < ay on W; (i) T is

mjective.
Assumption 2 (i) P(E[u*|W] < 5?) = 1; (it) P(E[u*|W] > o?) = 1.

Let ¥ and By be the closed linear subspaces of L3 and L%, spanned by ¥, ...,

and by, ..., bk, respectively. Define

P
J = L
hE‘I/J:HhHL%(;ﬁO ||Th||L%V ’

where ||-[[z2 and [/ ||z, denote the L% and L%, norms. The sieve measure of ill-posedness
77 quantifies the degree of difficulty of inverting T'hg to recover hy. As conditional expecta-
tions are (weakly) contractive, we have 7; > 1. Large 7, indicate a more difficult inversion
problem. The model (1) is said to be mildly ill-posed (or in the mild regime) if 7; < J/4
for some ¢ > 0 and severely ill-posed (or in the severe regime) if 7; =< exp(C.J*/?) for some
C,¢ > 0, where d = dim(X). For nonparametric regression models we have 7; = 1 for all
J. Hence, nonparametric regression is a special case of the mild regime with ¢ = 0.

Let IT; : L% — U; and Mgy : L%V — Bg(s) denote LS projections onto ¥; and
Bk (s):

I, f = in || f — 11 = i - .
of =argmin | —gllz . Hxef arggggg}ﬂ”f 9llz,

Also let Q; : L% — ¥  denote the TSLS projection onto W :
Qs f = arg min [T T(f = D)llg, -

Assumption 3 (i) SUPhew ] 5 =1 T MxnTh — Thilgz, < vy where vy < 1 for all
JeT andvy — 0 as J — oo

(it) T T (ho — ILsho)l[ 12, < Crllho — ILshollzs, for all J € T;

(ZZZ) ||QJ(h() - HJh())HOO < CQ”hO — HJhOHOO fO’f’ all J € T.
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Denote the “population” sieve variance of h(z) as ||o,. |2, = L 7280 LYy, where Ly, =
(V7 (x)) [5G, 58,1196, 5 and Q; = E[?bX(W) X (W))] with u = Y — ho(X),
Gy = EPEDW)OEDW))], and S; = EBED(W)(¢7(X))']. Also let ||, s]? =
(v (z))[S b}S |71 (¥/(z)), which satisfies |0, s]| < |l04.7]|sa uniformly in = by As-

sumption 2.

Assumption 4 (i) ct?J < infyex ||oos|? < sup,ey lowsl|? < CT2J forall J € T;

(1) I sup ;o SUP e 70,50 (100, llsa/ |00, || sa) < -

Assumptions 1(i)(ii) and 2 are standard conditions on the support of X and W and
the conditional variance of the errors (see, e.g., Chen and Christensen (2018)) that can be
relaxed. Assumption 1(iii) is an identification condition that is generically satisfied under
endogeneity (see Andrews (2017)) and is trivially satisfied for nonparametric regression
because T reduces to the identity in that case. Assumption 3 is also trivially satisfied for
nonparametric regression with Cp, Cg = 1. Assumption 3(i) is imposed to ensure that 57
is a suitable sample analog of 7;. Assumption 3(ii) is the usual L? “stability condition”
imposed in the NPIV literature to derive L?-norm rates. Assumption 3(iii) is a L°*-norm
analogue used to control the bias in sup-norm. Chen and Christensen (2018) provide a
thorough discussion of Assumption 4(i) and derive primitive sufficient conditions for it in
the context of nonparametric demand estimation. Assumption 4(ii) says that ||o, s||%; is
increasing in J € T, uniformly in . We view this as mild because .J increases exponentially
over T. Indeed, by Assumption 2 and 4(i) and the fact that J < 24 for some L € N, for
any J, Jo € T with Jy > J we have

sup 172,71l = e < Told o—df2 <9272 <1,
zEX ”UI,Jzusd T,V Jo To(L+1)d

4.2 Main Results: Adaptive Estimation in Sup-norm

We now show J leads to minimax rate-adaptive estimators of both the structural function
ho and its derivatives. Our results encompass nonparametric regression as a special case.

We first define the parameter space for hg. Let B (M) denote the Holder ball of
smoothness p and radius M (see Appendix D.3 for a formal definition). For given constants
Cr,Co,M > 0and p > p > ¢ with r > [p| + 1, let H? = HP(M,Cr,Cq) denote the
subset of BZ, (M) that satisfies Assumption 3(ii)(iii) for any distribution of (X, W, u)
pelpp) - For each hy € H, we let P, denote
the distribution of (Xj,Y;, W;)°, where each observation is generated by an IID draw

from a distribution of (X, W, u) satisfying Assumptions 1-4 with Y = ho(X) + u.

satisfying Assumptions 1-4, and let H = J
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Theorem 4.1 Let Assumptions 1-/ hold.

(i) Suppose the model is mildly ill-posed. Then: there is a universal constant Cy; for

which ,
~ log n \ 2e+9)+d
sup sup Py, (||hj—h0||oo > C’4,1< i ) ) — 0.

pE[p,p] ho€HP

(ii) Suppose the model is severely ill-posed. Then: there is a universal constant Cyq for
which
sup sup IPhO(HlAzj — hollee > C41(log n)_p/g) — 0.
p€E[p,p] ho€HP
We now show J also leads to adaptive estimation of derivatives of hg. Intuitively,
estimating the derivative of hy inflates convergence rate of the (squared) bias and vari-
ance terms by the same factor (a power of J). Therefore, a rate-optimal choice of J for

estimating hg is also rate-optimal for estimating derivatives of hyg.

Corollary 4.1 Let Assumptions 1-4 hold and let a € (No)? with 0 < |a| < P
(i) Suppose the model is mildly ill-posed. Then: there is a universal constant C}, for
which

p—|al

. 1 TpFe+d
sup sup Py, <H8“hj — 0"ollee > C 4 (%) ) — 0.

p€E[p,p] ho€HP

(ii) Suppose the model is severely ill-posed. Then: there is a universal constant C' | for
which
sup sup Py, (|[0°h; — 0%hol|oe > C 4 (logn)~@1eD/) — 0.
pE[p,p] ho€HP
Remark 4.1 The convergence rates in Theorem 4.1 and Corollary 4.1 are the minimax
rates for estimating ho and 0%hy under sup-norm loss; see Chen and Christensen (2018).
Hence, h jand d°h 7 converge at the minimax rate in both the mildly and severely ill-posed
cases. Case (i) encompasses nonparametric regression as a special case with ¢ = 0. To the
best of our knowledge, Theorem 4.1 and Corollary 4.1 are the first results on adaptive
estimation in sup-norm for NPIV and, more generally, ill-posed inverse problems with

unknown operator.

Remark 4.2 Our procedure requires the B-spline order r to satisfy r > |p| + 1 for exact
minimax rate adaptivity. If the true p is larger so that » < [p|+1, then our method is still
“adaptive” in the sense that it yields consistent estimates of hg and its derivatives without
requiring prior knowledge of the true smoothness of hy or the strength of the instruments.

In this case the data-driven estimators h 7 and d°h 7 will converge at the rates presented
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in Theorem 4.1 and Corollary 4.1 with p = r. Thus, our procedure should be attractive to
applied researchers who often use a relatively low choice of r in applications. For instance,
Arellano, Blundell, and Bonhomme (2017) use linear splines (r = 2). While in principle
our method could be extended to let » become large, known results from approximation
theory imply that the basis becomes ill-conditioned (i.e., collinear) as r increases (see, e.g.,
Lyche (1978) and Scherer and Shadrin (1999)). As a consequence, the resulting procedure

would be less numerically stable than with smaller r.

4.3 Main Results: UCBs for hy

It is known since Low (1997) that it is impossible to construct confidence bands that
are simultaneously honest and adaptive over Holder classes of different smoothness. As
is standard following Picard and Tribouley (2000), Giné and Nickl (2010), Bull (2012),
Chernozhukov et al. (2014), and many others, we establish coverage guarantees over a
“generic” subclass G of H. To describe G, first note by the discussion in Appendix D.3
that there exists a constant B < oo for which supy,cys |h — Ish|ls < BJ ™4 holds for all
J €T and all p € [p,p|. For any small fixed B € (0, B) and any J € T, we define

G = {h e BIE <||h—Thllw forall J € T with J > g}, G= |J 0.

PE[p,pl

The class G is sometimes called a class of “self-similar” functions. Giné and Nickl (2010,

2016) present several results establishing the genericity of G in ‘H. Loosely speaking, their

results say HP \ (Up=0.se70G") is nowhere dense in H? under the norm topology of H?.

Thus, the set of functions in H? but not in G? for some B and J is topologically meagre.
We say that a UCB {C,(z) : € X'} is honest over G with level « if

liminf inf Py, (ho(z) € Cp(z) V 2€X)>1—a, (25)

n—oo  hoeg

and adaptive if for every € > 0 there exists a constant D for which

liminf inf inf P, (sup |Cr ()] < Drn(p)> >1—c¢€,

n—00 p€[p,p| ho€GP zEX

where | - | is Lebesgue measure and r,(p) is the minimax sup-norm rate of estimation
over HP. Let C,y(z, A) denote the UCB from (16) replacing A with a constant A > 0. Our
first main result is that C),(x, A) is honest and adaptive in the mildly ill-posed case:
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Theorem 4.2 Let Assumptions 1-4 hold and suppose the model is mildly ill-posed. Then:
there is a constant A* > 0 (independent of ) such that for all A > A*,

(i)  liminf infgIP’ho (ho(z) € Cp(z,A) V z€X)>1—a;
S

n—o00  hg

.. . . 10g n 2(p+p§)+d
(i1) inf inf P, ( sup|Ch(z, A)] < Cua(1+ A) —1,
n

p€E|[p,p] ho€GP TEX

where Cyo > 0 is a universal constant.

Remark 4.3 Theorem 4.2 shows that our UCBs are honest and adaptive in mildly ill-
posed models (where 7; < J/?) for all ¢ > 0. Importantly, the researcher doesn’t need to

know the true instrument strength as measured by ¢ to implement our procedures.

Remark 4.4 As the mildly ill-posed case nests nonparametric regression as a special
case with ¢ = 0, Theorem 4.2 shows that our UCBs are honest and adaptive for general

nonparametric regression models with non-Gaussian, heteroskedastic errors.

Remark 4.5 The constant A* in Theorem 4.2 depends implicitly on B and becomes
large as B | 0, coherent with the findings of Armstrong (2021) for Gaussian white noise
models. This constant cannot be chosen in a data-dependent way (i.e., one cannot adapt
to unknown B). In practice, A can actually be quite small to guarantee coverage for a fixed
DGP—see the simulations in Section 5. The UCBs in Section 2 replace a fixed constant
A by A= loglog J, which increases no faster than loglogn. These UCBs therefore have
coverage guarantees over G defined for any small B > 0 and contract within a loglogn

factor of the minimax rate.

Theorem 4.2 establishes that the UCBs for Ay in Procedure 2 is honest and adaptive
in the mildly ill-posed case. We have found that the UCBs in Procedure 2 perform well in
terms of coverage across many simulation designs including the severely ill-posed design
in Appendix C. Nevertheless, for the severely ill-posed case, we can only establish valid
coverage of the UCBs in Procedure 2 using the critical value cv*(z) corresponding to

J = J, case, i.e.,

1-a>

v (z) = 25, + Amax{0; ., JP/5:(x)}. (26)

The term J2/? bounds the order of the bias term ||II7hg — hol|so, Which accounts for the
fact that the optimal choice of J in severely ill-posed models is bias-dominating. This
band reduces to the Procedure 2 UCB when 6;_, > J2/?/5;(z) for all .
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Remark 4.6 In our empirical application to estimating the intensive margin and its
elasticity, the UCB (16) using critical value (26) reduces to the Procedure 2 band provided
p = 0.7. The condition p > 0.7 is naturally satisfied as hg is assumed to be differentiable

in order to estimate the elasticity.

Let C,(, A) denote the UCB (16) with the critical value (26), except replacing A with
a constant A4 > 0.

