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Abstract

We introduce two data-driven procedures for optimal estimation and inference in
nonparametric models using instrumental variables. The first is a data-driven choice
of sieve dimension for a popular class of sieve two-stage least squares estimators.
When implemented with this choice, estimators of both the structural function h0
and its derivatives (such as elasticities) converge at the fastest possible (i.e., min-
imax) rates in sup-norm. The second is for constructing uniform confidence bands
(UCBs) for h0 and its derivatives. Our UCBs guarantee coverage over a generic class
of data-generating processes and contract at the minimax rate, possibly up to a log-
arithmic factor. As such, our UCBs are asymptotically more efficient than UCBs
based on the usual approach of undersmoothing. As an application, we estimate
the elasticity of the intensive margin of firm exports in a monopolistic competition
model of international trade. Simulations illustrate the good performance of our
procedures in empirically calibrated designs. Our results provide evidence against
common parameterizations of the distribution of unobserved firm heterogeneity.
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1 Introduction

With easier access to large data sets, there is increasing interest in estimating flexible, non-

parametric structural functions and their derivatives, such as elasticities or other marginal

effects. In many applications, the structural function h0 is identified by a conditional mo-

ment restriction

E[Y − h0(X)|W ] = 0 (almost surely), (1)

where Y (a scalar) and/or some elements of X (a vector) are endogenous, W is a vector

of instrumental variables, and the conditional distribution of (X, Y ) given W is otherwise

unspecified. Examples include consumer demand (Blundell, Chen, and Kristensen, 2007;

Blundell, Horowitz, and Parey, 2017), demand for differentiated products (Berry and

Haile, 2014; Compiani, 2022), and international trade (Adao, Costinot, and Donaldson,

2017; Adao, Arkolakis, and Ganapati, 2020).1 Uniform confidence bands (UCBs) are very

helpful for inferring the true shape, slope, or curvature of h0, as they graphically convey

sampling uncertainty about the estimated structural function and its derivatives.

In applications involving policy counterfactuals, researchers care about estimating and

constructing UCBs for h0 or its derivatives. For instance, Adao et al. (2020, AAG here-

after) derive (1) via a semiparametric gravity equation for the intensive margin of firm

exports in a monopolistic competition model based on Melitz (2003). In that context, the

derivative of h0 is the elasticity of the intensive margin of firm-level exports to changes

in bilateral trade costs. Moreover, Compiani (2022) performs policy experiments using

nonparametric estimates of price elasticities in differentiated product demand models.

As is the case for almost all nonparametric and machine learning (ML) methods,

researchers must choose tuning parameters—such as bandwidths, sieve dimensions, or

penalty parameters—when estimating or performing inference on h0 and its derivatives.

Poor choice of tuning parameters can lead to estimators that converge unnecessarily slowly

and confidence bands with poor coverage. But “good” choices of tuning parameters typ-

ically require knowledge of key model regularities, such as the smoothness of h0 and the

strength of the instruments, which are unknown ex ante. It is therefore important to

have data-driven methods that adapt to unknown model regularities and yield estimators

and confidence bands with desirable properties. Data-driven methods for choosing tuning

parameters also help to improve the transparency of nonparametric and ML methods,

1Other applications include causal inference (Miao, Geng, and Tchetgen Tchetgen, 2018) and rein-
forcement learning (Chen and Qi, 2022; Chen, Xu, Gulcehre, Paine, Gretton, De Freitas, and Doucet,
2022). Model (1) also nests nonparametric regression when W = X, in which case h0 is the conditional
mean of Y given X.
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removing a degree of freedom with which the researcher can manipulate results. Unfor-

tunately, popular methods for choosing tuning parameters for nonparametric regression,

such as standard cross validation, may not be valid in models with endogeneity—see

Section 2.2.

In this paper, we propose simple, data-driven procedures for choosing tuning param-

eters for estimating and constructing UCBs for h0 and its derivatives. Our methods are

developed for the popular class of sieve nonparametric IV estimators.2 That is, h0 is ap-

proximated by a linear combination of several basis functions (e.g., B-splines), with the

coefficients estimated by Two Stage Least Squares (TSLS) regression of Y on the basis

functions of X, using functions of W as instruments (see Section 2.1 for a detailed de-

scription). The key tuning parameter to be chosen by a researcher is the number of basis

functions, say J , used to approximate h0. If J is too small, then estimators may be badly

biased and UCBs may under-cover. But if J is too large, estimators may be very noisy

and UCBs may be uninformatively wide. Before precisely stating our theoretical results

in Section 4, we describe our methods and their practical importance.

Our Methods and the Practical Implications. Our first contribution is a data-

driven choice of sieve dimension, which we denote by J̃ . This choice is simple to compute.

Under suitable regularity conditions, we show that sieve estimators implemented with J̃ ,

which we denote ĥJ̃ , converge at the fastest possible (i.e., minimax) rate in sup-norm.3

That is, the maximum error over the support of X, namely

sup
x

|ĥJ̃(x)− h0(x)|,

vanishes as fast as possible—among all estimators of h0—as the sample size increases,

uniformly over a class of data-generating processes (DGPs), for both nonparametric IV

and nonparametric regression models. Formally, we refer to J̃ as sup-norm rate-adaptive:

it adapts to features of the DGP that are unknown ex ante, such as the smoothness of h0

and strength of the instruments, so that the resulting estimator ĥJ̃ converges as fast as

possible in sup-norm. We further show that the same data-driven choice J̃ is sup-norm

2See Ai and Chen (2003), Newey and Powell (2003), Blundell et al. (2007), and Horowitz (2011).
3We focus on the sup-norm rather than L2 norm (i.e., mean-square error) primarily because our

objective is to construct UCBs for h0 and its derivatives. The sup-norm is essential for this purpose, as
we require the entire function (or its derivatives) to lie inside the bands with desired coverage probability.
The sup-norm also provides a stronger, more informative sense in which the estimator is converging as it
measures the maximal, rather than average, error over the support of X.
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rate-adaptive for estimating derivatives of h0 as well.
4 Hence, J̃ should be very useful for

researchers interested in estimating elasticities or other marginal effects. We illustrate this

usefulness in our empirical application revisiting AAG, where we use J̃ to estimate the

elasticity of the intensive margin of firm-level exports from aggregate bilateral trade data.

We also demonstrate the good performance of J̃ across a variety of simulation designs for

both nonparametric IV estimation and nonparametric regression.

Our second main contribution is a data-driven approach to constructing UCBs for h0

and its derivatives. The term “uniform” indicates that the entire function lies within the

bands with desired asymptotic coverage probability. The UCBs for h0 and its derivatives

are also simple to compute and have strong theoretical justification. They are honest in

the sense that they guarantee coverage for h0 and its derivatives uniformly over a generic

class of DGPs, and adaptive in the sense that they contract at, or within a logarithmic

factor of, the minimax rate. As such, they provide efficiency improvements relative to

UCBs based on the usual approach of undersmoothing, in which a sub-optimally large J

is chosen in the hope that bias is negligible relative to sampling variation. Of course, in

empirical work, a researcher does not know the true function, and therefore doesn’t know

which J is truly large enough that sampling uncertainty dominates bias.

Our UCBs for h0 and its derivatives are useful for inferring the true shape of the struc-

tural function and its derivatives. They complement existing approaches for testing shape

restrictions, as they allow the researcher to read off the shape of the function without

imposing a specific null (e.g. monotone increasing) a priori. In our empirical application

to AAG we construct UCBs for the elasticity of the intensive margin of firm exports. As

emphasized by AAG, this is an important, policy-relevant function yet its shape is not

restricted by theory in a nonparametric setting. Our UCBs exclude constant functions and

downwards-sloping functions. Hence, they provide evidence against the Pareto specifica-

tion for unobserved firm productivity used by Chaney (2008), which leads to a constant

elasticity, as well as other parameterizations used, e.g., by Eaton, Kortum, and Kramarz

(2011), Head, Mayer, and Thoenig (2014), and Melitz and Redding (2015), for which the

elasticity is downwards-sloping. Empirically-calibrated simulation studies based on the

models of Chaney (2008) and Head et al. (2014) demonstrate valid coverage of our UCBs

for h0 and its derivatives and efficiency improvements relative to undersmoothing.

Related Literature and our Theoretical Contributions. Early work on nonpara-

metric IV estimation includes Newey and Powell (2003), Hall and Horowitz (2005), Blun-

4This is in contrast to kernel estimation, in which different bandwidths must be used for rate-adaptive
estimation of a function and its derivatives.
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dell et al. (2007), Darolles, Fan, Florens, and Renault (2011), Horowitz (2011) and others.

We complement prior work by Horowitz (2014) for near-adaptive estimation of h0 in

L2 norm, Breunig and Johannes (2016) for near-adaptive estimation of linear functionals

of h0, and Breunig and Chen (2021) for adaptive estimation of quadratic functionals of

h0. Our procedure builds on the bootstrap-based implementation of Lepski’s method of

Chernozhukov, Chetverikov, and Kato (2014) for kernel density estimation and Spokoiny

and Willrich (2019) for linear regression with Gaussian errors. But our procedure does

not follow easily from theirs due to several challenges present in the conditional moment

restriction (1), in which h0 is identified by E[Y |W ] = E[h0(X)|W ] (a.s.). The degree of

difficulty of inverting E[h0(X)|W ] to recover h0 is a nonparametric notion of instrument

strength and plays an important role in determining minimax rates for estimators of h0

and its derivatives.5 While adaptive procedures for nonparametric density estimation or

regression deal only with unknown smoothness of the estimand, our procedures must also

deal with the unknown degree of difficulty of the inversion problem. The literature has

typically classified the difficulty of the inversion problem into “mild” and “severe” regimes.

Minimax rates in the mild regime are achieved by a choice of sieve dimension that balances

bias and sampling uncertainty, much like standard nonparametric problems. But minimax

rates in the severe regime are obtained by a bias-dominating choice of sieve dimension.

Our procedure for data-driven choice of sieve dimension delivers the minimax sup-norm

rate for h0 and its derivatives across the whole spectrum of models, from nonparametric

regression to nonparametric IV models in the severe regime.

Our procedure improves significantly on and supersedes a modified Lepski procedure

from Section 3 of Chen and Christensen (2015a) on sup-norm rate-adaptive estimation

of (1). Ours uses a multiplier bootstrap to avoid selection of several constants and per-

forms much better in practice. Moreover, our rate-adaptivity guarantees encompass non-

parametric regression and nonparametric IV in both mild and severe regimes.

Recent work on (non data-driven) UCBs for h0 and functionals thereof via under-

smoothing includes Horowitz and Lee (2012), Chen and Christensen (2018) and Babii

(2020). Our UCBs build on prior work on honest, adaptive UCBs for nonparametric den-

sity estimation (Giné and Nickl, 2010; Chernozhukov et al., 2014) and Gaussian white

noise models (Bull, 2012; Giné and Nickl, 2016). But none of these works allows for

nonparametric models with endogeneity, and our procedures do not follow easily from

these existing methods due to the above-mentioned challenges present in model (1). Our

5See Hall and Horowitz (2005), Chen and Reiss (2011), and Chen and Christensen (2018) for minimax
rates for nonparametric IV estimation. When the conditional density of X given W is continuous, these
rates are slower than the corresponding rates for nonparametric regression.
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UCBs for h0 and its derivatives apply to nonparametric regression with non-Gaussian,

heteroskedastic errors as a special case, which appears to be a new contribution.

Finally, our work also compliments several recent papers on (non data-driven) estima-

tion and inference for nonparametric IV models with shape constraints; see for example

Blundell et al. (2017), Chetverikov and Wilhelm (2017), Freyberger and Reeves (2019)

and Chernozhukov, Newey, and Santos (2023). These works all assume a deterministic

sequence of tuning parameters satisfying regularity conditions that depend on unknown

model features such as the smoothness of h0 and instrument strength. An exception is

Breunig and Chen (2020) who study L2 rate-adaptive testing of a specific null hypothesis

(e.g., monotone increasing, or a parametric functional form). Our approach is conceptu-

ally different from theirs: our UCBs graphically convey sampling uncertainty about an

estimate of h0 and its derivatives. Hence, our UCBs are very useful for inferring the true

shape of h0 in situations—such as our trade application—where there are no specific prior

shape restrictions suggested by economic theory.

Outline. Section 2 introduces our methods. Section 3 presents the application to inter-

national trade. Section 4 contains the main theoretical results. Section 5 provides addi-

tional simulation results for difficult designs. Section 6 presents extensions to additive and

partially linear models, and Section 7 concludes. Appendix A presents a simplified version

of our procedures for nonparametric regression. Appendix B provides additional details

for the trade application and simulations. In the online supplement, Appendix C presents

additional simulations to an empirically calibrated Engel curve design, Appendix D gives

details on basis functions and nonparametric function classes, and Appendix E contains

technical results and proofs.

Notation. Let X be the support of X, d the dimension of X, and L2
X and L2

W the

space of functions of X and W with finite second moments. Let ∥h∥∞ := supx∈X |h(x)|
be the sup-norm of h : X → R. Let N be the set of integers and N0 := N ∪ {0} the

non-negative integers. Let ⌈a⌉ = min{n ∈ N : n ≥ a} and ⌊a⌋ = max{n ∈ N0 : n < a}.
For a multi-index a = (a1, ..., ad) ∈ (N0)

d with order |a| =
∑d

i=1 ai, the a-derivative of h

is defined as

∂ah(x) =
∂|a|h(x)

∂a1x1 . . . ∂adxd
.

Let A− denote the generalized (or Moore–Penrose) inverse of a matrix A and A−1/2 the

inverse of the positive-definite square root of A.

6



2 Procedures

We begin in Section 2.1 by briefly reviewing sieve nonparametric IV estimation and UCBs

with a deterministic sieve dimension. Section 2.2 explains why standard cross validation

for regression fails in models with endogeneity. Section 2.3 presents our data-driven choice

of sieve dimension and Section 2.4 presents our data-driven UCBs. These methods extend

naturally to partially linear and partially additive models (see Section 6). Both procedures

apply to nonparametric regression as well (see Appendix A).

2.1 Review: Estimators and UCBs with a Deterministic J

Estimators. Consider approximating h0 by a linear combination of J basis functions:

h0(x) ≈ (ψJ(x))′cJ , (2)

where ψJ(x) = (ψJ1(x), . . . , ψJJ(x))
′ is a vector of basis functions and cJ = (cJ1, . . . , cJJ)

′

is a vector of coefficients. Combining (1) and (2), we obtain

Y = (ψJ(X))′cJ + biasJ + u , E[u|W ] = 0 ,

where u = Y −h0(X) and biasJ = h0(X)− (ψJ(X))′cJ . Provided the bias term is “small”

relative to u in an appropriate sense, we have an approximate linear IV model where ψJ(X)

is a J × 1 vector of “endogenous variables” and cJ is a vector of unknown “parameters”.

One can then estimate cJ using TSLS or GMM using a K × 1 vector of basis functions

bK(W ) = (bK1(W ), . . . , bKK(W ))′ of W as instruments. Evidently, K ≥ J is necessary to

estimate cJ .

Given data (Xi, Yi,Wi)
n
i=1, the TSLS estimator of cJ is simply

ĉJ = (Ψ′
JPKΨJ)

−
Ψ′
JPKY ,

where ΨJ = (ψJ(X1), . . . , ψ
J(Xn))

′ and BK = (bK(W1), . . . , b
K(Wn))

′ are n×J and n×K
matrices, PK = BK(B

′
KBK)

−B′
K is the projection matrix onto the instrument space, and

Y = (Y1, . . . , Yn)
′ is a n× 1 vector. Estimators of h0 and its derivative ∂ah0 are given by

ĥJ(x) = (ψJ(x))′ĉJ , and ∂aĥJ(x) = (∂aψJ(x))′ĉJ ,

where ∂aψJ(x) = (∂aψJ1(x), . . . , ∂
aψJJ(x))

′.
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Sieve Bases. Many linear sieves, such as polynomial splines, B-splines, wavelets, Fourier

series, and various polynomials, can be used as the instrument basis {bKk}Kk=1. However,

only B-splines and Cohen–Daubechies–Vial (CDV) wavelet bases for {ψJj}Jj=1 have been

shown to achieve the optimal minimax sup-norm rates under a suitable choice of J (Chen

and Christensen, 2018).6 As our objective is to have estimators that converge as fast

as possible in sup-norm—which is essential for constructing UCBs that are as narrow

and informative as possible—we restrict attention to B-splines and CDV wavelets for

{ψJj}Jj=1 in our theory that follows. Moreover, since B-splines are easy to compute, much

less collinear than polynomials and polynomial splines, and available in standard software

packages, we confine our presentation to B-spline bases for both {ψJj}Jj=1 and {bKk}Kk=1

in the main text.

Key tuning parameter J . Based on simulations and theoretical studies in Blundell

et al. (2007), Chen and Christensen (2018) and others, the performance of the sieve TSLS

estimator for h0 is sensitive to the choice of J and not sensitive to K as long as K ≥ J . We

introduce a data-driven method for choosing J in Section 2.3. The choice of K is pinned

down by J in our procedure, so we write K(J) ≥ J , bK(J)(W ), BK(J) and PK(J) in what

follows. Let MJ = (Ψ′
JPK(J)ΨJ)

−Ψ′
JPK(J) be a J ×n matrix. We can equivalently write

ĥJ(x) = (ψJ(x))′MJY , ∂aĥJ(x) = (∂aψJ(x))′MJY . (3)

“Undersmoothed” UCBs. We now review the usual approach of constructing “un-

dersmoothed” UCBs for h0 and its derivatives based on a deterministic J . Let ûJ =

(û1,J , . . . , ûn,J)
′ denote the n×1 vector of residuals whose ith element is ûi,J = Yi−ĥJ(Xi).

Then ĥJ(x)− h0(x) and ∂
aĥJ(x)− ∂ah0(x) can be estimated by

DJ(x) = (ψJ(x))′MJ ûJ , Da
J(x) = (∂aψJ(x))′MJ ûJ , (4)

and their variances can be estimated by

σ̂2
J(x) = (ψJ(x))′MJÛJ,JM

′
Jψ

J(x), σ̂a2J (x) = (∂aψJ(x))′MJÛJ,JM
′
J(∂

aψJ(x)) (5)

where ÛJ,J is a n× n diagonal matrix whose ith diagonal entry is ûi,J ûi,J .