Theorem 4.3 Let Assumptions 1-4 hold and suppose the model is severely ill-posed.
Then: there is a constant A* > 0 (independent of o) such that for all A > A*,

(i) liminf inf Py, (ho(z) € Cp(z, A) V 2€X)>1—a;

n—oo hoeg

(1) inf inf Py, (sup |Cy (2, A)| < Cys(1+ A)(logn)p/<> 1,

p€E[p,p] ho€GP zeX
where Cy3 > 0 1s a universal constant.

Our recommended choice A = loglog J ensures that the UCBs are asymptotically
valid over G for any B > 0 and contract within a loglogn factor of the minimax rate if

the true smoothness is p = p, and within a logn factor of the minimax rate otherwise.

Remark 4.7 If the true p > p, then the factor J2/% i3 conservative and the UCB does
not contract at the minimax rate. This raises the question as to whether it is possible
to construct UCBs that are adaptive in severely ill-posed settings. As stated in Chapter
8.3 of Giné and Nickl (2016), the existence of rate-adaptive UCBs implicitly requires the
estimation of certain aspects of the unknown function, e.g. smoothness, to be feasible. In
mildly ill-posed settings, the condition hy € GP is sufficient to ensure that J diverges at the
oracle rate Jy < (n/logn)¥@@+)+d) Ag it turns out, J is sufficiently informative about
the unknown smoothness p to facilitate the construction of adaptive UCBs. In severely
ill-posed models the oracle choice is Jy = (alogn)¥s for 0 < a < (2C)7!, which is
independent of p. Therefore, the adaptivity of J cannot be used to ascertain information
about p. We conjecture that any UCB that is centered around an adaptive estimator
that aims to mimic the oracle h J, Will likely face the same “identifiability” problem of

recovering information about p from Jj.

4.4 Main Results: UCBs for Derivatives

We now present an analogous set of results for data-driven UCBs for derivatives of hq. Here

we require an additional regularity condition similar to Assumption 4(i), which is only
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needed for the results in this subsection. Let [o¢ ;||* = (97 (x))’ [S}G;}SJ]*l(ﬁa@DJ(x)).

Assumption 4 (continued) (iii) There exist constants c, C > 0 for which cr2J+2al/d <

infyex (|02 5| < sup,ey o ,||> < Cr3gH2el/d for all J € T.

We first present results for the mildly ill-posed case. Let C¢(z, A) denote the UCB
C%(z) from (19) when A is replaced by a constant A > 0.

Theorem 4.4 Let Assumptions 1-4 hold, |a| < p, and suppose the model is mildly ill-
posed. Then: there is a constant A* > 0 (independent of o) such that for all A > A*,

(i) liminf inf Py, (0%ho(z) € Co(z,A) YV z€X)>1—a;

n—oo hg€g
B logn 2(};7\:;\4_(1
(i) inf inf Py, ( sup|Ch(z, A)| < Cua(1+ A) —1,
zeX

p€[p,p] ho€GP n

where Cyq > 0 1s a universal constant.

Remark 4.8 As the mildly ill-posed case nests nonparametric regression as a special
case, our UCBs are honest and adaptive for derivatives of hg in general nonparametric

regression models with non-Gaussian, heteroskedastic errors.

As in the previous subsection, for the severely ill-posed case, we can only establish
valid coverage of the UCB (19) using the critical value cv®(z) corresponding to J = J,,
ie.,

v (z) = 20+ Amax{0_, , Jlilr /d/&“( )} (27)

This band reduces to the Procedure 2 UCB when 6;_, > j'“‘_ﬁ/d/&f}(:c) for all x, which
is the case in our empirical application.

Let C%(z, A) denote the band (19) with critical value (27) when A is replaced by a
constant A > 0.

Theorem 4.5 Let Assumptions 1-4 hold, |a| < p, and suppose the model is severely ill-
posed. Then: there is a constant A* > 0 (independent of o) such that for all A > A*,

(i)  liminf 111f Pho(aaho( )eCi(z,A) YV zeX)>1—a;

n—oo
(ii) inf mf P | sup |C%z, A)| < Cus(1+ A)(logn)ld=2/<) -1,
PE[p,p] ho€ TEX

where Cys > 0 1s a universal constant.
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5 Additional Simulations

In this section we present two additional simulation studies. The first is a nonparametric
IV design with a non-monotonic, non-Lipschitz structural function. The second is a very
wiggly nonparametric regression design, which shows that J can choose a relatively high-
dimensional model when needed. Finally, Appendix C presents a third set of simulations

in an empirically calibrated Engel curve design which is severely ill-posed.

5.1 Nonparametric IV Design

This design features a non-monotonic, non-Lipschitz structural function. We first draw
(U, V) from a bivariate normal distribution with mean zero, unit variance, and correla-
tion 0.75, and draw Z ~ N(0,1) independent of (U, V). We then set W = &(Z) where
®(-) denotes the standard normal CDF, X = ®(D(Z + V) + (1 — D)V) where D is an
independent Bernoulli random variable taking the values 0 and 1 each with probability
0.5, and

Y =sin(4X)log(X) +U. (28)

The structural function hg(x) = sin(4x) log(x) is plotted in Figure 3. Note that the deriva-
tive of hy diverges to —oo as x | 0. Therefore, hy is Holder continuous with exponent p
for any p < 1, but not Lipschitz continuous.

For each simulated data set we compute our data-driven estimator h 7 and UCBs from
(16). We compare these with estimators and UCBs using deterministic choices of sieve
dimensions for J = 4, 5, 7, and 11 (the first few dimensions over which our procedure
searches). We again use a cubic B-spline basis to approximate hy and a quartic B-spline
for the reduced form.

The first panel of Table 2 presents the average sup-norm loss of & 7 across simulations.
These are of similar magnitude to the loss for deterministic-J estimates with J = 4
and 5 and are much smaller than the loss with J = 7 and 11. Our data-driven UCBs
demonstrate valid but slightly conservative coverage for smaller n and coverage close to
nominal coverage for n = 10000. Bands with J = 4 have poor coverage while bands with
J =5 have valid coverage for the smaller sample sizes but under-cover for n = 10000. It
seems J = 7 or J = 11 is required to have valid coverage for n = 10000 in this design.
Note that while our bands are slightly conservative for smaller .J, they are only about
10% wider than the J = 5 bands, and less than half the width of the J = 7 bands.

In Figure 3 we plot data-driven estimates and UCBs for hy and its derivative over

[0.01,0.99] for a sample of size 2500, alongside deterministic-J estimates and UCBs. In
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Table 2: Simulation Results for the Nonparametric IV Design (28).

Data-driven Deterministic
J =4 J=25 J=17 J=11

Sup-norm Loss
n mean med. mean med. mean med. mean med. mean med.

1250 0.541 0.491 0.539 0.489 0.678 0.630 1.087 1.000 1.524 1.422
2500 0.395 0.360 0.393 0.359 0.486 0.451 0.890 0.835 1.342 1.283
5000 0.323  0.292 0.319 0.291 0.367 0.345 0.761 0.696 1.231 1.169
10000 0.262 0.241 0.256 0.239 0.270 0.255 0.623 0.556 1.186 1.136

UCB Coverage
920%  95% 90% 95% 90% 95% 90% 95% 90%  95%

1250 0.997 0.999 0.816 0.892 0.930 0.974 0.951 0.978 0.967 0.984
2500 0.995 0.997 0.744 0.859 0.910 0.950 0.956 0.983 0.978 0.991
5000 0.978 0.992 0.566 0.724 0.881 0.947 0.937 0976 0.975 0.989
10000 0.908 0.949 0.324 0.470 0.847 0.921 0.935 0.98 0.967 0.989

95% UCB Relative Width (Deterministic/Data-driven)

mean med. mean med. mean med. mean med.

1250 0.658 0.663 0.925 0.897 1.502 1.451 2.122 2.046
2500 0.661 0.665 0.923 0.908 1.790 1.731 2.554 2.502
5000 0.663 0.668 0.917 0.914 2.255 2.158 3.286 3.228
10000 0.661 0.668 0.913 0.914 2.830 2.757 4.515 4.445

this sample, J = 4 and our data-driven UCBs contain the true structural function. The
data-driven bands are narrower and more accurately convey the shape of hg than the
J = 7 bands, which are much more wiggly. Our bands are also of a similar width to (but
are less wiggly than) the J = 5 bands. Panel (d) of Figure 3 also presents data-driven
estimates and UCBs for the conditional mean of Y given X. Here the data-driven choice is
again J = 4. The true structural function falls outside the UCBs for the conditional mean
function over almost all of the support of X, highlighting the importance of estimating
ho using IV methods in this design.

Finally, in Table 3 we present the coverage of our data-driven UCBs C,,(z, A) where
we replace A= log log J with a deterministic choice A ranging over [0, 1]. For this design,

A > 0.3 suffices for correct coverage. In particular, A= loglog J yields correct coverage.
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Structural Function Structural Function Structural Function

Structural Function

Figure 3: Nonparametric IV design (28): Plots for a sample of size n = 2500. Left panels
correspond to the structural function, right panels correspond to its derivative. Note: Solid
grey lines are the true structural function and derivative; solid black lines are estimates,
dashed black lines are 95% UCBs. Supports are truncated to [0.01,0.99] as the derivative
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Table 3: Coverage of 95% UCBs C,,(z, A), Nonparametric IV Design (28).

A

n 0.00 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1250 096 097 098 099 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2500 094 094 095 097 098 099 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5000 0.87 088 091 094 097 099 099 1.00 1.00 1.00 1.00 1.00 1.00
10000 0.72 0.73 078 0.83 091 095 097 099 099 1.00 1.00 1.00 1.00

5.2 Nonparametric Regression Design

For this design we simulate X ~ U[0, 1] and U ~ N(0, 1) independently, then set
Y =sin(157X) cos(X) + U . (29)

Here ho(z) = sin(157z) cos(x) is very wiggly over [0, 1] and requires a high value of J to be
selected in order to well approximate hg (see Figure 4). While hy is infinitely differentiable,
its Lipschitz constant is at least 47.1, the Lipschitz constant of its derivative is at least
2220, and Lipschitz constants grow rapidly for higher derivatives.

We again compare our data-driven estimator and UCBs using the procedures described
in Appendix A with estimators and UCBs that use deterministic choices of J for J = 11,
19, 35, and 67 (these are a subset of values over which our procedure searches). We again
use cubic B-splines to approximate hy.

It is clear from the simulation results presented in Table 4 that J > 19 is required
to well approximate the true hg. The average sup-norm loss of h 7 is similar to that of
the deterministic-J estimator for J = 35, and is smaller than the average loss for all
other J presented in the table. Our data-driven UCBs also deliver valid, but conservative,
coverage for the true conditional mean function. UCBs based on a deterministic choice
of J have zero coverage for J = 11 and J = 19 as these dimensions are too small to
adequately approximate hg, and tend to under-cover for the remaining .J, except perhaps
for J = 35 when n = 10000.

In this design a much smaller value of A suffices to deliver valid coverage, as seen in
Table 5. The reason is that the set J_ is large and h; varies a lot across different .J due to
the wiggliness of hy. Therefore zj__, which is the quantile of a sup-statistic over X x j_,
is relatively more conservative than for the other designs. This extra conservativeness
suffices to deliver valid coverage in this design with smaller A.

Figure 4 plots our data-driven estimator h 5 and 95% UCBs for the conditional mean
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Table 4: Simulation Results for the Nonparametric Regression Design (29).

Data-driven Deterministic
J =11 J =19 J =235 J =67

Sup-norm Loss
n mean med. mean med. mean med. mean med. mean med.

1250 0.778  0.650 1.242 1.175 0.808 0.732 0.671 0.591 1.111 0.898
2500 0.490 0.423 1.182 1.133 0.705 0.650 0.483 0.415 0.698 0.603
5000 0.347 0.303 1.140 1.109 0.641 0.608 0.332 0.294 0.486 0.426
10000 0.236  0.209 1.113 1.095 0.606 0.585 0.233 0.206 0.330 0.291

UCB Coverage
920%  95% 90% 95% 90% 95% 90% 95% 90%  95%

1250 0.999 0.999 0.000 0.000 0.000 0.000 0.790 0.864 0.627 0.713
2500 1.000 1.000 0.000 0.000 0.000 0.000 0.847 0.899 0.776 0.857
5000 1.000 1.000 0.000 0.000 0.000 0.000 0.857 0.909 0.845 0.910
10000 1.000 1.000 0.000 0.000 0.000 0.000 0.889 0.936 0.867 0.934

95% UCB Relative Width (Deterministic/Data-driven)

mean med. mean med. mean med. mean med.

1250 0.217 0.209 0.287 0.279 0.410 0.405 0.616 0.582
2500 0.206 0.206 0.279 0.279 0.401 0.405 0.603 0.599
5000 0.190 0.191 0.256 0.260 0.374 0.382 0.565 0.568
10000 0.195 0.196 0.261 0.262 0.380 0.383 0.573 0.572

function for a sample of size 2500. In this sample, J = 35. The data-driven estimator well
approximates the true conditional mean function hg, which lies entirely within the 95%
UCBEs, and the same is true for estimates and UCBs for the derivative of hy. Deterministic-
J bands with J = 67 are of a similar width to our data-driven bands for this sample, even
though they use a less conservative critical value which only accounts for sampling uncer-
tainty. The estimator is also much wigglier with J = 67 than our data-driven estimator

and does not approximate hq as well.

6 Extensions

So far we have assumed the structural function Ay is a general d-variate function. As with
many other nonparametric estimation problems, minimax rates deteriorate as d increases.
This so-called curse of dimensionality applies to any estimator of hy. However, it can
be circumvented by imposing additional structure on hg (when appropriate), such as

additivity or partial linearity. In this section, we show how our data-driven procedures
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Table 5: Coverage of 95% UCBs C,,(z, A), Nonparametric Regression Design (29)

A

n 0.00 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1250 0.88 088 090 093 096 098 098 099 099 099 1.00 1.00 1.00
2500 093 094 096 098 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5000 096 096 098 099 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10000 097 097 098 099 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

extend to additive and partially linear models.

Additive Structural Functions. Consider first the additive structural function:
ho(z) = co + hio(x1) + . .. + hao(xq)

where x = (1,...,24). Here ¢y is a constant representing an “intercept” term and the
h;o are suitably normalized for identifiability. In the context of nonparametric regression,
Stone (1985) showed that imposing additivity can yield estimators of hgy that achieve the
same (optimal) rate for general d as for d = 1.

Our methods may be easily adapted to additive models as follows. We assume for sake
of exposition that X is bivariate (d = 2). Let ¢/ (2) = (1,47 (1), 0 (x2)')" where for
i = 1,2 we have ¢/(z;) = (Yy1(x:),. .., s(x;)). Here J represents the dimensions of
sieves used to approximate both hiy and hgg. The basis functions @E Jlse - ,12 77 are formed
by setting v, (x;) = ¥;(x;:) —fol Yyi(v)dv with ¢ 1(x1), ..., ¥ss(21) a univariate B-spline
basis. We estimate ¢y and ¢}, i = 1,2, by TSLS regression of Y on ¢7(X) using b%/) (W)
as instruments:

Ch

& | = (¥ Prn¥,) ¥ P, )Y =M)Y,

¢
where the notation is as in Section 2 but with ¢’ () = (1,47 (1), 14 (x3)")’. The estimator
of hyg is h; 7(x;) = (] (x;))'é,. Derivatives of h;y are estimated by differentiating hi;.

Our data-driven choice of J is implemented exactly as described in Section 2.3 with
V7 (x) = (1,97 (x1)', ¥ (23)"). Data-driven UCBs for hyy are formed analogously to Sec-
tion 2.4 with two small modifications. First, when computing the critical value z{__, in
Step 4 of Procedure 2 we now use the sup-statistic

DIJ(xI)

sup =
UlJ(ﬂCl)

(:El,J)E[O,l]Xj_
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Figure 4: Nonparametric regression design (29): Plots for a sample of size n = 2500.
Left panels correspond to the conditional mean function, right panels correspond to its
derivative. Note: Solid grey lines are the true conditional mean function and its derivative;
solid black lines are estimates, dashed black lines are 95% UCBs.

where D7 (z1) = (0, (1), 0,)M i} with 05 a J-vector of zeros, and
&%J('x) = (Ov @Ei](l'l)/, O{])MJUJ,JM{]<O’ @Zi](xl)/’ O,J)/ :

The 100(1 — «)% UCB for hy is

~ ~

Cn(z1) = |hyj(z1) — v (21)0 (1), hyj(21) + v (21)0) 5(21)
with
2+ A0 if J=J,
vt (zy) = A B o
2o+ Amax{0]_,, JB/6,5(x1)} it T =,

where p is the minimal smoothness assumed for hig and hyy. UCBs for derivatives of hig

are constructed analogously.
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Partially Linear Structural Functions. An alternative to additivity is the partially
linear specification (Ai and Chen, 2003)

ho(x) = hio(z1) + 2500

where x is partitioned as z = (2, %) with z; of dimension d; < d, hyy is an unknown
function, and fy is an unknown vector of parameters. When X is exogenous (so W = X)
this is the important partially linear regression model of Robinson (1988).

Our methods may be adapted to estimate and construct UCBs for hyg as follows. First,
we let 7 (z) = (W{(z1),2h)" where ¥f(x1) = (Yy1(x1),...,055(z1)) . 1" We estimate c;
and /3 by TSLS regression of Y on 17 (X) using b*/)(W) as instruments:

& )

where the notation is as in Section 2 but with ¢/ (x) = (¢{(x1)’, 25)". The estimator of
hio is hyy(x1) = (7 (21))'¢,. Derivatives of hyg are again estimated by differentiating 7, ;.
When X is exogenous, we simply take w = z and b% (w) = ¢’ ().

Our data-driven choice of J is implemented analogously to Section 2.3, except we
form the contrasts D;, D;(z) — D, (x), and D%(z) — D%, (x) and the variance terms 65 (x)
and 673 5, (z) using ¥ (z1) == (¢f (21)",04,)" in place of ¢/ (x). As such, the t-statistics
are functions of x; only and the supremums in the sup-statistics in Steps 2 and 3 of
Procedure 1 only need to be computed over the support X; of x;. UCBs for hyy are
constructed analogously to Section 2.4, where the contrast D%(x) and the variance term
62(z) are again formed using v (x1) in place of ¥/ (z). The 100(1 — a)% UCB for hyg is

~ A~

Cn(21) = |hyj(z1) — v (21)0 5(21), hyj(21) + v (21)0 5(21)

with
2+ A0 if J=J,
cv'(xy) = A R o
zT—a + A maX{eT—d ) JﬁB/dl /&lj(xl)} lf ‘] = Jn

where p is the minimal degree of smoothness assumed for /9. UCBs for derivatives of hyg

are constructed analogously.

14We assume without loss of generality that the X, variables have mean zero, which permits identifi-
cation of hg and B. In practice these variables can be de-meaned.
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7 Conclusion

We have introduced data-driven procedures for estimation and inference on a nonparamet-
ric structural function hg and its derivatives using instrumental variables. Our data-driven
choice of sieve dimension leads to estimators of hg and its derivatives that converge at
the fastest possible (i.e., minimax) rate in sup-norm. Our data-driven uniform confidence
bands (UCBs) for hg and its derivatives are shown to have coverage guarantees and con-
tract at, or within a logarithmic factor of, the minimax rate. Both procedures have good
finite sample performance in various simulation designs, including empirically-calibrated
trade and Engel curve designs. Our methods are simple to compute, and are applied to
estimate and construct UCBs for the elasticity of the intensive margin of firm exports in
a monopolistic competition model of international trade.

Aside from the extensions in Section 6, it would be straightforward to extend our
methods to weakly dependent data, which is relevant for dynamic causal inference and
reinforcement learning. It would also be interesting to consider sup-norm rate-minimaxity

jointly with respect to both p and the degree of ill-posedness.

A Nonparametric Regression

Here we specialize our data-driven procedures to nonparametric regression. The condi-

tional mean function ho(z) = E[Y|X = z| is estimated by

~

hy(z) = (W (x))es, é5=(P,%,) ¥,Y.

Notation is as in Section 2.3, except now we set M; = (¥, ¥ )~ W,.

1. Compute an upper truncation point Jonax Of the index set as

Jmax = min {J €T :Jy/logJu, <10yn < J"/log J+vn} (30)

with v, = max{1, (0.1logn)*}, then compute J as in (11) with this choice of Jax.
2. Let 0]_, denote the (1 — &) quantile of (12) across independent draws of (w;)? .
3. Take .J = J for J defined in (13).

Data-driven UCBs are also constructed analogously.
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4. For UCBs for hg, compute the critical value z{_, as in (15). For UCBs for 0%hy,

compute the critical value z{*  as in (18).

5. The UCB for hyg is
Cul) = [ﬁj@:) — (sl + 4875 ) 05(2), hsla) + (#a + A014) 6J~<x>} .
The UCB for 0%hy is
Co(x) = [a% Hz) — (z‘fia + Ae;_d) 6%(x), Ohj(z) + (z‘fia + Ae;_&) &3(:6)1 .

Theorem 4.1 and Corollary 4.1 establish that J leads to estimators of hy and its deriva-
tives that attain the minimax sup-norm rates for nonparametric regression. Theoretical

properties of the data-driven UCBs are established in Theorems 4.2 and 4.4.

B Additional Details for Section 3

B.1 Basis Functions

We construct basis functions the same way in both the simulations and empirical appli-
cation. We use cubic B-splines (r = 4) to approximate hy and quartic B-splines (r = 5)
to estimate the reduced-form. We also link the dimensions J and K(J) using ¢ = 2.

As B-splines are supported on [0, 1] but 7;; is negative, we transform 7;; to [0, 1] using
7 — max{0,7/10 + 1}. Under this transformation the very small fraction of observations
for which 7;; < —10 or, equivalently, m;; < 0.005%, are truncated to zero (there were only
four such observations in the empirical application). Similarly, we transform z;; to have
support [0, 1] using its empirical CDF. The transformed 7;; is not uniformly distributed
on [0,1] so we place interior knots at its empirical quantiles. The transformed z;; are

uniformly distributed on [0, 1] so we place interior knots uniformly between [0, 1].

B.2 Simulations

DGP. Our first simulation design is based on Head et al. (2014). As in Melitz (2003),
the only source of firm heterogeneity in their model is productivity. Hence, r;;(w) = €;j(w),

which is assumed to be lognormally distributed. The extensive margin is

log e(m) = p + ov/2erf (1 — 27), (31)
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where erf(x) = \% fom e~2" dt is the error function and erf ! is its inverse, and p and o2

are the mean and variance of log e;;. The intensive margin function may be shown to be

log p(7) = p + %2 — log(27) + log (1 + erf <;—2§ —erf (1 - 27r)>) : (32)

Its elasticity is

a? [ o2 -1
dlog p(r) . 27Texp (—75 (75 — 2erf (1 — 2#))) |
dlogm 1+ erf (\0/—25 —erf (1 — 27T)>

Our second simulation design is based on the Pareto specification of Chaney (2008). In
this design the intensive margin is log p(m) = plog m and hence its elasticity is constant.
We generate data on z;; by sampling IID with replacement from the empirical distri-
bution of z;. We then generate data on m;; and z;; as follows. For the lognormal design,
we estimate two partially linear IV models based on (21) and (22), namely
log €(mij) = Bezij + 6; + (5 + e,

log 7;; — log p(mij) = Bpzij + 0f + (F + el

In the first equation, we treat loge(m;;) as the dependent variable using the functional
form (31) with p = —2 and ¢ = 1.2. In the second, we treat log z;; — log p(7;;) as the
dependent variable using the functional form (32). We compute the covariance matrix ¥ of
the residuals (€}, €7;). We simulate (e, ef;
e; and 25, we set log e(my;) = 0.875z;; — 7+ ef;, then invert log e(m;;) using (31) to obtain
log 7;;. This gives a distribution with support, mean, and variance roughly calibrated to

) as independent N (0, ) random vectors. Given

the data used in the application. We then set 7;; = log p(i;) — K7 25 + 6; + (; + ef; using
the functional form (32) for log p, with ¢; = 0, {; = 0, and with 6 = 2.9 and ™ = 0.36 as
in AAG. We set exporter and importer FEs to zero for log p so that we can compare the
effect of first-stage estimation of these FEs on the performance of our procedures.