6Bases for h0 must have bounded Lebesgue constant to attain the minimax sup-norm rate for non-
parametric regression (see, e.g., Belloni, Chernozhukov, Chetverikov, and Kato (2015) and Chen and
Christensen (2015b)). B-splines and CDV wavelets have this property. Bases without this property, such
as polynomials and Fourier series, cannot attain the minimax sup-norm rate and hence cannot lead to
sup-norm rate-adaptive estimators or UCBs.
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Let û∗
J = (û1,Jϖ1, . . . , ûn,Jϖn)

′ denote a multiplier bootstrap version of ûJ , where

(ϖi)
n
i=1 are IID N(0, 1) draws independent of the data. Then

D∗
J(x) = (ψJ(x))′MJ û

∗
J , Da∗

J (x) = (∂aψJ(x))′MJ û
∗
J (6)

are bootstrap versions ofDJ(x) andD
a
J(x). For each independent draw of (ϖi)

n
i=1, compute

the sup t-statistics:

sup
x∈X

∣∣∣∣D∗
J(x)

σ̂J(x)

∣∣∣∣ , sup
x∈X

∣∣∣∣Da∗
J (x)

σ̂aJ(x)

∣∣∣∣ . (7)

Let z∗1−α,J and za∗1−α,J denote the (1 − α) quantile of these sup statistics across a large

number (say 1000) independent draws of (ϖi)
n
i=1. Chen and Christensen (2018) construct

100(1− α)% UCBs for h0 and ∂ah0 as follows:

Cn,J(x) =

[
ĥJ(x)− z∗1−α,J σ̂J(x), ĥJ(x) + z∗1−α,J σ̂J(x)

]
,

Ca
n,J(x) =

[
∂aĥJ(x)− za∗1−α,J σ̂

a
J(x), ∂

aĥJ(x) + za∗1−α,J σ̂
a
J(x)

]
.

The above UCBs are theoretically justified provided J increases faster than the oracle

J0 (the optimal sieve dimension for estimating h0 or its derivatives in sup-norm), so that

the bias is of smaller order than sampling uncertainty. Unfortunately, J0 is unknown in

practice since it depends on the unknown smoothness of h0 and other unknown model

regularities of (1). This motivates us to propose the new data-driven UCBs in Section 2.4.

2.2 Problems with Standard Cross Validation

We briefly explain why the usual approach of cross validation (CV) for regression is not

a valid method for choosing J in models with endogeneity. Consider the standard CV

criterion

CV(J) =
1

n

n∑
i=1

(Yi − ĥ−i,J(Xi))
2, (8)

where n is the sample size and ĥ−i,J denotes version of ĥJ computed from a sub-sample

that excludes the ith observation. Let ui = Yi − h0(Xi). We may then expand (8) as

CV(J) =
1

n

n∑
i=1

(h0(Xi)− ĥ−i,J(Xi))
2 +

1

n

n∑
i=1

u2i +
2

n

n∑
i=1

ui(h0(Xi)− ĥ−i,J(Xi)).
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The first term in the expansion is an estimate of the MSE E[(h0(X)− ĥJ(X))2] of ĥJ and

the second term is independent of J . The third term is an estimate of E[u(h0(X)−ĥJ(X))].

This term is asymptotically negligible without endogeneity (i.e., when E[u|X] = 0) as is

the case for nonparametric regression, making CV(J) a suitable sample analogue of the

mean-square error of ĥJ in that case (see, e.g., Li (1987)). But in models with endogeneity

(i.e., when E[u|X] ̸= 0), there is no guarantee that E[u(h0(X)− ĥJ(X))] = 0 and so this

third term—which depends on J—may be non-negligible even asymptotically. If so, cross

validation gives a biased estimate of the MSE of ĥJ and is therefore not a meaningful

criterion by which to choose J in models with endogeneity. Indeed, a cross-validated

choice of J may not even lead to a consistent estimator of h0 in model (1).

In addition, even for nonparametric regression, the J chosen by CV balances bias and

sampling uncertainty in L2 norm. Such as choice is not optimal for estimation of h0 and

its derivatives in sup-norm, nor is it sutiable for adaptive UCBs for h0 and its derivatives.

2.3 Procedure 1: Data-driven Choice of Sieve Dimension

We now present our data-driven choice J̃ of sieve dimension using B-spline bases. B-splines

are characterized by their order r. In the simulations and empirical application, we use a

cubic B-spline (r = 4) for {ψJj}Jj=1 and a quartic B-spline (r = 5) for {bKk}Kk=1.
7

Let T = {J = (2l + r − 1)d : l ∈ N0} denote a dyadic grid of candidate values of

J , where the integer r is the order of the B-spline basis for {ψJj}Jj=1 (i.e., each ψJj is

a piecewise polynomial of degree r − 1). For example, T = {J = 2l + 3 : l ∈ N0} ≡
{4, 5, 7, 11, 19, 35, . . .} for a scalar X (d = 1) and cubic B-splines (r = 4).8 The index l

is the resolution level. We construct {bKk}Kk=1 similarly, using B-splines of order (r + 1)

because the reduced form is smoother than h0. Given the resolution level l for the basis

for X, the resolution level for the basis for W is lw = ⌈(l+ q)d/dw⌉ for some q ∈ N0 where

dw is the dimension of W . Linking lw to l in this manner defines a mapping K(J) that

satisfies limJ→∞K(J)/J = c ∈ [1,∞). We recommend taking q as the second- or third-

smallest value for which K(J) ≥ J holds for all J (i.e., q = 1 or q = 2 if both X andW are

of the same dimension). We advise against choosing q any larger, as the number of basis

functions increases exponentially in the resolution level. Let J+ = min{j ∈ T : j > J} be

the smallest sieve dimension in T exceeding J .

7In the first submitted version we also used a quadratic B-spline (r = 3) for {ψJj}Jj=1. In additional

simulations we obtained very similar results with a Fourier basis for {bKk}Kk=1.
8Letting J vary over T ensures there is enough separation that we can accurately compare the bias

and variance of estimators with different J ∈ T . This helps improve the numerical stability of the method,
coherent with implementations of Lepski’s method in other nonparametric contexts.
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For J, J2 ∈ T with J2 > J , the contrastDJ(x)−DJ2(x) is an estimate of ĥJ(x)−ĥJ2(x),
whose variance can be estimated by

σ̂2
J,J2

(x) := σ̂2
J(x) + σ̂2

J2
(x)− 2σ̃J,J2(x), σ̃J,J2(x) = (ψJ(x))′MJÛJ,J2

M′
J2
ψJ2(x), (9)

where σ̂2
J(x) is defined in (5) and ÛJ,J2 is a n × n diagonal matrix whose ith diagonal

entry is ûi,J ûi,J2 . Moreover, the multiplier bootstrap version of DJ(x)−DJ2(x) is

D∗
J(x)−D∗

J2
(x) = (ψJ(x))′MJ û

∗
J − (ψJ2(x))′MJ2

û∗
J2
.

Finally let ŝJ be the smallest singular value of (B′
K(J)BK(J))

−1/2(B′
K(J)ΨJ)(Ψ

′
JΨJ)

−1/2.

Procedure 1: Data-driven Choice of Sieve Dimension

1. Compute

Ĵmax = min

{
J ∈ T : J

√
log Jŝ−1

J ≤ 10
√
n < J+

√
log J+ŝ−1

J+

}
(10)

Ĵ =
{
J ∈ T : 0.1(log Ĵmax)

2 ≤ J ≤ Ĵmax

}
. (11)

2. Let α̂ = min{0.5, (log(Ĵmax)/Ĵmax)
1/2}. For each draw of (ϖi)

n
i=1, compute

sup
{(x,J,J2)∈X×Ĵ×Ĵ :J2>J}

∣∣∣∣D∗
J(x)−D∗

J2
(x)

σ̂J,J2(x)

∣∣∣∣ . (12)

Let θ∗1−α̂ denote the (1− α̂) quantile of (12) across independent draws of (ϖi)
n
i=1.

3. Let Ĵn = max{J ∈ Ĵ : J < Ĵmax} and

Ĵ = min

{
J ∈ Ĵ : sup

(x,J2)∈X×Ĵ :J2>J

∣∣∣∣∣ ĥJ(x)− ĥJ2(x)

σ̂J,J2(x)

∣∣∣∣∣ ≤ 1.1θ∗1−α̂

}
. (13)

The data-driven choice of sieve dimension is

J̃ = min{Ĵ , Ĵn} . (14)

Remark 2.1 In practice, the supremums over x in Steps 2 and 3 can be replaced by the

maximum over a fine grid of x values as the functions are continuous in x. We have used

1000 draws of (ϖi)
n
i=1 in our empirical and simulation studies. Note the (ϖi)

n
i=1 are held
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fixed when computing the supremum over (x, J, J2) for each draw. Our theory allows for

constants other than 10 and 0.1 in Step 1 as long as they ensure Ĵ contains several values

of J to search over. Our theory also allows for any constant larger than 1 in Step 3; the

value 1.1 performed well in simulations and is used in other implementations of Lepski’s

method (see, e.g., Chernozhukov et al. (2014)).

We present the theoretical results on the adaptivity of J̃ in Section 4.2.

2.4 Procedure 2: Data-driven UCBs

Let p > d/2 denote the minimal degree of smoothness assumed for h0. For instance, if X

is scalar and h0 is Lipschitz, then one could take p = 1 even through the true smoothness

of h0 is unknown. Let Â = log log J̃ and

Ĵ− =

{J ∈ Ĵ : J < Ĵn} if J̃ = Ĵ ,

Ĵ if J̃ = Ĵn.

Procedure 2: Data-driven UCBs for h0

4. For each (ϖi)
n
i=1, compute

sup
(x,J)∈X×Ĵ−

∣∣∣∣D∗
J(x)

σ̂J(x)

∣∣∣∣ . (15)

Let z∗1−α denote the (1− α) quantile of (15) across independent draws of (ϖi)
n
i=1.

5. Construct the 100(1− α)% UCB

Cn(x) =

[
ĥJ̃(x)− cv∗(x) σ̂J̃(x), ĥJ̃(x) + cv∗(x) σ̂J̃(x)

]
, (16)

where

cv∗(x) =

z∗1−α + Âθ∗1−α̂ if J̃ = Ĵ ,

z∗1−α + Âmax{θ∗1−α̂ , J̃−p/d/σ̂J̃(x)} if J̃ = Ĵn.
(17)

Procedure 2′: Data-driven UCBs for ∂ah0 (0 < |a| < p)

4′. For each (ϖi)
n
i=1, compute

sup
(x,J)∈X×Ĵ−

∣∣∣∣Da∗
J (x)

σ̂aJ(x)

∣∣∣∣ . (18)

Let za∗1−α denote the (1− α) quantile of (18) across independent draws of (ϖi)
n
i=1.
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5′. Construct the 100(1− α)% UCB

Ca
n(x) =

[
∂aĥJ̃(x)− cva∗(x) σ̂a

J̃
(x), ∂aĥJ̃(x) + cva∗(x) σ̂a

J̃
(x)

]
, (19)

where

cva∗(x) =

za∗1−α + Âθ∗1−α̂ if J̃ = Ĵ ,

za∗1−α + Âmax{θ∗1−α̂, J̃ (|a|−p)/d/σ̂a
J̃
(x)} if J̃ = Ĵn.

(20)

Remark 2.2 Procedures 1 and 2 require choosing the B-spline order r and Procedure 2

requires specifying the minimal degree of smoothness p. For sup-norm estimation and

UCBs for first derivatives one can take r ≥ 3 and p ≥ 1; for second derivatives and cross

elasticities one can take r ≥ 4 and p ≥ 2.

Remark 2.3 We establish that J̃ = Ĵ with probability approaching one (wpa1) in the

mild regime; and that J̃ , Ĵ ∈ [cĴn, Ĵn] wpa1 in the severe regime (for a constant c ∈ (0, 1)).

Nevertheless, we find J̃ = Ĵ in the empirical application and in the vast majority (between

99.6% and 100% depending on the design and sample size) of all simulations. In particular,

J̃ = Ĵ across all simulations in the Engel curve design which is in the severe regime (see

Appendix C).

Theoretical properties of these UCBs are presented in Sections 4.3 and 4.4. We show that

the Procedures 2 and 2′ UCBs are honest and adaptive for models in the mild regime

(including nonparametric regression as a special case). For models in the severe regime,

we show that the Procedures 2 and 2′ UCBs with critical values corresponding to J̃ = Ĵn

have valid (actually conservative) coverage. Nevertheless, the Engel curve simulation in

Appendix C shows that the Procedure 2 UCBs still have valid (actually conservative)

coverage for a severe regime design.

3 International Trade: Simulations and Application

Adao, Arkolakis, and Ganapati (2020, hereafter AAG) derive semiparametric gravity equa-

tions for the extensive and intensive margins of firm exports in a monopolistic competition

model of international trade. Importantly, and in sharp contrast with the existing litera-

ture (Melitz, 2003; Chaney, 2008; Eaton et al., 2011; Head et al., 2014; Melitz and Redding,

2015), AAG do not impose any parametric assumptions on the distribution of unobserved
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firm heterogeneity. The gravity equations identify functions which characterize the elas-

ticities of the extensive and intensive margins of firm-level exports to changes in bilateral

trade costs. AAG emphasize the importance of these elasticities for counterfactuals.

In this section, we apply our procedures to estimate and construct UCBs for the in-

tensive margin and its elasticity using AAG’s baseline model and data. We also present

simulation studies based on empirical calibrations of two workhorse trade models to illus-

trate the sound performance of our procedures.

3.1 Model and Data

We begin by briefly summarizing the empirical framework of AAG. They use a monopolis-

tic competition model of international trade—see Melitz and Redding (2014) for a review.

There are a continuum of firms in each country. Firm ω in country i is characterized by

an entry potential eij(ω) and a revenue potential rij(ω) for selling in country j. Firms

draw eij(ω) from a distribution He
ij(e) then rij(ω) from a (possibly degenerate) distribu-

tion Hr
ij(r|e). Firm ω in country i exports to country j if and only if eij(ω) exceeds a

threshold. The proportion of firms in country i that export to country j is denoted πij.

The extensive margin is characterized by the inverse distribution of entry potential,

i.e., ϵij(πij) = (He
ij)

−1(1− πij). Assuming homogeneity (so He
ij = He and ϵij = ϵ), AAG’s

gravity equation for the extensive margin is

log ϵ(πij) = log(f̄ij τ̄
σ̃
ij) + δϵi + ζϵj ,

where τ̄ij and f̄ij are variable and fixed trade costs from i to j and δϵi and ζ
ϵ
j are exporter

and importer fixed effects (FEs). Costs depend linearly on a cost shifter zij:

log τ̄ij = κτzij + δτi + ζτj + ητij,

log f̄ij = κfzij + δfi + ζfj + ηfij,

where the idiosyncratic error terms ητij and η
f
ij are conditionally mean-zero and indepen-

dent of zij and the FEs. This yields the estimating equation

log ϵ(πij) = (κf + σ̃κτ )zij + (δfi + σ̃δτi + δϵi ) + (ζfj + σ̃ζτj + ζϵj ) + ηfij + σ̃ητij. (21)

Note that πij depends (possibly nonlinearly) on zij and the error terms ηfij and η
τ
ij.

The intensive margin is characterized by the average revenue potential of exporting
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firms:

ρij(π) =
1

π

∫ π

0

E[r|e = ϵij(v)] dv ,

where the expectation is taken under Hr
ij(r|e). Assuming homogeneity (so Hr

ij = Hr and

ρij = ρ), AAG’s gravity equation for the intensive margin is

log x̄ij − log ρ(πij) = log(τ̄ σ̃ij) + δρi + ζρj ,

where x̄ij are average firm exports and δρi and ζ
ρ
j are FEs. With τ̄ij as above, AAG obtain

log x̄ij + σ̃κτzij = log ρ(πij) + (δρi − σ̃δτi ) + (ζρj − σ̃ζτj )− σ̃ητij. (22)

More concisely,

yij = log ρ̃(π̃ij) + δi + ζj + uij , (23)

where yij := log x̄ij + σ̃κτzij is the dependent variable,9 π̃ij := log πij is the endogenous

regressor, log ρ̃(π̃) := log ρ(eπ̃) is the unknown structural function, δi := δρi − σ̃δτi and

ζj := ζρj−σ̃ζτj are exporter and importer FEs, and the idiosyncratic error term uij := −σ̃ητij
is conditionally mean-zero and independent of the instrumental variable zij.

Our goal is to use (23) to estimate log ρ̃ and its derivative, as ∂ log ρ̃(π̃)
∂π̃

≡ ∂ log ρ(π)
∂ log π

characterizes the elasticity of the intensive margin of firm-level exports to changes in

bilateral trade costs. We use the same data that AAG use for their baseline estimates,

which consists of x̄ij, zij, and π̃ij for a sample of 1522 country pairs for the year 2012. We

refer the reader to AAG for a detailed description of the data and its construction.

3.2 Implementation

Model (23) differs from model (1) due to the presence of FEs. AAG estimate log ρ̃ and

FEs jointly, using both zij and exporter and importer country dummies as instruments.

As such, they estimate a partially linear model with a large number of linear regressors

(due to the country dummies) and, similarly, a large number of instrumental variables.10

Our methods and theoretical results are not formally developed for such a setting.11

Therefore, we maintain their assumption that zij and origin and destination FEs are

9AAG construct yij from data on x̄ij and zij based on external estimates of σ̃ and κτ .
10These comments are based on the November 2020 version of AAG, which is currently under revision.

Some of their implementation and findings may differ in future versions.
11Our approach extends to partially linear models—see Section 6. But with bilateral trade data the

number of dummy variables representing origin and destination FEs is increasing with the sample size n.
This “many regressors/many instruments” asymptotic framework falls outside the scope of our analysis.

15



exogenous, but we further assume that E[log ρ̃(π̃ij)|zij, δi, ζj] = E[log ρ̃(π̃ij)|zij] (a.s.).

That is, the intensive margin is conditional mean independent of exporter- and importer-

specific factors given cost shifters. Note, however, that we are not imposing that average

firm exports are conditional mean independent of exporter- and importer-specific factors.

The reduced form for yij is

yij = g(zij) + δi + ζj + eij , (24)

where g(zij) = E[log ρ̃(π̃ij)|zij] and E[eij|zij, δi, ζj] = 0. We estimate δi and ζj from (24) by

partially linear series regression. That is, we regress yij on origin and destination dummies

and functions bK1, . . . , bKK of zij at dimension K(Ĵmax). We then apply our procedures

using Yij = yij− δ̂i− ζ̂j as the dependent variable (Y ), π̃ij as the endogenous regressor (X),

and zij as the instrumental variable (W ). We present simulations below for models with

and without FEs and show that this first-stage estimation of δi and ζj does not affect the

performance of our procedures. Appendix B provides further details on implementation.

3.3 Empirical Results

We implement our procedures using AAG’s data. Our data-driven choice of sieve dimen-

sion is J̃ = 4 for this sample. Figure 1 plots our estimate of log ρ and the elasticity of the

intensive margin, together with their 95% UCBs that are constructed as in displays (16)

and (19), respectively. We report results over the interval [0.1%, 50%], as in AAG.

UCBs for log ρ and the elasticity of ρ are both narrow and informative. Figure 1 also

plots a linear IV estimate of log ρ and the corresponding (constant) elasticity estimate.12

These both lie outside the UCBs for much of the support of πij. As such, our UCBs for the

elasticity provide evidence against the Pareto specification for unobserved firm produc-

tivity used, e.g., by Chaney (2008), under which the elasticity of ρ is constant. Whereas

Figure 1 of AAG shows that several conventional parameterizations of the distribution

of unobserved firm heterogeneity used by Eaton et al. (2011), Head et al. (2014), and

Melitz and Redding (2015) all imply a decreasing elasticity over [0.1%, 50%]. By con-

trast, decreasing elasticities necessarily fall outside our 95% UCBs over [0.1%, 50%], as

the right-most point of the lower UCB lies above the upper UCB for smaller values of π̃ij.

To show that our results are not sensitive to first-stage elimination of fixed effects, we

also estimate log ρ and the FEs jointly, using our data-driven choice J̃ = 4 and instrument-

ing with bK(J̃)1(zij), . . . , bK(J̃)K(J̃)(zij) and the origin and destination dummies, and using

12For the linear IV estimates, we estimate log ρ jointly with the FEs as in AAG.
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Figure 1: Estimates of the intensive margin log ρ (left panel) and its elasticity (right
panel) using AAG’s data set (1522 observations). Note: Solid black lines are estimates;
dashed black lines are 95% UCBs; dot-dash grey lines are nonparametric estimates with
FEs estimated jointly with log ρ as in AAG; dotted grey lines are linear IV estimates.

yij as the dependent variable. Estimates using this approach are also shown in Figure 1

(labeled Joint NPIV + FEs). There is a vertical shift in the estimate of log ρ between the

two approaches due to the different treatment of FEs, but the estimated elasticity—which

is the focus of AAG—lies entirely within our 95% UCB for the elasticity and is very close

to our data-driven elasticity estimate over the whole range [0.1%, 50%].

3.4 Simulation Results

We now present simulation studies based on empirical calibrations of two workhorse trade

models. The first design is based on Head et al. (2014) who assume a log-normal distri-

bution for latent firm productivity. The second design is based on Chaney (2008) who

assumes a Pareto distribution. In the first design the elasticity of ρ is decreasing whereas

in the second design log ρ(π) = ρ log π and hence the elasticity is constant. For brevity

we only present results for elasticity estimates in the log-normal design here. Additional

results for the Pareto design and estimation of log ρ are deferred to Appendix B.2.

We generate data by first sampling zij independently with replacement from its em-

pirical distribution. We then generate data on π̃ij and x̄ij by simulating from equations

(21) and (22), using the expressions for log ϵ(π) and log ρ(π) implied by the log-normal

assumption—see Appendix B.2. As the empirical application has n = 1522, we investigate

the performance of our procedures across 1000 samples of size 761, 1522, 3044, and 6088.

Plots for a representative sample of size 1522 are presented in Figure 2(a). We generate

the results in Table 1 and Figure 2 by implementing our procedures as in the empirical
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application. That is, the dependent variable is Yij = yij− δ̂i− ζ̂j, where δ̂i and ζ̂j are first-
stage estimates of the exporter and importer fixed effects. We construct basis functions as

in the application; see Appendix B for details. We also compute estimates and confidence

bands over the range 0.1% to 50% for πij as reported in the application.

The first panel in Table 1 presents the average and median (across simulations) of

sup
π∈[0.001,0.5]

∣∣∣∣∣d ̂log ρ(π)d log π
− d log ρ(π)

d log π

∣∣∣∣∣ ,
which is the maximal error of estimates of the elasticity of ρ for πij over [0.1%, 50%]. We

compare estimates using J̃ to estimates that use a deterministic choice of sieve dimension,

namely J = 4, 5, 7, and 11 (these are the first few values of J over which our procedure

searches). In each simulation, the maximal error is generally smallest with J = 4 or J = 5.

The average J̃ is between 4.1 and 4.2 depending on the sample size. The maximal error

of J̃ is at least half that with J = 7, and ten times smaller than with J = 11.

Turning to the coverage properties of UCBs for the elasticity, the second panel of

Table 1 shows our data-driven UCBs have correct but somewhat conservative coverage.

Some conservativeness is to be expected, as our UCBs have uniform coverage guarantees

over a class of DGPs. We also present coverage of UCBs based on the usual approach of

“undersmoothing” from Section 2.1. These UCBs use a deterministic J and have valid

coverage provided J is chosen sufficiently large that bias is negligible relative to sampling

uncertainty. Of course, in any empirical application a researcher does not know the true

function, and therefore doesn’t know which values of J are sufficiently large that sampling

uncertainty dominates bias. As can be seen from Table 1, J = 4 or J = 5 seems too small,

and consequently these bands under-cover. Bands with J = 7 have coverage closer to

nominal coverage, but these bands are more than 70% wider than the data-driven bands.

Comparing the UCBs in Figures 2(a) and 2(c), we see the efficiency improvement of our

bands relative to undersmoothed bands with J = 7, for estimating both ρ and its elasticity.

The fact that our UCBs are based on an optimal choice of J , and therefore contract

faster than bands based on undersmoothing, has important practical consequences. Con-

sider the data-driven UCBs for the elasticity of ρ reported in Figure 2(a). These bands

do not contain any constant function because the upper limit of the lower band exceeds

the lower limit of the upper band. This provides evidence against the Pareto specification

of productivity used by Chaney (2008), for which the elasticity of ρ is constant.13 Note

13Table 1 presents the frequency that such a test rejects the constant elasticity specification.
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Table 1: Simulation Results for the Elasticity of ρ, Log-normal Design

Data-driven Deterministic

J = 4 J = 5 J = 7 J = 11

Sup-norm Loss

n mean med. mean med. mean med. mean med. mean med.

761 0.268 0.187 0.207 0.178 0.314 0.281 0.579 0.472 2.063 1.902
1522 0.184 0.129 0.144 0.125 0.216 0.191 0.382 0.339 1.823 1.650
3044 0.143 0.099 0.106 0.095 0.149 0.139 0.283 0.254 1.562 1.385
6088 0.111 0.071 0.076 0.068 0.105 0.096 0.202 0.185 1.367 1.218

UCB Coverage

90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

761 0.989 0.997 0.861 0.921 0.841 0.911 0.871 0.930 0.906 0.965
1522 0.994 0.997 0.872 0.924 0.857 0.921 0.889 0.936 0.940 0.976
3044 0.993 0.998 0.833 0.899 0.869 0.929 0.899 0.943 0.947 0.979
6088 0.993 0.994 0.800 0.890 0.868 0.936 0.899 0.952 0.949 0.982

Frequency 95% UCB Relative Width (Deterministic/Data-driven)

reject mean med. mean med. mean med. mean med.

761 0.088 0.624 0.651 0.922 0.932 1.750 1.568 6.398 6.140
1522 0.344 0.632 0.657 0.906 0.911 1.739 1.599 8.295 8.098
3044 0.822 0.638 0.657 0.888 0.902 1.746 1.625 10.340 10.071
6088 0.959 0.634 0.660 0.865 0.893 1.722 1.690 12.783 12.665

Note: Column “reject” reports the proportion of simulations in which constant functions are
excluded from data-driven 95% UCBs for the elasticity.

this is despite the fact that our bands tend to be a bit conservative. The undersmoothed

bands with J = 7 have coverage closer to nominal coverage. But for the sample shown

in Figure 2, the undersmoothed bands with J = 7 are sufficiently wide that constant

functions lie entirely within the bands. Hence, the researcher could not reject a constant

elasticity specification on the basis of the undersmoothed bands in this sample. In fact,

the undersmoothed bands with J = 7 only reject the constant elasticity specification in

15.8% of simulations with 1522 observations whereas the rejection rate for the data-driven

bands is 34.4%. This difference in rejection rates illustrates the general phenomenon that

undersmoothed bands sacrifice efficiency for coverage. The undersmoothed bands are also

quite wiggly, making it difficult to infer the shape of the true elasticity.

We note in closing that our procedures can equally be applied to other IV-based

nonparametric analyses in international trade; see, e.g., Adao et al. (2017).
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(a) Data-driven Estimates and UCBs

(b) Estimates and UCBs with J = 5

(c) Estimates and UCBs with J = 7

Figure 2: Log-normal design: Plots for a representative sample of size 1522. Left panels
correspond to the intensive margin, right panels correspond to its elasticity. Note: Solid
grey lines are the true curves; solid black lines are estimates; dashed black lines are 95%
UCBs; dotted grey lines are linear IV estimates.

4 Theory

We first outline the main regularity conditions in Section 4.1. Section 4.2 shows that J̃

leads to minimax convergence rates for estimators of both h0 and its derivatives. We then

present the main results for UCBs in Sections 4.3 and 4.4.

20



4.1 Assumptions

We first state and then discuss the assumptions that we impose on the model and sieve

space. We require these to hold for some constants af , c, C, CT , CQ, σ, σ > 0 and γ ∈ (0, 1).

Let T : L2
X → L2

W denote the operator Th(w) = E[h(X)|W = w]. For nonparametric

regression we have W ≡ X and so T reduces to the identity.

Assumption 1 (i) X has support X = [0, 1]d and its distribution has Lebesgue density

fX which satisfies a−1
f < fX(x) < af on X ; (ii) W has support W = [0, 1]dw and its

distribution has Lebesgue density fW which satisfies a−1
f < fW (w) < af on W; (iii) T is

injective.

Assumption 2 (i) P
(
E[u4|W ] ≤ σ2

)
= 1; (ii) P

(
E[u2|W ] ≥ σ2

)
= 1.

Let ΨJ and BK be the closed linear subspaces of L2
X and L2

W spanned by ψJ1, . . . , ψJJ

and bK1, . . . , bKK , respectively. Define

τJ = sup
h∈ΨJ :∥h∥L2

X
̸=0

∥h∥L2
X

∥Th∥L2
W

,

where ∥·∥L2
X
and ∥·∥L2

W
denote the L2

X and L2
W norms. The sieve measure of ill-posedness

τJ quantifies the degree of difficulty of inverting Th0 to recover h0. As conditional expecta-

tions are (weakly) contractive, we have τJ ≥ 1. Large τJ indicate a more difficult inversion

problem. The model (1) is said to be mildly ill-posed (or in the mild regime) if τJ ≍ J ς/d

for some ς ≥ 0 and severely ill-posed (or in the severe regime) if τJ ≍ exp(CJ ς/d) for some

C, ς > 0, where d = dim(X). For nonparametric regression models we have τJ = 1 for all

J . Hence, nonparametric regression is a special case of the mild regime with ς = 0.

Let ΠJ : L2
X → ΨJ and ΠK(J) : L2

W → BK(J) denote LS projections onto ΨJ and

BK(J):

ΠJf = arg min
g∈ΨJ

∥f − g∥L2
X
, ΠK(J)f = arg min

g∈BK(J)

∥f − g∥L2
W
.

Also let QJ : L2
X → ΨJ denote the TSLS projection onto ΨJ :

QJf = arg min
h∈ΨJ

∥ΠK(J)T (f − h)∥L2
W
.

Assumption 3 (i) suph∈ΨJ ,∥h∥L2
X
=1 τJ∥ΠK(J)Th − Th∥L2

W
≤ vJ where vJ < 1 for all

J ∈ T and vJ → 0 as J → ∞;

(ii) τJ∥T (h0 − ΠJh0)∥L2
W

≤ CT∥h0 − ΠJh0∥L2
X
for all J ∈ T ;

(iii) ∥QJ(h0 − ΠJh0)∥∞ ≤ CQ∥h0 − ΠJh0∥∞ for all J ∈ T .
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Denote the “population” sieve variance of ĥJ(x) as ∥σx,J∥2sd = LJ,xΩJL
′
J,x where LJ,x =

(ψJ(x))′[S ′
JG

−1
b,JSJ ]

−1S ′
JG

−1
b,J and ΩJ = E[u2bK(J)(W )(bK(J)(W ))′] with u = Y − h0(X),

Gb,J = E[bK(J)(W )(bK(J)(W ))′], and SJ = E[bK(J)(W )(ψJ(X))′]. Also let ∥σx,J∥2 =

(ψJ(x))′[S ′
JG

−1
b,JSJ ]

−1(ψJ(x)), which satisfies ∥σx,J∥ ≍ ∥σx,J∥sd uniformly in x by As-

sumption 2.

Assumption 4 (i) cτ 2JJ ≤ infx∈X ∥σx,J∥2 ≤ supx∈X ∥σx,J∥2 ≤ Cτ 2JJ for all J ∈ T ;

(ii) lim supJ→∞ supx∈X ,J2∈T :J2>J(∥σx,J∥sd/∥σx,J2∥sd) < γ.

Assumptions 1(i)(ii) and 2 are standard conditions on the support of X and W and

the conditional variance of the errors (see, e.g., Chen and Christensen (2018)) that can be

relaxed. Assumption 1(iii) is an identification condition that is generically satisfied under

endogeneity (see Andrews (2017)) and is trivially satisfied for nonparametric regression

because T reduces to the identity in that case. Assumption 3 is also trivially satisfied for

nonparametric regression with CT , CQ = 1. Assumption 3(i) is imposed to ensure that ŝ−1
J

is a suitable sample analog of τJ . Assumption 3(ii) is the usual L2 “stability condition”

imposed in the NPIV literature to derive L2-norm rates. Assumption 3(iii) is a L∞-norm

analogue used to control the bias in sup-norm. Chen and Christensen (2018) provide a

thorough discussion of Assumption 4(i) and derive primitive sufficient conditions for it in

the context of nonparametric demand estimation. Assumption 4(ii) says that ∥σx,J∥2sd is

increasing in J ∈ T , uniformly in x. We view this as mild because J increases exponentially

over T . Indeed, by Assumption 2 and 4(i) and the fact that J ≍ 2Ld for some L ∈ N, for
any J, J2 ∈ T with J2 > J we have

sup
x∈X

∥σx,J∥sd
∥σx,J2∥sd

≍ τJ
√
J

τJ2
√
J2

≤ τ2Ld

τ2(L+1)d

2−d/2 ≤ 2−d/2 < 1 .

4.2 Main Results: Adaptive Estimation in Sup-norm

We now show J̃ leads to minimax rate-adaptive estimators of both the structural function

h0 and its derivatives. Our results encompass nonparametric regression as a special case.

We first define the parameter space for h0. Let B
p
∞,∞(M) denote the Hölder ball of

smoothness p and radiusM (see Appendix D.3 for a formal definition). For given constants

CT , CQ,M > 0 and p > p > d
2
with r ≥ ⌊p⌋ + 1, let Hp = Hp(M,CT , CQ) denote the

subset of Bp
∞,∞(M) that satisfies Assumption 3(ii)(iii) for any distribution of (X,W, u)

satisfying Assumptions 1-4, and let H =
⋃
p∈[p,p] Hp. For each h0 ∈ H, we let Ph0 denote

the distribution of (Xi, Yi,Wi)
∞
i=1 where each observation is generated by an IID draw

from a distribution of (X,W, u) satisfying Assumptions 1-4 with Y = h0(X) + u.

22



Theorem 4.1 Let Assumptions 1-4 hold.

(i) Suppose the model is mildly ill-posed. Then: there is a universal constant C4.1 for

which

sup
p∈[p,p]

sup
h0∈Hp

Ph0
(
∥ĥJ̃ − h0∥∞ > C4.1

(
log n

n

) p
2(p+ς)+d

)
→ 0.

(ii) Suppose the model is severely ill-posed. Then: there is a universal constant C4.1 for

which

sup
p∈[p,p]

sup
h0∈Hp

Ph0
(
∥ĥJ̃ − h0∥∞ > C4.1(log n)

−p/ς)→ 0.

We now show J̃ also leads to adaptive estimation of derivatives of h0. Intuitively,

estimating the derivative of h0 inflates convergence rate of the (squared) bias and vari-

ance terms by the same factor (a power of J). Therefore, a rate-optimal choice of J for

estimating h0 is also rate-optimal for estimating derivatives of h0.

Corollary 4.1 Let Assumptions 1-4 hold and let a ∈ (N0)
d with 0 < |a| < p.

(i) Suppose the model is mildly ill-posed. Then: there is a universal constant C ′
4.1 for

which

sup
p∈[p,p]

sup
h0∈Hp

Ph0
(
∥∂aĥJ̃ − ∂ah0∥∞ > C ′

4.1

(
log n

n

) p−|a|
2(p+ς)+d

)
→ 0.

(ii) Suppose the model is severely ill-posed. Then: there is a universal constant C ′
4.1 for

which

sup
p∈[p,p]

sup
h0∈Hp

Ph0
(
∥∂aĥJ̃ − ∂ah0∥∞ > C ′

4.1(log n)
−(p−|a|)/ς)→ 0.

Remark 4.1 The convergence rates in Theorem 4.1 and Corollary 4.1 are the minimax

rates for estimating h0 and ∂ah0 under sup-norm loss; see Chen and Christensen (2018).

Hence, ĥJ̃ and ∂aĥJ̃ converge at the minimax rate in both the mildly and severely ill-posed

cases. Case (i) encompasses nonparametric regression as a special case with ς = 0. To the

best of our knowledge, Theorem 4.1 and Corollary 4.1 are the first results on adaptive

estimation in sup-norm for NPIV and, more generally, ill-posed inverse problems with

unknown operator.

Remark 4.2 Our procedure requires the B-spline order r to satisfy r ≥ ⌊p⌋+1 for exact

minimax rate adaptivity. If the true p is larger so that r < ⌊p⌋+1, then our method is still

“adaptive” in the sense that it yields consistent estimates of h0 and its derivatives without

requiring prior knowledge of the true smoothness of h0 or the strength of the instruments.

In this case the data-driven estimators ĥJ̃ and ∂aĥJ̃ will converge at the rates presented
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in Theorem 4.1 and Corollary 4.1 with p = r. Thus, our procedure should be attractive to

applied researchers who often use a relatively low choice of r in applications. For instance,

Arellano, Blundell, and Bonhomme (2017) use linear splines (r = 2). While in principle

our method could be extended to let r become large, known results from approximation

theory imply that the basis becomes ill-conditioned (i.e., collinear) as r increases (see, e.g.,

Lyche (1978) and Scherer and Shadrin (1999)). As a consequence, the resulting procedure

would be less numerically stable than with smaller r.

4.3 Main Results: UCBs for h0

It is known since Low (1997) that it is impossible to construct confidence bands that

are simultaneously honest and adaptive over Hölder classes of different smoothness. As

is standard following Picard and Tribouley (2000), Giné and Nickl (2010), Bull (2012),

Chernozhukov et al. (2014), and many others, we establish coverage guarantees over a

“generic” subclass G of H. To describe G, first note by the discussion in Appendix D.3

that there exists a constant B <∞ for which suph∈Hp ∥h−ΠJh∥∞ ≤ BJ− p
d holds for all

J ∈ T and all p ∈ [p, p]. For any small fixed B ∈ (0, B) and any J ∈ T , we define

Gp =
{
h ∈ Hp : BJ− p

d ≤ ∥h− ΠJh∥∞ for all J ∈ T with J ≥ J
}
, G =

⋃
p∈[p,p]

Gp .