We generate data for the Pareto design (for which the elasticity of p is constant)
as described above, except we use log p(logm) = —0.23log 7 in place of (32), where the

coefficient —0.23 matches AAG’s estimate for the constant elasticity specification.'®

15Note that we maintain the same DGP for 7 as in the lognormal specification. While one could also
generate m using the Pareto assumption, this would change the joint distribution of (m;;, 2;;), and hence
the instrument strength and degree of endogeneity. We keep the distribution fixed across designs so that
any difference in results is attributable to the different structural functions log p only.
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Simulation Results for the Log-normal Design without Fixed Effects. We first
present in Tables 6 and 7 results for estimating log p and the elasticity of p in the log-
normal design when we treat the FEs 9, and (; as zero. These results shut down any
estimation error that may be introduced by first-stage estimation of the FEs. Overall, the
results are very similar to those reported in Table 1 with first-stage estimation of FEs:
the sup-norm loss of the data-driven estimators of log p and the elasticity of p are similar
in magnitude to estimators with deterministic J =4 or J = 5, and are several multiples
smaller than those with larger J. Coverage of the fixed J UCBs is generally too small
when J = 4,5, whereas our data-driven UCBs deliver valid, albeit conservative, coverage.
Our data-driven UCBs also demonstrate an improvement in terms of width relative to the
deterministic-J UCBs when J is large enough (say J = 7, 11) to ensure sufficient coverage.
Rejection probabilities of a test of constant elasticity based on our data-driven UCBs for
the elasticity of p are also similar to those reported in Table 1. Figure 5 presents plots of
estimates and UCBs when we treat the FEs as zero using the same sample as Figure 2
(where FEs were estimated in the first-stage). The estimates and UCBs reported in these

figures are virtually identical, indicating first-stage estimation of FEs is innocuous.

Simulation Results for the Pareto Design. We now turn to the Pareto design in
which log p is linear and hence the elasticity of p is constant. For brevity we just present in
Table 8 the simulation results for estimating the elasticity of p. We adjust for first-stage
estimation of exporter and importer FEs, as in the empirical application. The optimal
choice is J = 4, which is the smallest dimension of a cubic B-spline basis. There is no
bias with J = 4 because the basis functions span cubic functions. As can be seen, the
maximal error in estimating the elasticity of p using J is very close to the estimator with
fixed J = 4. Data-driven UCBs again demonstrate valid but conservative coverage for the
elasticity. UCBs with fixed J = 4 demonstrate coverage close to (but still slightly under)
nominal coverage with n = 6088. The UCBs with fixed J = 4 are narrower (by about
36%) than our data-driven UCBs as they do not account for potential approximation bias
whereas our bands do. Of course, in a real data application the researcher doesn’t know
whether the true elasticity is constant, and therefore whether the UCBs with fixed J = 4
is sufficient to guarantee coverage. Figure 6 presents plots for a representative sample of
size 1522, again implementing our procedures as described in Section 3. With our data-
driven choice J = 4, our nonparametric IV estimate of log p is very close to linear and

our estimated elasticity is very close to the true, constant elasticity.
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Table 6: Simulation Results for Estimating log p, Log-normal Design, no FEs

Data-driven Deterministic
J =4 J=25 J=7 J=11

Sup-norm Loss
n mean med. mean med. mean med. mean med. mean med.

761 0.180 0.146 0.166 0.142 0.184 0.159 0.361 0.302 0.670 0.609
1522 0.120 0.099 0.113 0.096 0.125 0.111 0.265 0.218 0.584 0.537
3044 0.088 0.072 0.080 0.069 0.087 0.080 0.196 0.163 0.510 0.468
6088 0.068 0.053 0.058 0.051 0.063 0.058 0.147 0.121 0.456 0.408

UCB Coverage
90%  95% 90%  95% 90% 95%  90%  95%  90%  95%

761 0.992  0.996 0.885 0.937 0.879 0.938 0.909 0.960 0.937 0.972
1522 0.996 0.998 0.898 0.940 0.893 0.944 0915 0.955 0.964 0.985
3044 0.998 1.000 0.875 0.937 0903 0.948 0.933 0.964 0.956 0.988
6088 0.999 1.000 0.864 0.936 0.880 0.949 0.913 0.958 0.951 0.984

95% UCB Relative Width (Deterministic/Data-driven)

mean med. mean med. mean med. mean med.

761 0.660 0.675 0.693 0.695 1.576 1.422 2.606 2.457
1522 0.668 0.681 0.692 0.696 1.784 1.700 3.425 3.168
3044 0.667 0.682 0.683 0.692 1.904 1.855 4.310 4.029
6088 0.663 0.684 0.673 0.691 2.007 2.008 5.637 5.055
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Table 7: Simulation Results for Estimating the Elasticity of p, Log-normal Design, no FEs

Data-driven Deterministic
J=4 J=25 J="7 J=11
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Figure 5: Log-normal design without fixed effects: Plots for a representative sample of

size 1522. Left panels correspond to the intensive margin, right panels correspond to its

elasticity. Note: Solid grey lines are the true curves; solid black lines are estimates; dashed

black lines are 95% UCBs; dotted grey lines are linear IV estimates.
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Table 8: Simulation Results for Estimating the Elasticity of p, Pareto Design

Data-driven Deterministic
J=4 J=25 J="7 J=11

Sup-norm Loss
n mean med. mean med. mean med. mean med. mean med.
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90%  95% 90% 95% 90% 95% 90% 95%  90% 95%
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95% UCB Relative Width (Deterministic/Data-driven)

mean med. mean med. mean med. mean med.
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Figure 6: Pareto design (with first-stage estimation of fixed effects): Plots for a represen-
tative sample of size 1522. Left panels correspond to the intensive margin, right panels
correspond to its elasticity. Note: Solid grey lines are the true curves; solid black lines are
estimates; dashed black lines are 95% UCBs.
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Online Appendix to “Adaptive Estimation and Uniform
Confidence Bands for Nonparametric Structural Functions and
Elasticities”

Xiaohong Chen Timothy Christensen Sid Kankanala

C Additional Simulation: Engel Curves

In this appendix we present additional simulation results for estimating a nonparametric
structural function in an empirically calibrated Engel curve setting. The design is based
on the British Family Expenditure Survey data used in Blundell et al. (2007). We draw
household expenditure X and household income W from a bivariate normal density with
correlation p = 0.52, which is the sample correlation of the expenditure and income data
used in Blundell et al. (2007). We then transform X and W to have Uniform[0, 1] marginals
using their respective inverse marginal CDFs. As a consequence, X and W are linked via
a Gaussian copula and the design is severely ill-posed.'® We then set ho(z) = ®(5x — 2.5)
and set u = ho(X) — E[ho(X)|W]+wv for v ~ N(0,0.01). The implementation is the same
as the other Monte Carlos from Section 5. For each simulated data set we compute our
data-driven estimator h 7 and UCBs from (16). We compare these with estimators and
UCBs using deterministic choices of sieve dimensions for J = 4, 5, 7, and 11 (the first
few dimensions over which our procedure searches). We again use a cubic B-spline basis
to approximate hy and a quartic B-spline basis for the reduced form.

Turning first to the simulation results presented in Table 9, we see that the average
sup-norm loss of our data-driven estimator is similar to that of an estimator h s for deter-
ministic J with J = 4 and several multiples smaller than that with J =5, 7, or 11. This
is to be expected, as the design is severely ill-posed and the true function is very smooth,
so a very small choice of J is appropriate. Of course, in practice the researcher does not
know the degree of ill-posedness or the degree of smoothness of the structural function.

The second panel of Table 9 shows our data-driven UCBs have valid, albeit conser-
vative, coverage across all sample sizes. By contrast, undersmoothed UCBs with J = 4
and J = 5 under-cover for n = 2500, 5000, and 10000. Undersmoothed UCBs with J =7
have valid but conservative coverage, but these are 40% (with n = 1250) to 250% (with
n = 10000) wider than our data-driven UCBs. It is important to note that although the

16T his follows from, e.g., Beare (2010), equation (3.3).
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Table 9: Simulation Results for the Engel Curve Design.

Data-driven Deterministic
J =4 J=25 J=17 J=11

Sup-norm Loss
n mean med. mean med. mean med. mean med. mean med.

1250 0.221 0.183 0.218 0.180 0.337 0.287 0.450 0.400 0.558 0.488
2500 0.167 0.139 0.164 0.138 0.285 0.240 0.417 0.369 0.526 0.468
5000 0.115 0.094 0.113 0.094 0.233 0.197 0.361 0.318 0.484 0.432
10000 0.083 0.068 0.080 0.068 0.173 0.148 0.322 0.299 0.448 0.414

UCB Coverage
920%  95% 90% 95% 90% 95% 90% 95% 90%  95%

1250 0.998 0.999 0.917 0.961 0.903 0.952 0.934 0.972 0916 0.968
2500 0.998  0.999 0.868 0.931 0.867 0.943 0.950 0.980 0.941 0.982
5000 0.998 0.999 0.833 0.896 0.884 0.939 0.967 0.989 0.968 0.987
10000 0.991 0.994 0.700 0.826 0.826 0.904 0.956 0.988 0.964 0.992

95% UCB Relative Width (Deterministic/Data-driven)

mean med. mean med. mean med. mean med.

1250 0.653 0.658 1.056 0.9v8 1.431 1.351 1.798 1.718
2500 0.655 0.661 1.213 1.120 1.797 1.692 2.372 2.270
5000 0.656 0.661 1.458 1.331 2.219 2.107 3.082 2.991
10000 0.658 0.664 1.577 1.478 2.712 2574 3.962 3.792

design is severely ill-posed, we are reporting coverage of our UCBs (16). In each simulated
data set we have J = .J irrespective of the sample size n, so the critical value is effec-
tively 2%, + A% & While Theorem 4.2 does not formally establish coverage guarantees
of this band in the severely ill-posed case, these simulation results show that the band
nevertheless has good coverage in this empirically relevant design.

Figure 7 presents plots of data-driven estimates and UCBs for hy and its derivative
for a sample of size 2500, alongside deterministic-J estimates and UCBs. In this sample,
J = 4 and our data-driven UCBs contain the true structural function. As with the other
simulations, the data-driven bands are narrower and more accurately convey the shape
of hy than the J = 7 bands, which are much more wiggly. Our bands are also slightly
narrower than the J = 5 bands. Panel (d) of Figure 3 also presents data-driven estimates
and UCBs for the conditional mean of Y given X. Evidently, the true structural function
falls outside the UCBs for the conditional mean function over almost all of the support of

X, again highlighting the importance of estimating hy using IV methods in this design.
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Figure 7: Engel curve design: Plots for a sample of size n = 2500. Left panels correspond
to the structural function, right panels correspond to its derivative. Note: Solid grey lines
are the true structural function and derivative; solid black lines are estimates, dashed

black lines are 95% UCBs.



D Basis Functions and Holder Classes

Let U denote the closed linear subspace of L3 spanned by a basis {t,...,%;;}. We

use the following notation for vectors and matrices formed from the basis functions

%ZJ;] = (Yn(@), ... Yyi(2)), bf,f = (bx1(w), ..., b (w))",
Gp,g = Sup HG;}J/Z?%]W ; Gy = Sup ‘\G;}/zbf(ﬂ”@ ;
z€[0,1]4 wel0,1]dw
Gy =E[x (%), Gy = E[oy' " (03 ")]
Sy =E[ %], 5 =Gy "B (k)]G

Let s; be the smallest singular value of (Gb’J)*l/QSJ(GW)*l/Q. By Lemma A.1 of Chen
and Christensen (2018), under Assumptions 1 and 3(i) there is a finite positive constant
a, such that

a_ls;1 <7;< 831 forall JeT. (33)

T

D.1 B-splines

The construction of univariate B-spline bases supported on [0, 1] follows Chapter 12.3 of
DeVore and Lorentz (1993). The basis is characterized by an order r € N (or degree r—1)
and a resolution level | € NU {0}. Let N, denote the r-fold convolution of the indicator
function of the unit interval, N, = Ljgq) % ---* Ly (r-times). A dyadic'” B-spline basis

on [0, 1] with resolution level [ and order r is
V(@)= N2 +r—j5), j=1,....24+r—1=J,.