The class G is sometimes called a class of “self-similar” functions. Giné and Nickl (2010,

2016) present several results establishing the genericity of G in H. Loosely speaking, their

results say Hp \ (∪B>0,J∈T Gp) is nowhere dense in Hp under the norm topology of Hp.

Thus, the set of functions in Hp but not in Gp for some B and J is topologically meagre.

We say that a UCB {Cn(x) : x ∈ X} is honest over G with level α if

lim inf
n→∞

inf
h0∈G

Ph0
(
h0(x) ∈ Cn(x) ∀ x ∈ X

)
≥ 1− α , (25)

and adaptive if for every ϵ > 0 there exists a constant D for which

lim inf
n→∞

inf
p∈[p,p]

inf
h0∈Gp

Ph0
(
sup
x∈X

|Cn(x)| ≤ Drn(p)

)
≥ 1− ϵ ,

where | · | is Lebesgue measure and rn(p) is the minimax sup-norm rate of estimation

over Hp. Let Cn(x,A) denote the UCB from (16) replacing Â with a constant A > 0. Our

first main result is that Cn(x,A) is honest and adaptive in the mildly ill-posed case:

24



Theorem 4.2 Let Assumptions 1-4 hold and suppose the model is mildly ill-posed. Then:

there is a constant A∗ > 0 (independent of α) such that for all A ≥ A∗,

(i) lim inf
n→∞

inf
h0∈G

Ph0
(
h0(x) ∈ Cn(x,A) ∀ x ∈ X

)
≥ 1− α ;

(ii) inf
p∈[p,p]

inf
h0∈Gp

Ph0
(
sup
x∈X

|Cn(x,A)| ≤ C4.2(1 + A)

(
log n

n

) p
2(p+ς)+d

)
→ 1 ,

where C4.2 > 0 is a universal constant.

Remark 4.3 Theorem 4.2 shows that our UCBs are honest and adaptive in mildly ill-

posed models (where τJ ≍ J ς/d) for all ς ≥ 0. Importantly, the researcher doesn’t need to

know the true instrument strength as measured by ς to implement our procedures.

Remark 4.4 As the mildly ill-posed case nests nonparametric regression as a special

case with ς = 0, Theorem 4.2 shows that our UCBs are honest and adaptive for general

nonparametric regression models with non-Gaussian, heteroskedastic errors.

Remark 4.5 The constant A∗ in Theorem 4.2 depends implicitly on B and becomes

large as B ↓ 0, coherent with the findings of Armstrong (2021) for Gaussian white noise

models. This constant cannot be chosen in a data-dependent way (i.e., one cannot adapt

to unknown B). In practice, A can actually be quite small to guarantee coverage for a fixed

DGP—see the simulations in Section 5. The UCBs in Section 2 replace a fixed constant

A by Â = log log J̃ , which increases no faster than log log n. These UCBs therefore have

coverage guarantees over G defined for any small B > 0 and contract within a log log n

factor of the minimax rate.

Theorem 4.2 establishes that the UCBs for h0 in Procedure 2 is honest and adaptive

in the mildly ill-posed case. We have found that the UCBs in Procedure 2 perform well in

terms of coverage across many simulation designs including the severely ill-posed design

in Appendix C. Nevertheless, for the severely ill-posed case, we can only establish valid

coverage of the UCBs in Procedure 2 using the critical value cv∗(x) corresponding to

J̃ = Ĵn case, i.e.,

cv∗(x) = z∗1−α + Âmax{θ∗1−α̂ , J̃−p/d/σ̂J̃(x)} . (26)

The term J̃−p/d bounds the order of the bias term ∥ΠJ̃h0 − h0∥∞, which accounts for the

fact that the optimal choice of J in severely ill-posed models is bias-dominating. This

band reduces to the Procedure 2 UCB when θ∗1−α̂ ≥ J̃−p/d/σ̂J̃(x) for all x.
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Remark 4.6 In our empirical application to estimating the intensive margin and its

elasticity, the UCB (16) using critical value (26) reduces to the Procedure 2 band provided

p ≥ 0.7. The condition p ≥ 0.7 is naturally satisfied as h0 is assumed to be differentiable

in order to estimate the elasticity.

Let Cn(x,A) denote the UCB (16) with the critical value (26), except replacing Â with

a constant A > 0.

Theorem 4.3 Let Assumptions 1-4 hold and suppose the model is severely ill-posed.

Then: there is a constant A∗ > 0 (independent of α) such that for all A ≥ A∗,

(i) lim inf
n→∞

inf
h0∈G

Ph0
(
h0(x) ∈ Cn(x,A) ∀ x ∈ X

)
≥ 1− α ;

(ii) inf
p∈[p,p]

inf
h0∈Gp

Ph0
(
sup
x∈X

|Cn(x,A)| ≤ C4.3(1 + A)(log n)−p/ς
)

→ 1 ,

where C4.3 > 0 is a universal constant.

Our recommended choice Â = log log J̃ ensures that the UCBs are asymptotically

valid over G for any B > 0 and contract within a log log n factor of the minimax rate if

the true smoothness is p = p, and within a log n factor of the minimax rate otherwise.

Remark 4.7 If the true p > p, then the factor J̃−p/d is conservative and the UCB does

not contract at the minimax rate. This raises the question as to whether it is possible

to construct UCBs that are adaptive in severely ill-posed settings. As stated in Chapter

8.3 of Giné and Nickl (2016), the existence of rate-adaptive UCBs implicitly requires the

estimation of certain aspects of the unknown function, e.g. smoothness, to be feasible. In

mildly ill-posed settings, the condition h0 ∈ Gp is sufficient to ensure that J̃ diverges at the

oracle rate J0 ≍ (n/ log n)d/(2(p+ς)+d). As it turns out, J̃ is sufficiently informative about

the unknown smoothness p to facilitate the construction of adaptive UCBs. In severely

ill-posed models the oracle choice is J0 = (a log n)d/ς for 0 < a < (2C)−1, which is

independent of p. Therefore, the adaptivity of J̃ cannot be used to ascertain information

about p. We conjecture that any UCB that is centered around an adaptive estimator

that aims to mimic the oracle ĥJ0 will likely face the same “identifiability” problem of

recovering information about p from J0.

4.4 Main Results: UCBs for Derivatives

We now present an analogous set of results for data-driven UCBs for derivatives of h0. Here

we require an additional regularity condition similar to Assumption 4(i), which is only
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needed for the results in this subsection. Let ∥σax,J∥2 = (∂aψJ(x))′[S ′
JG

−1
b,JSJ ]

−1(∂aψJ(x)).

Assumption 4 (continued) (iii) There exist constants c, C > 0 for which cτ 2JJ
1+2|a|/d ≤

infx∈X ∥σax,J∥2 ≤ supx∈X ∥σax,J∥2 ≤ Cτ 2JJ
1+2|a|/d for all J ∈ T .

We first present results for the mildly ill-posed case. Let Ca
n(x,A) denote the UCB

Ca
n(x) from (19) when Â is replaced by a constant A > 0.

Theorem 4.4 Let Assumptions 1-4 hold, |a| < p, and suppose the model is mildly ill-

posed. Then: there is a constant A∗ > 0 (independent of α) such that for all A ≥ A∗,

(i) lim inf
n→∞

inf
h0∈G

Ph0
(
∂ah0(x) ∈ Ca

n(x,A) ∀ x ∈ X
)
≥ 1− α ;

(ii) inf
p∈[p,p]

inf
h0∈Gp

Ph0
(
sup
x∈X

|Ca
n(x,A)| ≤ C4.4(1 + A)

(
log n

n

) p−|a|
2(p+ς)+d

)
→ 1 ,

where C4.4 > 0 is a universal constant.

Remark 4.8 As the mildly ill-posed case nests nonparametric regression as a special

case, our UCBs are honest and adaptive for derivatives of h0 in general nonparametric

regression models with non-Gaussian, heteroskedastic errors.

As in the previous subsection, for the severely ill-posed case, we can only establish

valid coverage of the UCB (19) using the critical value cva∗(x) corresponding to J̃ = Ĵn,

i.e.,

cva∗(x) = za∗1−α + Âmax{θ∗1−α̂ , J̃ (|a|−p)/d/σ̂a
J̃
(x)} . (27)

This band reduces to the Procedure 2′ UCB when θ∗1−α̂ ≥ J̃ |a|−p/d/σ̂a
J̃
(x) for all x, which

is the case in our empirical application.

Let Ca
n(x,A) denote the band (19) with critical value (27) when Â is replaced by a

constant A > 0.

Theorem 4.5 Let Assumptions 1-4 hold, |a| < p, and suppose the model is severely ill-

posed. Then: there is a constant A∗ > 0 (independent of α) such that for all A ≥ A∗,

(i) lim inf
n→∞

inf
h0∈G

Ph0
(
∂ah0(x) ∈ Ca

n(x,A) ∀ x ∈ X
)
≥ 1− α ;

(ii) inf
p∈[p,p]

inf
h0∈Gp

Ph0
(
sup
x∈X

|Ca
n(x,A)| ≤ C4.5(1 + A)(log n)(|a|−p)/ς

)
→ 1 ,

where C4.5 > 0 is a universal constant.
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5 Additional Simulations

In this section we present two additional simulation studies. The first is a nonparametric

IV design with a non-monotonic, non-Lipschitz structural function. The second is a very

wiggly nonparametric regression design, which shows that J̃ can choose a relatively high-

dimensional model when needed. Finally, Appendix C presents a third set of simulations

in an empirically calibrated Engel curve design which is severely ill-posed.

5.1 Nonparametric IV Design

This design features a non-monotonic, non-Lipschitz structural function. We first draw

(U, V ) from a bivariate normal distribution with mean zero, unit variance, and correla-

tion 0.75, and draw Z ∼ N(0, 1) independent of (U, V ). We then set W = Φ(Z) where

Φ(·) denotes the standard normal CDF, X = Φ(D(Z + V ) + (1 − D)V ) where D is an

independent Bernoulli random variable taking the values 0 and 1 each with probability

0.5, and

Y = sin(4X) log(X) + U . (28)

The structural function h0(x) = sin(4x) log(x) is plotted in Figure 3. Note that the deriva-

tive of h0 diverges to −∞ as x ↓ 0. Therefore, h0 is Hölder continuous with exponent p

for any p < 1, but not Lipschitz continuous.

For each simulated data set we compute our data-driven estimator ĥJ̃ and UCBs from

(16). We compare these with estimators and UCBs using deterministic choices of sieve

dimensions for J = 4, 5, 7, and 11 (the first few dimensions over which our procedure

searches). We again use a cubic B-spline basis to approximate h0 and a quartic B-spline

for the reduced form.

The first panel of Table 2 presents the average sup-norm loss of ĥJ̃ across simulations.

These are of similar magnitude to the loss for deterministic-J estimates with J = 4

and 5 and are much smaller than the loss with J = 7 and 11. Our data-driven UCBs

demonstrate valid but slightly conservative coverage for smaller n and coverage close to

nominal coverage for n = 10000. Bands with J = 4 have poor coverage while bands with

J = 5 have valid coverage for the smaller sample sizes but under-cover for n = 10000. It

seems J = 7 or J = 11 is required to have valid coverage for n = 10000 in this design.

Note that while our bands are slightly conservative for smaller J , they are only about

10% wider than the J = 5 bands, and less than half the width of the J = 7 bands.

In Figure 3 we plot data-driven estimates and UCBs for h0 and its derivative over

[0.01, 0.99] for a sample of size 2500, alongside deterministic-J estimates and UCBs. In
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Table 2: Simulation Results for the Nonparametric IV Design (28).

Data-driven Deterministic

J = 4 J = 5 J = 7 J = 11

Sup-norm Loss

n mean med. mean med. mean med. mean med. mean med.

1250 0.541 0.491 0.539 0.489 0.678 0.630 1.087 1.000 1.524 1.422
2500 0.395 0.360 0.393 0.359 0.486 0.451 0.890 0.835 1.342 1.283
5000 0.323 0.292 0.319 0.291 0.367 0.345 0.761 0.696 1.231 1.169
10000 0.262 0.241 0.256 0.239 0.270 0.255 0.623 0.556 1.186 1.136

UCB Coverage

90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

1250 0.997 0.999 0.816 0.892 0.930 0.974 0.951 0.978 0.967 0.984
2500 0.995 0.997 0.744 0.859 0.910 0.950 0.956 0.983 0.978 0.991
5000 0.978 0.992 0.566 0.724 0.881 0.947 0.937 0.976 0.975 0.989
10000 0.908 0.949 0.324 0.470 0.847 0.921 0.935 0.986 0.967 0.989

95% UCB Relative Width (Deterministic/Data-driven)

mean med. mean med. mean med. mean med.

1250 0.658 0.663 0.925 0.897 1.502 1.451 2.122 2.046
2500 0.661 0.665 0.923 0.908 1.790 1.731 2.554 2.502
5000 0.663 0.668 0.917 0.914 2.255 2.158 3.286 3.228
10000 0.661 0.668 0.913 0.914 2.830 2.757 4.515 4.445

this sample, J̃ = 4 and our data-driven UCBs contain the true structural function. The

data-driven bands are narrower and more accurately convey the shape of h0 than the

J = 7 bands, which are much more wiggly. Our bands are also of a similar width to (but

are less wiggly than) the J = 5 bands. Panel (d) of Figure 3 also presents data-driven

estimates and UCBs for the conditional mean of Y given X. Here the data-driven choice is

again J̃ = 4. The true structural function falls outside the UCBs for the conditional mean

function over almost all of the support of X, highlighting the importance of estimating

h0 using IV methods in this design.

Finally, in Table 3 we present the coverage of our data-driven UCBs Cn(x,A) where

we replace Â = log log J̃ with a deterministic choice A ranging over [0, 1]. For this design,

A ≥ 0.3 suffices for correct coverage. In particular, Â = log log J̃ yields correct coverage.
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(a) Data-driven Estimates and UCBs

(b) Estimates and UCBs with J = 5

(c) Estimates and UCBs with J = 7

(d) Data-driven Estimates and UCBs for the Conditional Mean of Y given X

Figure 3: Nonparametric IV design (28): Plots for a sample of size n = 2500. Left panels
correspond to the structural function, right panels correspond to its derivative. Note: Solid
grey lines are the true structural function and derivative; solid black lines are estimates,
dashed black lines are 95% UCBs. Supports are truncated to [0.01, 0.99] as the derivative
is unbounded as x ↓ 0.
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Table 3: Coverage of 95% UCBs Cn(x,A), Nonparametric IV Design (28).

A

n 0.00 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1250 0.96 0.97 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2500 0.94 0.94 0.95 0.97 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5000 0.87 0.88 0.91 0.94 0.97 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

10000 0.72 0.73 0.78 0.83 0.91 0.95 0.97 0.99 0.99 1.00 1.00 1.00 1.00

5.2 Nonparametric Regression Design

For this design we simulate X ∼ U [0, 1] and U ∼ N(0, 1) independently, then set

Y = sin(15πX) cos(X) + U . (29)

Here h0(x) = sin(15πx) cos(x) is very wiggly over [0, 1] and requires a high value of J to be

selected in order to well approximate h0 (see Figure 4). While h0 is infinitely differentiable,

its Lipschitz constant is at least 47.1, the Lipschitz constant of its derivative is at least

2220, and Lipschitz constants grow rapidly for higher derivatives.

We again compare our data-driven estimator and UCBs using the procedures described

in Appendix A with estimators and UCBs that use deterministic choices of J for J = 11,

19, 35, and 67 (these are a subset of values over which our procedure searches). We again

use cubic B-splines to approximate h0.

It is clear from the simulation results presented in Table 4 that J > 19 is required

to well approximate the true h0. The average sup-norm loss of ĥJ̃ is similar to that of

the deterministic-J estimator for J = 35, and is smaller than the average loss for all

other J presented in the table. Our data-driven UCBs also deliver valid, but conservative,

coverage for the true conditional mean function. UCBs based on a deterministic choice

of J have zero coverage for J = 11 and J = 19 as these dimensions are too small to

adequately approximate h0, and tend to under-cover for the remaining J , except perhaps

for J = 35 when n = 10000.

In this design a much smaller value of A suffices to deliver valid coverage, as seen in

Table 5. The reason is that the set Ĵ− is large and ĥJ varies a lot across different J due to

the wiggliness of h0. Therefore z
∗
1−α, which is the quantile of a sup-statistic over X × Ĵ−,

is relatively more conservative than for the other designs. This extra conservativeness

suffices to deliver valid coverage in this design with smaller A.

Figure 4 plots our data-driven estimator ĥJ̃ and 95% UCBs for the conditional mean
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Table 4: Simulation Results for the Nonparametric Regression Design (29).

Data-driven Deterministic

J = 11 J = 19 J = 35 J = 67

Sup-norm Loss

n mean med. mean med. mean med. mean med. mean med.

1250 0.778 0.650 1.242 1.175 0.808 0.732 0.671 0.591 1.111 0.898
2500 0.490 0.423 1.182 1.133 0.705 0.650 0.483 0.415 0.698 0.603
5000 0.347 0.303 1.140 1.109 0.641 0.608 0.332 0.294 0.486 0.426
10000 0.236 0.209 1.113 1.095 0.606 0.585 0.233 0.206 0.330 0.291

UCB Coverage

90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

1250 0.999 0.999 0.000 0.000 0.000 0.000 0.790 0.864 0.627 0.713
2500 1.000 1.000 0.000 0.000 0.000 0.000 0.847 0.899 0.776 0.857
5000 1.000 1.000 0.000 0.000 0.000 0.000 0.857 0.909 0.845 0.910
10000 1.000 1.000 0.000 0.000 0.000 0.000 0.889 0.936 0.867 0.934

95% UCB Relative Width (Deterministic/Data-driven)

mean med. mean med. mean med. mean med.

1250 0.217 0.209 0.287 0.279 0.410 0.405 0.616 0.582
2500 0.206 0.206 0.279 0.279 0.401 0.405 0.603 0.599
5000 0.190 0.191 0.256 0.260 0.374 0.382 0.565 0.568
10000 0.195 0.196 0.261 0.262 0.380 0.383 0.573 0.572

function for a sample of size 2500. In this sample, J̃ = 35. The data-driven estimator well

approximates the true conditional mean function h0, which lies entirely within the 95%

UCBs, and the same is true for estimates and UCBs for the derivative of h0. Deterministic-

J bands with J = 67 are of a similar width to our data-driven bands for this sample, even

though they use a less conservative critical value which only accounts for sampling uncer-

tainty. The estimator is also much wigglier with J = 67 than our data-driven estimator

and does not approximate h0 as well.

6 Extensions

So far we have assumed the structural function h0 is a general d-variate function. As with

many other nonparametric estimation problems, minimax rates deteriorate as d increases.

This so-called curse of dimensionality applies to any estimator of h0. However, it can

be circumvented by imposing additional structure on h0 (when appropriate), such as

additivity or partial linearity. In this section, we show how our data-driven procedures
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Table 5: Coverage of 95% UCBs Cn(x,A), Nonparametric Regression Design (29)

A

n 0.00 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1250 0.88 0.88 0.90 0.93 0.96 0.98 0.98 0.99 0.99 0.99 1.00 1.00 1.00
2500 0.93 0.94 0.96 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5000 0.96 0.96 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10000 0.97 0.97 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

extend to additive and partially linear models.