In the multivariate case we take tensor products of univariate bases. A B-spline basis
supported on [0, 1]¢ of order r and resolution level [ has dimension J = (2! +r — 1)9. The
set of possible sieve dimensions J is therefore 7 = {(2! +r —1)?:1 € NU{0}}.

We now review properties of B-spline bases that are used in the technical arguments

below. The following Lemma summarizes Lemma E.2 of Chen and Christensen (2018).

Lemma D.1 Let Assumption 1(i) hold. Then for ¥’ (z) formed from tensor product B-
splines, there are constants Cy, ac > 0 depending only on ay such that (i) sup,co 14 107 ()0 <
Cy; (i) C; I < Auin(Gys) € Amax(Guyg) < Cypd ™ (i) VT < Cpy < acV'J.

17This basis is equivalent to a B-spline basis with interior knots at 27, ..., 1—2~¢. This knot placement
ensures bases are nested across different [ (equivalently, J). For irregularly spaced data, interior knots
can be placed at the 27¢,...,1 — 27! quantiles of the distribution of X.

4



Corollary D.1 Let Assumption 1(ii) hold. Then for b*))(w) formed from tensor product
B-splines and J < K(J) < J, there are constants Cy, ac > 0 depending only on ay such
that (i) sup,ep w05 (w)[la < Co; (1) C '™ < Min(G,7)) < Amax(Ga,r)) < Cod
(iii) V'J < Gy < acV/'.

We also use some continuity properties of B-splines in the proofs. Note that N,(:)
is Lipschitz with » = 2 and r — 2 times continuously differentiable when r > 2. Hence,
||G;,1J/2 ([07 (21)]— [ (22)]) |2 < CJ®|l21—22]|% holds for some positive constants C, w, .
The B-spline basis also satisfies a Bernstein inequality (or inverse estimate): [|0%f|lc <
Jla/d|| f|| holds for any f € ¥; and multi-index a with |a| < r — 1.

D.2 CDV Wavelets

The construction of CDV wavelet bases supported on [0, 1] is reviewed in Appendix E.2
of Chen and Christensen (2018) and follows Cohen, Daubechies, and Vial (1993); see also
chapter 4.3.5 of Giné and Nickl (2016). The basis is characterized by an order N € N. Let
L denote the smallest integer for which 2% > 2N. For each resolution level | > L, there
are a total of 2! basis functions. In the multivariate case we generate bases supported on
[0,1]¢ by taking tensor products of univariate bases. The set of possible J is therefore
T={2":1=L+1,L+2,...}.

We say that the CDV wavelet basis is S-regular if it is S times continuously dif-
ferentiable. A S-regular basis can always be chosen by choosing the order N such that
0.18(N — 1) > S (Giné and Nickl, 2016, Theorem 4.2.10(e)). The regularity S of the
basis for the endogenous variable X should be chosen such that S > p, where p is the
maximal assumed degree of smoothness for hy. Equivalently, our procedures deliver adap-
tivity over any smoothness range [p,p] with S > P > p > d/2 when implemented with a
S-regular CDV wavelet basis for X. As with choosing the order r of B-splines, choosing S
is analogous to choosing the order of a kernel in kernel-based nonparametric estimation.

CDV wavelet bases for the d,-dimensional instrumental variable W are constructed
similarly, using a basis of regularity S + 1. Given the resolution level [ for the basis for
X, the resolution level for the basis for W is l,, = [(l + q)d/d, ] for some ¢ € N. Linking
L, to [ in this manner again defines a mapping K(J) between the two bases that satisfies
limy_oo K(J)/J = ¢ € [1,00). As with B-splines, we recommend that ¢ should be the
second- or third-smallest value for which K(J) > J holds for all J.

We now review properties of CDV wavelet bases that are used in the proofs below.

The following Lemma summarizes Lemma E.4 of Chen and Christensen (2018).



Lemma D.2 Let Assumption 1(i) hold. Then with ¢’ (x) formed from tensor product
CDV wavelets, there are constants Cy, ac > 0 depending only on ay such that (i) sup e 1) 0|l <

Cq/;\/j;' (”) 01;1 S )\min<G1/J,J) S )\max(Gw,J) S 01/;;' (Z”) ﬂ S C1/J,J S a(\/j-

Corollary D.2 Let Assumption 1(ii) hold. Then with b%)(w) formed from tensor prod-
uct CDV wavelets and J < K(J) < J, there are constants Cy,ac > 0 depending only on
ay such that (i) supepope 106 o < CoV/T; (i) Cf ' < Amin(Gr) < Amax(Gig) < Gy
(iii) VT < Gy < acV/'J.

We also use some continuity properties of CDV wavelets in the proofs. As the Daubechies
wavelet functions are S times continuously differentiable on their supports, it follows
by Lemma D.2(ii) that the basis functions are Holder continuous, in the sense that
HG;IJ/Q([ 1= [l ])le < CJ¥||z1 — 22]|% holds for some positive constants C,w,w’.

This basis also satisfies a Bernstein inequality (or inverse estimate): |0%f]lo0 < J1%%|| f|loo

~Y

holds for any f € ¥; and multi-index a with |a| < S.

D.3 Holder Classes

Let BY, ., = {h € L=([0,1]%) : ||h]|lgz, . < co} denote the Hélder space of smoothness p
where [| - || gz denotes the Holder norm of smoothness p > 0 (see Giné and Nickl (2016),
pp. 370-1), and let B, (M) = {h € B% , : ||hllpz . < M} denote the Holder ball of
smoothness p and radius M. For p ¢ N, we have h € B, _ if and only if

|0%h(x) — 0"h(y)|
| hllce + sup = < 00,
¢ Z ] z,y€[0,1]%: |x - ylp 7]

a:lal=|p oty

where
llcws = Il + D 10" -
lal=[p]
The space BE, ., may equivalently be defined by the error in approximating a function

using a linear B-spline basis (see DeVore and Popov (1988) and DeVore and Lorentz
(1993)). To do so, let U; be a CDV wavelet space of regularity S > p or dyadic B-
spline space of degree r — 1 > p at resolution level L; that generates J. Let d(h, V) =
inf ey, [|h — glloo. We then have

00,00

he Bl <= |hlle + sup JYU(h,T;) < oo,
JJeET



and, moreover, ||h||o +sup . jer J?4d(h, ¥ ;) is equivalent to [|h]| gz _; see, e.g., Theorem
12.3.3. of DeVore and Lorentz (1993) for the scalar case and Theorem 4.8 of DeVore and
Popov (1988) for the multivariate case. By Lebesgue’s lemma (DeVore and Lorentz, 1993,
p. 30), we have

d(h, W) < |[h = 1shllee < (1 + [[TL]lec)d(R, ¥y),

where [[T;]loe = suppno<1 [TlAlleo is the L norm of the L% projection onto W,
(sometimes referred to as the Lebesgue constant). Huang (2003) and Chen and Christensen
(2015) established that |[II;||oc < 1 under Assumption 1(i) when W, is spanned by a

(tensor product) B-spline or CDV wavelet basis, respectively. Hence,

he B, = b+ sup S/ — Tkl < oo,
JJET

00,00

and ||||oo + sup . ser JP/%|h — k|| is equivalent to || - 52, .-

E Technical Results and Proofs of Main Results

In this Appendix we first introduce additional notation. We then present technical results
and proofs of the main results from Sections 4.2 and 4.3. We finally present technical

results and the proofs of main results for Section 4.4.

E.1 Notation

By the discussion in Appendix D, there are finite positive constants a; and a; such that

ac > Cpy/VI>1, ac > G/ VE() > 1, a, > K(J)/J.

For any sequence (Z;)?_, of random vectors and any function g, let E,[¢(Z)] = 1 >°" | 9(Z)).

n

Estimators of the matrices defined at the beginning of Appendix D and their orthogonal-

ized versions are

Gyy=E, [V (w%)], Gy =E, [bg(J)@g(J))/] :
Gy = G PR [0 ()] G2 Go s =Gy "B oy (00 )]G, Y2,
Sy = Eu[oy " (w%)] . S5 =G, Bl by ()]G



Sieve variances and related terms are

|0, JJ2H sd = nUJJg(x> = H@,JHgd + |‘6x,Jz|‘§d — 204,705 H&x,JHgd = n&?,(az‘) =02,
102,00 120 = 0w s 20 + o2 120 — 200,50, » 02,7 l20 = 0201 5
where
Goggy =161.5(0) = L1oQs 5 (L) Lj.= W;]]/[S‘/JG;}SJ]AS}G;},
Owgdo = Lya0(Lyy ) Lj.= [¢;}]/[SQG;}SJ]_ISSG;},

with 67 ;, () and 6,5, (z) given in (9), and
QJ,JQ =E, [ﬂJﬂJQbK(J)bK(JQ)]/ y o Uy =Y — iLJ(Xi) ) Q= QJ,J»
O, = E [u2b) Vg J2>] =Y — ho(X3), Qy =0y,
Recall that IT; is the L% projection onto ¥ ;. We also define
Ashg = ho — I hy, hy(x) = Ly En b ho(X)] .

For bootstrap and related processes, we use the notation

1 1 </
Z* (x J JQ) —_— (% Z (ngub (J) A UZJ - LJ2 xb (_J2)ZAL, J2) > ’ (34)
=1

HU:C JJzHScl

where (w;)?_, are IID N(0,1) draws independent of the data, and

D) 1 (1<s o
~ = n e L zb . uz" wi , 35
dy(x) 1627l sa (\/ﬁZ T2bw, J (35)

Z (ZE J) ! <\/—ZLJ(E g(‘] uzwz> ’ (36>

Hgac 7|5

Zo(, J) = —— <fZLJx K u> | (37)

Haz JHsd

7 (x,J) =

The law of the processes Z:(x,.J) and Z,(z,.J) is determined from (z;)™, conditional
on the data Z" := (X;,Y;, W,),. We let P* denote their probability measure (i.e., with

respect to the (w;)!; conditional on the data) and E* denote expectation under P*. We



also shorten “with P, probability approaching 1 (uniformly over hy € H)” to “wpal
H-uniformly”. We write H? = H N BE, (M) and G* =GN BE,  (M).

E.2 Technical Results

Here we present several technical results that are used in the proofs of the main results in
Section 4. The proofs of these technical results are presented in our earlier working paper
version (Chen, Christensen, and Kankanala, 2022). The following Lemmas E.1 to E.7 are
labelled as Lemmas D.1 to D.7 in Chen et al. (2022), whereas the following Theorems E.1
and E.2 are labelled as Theorems D.1 and D.2 in Chen et al. (2022).

We first state two preliminary lemmas used in the proof of Theorem 4.1. The first

relates to resolution levels in the mildly ill-posed case. For any positive constant R, define
Jmax(R) = sup {J €T :Jy/log J[(logn)* v 7,] < R\/ﬁ} : (38)

For D > 0 and p € [p,p], define

VIO s
Vn
Jf(p, D) =inf{J €T :J> Jo(p,D)}.

Jo(p,D):SUp{JGT:TJ gDJ—Z},

(39)

Lemma E.1 Let Assumptions 1-4 hold and let T; =< J/% with ¢ > 0. Then: with jmaX(R)
as defined in (38) for any R > 0 and J; (p, D) as defined in (39) for any D > 0, we have

inf inf Py, (J5 (0, D) < Jmax(R)) — 1.
ALt oo (o (. D) (R))

The second lemma relates to resolution levels in the severely ill-posed case. For R > 0

and p € [p, p|, define

Tt (R) = sup {J eT 70\ /logJ < R\/ﬁ} , (40)

My(p, R) = sup{J € T : 7,J4*2\/log J < Ry/n}, (41)
My (p,R) =inf{J €T :J> My(p,R)}.

Note that My(p, R) is (weakly) decreasing in p. In particular, as p/d+1/2 > p/d+1/2 > 1,
we have Ji, (R) > My(p, R) > My(p, R) > My(p, R) for each R and each p € [p, 7).

max



Lemma E.2 Let 75 < exp(CJ/?) for some C,¢ > 0. Then for any R > 0, the inequality
My (p, R) > J* . (R) holds for all n sufficiently large.

max

E.2.1 Uniform-in-J Convergence Rates for h,

Recall the definition of Jy.(R) from (38) and that A hg = ho — I1;h.