Additive Structural Functions. Consider first the additive structural function:

h0(x) = c0 + h10(x1) + . . .+ hd0(xd)

where x = (x1, . . . , xd)
′. Here c0 is a constant representing an “intercept” term and the

hi0 are suitably normalized for identifiability. In the context of nonparametric regression,

Stone (1985) showed that imposing additivity can yield estimators of h0 that achieve the

same (optimal) rate for general d as for d = 1.

Our methods may be easily adapted to additive models as follows. We assume for sake

of exposition that X is bivariate (d = 2). Let ψJ(x) = (1, ψ̃J1 (x1)
′, ψ̃J2 (x2)

′)′ where for

i = 1, 2 we have ψ̃Ji (xi) = (ψ̃J1(xi), . . . , ψ̃JJ(xi))
′. Here J represents the dimensions of

sieves used to approximate both h10 and h20. The basis functions ψ̃J1, . . . , ψ̃JJ are formed

by setting ψ̃Jj(xi) = ψJj(xi)−
∫ 1

0
ψJj(v)dv with ψJ1(x1), . . . , ψJJ(x1) a univariate B-spline

basis. We estimate c0 and c
i
J , i = 1, 2, by TSLS regression of Y on ψJ(X) using bK(J)(W )

as instruments:  ĉh

ĉ1J
ĉ2J

 =
(
Ψ′
JPK(J)ΨJ

)−
Ψ′
JPK(J)Y = MJY ,

where the notation is as in Section 2 but with ψJ(x) = (1, ψ̃J1 (x1)
′, ψ̃J2 (x2)

′)′. The estimator

of hi0 is ĥiJ(xi) = (ψJi (xi))
′ĉiJ . Derivatives of hi0 are estimated by differentiating ĥiJ .

Our data-driven choice of J is implemented exactly as described in Section 2.3 with

ψJ(x) = (1, ψ̃J1 (x1)
′, ψ̃J2 (x2)

′)′. Data-driven UCBs for h10 are formed analogously to Sec-

tion 2.4 with two small modifications. First, when computing the critical value z∗1−α in

Step 4 of Procedure 2 we now use the sup-statistic

sup
(x1,J)∈[0,1]×Ĵ−

∣∣∣∣D∗
1J(x1)

σ̂1J(x1)

∣∣∣∣
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(a) Data-driven Estimates and UCBs

(b) Estimates and UCBs with J = 67

Figure 4: Nonparametric regression design (29): Plots for a sample of size n = 2500.
Left panels correspond to the conditional mean function, right panels correspond to its
derivative. Note: Solid grey lines are the true conditional mean function and its derivative;
solid black lines are estimates, dashed black lines are 95% UCBs.

where D∗
1J(x1) = (0, ψ̃J1 (x1)

′, 0′J)
′MJ û

∗
J with 0J a J-vector of zeros, and

σ̂2
1J(x) = (0, ψ̃J1 (x1)

′, 0′J)MJÛJ,JM
′
J(0, ψ̃

J
1 (x1)

′, 0′J)
′ .

The 100(1− α)% UCB for h10 is

Cn(x1) =

[
ĥ1J̃(x1)− cv∗(x1)σ̂1J̃(x1), ĥ1J̃(x1) + cv∗(x1)σ̂1J̃(x1)

]
with

cv∗(x1) =

z∗1−α + Âθ∗1−α̂ if J̃ = Ĵ ,

z∗1−α + Âmax{θ∗1−α̂ , J̃−p/σ̂1J̃(x1)} if J̃ = Ĵn

where p is the minimal smoothness assumed for h10 and h20. UCBs for derivatives of h10

are constructed analogously.
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Partially Linear Structural Functions. An alternative to additivity is the partially

linear specification (Ai and Chen, 2003)

h0(x) = h10(x1) + x′2β0

where x is partitioned as x = (x′1, x
′
2)

′ with x1 of dimension d1 < d, h10 is an unknown

function, and β0 is an unknown vector of parameters. When X is exogenous (so W ≡ X)

this is the important partially linear regression model of Robinson (1988).

Our methods may be adapted to estimate and construct UCBs for h10 as follows. First,

we let ψJ(x) = (ψJ1 (x1)
′, x′2)

′ where ψJ1 (x1) = (ψJ1(x1), . . . , ψJJ(x1))
′.14 We estimate cJ

and β by TSLS regression of Y on ψJ(X) using bK(J)(W ) as instruments:(
ĉJ

β̂

)
=
(
Ψ′
JPK(J)ΨJ

)−
Ψ′
JPK(J)Y = MJY ,

where the notation is as in Section 2 but with ψJ(x) = (ψJ1 (x1)
′, x′2)

′. The estimator of

h10 is ĥ1J(x1) = (ψJ1 (x1))
′ĉJ . Derivatives of h10 are again estimated by differentiating ĥ1J .

When X is exogenous, we simply take w = x and bK(w) = ψJ(x).

Our data-driven choice of J is implemented analogously to Section 2.3, except we

form the contrasts DJ , DJ(x)−DJ2(x), and D
∗
J(x)−D∗

J2
(x) and the variance terms σ̂2

J(x)

and σ̂2
J,J2

(x) using ψJ0 (x1) := (ψJ1 (x1)
′, 0d2)

′ in place of ψJ(x). As such, the t-statistics

are functions of x1 only and the supremums in the sup-statistics in Steps 2 and 3 of

Procedure 1 only need to be computed over the support X1 of x1. UCBs for h10 are

constructed analogously to Section 2.4, where the contrast D∗
J(x) and the variance term

σ̂2
J(x) are again formed using ψJ0 (x1) in place of ψJ(x). The 100(1− α)% UCB for h10 is

Cn(x1) =

[
ĥ1J̃(x1)− cv∗(x1)σ̂1J̃(x1), ĥ1J̃(x1) + cv∗(x1)σ̂1J̃(x1)

]
with

cv∗(x1) =

z∗1−α + Âθ∗1−α̂ if J̃ = Ĵ ,

z∗1−α + Âmax{θ∗1−α̂ , J̃−p/d1/σ̂1J̃(x1)} if J̃ = Ĵn

where p is the minimal degree of smoothness assumed for h10. UCBs for derivatives of h10

are constructed analogously.

14We assume without loss of generality that the X2 variables have mean zero, which permits identifi-
cation of h0 and β. In practice these variables can be de-meaned.
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7 Conclusion

We have introduced data-driven procedures for estimation and inference on a nonparamet-

ric structural function h0 and its derivatives using instrumental variables. Our data-driven

choice of sieve dimension leads to estimators of h0 and its derivatives that converge at

the fastest possible (i.e., minimax) rate in sup-norm. Our data-driven uniform confidence

bands (UCBs) for h0 and its derivatives are shown to have coverage guarantees and con-

tract at, or within a logarithmic factor of, the minimax rate. Both procedures have good

finite sample performance in various simulation designs, including empirically-calibrated

trade and Engel curve designs. Our methods are simple to compute, and are applied to

estimate and construct UCBs for the elasticity of the intensive margin of firm exports in

a monopolistic competition model of international trade.

Aside from the extensions in Section 6, it would be straightforward to extend our

methods to weakly dependent data, which is relevant for dynamic causal inference and

reinforcement learning. It would also be interesting to consider sup-norm rate-minimaxity

jointly with respect to both p and the degree of ill-posedness.

A Nonparametric Regression

Here we specialize our data-driven procedures to nonparametric regression. The condi-

tional mean function h0(x) = E[Y |X = x] is estimated by

ĥJ(x) = (ψJ(x))′ĉJ , ĉJ = (Ψ′
JΨJ)

−
Ψ′
JY .

Notation is as in Section 2.3, except now we set MJ = (Ψ′
JΨJ)

−Ψ′
J .

1. Compute an upper truncation point Ĵmax of the index set as

Ĵmax = min

{
J ∈ T : J

√
log Jυn ≤ 10

√
n < J+

√
log J+υn

}
(30)

with υn = max{1, (0.1 log n)4}, then compute Ĵ as in (11) with this choice of Ĵmax.

2. Let θ∗1−α̂ denote the (1− α̂) quantile of (12) across independent draws of (ϖi)
n
i=1.

3. Take J̃ = Ĵ for Ĵ defined in (13).

Data-driven UCBs are also constructed analogously.
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4. For UCBs for h0, compute the critical value z∗1−α as in (15). For UCBs for ∂ah0,

compute the critical value za∗1−α as in (18).

5. The UCB for h0 is

Cn(x) =

[
ĥJ̃(x)−

(
z∗1−α + Âθ∗1−α̂

)
σ̂J̃(x), ĥJ̃(x) +

(
z∗1−α + Âθ∗1−α̂

)
σ̂J̃(x)

]
.

The UCB for ∂ah0 is

Ca
n(x) =

[
∂aĥJ̃(x)−

(
za∗1−α + Âθ∗1−α̂

)
σ̂a
J̃
(x), ∂aĥJ̃(x) +

(
za∗1−α + Âθ∗1−α̂

)
σ̂a
J̃
(x)

]
.

Theorem 4.1 and Corollary 4.1 establish that J̃ leads to estimators of h0 and its deriva-

tives that attain the minimax sup-norm rates for nonparametric regression. Theoretical

properties of the data-driven UCBs are established in Theorems 4.2 and 4.4.

B Additional Details for Section 3

B.1 Basis Functions

We construct basis functions the same way in both the simulations and empirical appli-

cation. We use cubic B-splines (r = 4) to approximate h0 and quartic B-splines (r = 5)

to estimate the reduced-form. We also link the dimensions J and K(J) using q = 2.

As B-splines are supported on [0, 1] but π̃ij is negative, we transform π̃ij to [0, 1] using

π̃ 7→ max{0, π̃/10+ 1}. Under this transformation the very small fraction of observations

for which π̃ij < −10 or, equivalently, πij < 0.005%, are truncated to zero (there were only

four such observations in the empirical application). Similarly, we transform zij to have

support [0, 1] using its empirical CDF. The transformed π̃ij is not uniformly distributed

on [0, 1] so we place interior knots at its empirical quantiles. The transformed zij are

uniformly distributed on [0, 1] so we place interior knots uniformly between [0, 1].

B.2 Simulations

DGP. Our first simulation design is based on Head et al. (2014). As in Melitz (2003),

the only source of firm heterogeneity in their model is productivity. Hence, rij(ω) = eij(ω),

which is assumed to be lognormally distributed. The extensive margin is

log ϵ(π) = µ+ σ
√
2erf−1(1− 2π), (31)
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where erf(x) = 2√
π

∫ x
0
e−

1
2
t2 dt is the error function and erf−1 is its inverse, and µ and σ2

are the mean and variance of log eij. The intensive margin function may be shown to be

log ρ(π) = µ+
σ2

2
− log(2π) + log

(
1 + erf

(
σ2

√
2
− erf−1(1− 2π)

))
. (32)

Its elasticity is

d log ρ(π)

d log π
= −1 + 2π

exp
(
− σ2

√
2

(
σ2
√
2
− 2erf−1(1− 2π)

))
1 + erf

(
σ2√
2
− erf−1(1− 2π)

) .

Our second simulation design is based on the Pareto specification of Chaney (2008). In

this design the intensive margin is log ρ(π) = ρ log π and hence its elasticity is constant.

We generate data on zij by sampling IID with replacement from the empirical distri-

bution of zij. We then generate data on πij and x̄ij as follows. For the lognormal design,

we estimate two partially linear IV models based on (21) and (22), namely

log ϵ(πij) = βϵzij + δϵi + ζϵj + eϵij,

log x̄ij − log ρ(πij) = βρzij + δρi + ζρj + eρij.

In the first equation, we treat log ϵ(πij) as the dependent variable using the functional

form (31) with µ = −2 and σ = 1.2. In the second, we treat log x̄ij − log ρ(πij) as the

dependent variable using the functional form (32). We compute the covariance matrix Σ̂ of

the residuals (êϵij, ê
ρ
ij). We simulate (eϵij, e

ρ
ij) as independent N(0, Σ̂) random vectors. Given

eϵij and zij, we set log ϵ(πij) = 0.875zij − 7+ eϵij, then invert log ϵ(πij) using (31) to obtain

log πij. This gives a distribution with support, mean, and variance roughly calibrated to

the data used in the application. We then set x̄ij = log ρ(πij)− σ̃κτzij + δi+ ζj + eρij using

the functional form (32) for log ρ, with δi = 0, ζj = 0, and with σ̃ = 2.9 and κτ = 0.36 as

in AAG. We set exporter and importer FEs to zero for log ρ so that we can compare the

effect of first-stage estimation of these FEs on the performance of our procedures.

We generate data for the Pareto design (for which the elasticity of ρ is constant)

as described above, except we use log ρ(log π) = −0.23 log π in place of (32), where the

coefficient −0.23 matches AAG’s estimate for the constant elasticity specification.15

15Note that we maintain the same DGP for π as in the lognormal specification. While one could also
generate π using the Pareto assumption, this would change the joint distribution of (πij , zij), and hence
the instrument strength and degree of endogeneity. We keep the distribution fixed across designs so that
any difference in results is attributable to the different structural functions log ρ only.
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Simulation Results for the Log-normal Design without Fixed Effects. We first

present in Tables 6 and 7 results for estimating log ρ and the elasticity of ρ in the log-

normal design when we treat the FEs δi and ζj as zero. These results shut down any

estimation error that may be introduced by first-stage estimation of the FEs. Overall, the

results are very similar to those reported in Table 1 with first-stage estimation of FEs:

the sup-norm loss of the data-driven estimators of log ρ and the elasticity of ρ are similar

in magnitude to estimators with deterministic J = 4 or J = 5, and are several multiples

smaller than those with larger J . Coverage of the fixed J UCBs is generally too small

when J = 4, 5, whereas our data-driven UCBs deliver valid, albeit conservative, coverage.

Our data-driven UCBs also demonstrate an improvement in terms of width relative to the

deterministic-J UCBs when J is large enough (say J = 7, 11) to ensure sufficient coverage.

Rejection probabilities of a test of constant elasticity based on our data-driven UCBs for

the elasticity of ρ are also similar to those reported in Table 1. Figure 5 presents plots of

estimates and UCBs when we treat the FEs as zero using the same sample as Figure 2

(where FEs were estimated in the first-stage). The estimates and UCBs reported in these

figures are virtually identical, indicating first-stage estimation of FEs is innocuous.

Simulation Results for the Pareto Design. We now turn to the Pareto design in

which log ρ is linear and hence the elasticity of ρ is constant. For brevity we just present in

Table 8 the simulation results for estimating the elasticity of ρ. We adjust for first-stage

estimation of exporter and importer FEs, as in the empirical application. The optimal

choice is J = 4, which is the smallest dimension of a cubic B-spline basis. There is no

bias with J = 4 because the basis functions span cubic functions. As can be seen, the

maximal error in estimating the elasticity of ρ using J̃ is very close to the estimator with

fixed J = 4. Data-driven UCBs again demonstrate valid but conservative coverage for the

elasticity. UCBs with fixed J = 4 demonstrate coverage close to (but still slightly under)

nominal coverage with n = 6088. The UCBs with fixed J = 4 are narrower (by about

36%) than our data-driven UCBs as they do not account for potential approximation bias

whereas our bands do. Of course, in a real data application the researcher doesn’t know

whether the true elasticity is constant, and therefore whether the UCBs with fixed J = 4

is sufficient to guarantee coverage. Figure 6 presents plots for a representative sample of

size 1522, again implementing our procedures as described in Section 3. With our data-

driven choice J̃ = 4, our nonparametric IV estimate of log ρ is very close to linear and

our estimated elasticity is very close to the true, constant elasticity.
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Table 6: Simulation Results for Estimating log ρ, Log-normal Design, no FEs

Data-driven Deterministic

J = 4 J = 5 J = 7 J = 11

Sup-norm Loss

n mean med. mean med. mean med. mean med. mean med.

761 0.180 0.146 0.166 0.142 0.184 0.159 0.361 0.302 0.670 0.609
1522 0.120 0.099 0.113 0.096 0.125 0.111 0.265 0.218 0.584 0.537
3044 0.088 0.072 0.080 0.069 0.087 0.080 0.196 0.163 0.510 0.468
6088 0.068 0.053 0.058 0.051 0.063 0.058 0.147 0.121 0.456 0.408

UCB Coverage

90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

761 0.992 0.996 0.885 0.937 0.879 0.938 0.909 0.960 0.937 0.972
1522 0.996 0.998 0.898 0.940 0.893 0.944 0.915 0.955 0.964 0.985
3044 0.998 1.000 0.875 0.937 0.903 0.948 0.933 0.964 0.956 0.988
6088 0.999 1.000 0.864 0.936 0.880 0.949 0.913 0.958 0.951 0.984

95% UCB Relative Width (Deterministic/Data-driven)

mean med. mean med. mean med. mean med.

761 0.660 0.675 0.693 0.695 1.576 1.422 2.606 2.457
1522 0.668 0.681 0.692 0.696 1.784 1.700 3.425 3.168
3044 0.667 0.682 0.683 0.692 1.904 1.855 4.310 4.029
6088 0.663 0.684 0.673 0.691 2.007 2.008 5.637 5.055
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Table 7: Simulation Results for Estimating the Elasticity of ρ, Log-normal Design, no FEs
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(a) Data-driven Estimates and UCBs

(b) Estimates and UCBs with J = 5

(c) Estimates and UCBs with J = 7

Figure 5: Log-normal design without fixed effects: Plots for a representative sample of
size 1522. Left panels correspond to the intensive margin, right panels correspond to its
elasticity. Note: Solid grey lines are the true curves; solid black lines are estimates; dashed
black lines are 95% UCBs; dotted grey lines are linear IV estimates.
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Table 8: Simulation Results for Estimating the Elasticity of ρ, Pareto Design

Data-driven Deterministic

J = 4 J = 5 J = 7 J = 11
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n mean med. mean med. mean med. mean med. mean med.
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Giné, E. and R. Nickl (2016). Mathematical foundations of infinite-dimensional statistical
models. Cambridge University Press.

Hall, P. and J. L. Horowitz (2005). Nonparametric methods for inference in the presence
of instrumental variables. The Annals of Statistics 33 (6), 2904–2929.

Head, K., T. Mayer, and M. Thoenig (2014). Welfare and trade without Pareto. American
Economic Review 104 (5), 310–316.

Horowitz, J. L. (2011). Applied nonparametric instrumental variables estimation. Econo-
metrica 79 (2), 347–394.

Horowitz, J. L. (2014). Adaptive nonparametric instrumental variables estimation: Empir-
ical choice of the regularization parameter. Journal of Econometrics 180 (2), 158–173.

Horowitz, J. L. and S. Lee (2012). Uniform confidence bands for functions estimated
nonparametrically with instrumental variables. Journal of Econometrics 168 (2), 175–
188.

Li, K.-C. (1987). Asymptotic optimality for Cp, CL, cross-validation and generalized
cross-validation: Discrete index set. The Annals of Statistics 15 (3), 958–975.

Low, M. G. (1997). On nonparametric confidence intervals. The Annals of Statistics 25 (6),
2547–2554.

Lyche, T. (1978). A note on the condition numbers of the b-spline bases. Journal of
Approximation Theory 22 (3), 202–205.

Melitz, M. J. (2003). The impact of trade on intra-industry reallocations and aggregate
industry productivity. Econometrica 71 (6), 1695–1725.

Melitz, M. J. and S. J. Redding (2014). Heterogeneous firms and trade. In G. Gopinath,
E. Helpman, and K. Rogoff (Eds.), Handbook of International Economics, Volume 4,
Chapter 1, pp. 1–54. Elsevier.

Melitz, M. J. and S. J. Redding (2015). New trade models, new welfare implications.
American Economic Review 105 (3), 1105–1146.

Miao, W., Z. Geng, and E. J. Tchetgen Tchetgen (2018). Identifying causal effects with
proxy variables of an unmeasured confounder. Biometrika 105 (4), 987–993.

Newey, W. K. and J. L. Powell (2003). Instrumental variable estimation of nonparametric
models. Econometrica 71 (5), 1565–1578.

Picard, D. and K. Tribouley (2000). Adaptive confidence interval for pointwise curve
estimation. The Annals of Statistics 28 (1), 298–335.

Robinson, P. M. (1988). Root-n-consistent semiparametric regression. Economet-
rica 56 (4), 931–954.

Scherer, K. and A. Shadrin (1999). New upper bound for the b-spline basis condition
number: Ii. a proof of de boor’s 2k-conjecture. Journal of Approximation Theory 99 (2),
217–229.

Spokoiny, V. and N. Willrich (2019). Bootstrap tuning in Gaussian ordered model selec-
tion. The Annals of Statistics 47 (3), 1351–1380.

Stone, C. J. (1985). Additive Regression and Other Nonparametric Models. The Annals
of Statistics 13 (2), 689–705.

45



Online Appendix to “Adaptive Estimation and Uniform
Confidence Bands for Nonparametric Structural Functions and

Elasticities”

Xiaohong Chen Timothy Christensen Sid Kankanala

C Additional Simulation: Engel Curves

In this appendix we present additional simulation results for estimating a nonparametric

structural function in an empirically calibrated Engel curve setting. The design is based

on the British Family Expenditure Survey data used in Blundell et al. (2007). We draw

household expenditure X and household income W from a bivariate normal density with

correlation ρ = 0.52, which is the sample correlation of the expenditure and income data

used in Blundell et al. (2007). We then transformX andW to have Uniform[0, 1] marginals

using their respective inverse marginal CDFs. As a consequence, X and W are linked via

a Gaussian copula and the design is severely ill-posed.16 We then set h0(x) = Φ(5x− 2.5)

and set u = h0(X)−E[h0(X)|W ] + v for v ∼ N(0, 0.01). The implementation is the same

as the other Monte Carlos from Section 5. For each simulated data set we compute our

data-driven estimator ĥJ̃ and UCBs from (16). We compare these with estimators and

UCBs using deterministic choices of sieve dimensions for J = 4, 5, 7, and 11 (the first

few dimensions over which our procedure searches). We again use a cubic B-spline basis

to approximate h0 and a quartic B-spline basis for the reduced form.

Turning first to the simulation results presented in Table 9, we see that the average

sup-norm loss of our data-driven estimator is similar to that of an estimator ĥJ for deter-

ministic J with J = 4 and several multiples smaller than that with J = 5, 7, or 11. This

is to be expected, as the design is severely ill-posed and the true function is very smooth,

so a very small choice of J is appropriate. Of course, in practice the researcher does not

know the degree of ill-posedness or the degree of smoothness of the structural function.

The second panel of Table 9 shows our data-driven UCBs have valid, albeit conser-

vative, coverage across all sample sizes. By contrast, undersmoothed UCBs with J = 4

and J = 5 under-cover for n = 2500, 5000, and 10000. Undersmoothed UCBs with J = 7

have valid but conservative coverage, but these are 40% (with n = 1250) to 250% (with

n = 10000) wider than our data-driven UCBs. It is important to note that although the

16This follows from, e.g., Beare (2010), equation (3.3).
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Table 9: Simulation Results for the Engel Curve Design.

Data-driven Deterministic

J = 4 J = 5 J = 7 J = 11

Sup-norm Loss

n mean med. mean med. mean med. mean med. mean med.

1250 0.221 0.183 0.218 0.180 0.337 0.287 0.450 0.400 0.558 0.488
2500 0.167 0.139 0.164 0.138 0.285 0.240 0.417 0.369 0.526 0.468
5000 0.115 0.094 0.113 0.094 0.233 0.197 0.361 0.318 0.484 0.432
10000 0.083 0.068 0.080 0.068 0.173 0.148 0.322 0.299 0.448 0.414

UCB Coverage

90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

1250 0.998 0.999 0.917 0.961 0.903 0.952 0.934 0.972 0.916 0.968
2500 0.998 0.999 0.868 0.931 0.867 0.943 0.950 0.980 0.941 0.982
5000 0.998 0.999 0.833 0.896 0.884 0.939 0.967 0.989 0.968 0.987
10000 0.991 0.994 0.700 0.826 0.826 0.904 0.956 0.988 0.964 0.992

95% UCB Relative Width (Deterministic/Data-driven)

mean med. mean med. mean med. mean med.

1250 0.653 0.658 1.056 0.978 1.431 1.351 1.798 1.718
2500 0.655 0.661 1.213 1.120 1.797 1.692 2.372 2.270
5000 0.656 0.661 1.458 1.331 2.219 2.107 3.082 2.991
10000 0.658 0.664 1.577 1.478 2.712 2.574 3.962 3.792

design is severely ill-posed, we are reporting coverage of our UCBs (16). In each simulated

data set we have Ĵ = J̃ irrespective of the sample size n, so the critical value is effec-

tively z∗1−α + Âθ∗1−α̂. While Theorem 4.2 does not formally establish coverage guarantees

of this band in the severely ill-posed case, these simulation results show that the band

nevertheless has good coverage in this empirically relevant design.

Figure 7 presents plots of data-driven estimates and UCBs for h0 and its derivative

for a sample of size 2500, alongside deterministic-J estimates and UCBs. In this sample,

J̃ = 4 and our data-driven UCBs contain the true structural function. As with the other

simulations, the data-driven bands are narrower and more accurately convey the shape

of h0 than the J = 7 bands, which are much more wiggly. Our bands are also slightly

narrower than the J = 5 bands. Panel (d) of Figure 3 also presents data-driven estimates

and UCBs for the conditional mean of Y given X. Evidently, the true structural function

falls outside the UCBs for the conditional mean function over almost all of the support of

X, again highlighting the importance of estimating h0 using IV methods in this design.
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(a) Data-driven Estimates and UCBs

(b) Estimates and UCBs with J = 5

(c) Estimates and UCBs with J = 7

(d) Data-driven Estimates and UCBs for the Conditional Mean of Y given X

Figure 7: Engel curve design: Plots for a sample of size n = 2500. Left panels correspond
to the structural function, right panels correspond to its derivative. Note: Solid grey lines
are the true structural function and derivative; solid black lines are estimates, dashed
black lines are 95% UCBs.
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D Basis Functions and Hölder Classes

Let ΨJ denote the closed linear subspace of L2
X spanned by a basis {ψJ1, . . . , ψJJ}. We

use the following notation for vectors and matrices formed from the basis functions

ψJx = (ψJ1(x), . . . , ψJJ(x))
′ , bKw = (bK1(w), . . . , bKK(w))

′ ,

ζψ,J = sup
x∈[0,1]d

∥G−1/2
ψ,J ψJx∥ℓ2 , ζb,J = sup

w∈[0,1]dw
∥G−1/2

b,J bK(J)
w ∥ℓ2 ,

Gψ,J = E
[
ψJX(ψ

J
X)

′] , Gb,J = E
[
b
K(J)
W (b

K(J)
W )′

]
,

SJ = E
[
b
K(J)
W (ψJX)

′] , SoJ = G
−1/2
b,J E

[
b
K(J)
W (ψJX)

′]G−1/2
ψ,J .

Let sJ be the smallest singular value of (Gb,J)
−1/2SJ(Gψ,J)

−1/2. By Lemma A.1 of Chen

and Christensen (2018), under Assumptions 1 and 3(i) there is a finite positive constant

aτ such that

a−1
τ s−1

J ≤ τJ ≤ s−1
J for all J ∈ T . (33)

D.1 B-splines

The construction of univariate B-spline bases supported on [0, 1] follows Chapter 12.3 of

DeVore and Lorentz (1993). The basis is characterized by an order r ∈ N (or degree r−1)

and a resolution level l ∈ N ∪ {0}. Let Nr denote the r-fold convolution of the indicator

function of the unit interval, Nr = 1[0,1] ∗ · · · ∗ 1[0,1] (r-times). A dyadic17 B-spline basis

on [0, 1] with resolution level l and order r is

ψJ1j(x) = Nr(2
lx+ r − j) , j = 1, . . . , 2l + r − 1 =: J1 .

In the multivariate case we take tensor products of univariate bases. A B-spline basis

supported on [0, 1]d of order r and resolution level l has dimension J = (2l + r− 1)d. The

set of possible sieve dimensions J is therefore T = {(2l + r − 1)d : l ∈ N ∪ {0}}.
We now review properties of B-spline bases that are used in the technical arguments

below. The following Lemma summarizes Lemma E.2 of Chen and Christensen (2018).

Lemma D.1 Let Assumption 1(i) hold. Then for ψJ(x) formed from tensor product B-

splines, there are constants Cψ, aζ > 0 depending only on af such that (i) supx∈[0,1]d ∥ψJ(x)∥ℓ1 ≤
Cψ; (ii) C

−1
ψ J−1 ≤ λmin(Gψ,J) ≤ λmax(Gψ,J) ≤ CψJ

−1; (iii)
√
J ≤ ζψ,J ≤ aζ

√
J .

17This basis is equivalent to a B-spline basis with interior knots at 2−l, . . . , 1−2−l. This knot placement
ensures bases are nested across different l (equivalently, J). For irregularly spaced data, interior knots
can be placed at the 2−l, . . . , 1− 2−l quantiles of the distribution of X.
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Corollary D.1 Let Assumption 1(ii) hold. Then for bK(J)(w) formed from tensor product

B-splines and J ≤ K(J) ≲ J , there are constants Cb, aζ > 0 depending only on af such

that (i) supw∈[0,1]dw ∥bK(J)(w)∥ℓ1 ≤ Cb; (ii) C
−1
b J−1 ≤ λmin(Gb,J)) ≤ λmax(Gb,J)) ≤ CbJ

−1;

(iii)
√
J ≤ ζb,J ≤ aζ

√
J .

We also use some continuity properties of B-splines in the proofs. Note that Nr(·)
is Lipschitz with r = 2 and r − 2 times continuously differentiable when r > 2. Hence,

∥G−1/2
ψ,J

(
[ψJ(x1)]−[ψJ(x2)]

)
∥ℓ2 ≤ CJω∥x1−x2∥ω

′

ℓ2 holds for some positive constants C, ω, ω′.

The B-spline basis also satisfies a Bernstein inequality (or inverse estimate): ∥∂af∥∞ ≲

J |a|/d∥f∥∞ holds for any f ∈ ΨJ and multi-index a with |a| < r − 1.

D.2 CDV Wavelets

The construction of CDV wavelet bases supported on [0, 1] is reviewed in Appendix E.2

of Chen and Christensen (2018) and follows Cohen, Daubechies, and Vial (1993); see also

chapter 4.3.5 of Giné and Nickl (2016). The basis is characterized by an order N ∈ N. Let
L denote the smallest integer for which 2L ≥ 2N . For each resolution level l ≥ L, there

are a total of 2l basis functions. In the multivariate case we generate bases supported on

[0, 1]d by taking tensor products of univariate bases. The set of possible J is therefore

T = {2ld : l = L+ 1, L+ 2, . . .}.
We say that the CDV wavelet basis is S-regular if it is S times continuously dif-

ferentiable. A S-regular basis can always be chosen by choosing the order N such that

0.18(N − 1) ≥ S (Giné and Nickl, 2016, Theorem 4.2.10(e)). The regularity S of the

basis for the endogenous variable X should be chosen such that S > p, where p is the

maximal assumed degree of smoothness for h0. Equivalently, our procedures deliver adap-

tivity over any smoothness range [p, p] with S > p > p > d/2 when implemented with a

S-regular CDV wavelet basis for X. As with choosing the order r of B-splines, choosing S

is analogous to choosing the order of a kernel in kernel-based nonparametric estimation.

CDV wavelet bases for the dw-dimensional instrumental variable W are constructed

similarly, using a basis of regularity S + 1. Given the resolution level l for the basis for

X, the resolution level for the basis for W is lw = ⌈(l + q)d/dw⌉ for some q ∈ N. Linking
lw to l in this manner again defines a mapping K(J) between the two bases that satisfies

limJ→∞K(J)/J = c ∈ [1,∞). As with B-splines, we recommend that q should be the

second- or third-smallest value for which K(J) ≥ J holds for all J .

We now review properties of CDV wavelet bases that are used in the proofs below.

The following Lemma summarizes Lemma E.4 of Chen and Christensen (2018).
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Lemma D.2 Let Assumption 1(i) hold. Then with ψJ(x) formed from tensor product

CDV wavelets, there are constants Cψ, aζ > 0 depending only on af such that (i) supx∈[0,1]d ∥ψJx∥ℓ1 ≤
Cψ

√
J ; (ii) C−1

ψ ≤ λmin(Gψ,J) ≤ λmax(Gψ,J) ≤ Cψ; (iii)
√
J ≤ ζψ,J ≤ aζ

√
J .

Corollary D.2 Let Assumption 1(ii) hold. Then with bK(J)(w) formed from tensor prod-

uct CDV wavelets and J ≤ K(J) ≲ J , there are constants Cb, aζ > 0 depending only on

af such that (i) supw∈[0,1]dw ∥bK(J)
w ∥ℓ1 ≤ Cb

√
J ; (ii) C−1

b ≤ λmin(Gb,J) ≤ λmax(Gb,J) ≤ Cb;

(iii)
√
J ≤ ζb,J ≤ aζ

√
J .

We also use some continuity properties of CDV wavelets in the proofs. As the Daubechies

wavelet functions are S times continuously differentiable on their supports, it follows

by Lemma D.2(ii) that the basis functions are Hölder continuous, in the sense that

∥G−1/2
ψ,J

(
[ψJx1 ] − [ψJx2 ]

)
∥ℓ2 ≤ CJω∥x1 − x2∥ω

′

ℓ2 holds for some positive constants C, ω, ω′.

This basis also satisfies a Bernstein inequality (or inverse estimate): ∥∂af∥∞ ≲ J |a|/d∥f∥∞
holds for any f ∈ ΨJ and multi-index a with |a| < S.

D.3 Hölder Classes

Let Bp
∞,∞ = {h ∈ L∞([0, 1]d) : ∥h∥Bp

∞,∞ < ∞} denote the Hölder space of smoothness p

where ∥ · ∥Bp
∞,∞ denotes the Hölder norm of smoothness p > 0 (see Giné and Nickl (2016),

pp. 370-1), and let Bp
∞,∞(M) = {h ∈ Bp

∞,∞ : ∥h∥Bp
∞,∞ ≤ M} denote the Hölder ball of

smoothness p and radius M . For p ̸∈ N, we have h ∈ Bp
∞,∞ if and only if

∥h∥C⌊p⌋ +
∑

a:|a|=⌊p⌋

sup
x,y∈[0,1]d:

x̸=y

|∂ah(x)− ∂ah(y)|
|x− y|p−⌊p⌋ <∞ ,

where

∥h∥C⌊p⌋ = ∥h∥∞ +
∑

|a|=⌊p⌋

∥∂ah∥∞ .

The space Bp
∞,∞ may equivalently be defined by the error in approximating a function

using a linear B-spline basis (see DeVore and Popov (1988) and DeVore and Lorentz

(1993)). To do so, let ΨJ be a CDV wavelet space of regularity S > p or dyadic B-

spline space of degree r − 1 > p at resolution level LJ that generates J . Let d(h,ΨJ) =

infg∈ΨJ
∥h− g∥∞. We then have

h ∈ Bp
∞,∞ ⇐⇒ ∥h∥∞ + sup

J :J∈T
Jp/dd(h,ΨJ) <∞ ,
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and, moreover, ∥h∥∞+supJ :J∈T J
p/dd(h,ΨJ) is equivalent to ∥h∥Bp

∞,∞ ; see, e.g., Theorem

12.3.3. of DeVore and Lorentz (1993) for the scalar case and Theorem 4.8 of DeVore and

Popov (1988) for the multivariate case. By Lebesgue’s lemma (DeVore and Lorentz, 1993,

p. 30), we have

d(h,ΨJ) ≤ ∥h− ΠJh∥∞ ≤ (1 + ∥ΠJ∥∞)d(h,ΨJ) ,

where ∥ΠJ∥∞ := suph:∥h∥∞≤1 ∥ΠJh∥∞ is the L∞ norm of the L2
X projection onto ΨJ

(sometimes referred to as the Lebesgue constant). Huang (2003) and Chen and Christensen

(2015) established that ∥ΠJ∥∞ ≲ 1 under Assumption 1(i) when ΨJ is spanned by a

(tensor product) B-spline or CDV wavelet basis, respectively. Hence,

h ∈ Bp
∞,∞ ⇐⇒ ∥h∥∞ + sup

J :J∈T
Jp/d∥h− ΠJh∥∞ <∞ ,

and ∥h∥∞ + supJ :J∈T J
p/d∥h− ΠJh∥∞ is equivalent to ∥ · ∥Bp

∞,∞ .

E Technical Results and Proofs of Main Results

In this Appendix we first introduce additional notation. We then present technical results

and proofs of the main results from Sections 4.2 and 4.3. We finally present technical

results and the proofs of main results for Section 4.4.

E.1 Notation

By the discussion in Appendix D, there are finite positive constants aζ and ab such that

aζ ≥ ζψ,J/
√
J ≥ 1 , aζ ≥ ζb,J/

√
K(J) ≥ 1 , ab ≥ K(J)/J .

For any sequence (Zi)
n
i=1 of random vectors and any function g, let En[g(Z)] = 1

n

∑n
i=1 g(Zi).