Theorem E.1 Let Assumptions 1, 2(i), and 3 hold, and for any positive constant R let

Jmax = Jmax(R). Then: there exists a universal constant Cpy > 0 such that

(Z) hiOIéfHPhO (HiLJ — hO”oo S CEIHAJhOHoo V Je Tﬂ [1, jmax]) — 1,

V J10g Jax
— VvV J N
NG eT

E.2.2 Uniform-in-J Estimation of Sieve Variance Terms

(Z’l) hiOIéfH]P)hO (Hilj — i:LJHOO < CE.lTJ [1, jmax}) — 1.

Recall the definition of Jy.(R) from (38). In the remainder of this subsection, for any
fixed R > 0, let Jpax = Jmax(R). Also let Jyi, — oo arbitrarily slowly. Given J., and
Jmim define jn = {J € T: Jmin < J < jmax}a

Sy ={(2,J,J2) €X X Ty X Ty : Jo > J} (42)

and

4o

min

(43)

On = TJax

jmax 10g jmax + (jr%lax IOg jmax) 1/3

n n

Lemma E.3 Let Assumptions 1-4 hold. Then: there exists universal constants Cg3 > 0
and Ng3 € N such that:
(i) for every x € X and J,Jo € T with Jo > J > Ng3, we have

Cillloenllsa < Nlowsnllsa < Crsllowls;

(i) we have

inf ]P’h0< sup
hoeH (2,J,J2)ESn

62, slsa 1‘ < CE.35n) -1
”O'I,J,bHSd

Lemma E.4 Let Assumptions 1-3 hold. Then: there is a universal constant Cgy4 > 0
such that

inf Pho( sup G, 1.7, — UJ’J’J2| < CE,4(5n) — 1.
hoeH (,J,J2)ESn ||Uz,J||sdHUm,J2Hsd

10



In particular,
|’&I,J|’§d
02,113

inf P, ( sup
hoeH ° (z,J)EX X Tn

E.2.3 Uniform Consistency of jmax

For the following lemma, recall Jyay from (10) and Joa(R) from (38).

Lemma E.5 Let Assumptions 1-3 hold. Then: replacing 10v/n with M\/n for any M > 0
in the definition of Jiax from (10), there exists Ry, Ry > 0 which satisfy

i J < Joax < J, :
hlorég-l]P)ho (Jmax(Rl) < Jmax < JmaX(RQ)) —1

Remark E.1 For any Ry > Ry > 0 there exists a finite positive constant C' for which
jmax(Rl) S jmax(RZ) S ijaX<R1>-
Lemma E.5 therefore provides an asymptotic rate of divergence for Jonae.

E.2.4 Uniform-in-J Bounds for the Bootstrap

For the following Lemma, recall the critical value 67_, from Section 2.3.

Lemma E.6 Let Assumptions 1-4 hold. Then: with Jy.(R) as defined in (38) for any
R > 0, there exists constants Cy,Cs > 0 for which

htrgi Py, (C4y/log Jmax (R) < 07, < Csy/log JmaX(R)> — 1.

The second is a companion result concerning the critical value zj_, from Section 2.4:

Lemma E.7 Let Assumptions 1-4 hold. Then: with Jy.(R) as defined in (38) for any
R > 0, there exists a constant C'g7 > 0 for which

hi()Iég{ Pho (Zfa < CE.? log JmaX(R)) — 1.

E.2.5 Uniform Consistency for the Bootstrap

Recall Jpax = Jmax(R) from (38) and 7, and S,, from (42).

11



Theorem E.2 Let Assumptions 1-4 hold and let Jyin < (10g Jumax)?. Then: there exists a
sequence Y, J 0 for which the following inequalities hold wpal H-uniformly:

<s —IP’*( sup  |Z)(x,J) gs)
(z,J)EX X Tn,

\/_ilJ(x) — () = (hy(x) = by, (2)) = S)

n -
||Uw,J,J2 Hsd

\/—hJ(CL’) — hJ(QZ‘)

n = S Tn 5
Ho-m,J“sd

(@) sup Pho( sup
s€R (z,J)EX X Tn

(17) sup Pho( sup
seER (z,J,J2)ESn

< Yn.

—P*( sup |z:;<x,J,J2>|sS)
(

z,J,J2)ESy,

E.3 Proofs of Main Results in Sections 4.2 and 4.3

Proof of Theorem 4.1. We first list some constants that will be used throughout the
proof. Fix Ry > 0 in the definition of Jy..(R2) from (38) sufficiently large so that by
Lemma E.5 we have infj, ey Pho(jmax < Jmax(R2)) — 1. Let Joax = Jmax(Ro) for the

remainder of the proof. By Theorem E.1(i), there exists C'r; > 0 which satisfies
hi%g_LP%(”BJ_HJhOHOO < CE.IHHJhO_hOHoo vVJe [17jmax] DT) — 1. (44)
0

For our choice of sieves, there exists By > 0 which satisfies

sup sup J%HHL]ho_h[)Hoo <By V JeT. (45)

PE[p,p] ho€HP

Let S = {(2,J, ) € X x T x J : Jo > J}. Lemmas E.3 and E.5, Assumption 4(i), and
the fact that 0, | 0 (cf. (43)) imply that there exists Cy, C3 > 0 which satisfy

. TJ. \/72
fP _J2vTe
i P s

P SC?,)—)l, inPhO< sup MSCb)—)l
(. 2)eé 100,002 | sa hoeH

(z,J,J2)€S TJQ\/J_Q
(46)

Additionally, by Lemma E.6 there exists constants Cy, C5 > 0 which satisfy
hin%{ P, (04 V108 Jax < 07_s < Cs/log J_max) — 1. (47)
<

Part (i), step 1: We verify that J achieves the optimal rate under mild ill-posedness.

Note by the procedure in Appendix A this is sufficient for adaptivity of J for nonpara-
metric regression. Fix £ > 1 (¢ = 1.1 in the main text). Choose D > 0 such that

12



2Bo(Cy + 1)D71C3 < (€ — 1). Recall Jy(p, D) and Jy (p, D) from (39); we drop de-
pendence of these quantities on (p, D) hereafter to simplify notation. By Lemma E.1,
inf e p) infpoenr P, (Jy < jmax) — 1. It then follows from Lemmas E.1 and E.5 that
infpe[;ﬂ inf o err Pho (J§ < Jmax) — 1. We therefore assume for the remainder of the proof
of pa;t (i) that J3 < Jmax, Jmax-

By Lemma E.5, J C J, = {J €T :0.1(log Jmax)? < J < Jmax} wpal H-uniformly.
Then for all J € J with J > Jo, by the triangle inequality, displays (44) and (45), and

definition of Jy, we may deduce that

s = by lloo = s = gy = (s = )l
< g = Taholloo + gy = Ty ollos + 1Ty o = Bolo + TR0 — holl
< 2By(1 + Cy)(JF) P/

< 2By(1+ Cl)Dflef_aTJJ \/ JJ/”

wpal uniformly for hy € H? and p € [p,p]. By (46), we have that for all J € J with
J>J5
J < VI < Gl v X
TiF\ o =T S 3||%,JO+,JHsd T €

wpal uniformly for hy € H? and p € [p,p]. Combining the preceding two inequalities and
using the definition of D, we obtain that for all J € J with J > JJ,

hy(z) — h o+ (x hy(x) — h o+ (x) — (hy(z) — b+ (z
s n| J(A) sz (@) gsup\/ﬁ| J(z) JO(A) (ha(z) = hys(2))]
reX “%,JO*,JHsd T€X H%,JJ,J”sd

+(§ - 1)o7 _4

wpal uniformly for hg € H? and p € [p, p|. It follows by definition of J that

sup sup Py, (J > Jy)
PE[p,p] ho€HP

Vn ho(x) — hy x)
< sup sup IP’hO( sup ~ sup | Jf( ) ) >€9T—d)
p€E[p,p] ho€HP Jej:J>JO+ T€EX HO—I‘,JJ,J”Sd
hy(z) = h — (hy(z) —h
< Sup Pho( sup \/ﬁ’ J(x) Jz(Ax> ( J(x) ]2(33))‘ > ei—d)) 4+ 0(1) (48)
hoeH (z,J,J2)€S HUHC,J,JQHSd

To control the r.h.s. probability in (48), let J(J) = {J € T : 0.1(log.J)? < J < J},
S = {(z,J,.,) € X x T(J) x T(J) : Jy > J}, and 07 .; denote the (1 — 0.5 A

13



(logJ)/J) quantile of SUD (1 1)es () [Zn (T, J; J2)|. Then by Lemma E.5 and Theo-

rem E.2(ii), we have

sup Py,
ho€EH

sup -
z,J,J2)ES HU:v,J,Jz s

( Vilhy(@) = oy (@) = (hy(@) = hpy@)] 9T—’>
(

Jmax (R2) 5 - - -
S Phg(( p  sle) o) = ote) ot e )

1—&;J
ho€EH - &

JET:j:jmax(Rl) x’J’JQ)ES(j) Ha-m’J’JQHSd

jmax(RQ)

< > ( (logj)/j+’yn+0(1))—>0, (49)

jET: j:jmax (Rl)

where the final line holds for all n large, because Jyax(R1) — 00, 7, 4 0, and, by our

choice of sieve and Remark E.1, for some constant C' > 0 we have

#{J € T: jmax(Rl) S J S jmax(R2)} S #{J € T: jmax<R1) S J S ijax(Rl)}
S #{l € N : jmax(Rl) S ZZd S ijax(Rl)} S O

In view of (48), this proves J < J& wpal uniformly for hy € H? and p € [, P
Whenever J < JF < jmax, Jmax, it follows by definition of J and display (46) that
wpal uniformly for hg € H? and p € [p, P, we have

Iy = hallw < W = by oo + s — Pl
< ol 47y Jo /n+ ”}ALJ; - BJS‘HOO + ||}~ngr — hol|oo-

Then by Theorem E.1, definition of J;, and the lower bound on #;_, in display (47), we

may deduce that there exists a constant C' > 0 for which

. . 7 o < * + '
ol o, P (||hJ holloe < COL_s7564/ o /n) —1

As the model is mildly ill-posed, there exists a constant C' > 0 for which Ty Ji <
C'75,7/Jo. It then follows by definition of .J; that

inf inf Py, (\yﬁj ~ holle < CO’DJ(;p/d) 1 (50)

j4S [27ﬁ] hoeHtP

By the upper bound on 6% . in display (47) and because /log Juax < v/logn (as the
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model is mildly ill-posed), there exists a constant F > 0 such that by defining

J(p, E) = sup {J €T 757/ (Jlogn)/n < EJ*p/d}

we have infpeppp) infp,enr (J;(p, E) < Jo(p, D)) — 1. Hence, as 75 =< J¢ we have
J (p, E) < (n/logn)¥e+)+d) The desired result now follows from (50).
Part (i), step 2: We verify that J achieves the optimal rate under mild ill-posedness.

By step 1, we have inf,cp, 5 infpepr Pho(j < JgJ) — 1. If we can show that J, > J& wpal
H-uniformly, then J = J wpal H-uniformly and the result follows by step 1.

By the lower bound on #7_, in display (47) and the fact that 1/10g Jmax = vI0gn (as
the model is mildly ill-posed), we may deduce that there exists a constant E’ > 0 such
that infpepp 7 infaoenr (J1(p, E') > Ji (p, D)) — 1 where

Ji(p, E') = inf {J €T :75v/(Jlogn)/n > E’Jﬁp/d} .

But note that max,c, Jip, E) = J (p, £'). The result now follows by Lemma E.5,
noting that Jpax(Ry)/Jd (p, E') — oo when the model is mildly ill-posed because p > d/2.

Part (ii), step 1: We verify that J,, achieves the optimal rate under severe ill-posedness.

To simplify notation we assume a CDV wavelet basis, though a similar argument ap-
plies (albeit with more complicated notation) for B-splines. Note that when the model
is severely ill-posed, for any R > 0 we have n® < Tiax(r) for some 3 > 0 and so
Thame(r) > (logn)* for all sufficiently large n. Therefore Juax(R) = Jh.(R) for all n
sufficiently large, where J*_ (R) is defined in (40). By Theorem E.1, Lemma E.5, and

Remark E.1, we may deduce that there exist constants D, D’ > 0 for which

17— hollse < by = Nj lloo + 1hs, = hollss

< D2 B 475 12 i ) 082 (2

< D' ((2 i) 475 51002 i ) 082 () )

wpal uniformly over H? and p € [p, p].
Recall the definition of My(p, Ry) from (41). By Lemma E.2, for all p € [p, p] we have
that My(p, Ry) > My(p, Ry) > 274J* . (Ry) holds for all n sufficiently large, in which case

max
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by definition of My(p, Ry) we must have

Tymagy i\ 2 i (R2) 1082 i (R)) 1 < B2 T (R2)) 4
Combining the preceding two inequalities then yields
1, = olloe < D'(1+ Ro)2°(Jyax(R2)) 4

wpal uniformly over H? and p € [p, p].
It remains to show (logn)¥< < J*  (R,) when 7; < exp(CJ9?) for C,¢ > 0. Sup-

max

pose liminf, ,o J%, (Ry)/(logn)¥s = 0. Then along a subsequence {n;}y>; we have
o (Ro) = (27<C~1u,, logng,)¥< for some sequence u,, | 0. Then 2¢.J* (Ry) € T satis-

max
fies

Un, —
Tod Jx . (R2) 2d max R2 \/log QdJ;;lax RQ))/nk 5 Ty b (lOg nk)d/g V IOg 1Og N k—>—oo> 07

thereby contradicting the definition of .J*

max

(Ry) from (40) for all sufficiently large k.

Part (ii), step 2: We verify that .J achieves the optimal rate under severe ill-posedness.

For any constant D > 0, by definition of J we have

sup sup Ph0(||ilj — hol|o > D(logn)_”/g)
pElp,p) hoeHP

< sup sup Pho(H;lj — hollse > D(logn) /< and J < jn)
pE[p,p] hoEHP

+ sup sup ]P’hO(Hh — holleo > D(logn)_p/g).
PE[p,p] ho€HP

By part (ii), step 1, the constant D can be chosen sufficiently large so that the second term
on the r.h.s. is o(1). For the first term, note that ||ij—h0||c>o < ||ﬁj_ﬁjn||oo+ ||iLJ~n —hol|sos

so it suffices to show that there exists a constant D > 0 for which

sup sup PhO(HiLj — ilj Hoo > D(logn)—p/c and j < jn) — 0.
p€[p,p] ho€MP "’
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But by definition of J and displays (46) and (47), we have

sup sup Pho(HiLj — 7 |leo > D(logn)™/< and J < jn)
pE[p,p) ho€HP "

< sup sup Py, (gCgﬁi‘_den\/jn/n > D(logn)_p/<> +o(1)

pE[p.p] ho€HP

< sup 1 |:§CQC5T2dJ;;ax(Rﬂ\/Z_dJ:nax(RQ) log(2~4 . (R2))/n > D(logn) ™"/ | + o(1).

PE(p,p]

(Ry))/n < (logn)~P/< uniformly

for p € [p,p], so the constant D can be chosen sufficiently large that the indicator function

By step 1, we have 727dj;1ax(R2)\/2—djl’;lax(R2) log(2-4.Jx

max

on the r.h.s. is zero uniformly for p € [p,p] for all n sufficiently large. m
Proof of Corollary 4.1. Part (i): Recall J; = Jy(p, D)* from (39). We have

1% 5 = 0 hollow < (10%h 5 — 0 hylloo + 10%R s — 0" hgtlloo + 10%R 3 — 8%holos -

As J < Jf < Jmax, Jmax holds wpal uniformly for hy € H? and p € [p,p], by part (i),
step 1 of the proof of Theorem 4.1, we may appeal to a Bernstein inequality (or inverse

estimate) for our choice of basis to write
1075 = 0Rolloo S (I (g = g oo + Mgy = Py o ) + 10%h 55 = 0hollo

By similar arguments to the proof of Corollary 3.1 of Chen and Christensen (2018), we
may also deduce ||8“BJO+ — 0%o|oe < (J)Uel=P)/d and so

105 = 0holoo S (I (s = g oo + gy = Pgg lloo + () /%)

It now follows by similar arguments to part (i), step 1 of the proof of Theorem 4.1 and

definition of Jy that there exists a constant C' > 0 for which

inf inf Py, (0% — 0ol < CH) 1.

PE[p,p] ho€HP

The result follows from noting, as in the proof of part (i), step 1 of the proof of Theo-
rem 4.1, that

péI[IBﬂh(}QHP h0< n(p’ )— 0(p7 )) 5

where J*(p, E) < (n/logn)¥@@+9+d) "and by part (i), step 2 of the proof of Theorem 4.1
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(which shows that J = J wpal H-uniformly).

Part (ii): Recall J*, (R) from (40) and .J, from the definition of J. By similar argu-
ments to part (ii), step 1 of the proof of Theorem 4.1, and the proof of Corollary 3.1 of
Chen and Christensen (2018), we may deduce

10%Rs, — 0ol

_ M —d 7« _p a7 _J 7T
S Ul B) ¥ (2 R 4 1y 2 ) B2 () 0

wpal uniformly over H? and p € [p,p]. Hence, by part (ii), step 1 of the proof of Theo-
rem 4.1,
109D, — 0°holloe S (log m)el=P/

wpal uniformly over H? and p € [p, p].
By similar arguments to part (ii), step 2 of the proof of Theorem 4.1, it suffices to

show that there exists a constant C' > 0 for which

sup sup Ph0(||8aﬁj — 8aibjn||oo > C(logn)(“”_p)/g and j < jn) —0.

pE[p,p] ho€HP

But for any J<J, by a Bernstein inequality (or inverse estimate) for our choice of basis,

~Y

10%h; — 0°hj loo S (J) s — T lloo S (Tax(Re))' By — hj |l

wpal uniformly over H? and p € [p,p], where the second inequality is because J, <
(Ry) for
all n sufficiently large. But note by severe ill-posedness and definition of J*, (R,), we have
that C(Jfu(R2))¥? < log 7y (r,) < log(Rzy/n) < logn, and so J5, (Rs) < (logn)¥/s.

The result now follows by part (ii), step 2 of the proof of Theorem 4.1. m

Jnax < Jmax(R2) wpal H-uniformly by Lemma E.5 and because Jyax(Rz) = J*

max

Proof of Theorem 4.2. In some of what follows, we use the fact that the sieve dimen-
sions for CDV wavelet bases are linked via J+ = 2%J for J € 7. We do so for notational
convenience; a similar argument (with more complicated notation) applies for B-splines.

Part (i), step 1: By part (i), step 2 of the proof of Theorem 4.1, we have J = J wpal

H-uniformly. It therefore suffices to prove the result for the band
Cal) = [hm — (2ot A01a) 35(@), hy(@) + (210 + 407 ,) aaf(x)} ,
(cf. (16)). Note by Appendix A this implies the result holds for our UCBs for nonparamet-
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ric regression as well. Fix Ry > 0 in the definition of Jy..(Rs) from (38) sufficiently large
so that by Lemma E.5 we have infy,cp Pho (Jmax < Jmax(R2)) = 1. Let Juax = Jmax(R2)
for the remainder of the proof. Recall the constants O from (44), B and B from the
discussion preceding the statement of this theorem, and Cy and C5 from (47). Also note
that by Lemmas E.3 and E.5, Assumption 4(i), and the fact that ¢, | 0 (cf. (43)) imply
that there exists Cy, C'3 > 0 which satisfy

J
hinf IP’,m( sup TJ\/_ <
0EH (z,J)EXXT ||0$,J||sd

. Og,J||sd

) o ) o0
(51)
Let v = inf je7 (1 + ||T1s||o) ™" > 0, where ||T1;||o < 1 is the Lebesgue constant for W
(see Appendix D.3). Choose 8 € (0,1) and E > 0 such that (vBB2/¢ — (Cp, +1)B) > 0

and E-'(vBB 4 — (Cpy + 1)B) > Cy(€ + 1), where € > 1 (¢ = 1.1 in the main text).
Define Jy(p, E) as in (39). Part (i), step 1 of the proof of Theorem 4.1 implies that
Jo(p, E) 2
C' > 0 we have Jy(p, E)/(log jmax)2 > C wpal uniformly for hy € H? and p € [p,p].
Hence, inf{J € T : J > BJo(p, E)} > 10g Jyax wpal uniformly for hg € H? and p € [p, Pl
Fix any J € J with J < BJo(p, E') (this is justified wpal uniformly for hg € H? and

p € [p,p] by the preceding paragraph) and note (dropping dependence of .Jy on (p, )

(n/logn)¥@@+9+d) By Lemma E.5 and mild ill-posedness, for any constant

1By = hglloo = 1y — by — g + By — By + gy — ho + hollo
> ||hy = holloo = 1Py — Rolloo = I1s — by — (hay — hay)||oo-

For a given hy € G, let hy ; € argminpey, |h — holloo- Recall J from the definition of GP
and note that inf{J : J € J } > J holds wpal H-uniformly by Lemma E.5. Recalling the

Lebesgue constant ||I1;||« from Appendix D.3, we may then deduce
IRy = holloe = llho.s = holloe = (1+ 1Wsllac) ™ [l = TLshollo > 0BT 7/,

for all J € J wpal, uniformly for all hg € G and all p € [p, p]. It follows by (44) and the

discussion preceding the statement of this theorem that

1By = hllee = 0BJ P4 — (Cpy 4+ 1) B P = ||hy — iy — (hyy — hpy)|loe
> (BB — (Cpy + 1)B)Jy P = |lhy — by — (hyy — Byl
VIobi_s

T 1hy = hy — (hyy = hiy)llse

> Cg<§ -+ 1)TJ0
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where the second line uses J < (Jy and the third uses definition of £ and Jy(p, E). It
now follows by the preceding display and (51) that

sup sup Pr, (J < BJo(p, F))

PE[p,p] ho€G?
hy(z) —h

< sup sup IP’hO( inf  sup vl JA(:E) 5o (@)] < 591‘—@)

pE[pp] ho€GP JeJI<BJo xeX 162.7,7| sd

hy(z) — h — (hy(z) = h

< o sup (. VARl (Rl e Y

pElp,p] ho€gG? (z,J,J2)€S 162,775 || sa

hy(z) — h — (hy(z) = h

< sup Ph0< sup vl () JQ(Am) (hy(x) = hp (@) > QT&) +0(1) =0,

hoeH (z,J,J2)eS ||Um,J,J2 ||sd

where the final line is by (49).
Part (i), step 2: Recall J (p, D) from part (i), step 1 of the proof of Theorem 4.1. By
the previous step of this proof and part (i), step 1 of the proof of Theorem 4.1, we have

inf inf Py, (BJo(p, E) < J < Jf(p,D)) — 1. (52)

PE[p,p] ho€GP

Therefore, by (44), (51), (52), and definition of B, for every ho € G? and x € X we have

(2%Jo(p, E))~P/4
Tianmen v BJo(p, E)

b _ _ J-p/d

E NG

wpal uniformly for hy € G and p € [p,p] and x € X, where Ty3,(p,)] denotes the ill-
posedness at resolution level inf{J € T : J > BJy(p, E)}. It now follows from definition

< (Cp1+1)C3BpP/dop

of 2¢Jo(p, E) = JJ (p, E) from (39) that whenever the preceding inequality holds, we have

hi(z) —h — 5 g
sup D =@ oo 1B gz g ERRE) g g e
T€EX ||0x,j||sd T[BJo(p,E)]

where the final inequality holds uniformly for hy € G” and p € [p, p| for a constant Ay > 0
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because sup ;e Tady/Tray) < 00 by virtue of mild ill-posedness. Hence for any A > A,

hinf Pp, (ho(x) € Cp(z,A) ¥V x € X)