Estimators of the matrices defined at the beginning of Appendix D and their orthogonal-

ized versions are

Ĝψ,J = En
[
ψJX(ψ

J
X)

′] , Ĝb,J = En
[
b
K(J)
W (b

K(J)
W )′

]
,

Ĝo
ψ,J = G

−1/2
ψ,J En

[
ψJX(ψ

J
X)

′]G−1/2
ψ,J , Ĝo

b,J = G
−1/2
b,J En

[
b
K(J)
W (b

K(J)
W )′

]
G

−1/2
b,J ,

ŜJ = En
[
b
K(J)
W (ψJX)

′] , ŜoJ = G
−1/2
b,J En

[
b
K(J)
W (ψJX)

′]G−1/2
ψ,J .
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Sieve variances and related terms are

∥σ̂x,J,J2∥2sd ≡ nσ̂2
J,J2

(x) = ∥σ̂x,J∥2sd + ∥σ̂x,J2∥2sd − 2σ̂x,J,J2 , ∥σ̂x,J∥2sd ≡ nσ̂2
J(x) = σ̂x,J,J ,

∥σx,J,J2∥2sd = ∥σx,J∥2sd + ∥σx,J2∥2sd − 2σx,J,J2 , ∥σx,J∥2sd = σx,J,J ,

where

σ̂x,J,J2 ≡ nσ̃J,J2(x) = L̂J,xΩ̂J,J2(L̂J2,x)
′ , L̂J,x = [ψJx ]

′[Ŝ ′
JĜ

−1
b,J ŜJ ]

−1Ŝ ′
JĜ

−1
b,J ,

σx,J,J2 = LJ,xΩJ,J2(LJ2,x)
′ , LJ,x = [ψJx ]

′[S ′
JG

−1
b,JSJ ]

−1S ′
JG

−1
b,J ,

with σ̂2
J,J2

(x) and σ̃J,J2(x) given in (9), and

Ω̂J,J2 = En
[
ûJ ûJ2b

K(J)
W b

K(J2)
W

]′
, ûi,J = Yi − ĥJ(Xi) , Ω̂J = Ω̂J,J ,

ΩJ,J2 = E
[
u2b

K(J)
W b

K(J2)
W

]′
, ui = Yi − h0(Xi) , ΩJ = ΩJ,J .

Recall that ΠJ is the L2
X projection onto ΨJ . We also define

∆Jh0 = h0 − ΠJh0 , h̃J(x) = L̂J,xEn[bK(J)
W h0(X)] .

For bootstrap and related processes, we use the notation

Z∗
n(x, J, J2) =

1

∥σ̂x,J,J2∥sd

(
1√
n

n∑
i=1

(
L̂J,xb

K(J)
Wi

ûi,J − L̂J2,xb
K(J2)
Wi

ûi,J2

)
ϖi

)
, (34)

where (ϖi)
n
i=1 are IID N(0, 1) draws independent of the data, and

Z∗
n(x, J) ≡

D∗
J(x)

σ̂J(x)
=

1

∥σ̂x,J∥sd

(
1√
n

n∑
i=1

L̂J,xb
K(J)
Wi

ûi,Jϖi

)
, (35)

Ẑn(x, J) =
1

∥σx,J∥sd

(
1√
n

n∑
i=1

LJ,xb
K(J)
Wi

uiϖi

)
, (36)

Zn(x, J) =
1

∥σx,J∥sd

(
1√
n

n∑
i=1

LJ,xb
K(J)
Wi

ui

)
. (37)

The law of the processes Z∗
n(x, J) and Ẑn(x, J) is determined from (ϖi)

n
i=1 conditional

on the data Zn := (Xi, Yi,Wi)
n
i=1. We let P∗ denote their probability measure (i.e., with

respect to the (ϖi)
n
i=1 conditional on the data) and E∗ denote expectation under P∗. We
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also shorten “with Ph0 probability approaching 1 (uniformly over h0 ∈ H)” to “wpa1

H-uniformly”. We write Hp = H ∩ Bp
∞,∞(M) and Gp = G ∩ Bp

∞,∞(M).

E.2 Technical Results

Here we present several technical results that are used in the proofs of the main results in

Section 4. The proofs of these technical results are presented in our earlier working paper

version (Chen, Christensen, and Kankanala, 2022). The following Lemmas E.1 to E.7 are

labelled as Lemmas D.1 to D.7 in Chen et al. (2022), whereas the following Theorems E.1

and E.2 are labelled as Theorems D.1 and D.2 in Chen et al. (2022).

We first state two preliminary lemmas used in the proof of Theorem 4.1. The first

relates to resolution levels in the mildly ill-posed case. For any positive constant R, define

J̄max(R) = sup

{
J ∈ T : J

√
log J

[
(log n)4 ∨ τJ

]
≤ R

√
n

}
. (38)

For D > 0 and p ∈ [p, p], define

J0(p,D) = sup

{
J ∈ T : τJ

√
Jθ∗1−α̂√
n

≤ DJ− p
d

}
,

J+
0 (p,D) = inf{J ∈ T : J > J0(p,D)} .

(39)

Lemma E.1 Let Assumptions 1-4 hold and let τJ ≍ J ς/d with ς ≥ 0. Then: with J̄max(R)

as defined in (38) for any R > 0 and J+
0 (p,D) as defined in (39) for any D > 0, we have

inf
p∈[p,p]

inf
h0∈Hp

Ph0(J+
0 (p,D) < J̄max(R)) → 1.

The second lemma relates to resolution levels in the severely ill-posed case. For R > 0

and p ∈ [p, p], define

J̄∗
max(R) = sup

{
J ∈ T : τJJ

√
log J ≤ R

√
n
}
, (40)

M0(p,R) = sup{J ∈ T : τJJ
p
d
+ 1

2

√
log J ≤ R

√
n} , (41)

M+
0 (p,R) = inf{J ∈ T : J > M0(p,R)} .

Note thatM0(p,R) is (weakly) decreasing in p. In particular, as p/d+1/2 ≥ p/d+1/2 > 1,

we have J̄∗
max(R) ≥M0(p,R) ≥M0(p,R) ≥M0(p,R) for each R and each p ∈ [p, p].

9



Lemma E.2 Let τJ ≍ exp(CJ ς/d) for some C, ς > 0. Then for any R > 0, the inequality

M+
0 (p,R) ≥ J∗

max(R) holds for all n sufficiently large.

E.2.1 Uniform-in-J Convergence Rates for ĥJ

Recall the definition of J̄max(R) from (38) and that ∆Jh0 = h0 − ΠJh0.

Theorem E.1 Let Assumptions 1, 2(i), and 3 hold, and for any positive constant R let

J̄max ≡ J̄max(R). Then: there exists a universal constant CE.1 > 0 such that

(i) inf
h0∈H

Ph0
(
∥h̃J − h0∥∞ ≤ CE.1∥∆Jh0∥∞ ∀ J ∈ T ∩ [1, J̄max]

)
→ 1 ,

(ii) inf
h0∈H

Ph0
(
∥ĥJ − h̃J∥∞ ≤ CE.1τJ

√
J log J̄max√

n
∀ J ∈ T ∩ [1, J̄max]

)
→ 1 .

E.2.2 Uniform-in-J Estimation of Sieve Variance Terms

Recall the definition of J̄max(R) from (38). In the remainder of this subsection, for any

fixed R > 0, let J̄max ≡ J̄max(R). Also let Jmin → ∞ arbitrarily slowly. Given J̄max and

Jmin, define Jn = {J ∈ T : Jmin ≤ J ≤ J̄max},

Sn = {(x, J, J2) ∈ X × Jn × Jn : J2 > J} (42)

and

δn = τJ̄max

√
J̄max log J̄max

n
+

(
J̄2
max log J̄max

n

)1/3

+ J
−p/d
min . (43)

Lemma E.3 Let Assumptions 1-4 hold. Then: there exists universal constants CE.3 > 0

and NE.3 ∈ N such that:

(i) for every x ∈ X and J, J2 ∈ T with J2 > J ≥ NE.3, we have

C−1
E.3∥σx,J2∥sd ≤ ∥σx,J,J2∥sd ≤ CE.3∥σx,J2∥sd ;

(ii) we have

inf
h0∈H

Ph0
(

sup
(x,J,J2)∈Sn

∣∣∣∣∥σ̂x,J,J2∥sd∥σx,J,J2∥sd
− 1

∣∣∣∣ ≤ CE.3δn

)
→ 1 .

Lemma E.4 Let Assumptions 1-3 hold. Then: there is a universal constant CE.4 > 0

such that

inf
h0∈H

Ph0
(

sup
(x,J,J2)∈Sn

|σ̂x,J,J2 − σx,J,J2 |
∥σx,J∥sd∥σx,J2∥sd

≤ CE.4δn

)
→ 1 .
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In particular,

inf
h0∈H

Ph0
(

sup
(x,J)∈X×Jn

∣∣∣∣∥σ̂x,J∥2sd∥σx,J∥2sd
− 1

∣∣∣∣ ≤ CE.4δn

)
→ 1 .

E.2.3 Uniform Consistency of Ĵmax

For the following lemma, recall Ĵmax from (10) and J̄max(R) from (38).

Lemma E.5 Let Assumptions 1-3 hold. Then: replacing 10
√
n with M

√
n for any M > 0

in the definition of Ĵmax from (10), there exists R1, R2 > 0 which satisfy

inf
h0∈H

Ph0
(
J̄max(R1) ≤ Ĵmax ≤ J̄max(R2)

)
→ 1 .

Remark E.1 For any R2 ≥ R1 > 0 there exists a finite positive constant C for which

J̄max(R1) ≤ J̄max(R2) ≤ CJ̄max(R1) .

Lemma E.5 therefore provides an asymptotic rate of divergence for Ĵmax.

E.2.4 Uniform-in-J Bounds for the Bootstrap

For the following Lemma, recall the critical value θ∗1−α̂ from Section 2.3.

Lemma E.6 Let Assumptions 1-4 hold. Then: with J̄max(R) as defined in (38) for any

R > 0, there exists constants C4, C5 > 0 for which

inf
h0∈H

Ph0
(
C4

√
log J̄max(R) ≤ θ∗1−α̂ ≤ C5

√
log J̄max(R)

)
→ 1.

The second is a companion result concerning the critical value z∗1−α from Section 2.4:

Lemma E.7 Let Assumptions 1-4 hold. Then: with J̄max(R) as defined in (38) for any

R > 0, there exists a constant CE.7 > 0 for which

inf
h0∈H

Ph0
(
z∗1−α ≤ CE.7

√
log J̄max(R)

)
→ 1 .

E.2.5 Uniform Consistency for the Bootstrap

Recall J̄max ≡ J̄max(R) from (38) and Jn and Sn from (42).
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Theorem E.2 Let Assumptions 1-4 hold and let Jmin ≍ (log J̄max)
2. Then: there exists a

sequence γn ↓ 0 for which the following inequalities hold wpa1 H-uniformly:

(i) sup
s∈R

∣∣∣∣∣Ph0
(

sup
(x,J)∈X×Jn

∣∣∣∣∣√nĥJ(x)− h̃J(x)

∥σ̂x,J∥sd

∣∣∣∣∣ ≤ s

)
− P∗

(
sup

(x,J)∈X×Jn

|Z∗
n(x, J)| ≤ s

)∣∣∣∣ ≤ γn ,

(ii) sup
s∈R

∣∣∣∣∣Ph0
(

sup
(x,J,J2)∈Sn

∣∣∣∣√nĥJ(x)− ĥJ2(x)− (h̃J(x)− h̃J2(x))

∥σ̂x,J,J2∥sd

∣∣∣∣∣ ≤ s

)
− P∗

(
sup

(x,J,J2)∈Sn

|Z∗
n(x, J, J2)| ≤ s

)∣∣∣∣ ≤ γn .

E.3 Proofs of Main Results in Sections 4.2 and 4.3

Proof of Theorem 4.1. We first list some constants that will be used throughout the

proof. Fix R2 > 0 in the definition of J̄max(R2) from (38) sufficiently large so that by

Lemma E.5 we have infh0∈H Ph0(Ĵmax ≤ J̄max(R2)) → 1. Let J̄max ≡ J̄max(R2) for the

remainder of the proof. By Theorem E.1(i), there exists CE.1 > 0 which satisfies

inf
h0∈H

Ph0
(
∥h̃J − ΠJh0∥∞ ≤ CE.1∥ΠJh0 − h0∥∞ ∀ J ∈ [1, J̄max] ∩ T

)
→ 1. (44)

For our choice of sieves, there exists B2 > 0 which satisfies

sup
p∈[p,p]

sup
h0∈Hp

J
p
d∥ΠJh0 − h0∥∞ ≤ B2 ∀ J ∈ T . (45)

Let Ŝ = {(x, J, J2) ∈ X × Ĵ × Ĵ : J2 > J}. Lemmas E.3 and E.5, Assumption 4(i), and

the fact that δn ↓ 0 (cf. (43)) imply that there exists C2, C3 > 0 which satisfy

inf
h0∈H

Ph0
(

sup
(x,J,J2)∈Ŝ

τJ2
√
J2

∥σ̂x,J,J2∥sd
≤ C3

)
→ 1 , inf

h0∈H
Ph0
(

sup
(x,J,J2)∈Ŝ

∥σ̂x,J,J2∥sd
τJ2

√
J2

≤ C2

)
→ 1 .

(46)

Additionally, by Lemma E.6 there exists constants C4, C5 > 0 which satisfy

inf
h0∈H

Ph0
(
C4

√
log J̄max ≤ θ∗1−α̂ ≤ C5

√
log J̄max

)
→ 1. (47)

Part (i), step 1: We verify that Ĵ achieves the optimal rate under mild ill-posedness.

Note by the procedure in Appendix A this is sufficient for adaptivity of J̃ for nonpara-

metric regression. Fix ξ > 1 (ξ = 1.1 in the main text). Choose D > 0 such that
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2B2(C1 + 1)D−1C3 < (ξ − 1). Recall J0(p,D) and J+
0 (p,D) from (39); we drop de-

pendence of these quantities on (p,D) hereafter to simplify notation. By Lemma E.1,

infp∈[p,p] infh0∈Hp Ph0(J+
0 < J̄max) → 1. It then follows from Lemmas E.1 and E.5 that

infp∈[p,p] infh0∈Hp Ph0(J+
0 < Ĵmax) → 1. We therefore assume for the remainder of the proof

of part (i) that J+
0 < Ĵmax, J̄max.

By Lemma E.5, Ĵ ⊆ Jn := {J ∈ T : 0.1(log J̄max)
2 ≤ J ≤ J̄max} wpa1 H-uniformly.

Then for all J ∈ Ĵ with J > J+
0 , by the triangle inequality, displays (44) and (45), and

definition of J0, we may deduce that∣∣∣∥ĥJ − ĥJ+
0
∥∞ − ∥ĥJ − ĥJ+

0
− (h̃J − h̃J+

0
)∥∞

∣∣∣
≤ ∥h̃J − ΠJh0∥∞ + ∥h̃J+

0
− ΠJ+

0
h0∥∞ + ∥ΠJ+

0
h0 − h0∥∞ + ∥ΠJh0 − h0∥∞

≤ 2B2(1 + C1)(J
+
0 )

−p/d

≤ 2B2(1 + C1)D
−1θ∗1−α̂τJ+

0

√
J+
0 /n

wpa1 uniformly for h0 ∈ Hp and p ∈ [p, p]. By (46), we have that for all J ∈ Ĵ with

J > J+
0

τJ+
0

√
J+
0 ≤ τJ

√
J ≤ C3∥σ̂x,J+

0 ,J
∥sd ∀ x ∈ X

wpa1 uniformly for h0 ∈ Hp and p ∈ [p, p]. Combining the preceding two inequalities and

using the definition of D, we obtain that for all J ∈ Ĵ with J > J+
0 ,

sup
x∈X

√
n
|ĥJ(x)− ĥJ+

0
(x)|

∥σ̂x,J+
0 ,J

∥sd
≤ sup

x∈X

√
n
|ĥJ(x)− ĥJ+

0
(x)− (h̃J(x)− h̃J+

0
(x))|

∥σ̂x,J+
0 ,J

∥sd
+ (ξ − 1)θ∗1−α̂

wpa1 uniformly for h0 ∈ Hp and p ∈ [p, p]. It follows by definition of Ĵ that

sup
p∈[p,p]

sup
h0∈Hp

Ph0
(
Ĵ > J+

0

)
≤ sup

p∈[p,p]
sup
h0∈Hp

Ph0
(

sup
J∈Ĵ :J>J+

0

sup
x∈X

√
n|ĥJ+

0
(x)− ĥJ(x)|

∥σ̂x,J+
0 ,J

∥sd
> ξθ∗1−α̂

)

≤ sup
h0∈H

Ph0
(

sup
(x,J,J2)∈Ŝ

√
n|ĥJ(x)− ĥJ2(x)− (h̃J(x)− h̃J2(x))|

∥σ̂x,J,J2∥sd
> θ∗1−α̂)

)
+ o(1) . (48)

To control the r.h.s. probability in (48), let Ĵ (J̃) = {J ∈ T : 0.1(log J̃)2 ≤ J ≤ J̃},
Ŝ(J̃) = {(x, J, J2) ∈ X × Ĵ (J̃) × Ĵ (J̃) : J2 > J}, and θ∗

1−α̂;J̃ denote the (1 − 0.5 ∧
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√
(log J̃)/J̃) quantile of sup(x,J,J2)∈Ŝ(J̃) |Z

∗
n(x, J, J2)|. Then by Lemma E.5 and Theo-

rem E.2(ii), we have

sup
h0∈H

Ph0
(

sup
(x,J,J2)∈Ŝ

√
n|ĥJ(x)− ĥJ2(x)− (h̃J(x)− h̃J2(x))|

∥σ̂x,J,J2∥sd
> θ∗1−α̂

)

≤ sup
h0∈H

J̄max(R2)∑
J̃∈T :J̃=J̄max(R1)

Ph0
(

sup
(x,J,J2)∈Ŝ(J̃)

√
n|ĥJ(x)− ĥJ2(x)− (h̃J(x)− h̃J2(x))|

∥σ̂x,J,J2∥sd
> θ∗

1−α̂;J̃

)

≤
J̄max(R2)∑

J̃∈T :J̃=J̄max(R1)

(√
(log J̃)/J̃ + γn + o(1)

)
→ 0 , (49)

where the final line holds for all n large, because J̄max(R1) → ∞, γn ↓ 0, and, by our

choice of sieve and Remark E.1, for some constant C > 0 we have

#{J ∈ T : J̄max(R1) ≤ J ≤ J̄max(R2)} ≤ #{J ∈ T : J̄max(R1) ≤ J ≤ CJ̄max(R1)}

≤ #{l ∈ N : J̄max(R1) ≤ 2ld ≤ CJ̄max(R1)} ≤ C .

In view of (48), this proves Ĵ ≤ J+
0 wpa1 uniformly for h0 ∈ Hp and p ∈ [p, p].

Whenever Ĵ ≤ J+
0 < Ĵmax, J̄max, it follows by definition of Ĵ and display (46) that

wpa1 uniformly for h0 ∈ Hp and p ∈ [p, p], we have

∥ĥĴ − h0∥∞ ≤ ∥ĥĴ − ĥJ+
0
∥∞ + ∥ĥJ+

0
− h0∥∞

≤ C2ξθ
∗
1−α̂τJ+

0

√
J+
0 /n+ ∥ĥJ+

0
− h̃J+

0
∥∞ + ∥h̃J+

0
− h0∥∞.