> inf inf Pho<sup\/_|h 5(@) = ho(@) <z —i—AG*A) +o(1)

p€[p,p] o €GP zEX H@E,szd

> inf inf Pho<sup\/_|h i) = hy(x)] Szi‘a> +o(1)

p€[p,p] o €GP TeEX HO-;L-JHSd

> inf inf Ph0< sup \/ﬁ|h‘]( 2—hj(x)\ <z ) +0(1),
(

PE[p,p] hocg? 2, J)eXx T, 16,7 || sa -

where the final line is because J € T, ={J €T :0.1(10g Jmax(R2))* < J < Jpux(R1)}
with Jo. (Ry) = sup{J € T : J < Junax(R1)} and J_ D J,, both hold wpal uniformly
for hy € GP and p € [p,p]; the former holds by (52) and Lemma E.1 and the latter holds
by Lemma E.5 and the fact that J = J wpal H-uniformly. Let 2]_, denote the 1 — «
quantile of sup(, nexxys \Z* (x, J)|. As zt_, < zF_, must hold whenever J 2 J,, we

therefore have

hlnf Pp, (ho(z) € Cp(z,A) ¥V x € X)
0€

> inf inf Py, (( sup \/ﬁ‘h‘](m? ~ hy(z)] < g’f_a) +o(l)=(1—a)+o(1),
z,J

PE[p,p] hoeG? J)EXXT 16,7 || sa

where the last equality follows from Theorem E.2(i) and the definition of zj_,.
Part (ii): By Lemmas E.4, E.6, and E.7 and Assumption 4(i), we have

sup |Gz, A)| S (1+ A7y (J10g Joar) /m

zeEX

wpal H-uniformly. Then by (52) with Jy = Jo(p, D) and A =1 + A, we have that

7 n 7 TV 1 7max -
sup |Cp(z, A)] < ATﬁ\/(JJ log Jinax)/n < AT]O\/(JO log Jiax)/n < AiJO p/d

rEX 9?—@

holds wpal uniformly for hy € G and p € [p,p| and for all A > 0, where the second
inequality follows from the fact that the model is mildly ill-posed and the third is by
definition (39). It follows by Lemma E.6 that there is a constant C' > 0 (independent of
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A) for which

inf inf Py, (sup |Cp(z, A)] < C(1+ A)(Jo(p, D))p/d> 1

PE[p,pl ho€GP TEX

The result now follows from part (i), step 2 of the proof of Theorem 4.1, which shows that
infpepz) infrgene (J3(p, E) < Jo(p, D)) — 1 with J(p, E) < (n/logn)¥C@+d+d u

Proof of Theorem 4.3. In some of what follows, we use the fact that the sieve dimen-
sions for CDV wavelet bases are linked via J* = 24 for J € T. A similar argument (with

more complicated notation) applies for B-spline bases.
Part (ii): First note by Lemma E.5 and the fact that Jy.(R) = J*. (R) (see (40))

max

holds for any R > 0 for all n sufficiently large (see part (ii), step 1 of the proof of Theorem
4.1), we have that J*, (R1) < Jmax < J*

max

Recall My(p, Rp) from (41). By Lemma E.2, for all p € [p, p|] we have that M(p, Rz) >
My (p, Ro) > 274 (Ry) holds for all n sufficiently large. Then by Lemmas E.4, E.6, and

max

E.7 and Assumption 4(i), there exist constants C,C" > 0 for which

(R2) wpal H-uniformly.

sup Gy, A)] < C(1+A)77\ (T108 Ty (R) /AT 2 < €14 A) (S (Be)) P/ AT 21
ze
holds wpal uniformly for hy € H? and p € [p,p], where the second inequality is by
definition of My(p, Ry). The proofs of Theorem 4.1 and Corollary 4.1 show that J%, (Ry) <
(logn)#s in the severely ill-posed case. Therefore, it suffices to show that there is a
constant ¢ > 0 for which J > ¢(logn)¥* holds wpal uniformly for hy € G” and p € [p, D]
Recall f and E from the proof of Theorem 4.2 and Jy(p, £) from (39). By similar
arguments to Lemma E.2, we may deduce that inf{J € T : J > BJy(p, E)} > log Jinax
wpal uniformly for hy € H? and p € [p,p]. It then follows by the same argument as
part (i), step 1 of the proof of Theorem 4.2 that J > BJo(p, E) holds wpal uniformly for
ho € GP and p € [p,p]. But by Lemma E.6 and the fact that log J* o (R2) =< loglogn for

severely ill-posed models, it follows that there is a constant C” > 0 for which, by defining

J*(p,C") = sup {J e T : 754/ (Jloglogn)/n < O”J—P/d} 7
we have infyeppz infroerr Pro (Jo(p, E) > J*(p,C")) — 1. Finally, we may deduce by a

similar argument to part (ii), step 1 of the proof of Theorem 4.1 that J*(p, C") > (logn)%/<
for all p € []_9, P|, which establishes the desired behavior of J.
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Part (i): By Theorem E.1 and Lemma E.5, there exists a constant Ay > 0 for which
(@) = ho(@)| < |hj(x) = hj(x)] + Ao 2/
holds for all x € X wpal H-uniformly. Then for any A > Ay, we have

Jahate) —~hj(a:)

16,7154

f}onefgIF’hO (ho(z) € Cp(z,A) V2 € X) > hlonefgIF’hO (Sup

reX

< zf_a) +0(1).

Suppose that J*_ (Ry) > 224.J*

max max

(Ry) € T. Then by definition of J#, (R) and Remark

max

E.1, we have

T, (R Tedgs. () 22005, (Ri)y/log Jh (Ry) ~ Ry’

But note that if J*, (Ry) > 2%4J*

max

(53)

(Ry) then by severe ill-posedness we have

Tlax(R2) - T2 50x(B1) o O((220 T (B1)/ = (20 S (R ) _ (C25 (25 =) (i (RO)/ |
- - )

T24 T 0 (R1) T24 50 (R1)

which contradicts (53). Therefore, J* . (Ry) € {27¢J% .. (R2), J%..(R2)} holds for all n suf-
ficiently large, from which it follows by Lemma E.5 that Jy. € {2747 (R,), J5. (R2)}

max max

wpal H-uniformly. Therefore, J < 274.J* (R2) holds wpal H-uniformly. But by part

max

(ii) we also have that .J > ¢.J*, (R,) holds for a sufficiently small ¢ > 0 wpal uniformly
ho € G and p € [p,p]. Therefore, Je T, ={J €T :clinlRs) < J <2 ax(Ra)}
and J D J,, both hold wpal uniformly for hy € G* and p € [p, p].

Let zj_, denote the 1 — a quantile of sup(, yexxs \Z% (x, J)|. As zf_, < 2f_, must

hold whenever j >J,, we therefore have

inf Pp, (ho(z) € Cp(z,A) V z € X)
ho€g

P s
> inf inf IP’h0< sup \/ﬁ‘ J(x2 < g’f_a) +o(l) =(1—a)+o(1),
(z,J

~ p€[p.p) ho€G? JEX®T 162,71 5a

where the last equality follows from Theorem E.2(i) and the definition of z_,. m
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E.4 Supplemental Results: UCBs for Derivatives

Here we present supplemental results for the proofs of Theorems 4.4 and 4.5. Throughout
this subsection, for any fixed R > 0, let Jyax = Jmax(R). Also let Jyim — 00 as n — 0o
with Juin < Jmax. Define J, = {J € T ¢ Jin < J < Jiax}. Also recall 8, from (43). We

introduce the bootstrap process for the derivatives:

Da*(x) J)A
Ly (x,J) = ~J = LS. u; yw; |,
e H%ﬂlw(fz Sabus,” 0

where (|62 (12 = n6§(x) = L5,9,,(L3,) and L, = (0°0])[8,G; ;5,71 85G, ) with
07 denoting the derivative applied element-wise: 0%) = (0% (x),...,0%5;(x)).
Proofs of these supplemental results are presented in our earlier working paper version
Chen et al. (2022), where they are labelled as Lemmas E.12, E.13, and E.14, respectively.

Lemma E.8 Let Assumptions 1-3 hold. Then: there is a universal constant Crg > 0
such that
||Uz,J”§d _

||UZ,J”§d

inf Pho( sup
(z,J

hoeH , )EXXJn

Lemma E.9 Let Assumptions 1-4 hold. For a given o € (0,1), let 2¢* , denote the 1 — «
quantile of sup, jexx 7 |2y (x, J)|. Then: with Jmax(R) as defined in (38) for any R > 0,

there exists a constant C'gg > 0 for which

hoeH

inf Pho( < Cgoy/log JmaX(R)) — 1.

Lemma E.10 Let Assumptions 1-4 hold and let Jy;, < (log jmaX)Q. Then: there exists a
sequence ¥, . 0 for which

°hy(x) — 0%hy(x)

15 71l

Vvn

sup
seR

< Vn

]P’h0< sup <s —P*( sup  |Z¥(x,J)| < s)
( (@, J)EX X Tn

z,J)EX X Ty

holds wpal H-uniformly.

E.5 Proofs of Theorems 4.4 and 4.5 on UCBs for Derivatives

Proof of Theorem 4.4. The proof follows similar arguments to the proof of Theorem 4.2.
Here we state the necessary modifications.
Part (i), step 1: Identical to part (i), step 1 of the proof of Theorem 4.2.
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Part (i), step 2: Note that by Theorem E.1 and a similar argument to the proof of
Corollary 3.1 of Chen and Christensen (2018), we have

nf P, (Ha“iu — 0%holloe < CeJU PV T €1, Juax) N T ) —1
0E

for some constant Cs > 0. Moreover, by Lemma E.8 and Assumption 4(iii) there is a

constant C; > 0 for which

T J1/2+\a|/d
inf Pho( sup JAa— <C;)—1.
hoe™H (z,J)eXxJ ||Jx,J||5d

It now follows by (52) that

|6“hj(a;) _ 8ah0(x) < 06075—ﬁ/d2ﬁ (2dJ0 (p7 E))_p/d

H&;,jHSd B Tj\/} TTBJo(p,E)1V ﬁ‘]ﬂ(p’ E) ’

wpal uniformly for hy € G and p € [p,p] and 2 € &. The remainder of the proof of this

A
2
X

part now follows by identical arguments to part (i), step 2 of the proof of Theorem 4.2,
using Lemma E.10 in place of Theorem E.2(i).
Part (ii): By Lemma E.6, Lemmas E.8 and E.9 and Assumption 4(iii), we have

sup |Gy (2, A)| S (14 A)r; JV2HE [ (log Tax) [

reX

wpal H-uniformly. Then by display (52), with Jy = Jo(p, D) we have that

sup |C%(x, A)| < (1 + A)TJJ(JJ)l/QH“'/d (1og Jmax) /1

reX

< (Ut A B S 108 )1 5 (14 A) Vo T el
1—é
holds wpal uniformly for hy € GP and p € []_9, P|, where the second inequality follows from
the fact that the model is mildly ill-posed and the third is by definition (39). The result
now follows by similar arguments to part (ii) of the proof of Theorem 4.2. m
Proof of Theorem 4.5. The proof follows similar arguments to the proof of Theorem 4.3.
Here we state the necessary modifications.

Part (i): By Lemma E.5, Theorem E.1, and similar arguments to the proof of Corollary
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3.1 of Chen and Christensen (2018), there exists a constant Ay > 0 for which
0°hj(x) = 0ho(2)] < |0%hj(x) — 0 j(x)| + AgJ =2/
holds for all x € X wpal H-uniformly. Then for any A > Ay, we have

0°h;(x) — 0°h;(x)

[6% T

hlonefgIF’hO((? ho(z) € Ci(z,A) V€ X) > hlonefgIP’hO<sup Vn

zeX

< z‘fia> +o(1).

The remainder of the proof now follows similarly to the proof of Theorem 4.3, using
Lemma E.10 in place of Theorem E.2(i).

Part (ii): By Lemmas E.2, E.6, E.8, and E.9 and Assumption 4(iii), there exist con-
stants C,C" > 0 for which

sup |, A)| < C(L+ A)ry 1004 log (T (Ra)) fm 4+ A=/

reX

<C'(1+ A

¢ (Ry)) Py g Jllal-p)/a
holds wpal uniformly for iy € H? and p € [p,p]. The remainder of the proof now follows
similarly to the proof of Theorem 4.3. m
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