Then by Theorem E.1, definition of J+
0 , and the lower bound on θ∗1−α̂ in display (47), we

may deduce that there exists a constant C > 0 for which

inf
p∈[p,p]

inf
h0∈Hp

Ph0
(
∥ĥĴ − h0∥∞ ≤ Cθ∗1−α̂τJ+

0

√
J+
0 /n

)
→ 1.

As the model is mildly ill-posed, there exists a constant C ′ > 0 for which τJ+
0

√
J+
0 ≤

C ′τJ0
√
J0. It then follows by definition of J0 that

inf
p∈[p,p]

inf
h0∈Hp

Ph0
(
∥ĥĴ − h0∥∞ ≤ CC ′DJ

−p/d
0

)
→ 1. (50)

By the upper bound on θ∗1−α̂ in display (47) and because
√

log J̄max ≍
√
log n (as the

14



model is mildly ill-posed), there exists a constant E > 0 such that by defining

J∗
n(p, E) = sup

{
J ∈ T : τJ

√
(J log n)/n ≤ EJ−p/d

}
we have infp∈[p,p] infh0∈Hp

(
J∗
n(p, E) ≤ J0(p,D)

)
→ 1. Hence, as τJ ≍ J ς/d we have

J∗
n(p, E) ≍ (n/ log n)d/(2(p+ς)+d). The desired result now follows from (50).

Part (i), step 2: We verify that J̃ achieves the optimal rate under mild ill-posedness.

By step 1, we have infp∈[p,p] infh0∈Hp Ph0(Ĵ ≤ J+
0 ) → 1. If we can show that Ĵn > J+

0 wpa1

H-uniformly, then J̃ = Ĵ wpa1 H-uniformly and the result follows by step 1.

By the lower bound on θ∗1−α̂ in display (47) and the fact that
√

log J̄max ≍
√
log n (as

the model is mildly ill-posed), we may deduce that there exists a constant E ′ > 0 such

that infp∈[p,p] infh0∈Hp

(
J†
n(p, E

′) ≥ J+
0 (p,D)

)
→ 1 where

J†
n(p, E

′) = inf
{
J ∈ T : τJ

√
(J log n)/n > E ′J−p/d

}
.

But note that maxp∈[p,p] J
†
0(p, E

′) = J†
0(p, E

′). The result now follows by Lemma E.5,

noting that J̄max(R1)/J
†
0(p, E

′) → ∞ when the model is mildly ill-posed because p > d/2.

Part (ii), step 1: We verify that Ĵn achieves the optimal rate under severe ill-posedness.

To simplify notation we assume a CDV wavelet basis, though a similar argument ap-

plies (albeit with more complicated notation) for B-splines. Note that when the model

is severely ill-posed, for any R > 0 we have nβ ≲ τJ̄max(R) for some β > 0 and so

τJ̄max(R) > (log n)4 for all sufficiently large n. Therefore J̄max(R) = J̄∗
max(R) for all n

sufficiently large, where J̄∗
max(R) is defined in (40). By Theorem E.1, Lemma E.5, and

Remark E.1, we may deduce that there exist constants D,D′ > 0 for which

∥ĥĴn − h0∥∞ ≤ ∥ĥĴn − h̃Ĵn∥∞ + ∥h̃Ĵn − h0∥∞

≤ D

(
(2−dJ̄∗

max(R1))
− p

d + τ2−dJ̄∗
max(R2)

√
2−dJ̄∗

max(R2) log(2−dJ̄∗
max(R2))/n

)
≤ D′

(
(2−dJ̄∗

max(R2))
− p

d + τ2−dJ̄∗
max(R2)

√
2−dJ̄∗

max(R2) log(2−dJ̄∗
max(R2))/n

)
wpa1 uniformly over Hp and p ∈ [p, p].

Recall the definition of M0(p,R2) from (41). By Lemma E.2, for all p ∈ [p, p] we have

that M0(p,R2) ≥M0(p,R2) ≥ 2−dJ∗
max(R2) holds for all n sufficiently large, in which case
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by definition of M0(p,R2) we must have

τ2−dJ̄∗
max(R2)

√
2−dJ̄∗

max(R2) log(2−dJ̄∗
max(R2))/n ≤ R2(2

−dJ̄∗
max(R2))

− p
d .

Combining the preceding two inequalities then yields

∥ĥĴn − h0∥∞ ≤ D′(1 + R2)2
p(J̄∗

max(R2))
− p

d

wpa1 uniformly over Hp and p ∈ [p, p].

It remains to show (log n)d/ς ≲ J̄∗
max(R2) when τJ ≍ exp(CJ ς/d) for C, ς > 0. Sup-

pose lim infn→∞ J̄∗
max(R2)/(log n)

d/ς = 0. Then along a subsequence {nk}k≥1 we have

J̄∗
max(R2) = (2−ςC−1unk

log nk)
d/ς for some sequence unk

↓ 0. Then 2dJ̄∗
max(R2) ∈ T satis-

fies

τ2dJ̄∗
max(R2)2

dJ̄∗
max(R2)

√
log(2dJ̄∗

max(R2))/nk ≲ n
unk

− 1
2

k (log nk)
d/ς
√
log log nk −−−→

k→∞
0 ,

thereby contradicting the definition of J̄∗
max(R2) from (40) for all sufficiently large k.

Part (ii), step 2: We verify that J̃ achieves the optimal rate under severe ill-posedness.

For any constant D > 0, by definition of J̃ we have

sup
p∈[p,p]

sup
h0∈Hp

Ph0
(
∥ĥJ̃ − h0∥∞ > D(log n)−p/ς

)
≤ sup

p∈[p,p]
sup
h0∈Hp

Ph0
(
∥ĥĴ − h0∥∞ > D(log n)−p/ς and Ĵ < Ĵn

)
+ sup

p∈[p,p]
sup
h0∈Hp

Ph0
(
∥ĥĴn − h0∥∞ > D(log n)−p/ς

)
.

By part (ii), step 1, the constant D can be chosen sufficiently large so that the second term

on the r.h.s. is o(1). For the first term, note that ∥ĥĴ−h0∥∞ ≤ ∥ĥĴ− ĥĴn∥∞+∥ĥĴn−h0∥∞,

so it suffices to show that there exists a constant D > 0 for which

sup
p∈[p,p]

sup
h0∈Hp

Ph0
(
∥ĥĴ − ĥĴn∥∞ > D(log n)−p/ς and Ĵ < Ĵn

)
→ 0 .
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But by definition of Ĵ and displays (46) and (47), we have

sup
p∈[p,p]

sup
h0∈Hp

Ph0
(
∥ĥĴ − ĥĴn∥∞ > D(log n)−p/ς and Ĵ < Ĵn

)
≤ sup

p∈[p,p]
sup
h0∈Hp

Ph0
(
ξC2θ

∗
1−α̂τĴn

√
Ĵn/n > D(log n)−p/ς

)
+ o(1)

≤ sup
p∈[p,p]

1

[
ξC2C5τ2−dJ̄∗

max(R2)

√
2−dJ̄∗

max(R2) log(2−dJ̄∗
max(R2))/n > D(log n)−p/ς

]
+ o(1) .

By step 1, we have τ2−dJ̄∗
max(R2)

√
2−dJ̄∗

max(R2) log(2−dJ̄∗
max(R2))/n ≲ (log n)−p/ς uniformly

for p ∈ [p, p], so the constant D can be chosen sufficiently large that the indicator function

on the r.h.s. is zero uniformly for p ∈ [p, p] for all n sufficiently large.

Proof of Corollary 4.1. Part (i): Recall J+
0 ≡ J0(p,D)+ from (39). We have

∥∂aĥĴ − ∂ah0∥∞ ≤ ∥∂aĥĴ − ∂aĥJ+
0
∥∞ + ∥∂aĥJ+

0
− ∂ah̃J+

0
∥∞ + ∥∂ah̃J+

0
− ∂ah0∥∞ .

As Ĵ ≤ J+
0 < Ĵmax, J̄max holds wpa1 uniformly for h0 ∈ Hp and p ∈ [p, p], by part (i),

step 1 of the proof of Theorem 4.1, we may appeal to a Bernstein inequality (or inverse

estimate) for our choice of basis to write

∥∂aĥĴ − ∂ah0∥∞ ≲ (J+
0 )

|a|/d
(
∥ĥĴ − ĥJ+

0
∥∞ + ∥ĥJ+

0
− h̃J+

0
∥∞
)
+ ∥∂ah̃J+

0
− ∂ah0∥∞ .

By similar arguments to the proof of Corollary 3.1 of Chen and Christensen (2018), we

may also deduce ∥∂ah̃J+
0
− ∂ah0∥∞ ≲ (J+

0 )
(|a|−p)/d and so

∥∂aĥĴ − ∂ah0∥∞ ≲ (J+
0 )

|a|/d
(
∥ĥĴ − ĥJ+

0
∥∞ + ∥ĥJ+

0
− h̃J+

0
∥∞ + (J+

0 )
−p/d

)
.

It now follows by similar arguments to part (i), step 1 of the proof of Theorem 4.1 and

definition of J0 that there exists a constant C > 0 for which

inf
p∈[p,p]

inf
h0∈Hp

Ph0
(
∥∂aĥĴ − ∂ah0∥∞ ≤ CJ

(|a|−p)/d
0

)
→ 1.

The result follows from noting, as in the proof of part (i), step 1 of the proof of Theo-

rem 4.1, that

inf
p∈[p,p]

inf
h0∈Hp

Ph0
(
J∗
n(p, E) ≤ J0(p,D)

)
→ 1 ,

where J∗
n(p, E) ≍ (n/ log n)d/(2(p+ς)+d), and by part (i), step 2 of the proof of Theorem 4.1
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(which shows that J̃ = Ĵ wpa1 H-uniformly).

Part (ii): Recall J̄∗
max(R) from (40) and Ĵn from the definition of J̃ . By similar argu-

ments to part (ii), step 1 of the proof of Theorem 4.1, and the proof of Corollary 3.1 of

Chen and Christensen (2018), we may deduce

∥∂aĥĴn − ∂ah0∥∞

≲ (J̄∗
max(R2))

|a|
d

(
(2−dJ̄∗

max(R2))
− p

d + τ2−dJ̄∗
max(R2)

√
2−dJ̄∗

max(R2) log(2−dJ̄∗
max(R2))/n

)
wpa1 uniformly over Hp and p ∈ [p, p]. Hence, by part (ii), step 1 of the proof of Theo-

rem 4.1,

∥∂aĥĴn − ∂ah0∥∞ ≲ (log n)(|a|−p)/d

wpa1 uniformly over Hp and p ∈ [p, p].

By similar arguments to part (ii), step 2 of the proof of Theorem 4.1, it suffices to

show that there exists a constant C > 0 for which

sup
p∈[p,p]

sup
h0∈Hp

Ph0
(
∥∂aĥĴ − ∂aĥĴn∥∞ > C(log n)(|a|−p)/ς and Ĵ < Ĵn

)
→ 0 .

But for any Ĵ ≤ Ĵn by a Bernstein inequality (or inverse estimate) for our choice of basis,

∥∂aĥĴ − ∂aĥĴn∥∞ ≲ (Ĵn)
|a|/d∥ĥĴ − ĥĴn∥∞ ≲ (J̄∗

max(R2))
|a|/d∥ĥĴ − ĥĴn∥∞

wpa1 uniformly over Hp and p ∈ [p, p], where the second inequality is because Ĵn ≤
Ĵmax ≤ J̄max(R2) wpa1 H-uniformly by Lemma E.5 and because J̄max(R2) = J̄∗

max(R2) for

all n sufficiently large. But note by severe ill-posedness and definition of J̄∗
max(R2), we have

that C(J̄∗
max(R2))

ς/d ≍ log τJ̄∗
max(R2) ≤ log(R2

√
n) ≍ log n, and so J̄∗

max(R2) ≲ (log n)d/ς .

The result now follows by part (ii), step 2 of the proof of Theorem 4.1.

Proof of Theorem 4.2. In some of what follows, we use the fact that the sieve dimen-

sions for CDV wavelet bases are linked via J+ = 2dJ for J ∈ T . We do so for notational

convenience; a similar argument (with more complicated notation) applies for B-splines.

Part (i), step 1: By part (i), step 2 of the proof of Theorem 4.1, we have Ĵ = J̃ wpa1

H-uniformly. It therefore suffices to prove the result for the band

Cn(x) =

[
ĥĴ(x)−

(
z∗1−α + Âθ∗1−α̂

)
σ̂Ĵ(x), ĥĴ(x) +

(
z∗1−α + Âθ∗1−α̂

)
σ̂Ĵ(x)

]
,

(cf. (16)). Note by Appendix A this implies the result holds for our UCBs for nonparamet-
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ric regression as well. Fix R2 > 0 in the definition of J̄max(R2) from (38) sufficiently large

so that by Lemma E.5 we have infh0∈H Ph0(Ĵmax ≤ J̄max(R2)) → 1. Let J̄max ≡ J̄max(R2)

for the remainder of the proof. Recall the constants CE.1 from (44), B and B from the

discussion preceding the statement of this theorem, and C4 and C5 from (47). Also note

that by Lemmas E.3 and E.5, Assumption 4(i), and the fact that δn ↓ 0 (cf. (43)) imply

that there exists C2, C3 > 0 which satisfy

inf
h0∈H

Ph0
(

sup
(x,J)∈X×Ĵ

τJ
√
J

∥σ̂x,J∥sd
≤ C3

)
→ 1 , inf

h0∈H
Ph0
(

sup
(x,J)∈X×Ĵ

∥σ̂x,J∥sd
τJ
√
J

≤ C2

)
→ 1 .

(51)

Let v = infJ∈T (1 + ∥ΠJ∥∞)−1 > 0, where ∥ΠJ∥∞ ≲ 1 is the Lebesgue constant for ΨJ

(see Appendix D.3). Choose β ∈ (0, 1) and E > 0 such that (vBβ−p/d− (CE.1 +1)B) > 0

and E−1(vBβ−p/d − (CE.1 + 1)B) > C2(ξ + 1), where ξ > 1 (ξ = 1.1 in the main text).

Define J0(p, E) as in (39). Part (i), step 1 of the proof of Theorem 4.1 implies that

J0(p, E) ≳ (n/ log n)d/(2(p+ς)+d). By Lemma E.5 and mild ill-posedness, for any constant

C > 0 we have J0(p, E)/(log Ĵmax)
2 ≥ C wpa1 uniformly for h0 ∈ Hp and p ∈ [p, p].

Hence, inf{J ∈ T : J ≥ βJ0(p, E)} > log Ĵmax wpa1 uniformly for h0 ∈ Hp and p ∈ [p, p].

Fix any J ∈ Ĵ with J < βJ0(p, E) (this is justified wpa1 uniformly for h0 ∈ Hp and

p ∈ [p, p] by the preceding paragraph) and note (dropping dependence of J0 on (p, E))

∥ĥJ − ĥJ0∥∞ = ∥ĥJ − ĥJ0 − h̃J + h̃J − h̃J0 + h̃J0 − h0 + h0∥∞
≥ ∥h̃J − h0∥∞ − ∥h̃J0 − h0∥∞ − ∥ĥJ − h̃J − (ĥJ0 − h̃J0)∥∞.

For a given h0 ∈ Gp, let h0,J ∈ argminh∈ΨJ
∥h− h0∥∞. Recall J from the definition of Gp

and note that inf{J : J ∈ Ĵ } ≥ J holds wpa1 H-uniformly by Lemma E.5. Recalling the

Lebesgue constant ∥ΠJ∥∞ from Appendix D.3, we may then deduce

∥h̃J − h0∥∞ ≥ ∥h0,J − h0∥∞ ≥ (1 + ∥ΠJ∥∞)−1∥h0 − ΠJh0∥∞ ≥ vBJ−p/d ,

for all J ∈ Ĵ wpa1, uniformly for all h0 ∈ Gp and all p ∈ [p, p]. It follows by (44) and the

discussion preceding the statement of this theorem that

∥ĥJ − ĥJ0∥∞ ≥ vBJ−p/d − (CE.1 + 1)BJ
−p/d
0 − ∥ĥJ − h̃J − (ĥJ0 − h̃J0)∥∞

≥ (vBβ−p/d − (CE.1 + 1)B)J
−p/d
0 − ∥ĥJ − h̃J − (ĥJ0 − h̃J0)∥∞

> C2(ξ + 1)τJ0

√
J0θ

∗
1−α̂√
n

− ∥ĥJ − h̃J − (ĥJ0 − h̃J0)∥∞ ,
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where the second line uses J < βJ0 and the third uses definition of E and J0(p, E). It

now follows by the preceding display and (51) that

sup
p∈[p,p]

sup
h0∈Gp

Ph0
(
Ĵ < βJ0(p, E)

)
≤ sup

p∈[p,p]
sup
h0∈Gp

Ph0
(

inf
J∈Ĵ :J<βJ0

sup
x∈X

√
n|ĥJ(x)− ĥJ0(x)|

∥σ̂x,J,J0∥sd
≤ ξθ∗1−α̂

)
≤ sup

p∈[p,p]
sup
h0∈Gp

Ph0
(

sup
(x,J,J2)∈Ŝ

√
n|ĥJ(x)− ĥJ2(x)− (h̃J(x)− h̃J2(x))|

∥σ̂x,J,J2∥sd
> θ∗1−α̂

)
+ o(1)

≤ sup
h0∈H

Ph0
(

sup
(x,J,J2)∈Ŝ

√
n|ĥJ(x)− ĥJ2(x)− (h̃J(x)− h̃J2(x))|

∥σ̂x,J,J2∥sd
> θ∗1−α̂

)
+ o(1) → 0 ,

where the final line is by (49).

Part (i), step 2: Recall J+
0 (p,D) from part (i), step 1 of the proof of Theorem 4.1. By

the previous step of this proof and part (i), step 1 of the proof of Theorem 4.1, we have

inf
p∈[p,p]

inf
h0∈Gp

Ph0
(
βJ0(p, E) ≤ Ĵ ≤ J+

0 (p,D)
)
→ 1 . (52)

Therefore, by (44), (51), (52), and definition of B, for every h0 ∈ Gp and x ∈ X we have

|h̃Ĵ(x)− h0(x)|
∥σ̂x,Ĵ∥sd

≤ (CE.1+1)C3B
Ĵ−p/d

τĴ

√
Ĵ

≤ (CE.1+1)C3Bβ
−p/d2p

(2dJ0(p, E))
−p/d

τ⌈βJ0(p,E)⌉
√
βJ0(p, E)

,

wpa1 uniformly for h0 ∈ Gp and p ∈ [p, p] and x ∈ X , where τ⌈βJ0(p,E)⌉ denotes the ill-

posedness at resolution level inf{J ∈ T : J ≥ βJ0(p, E)}. It now follows from definition

of 2dJ0(p, E) ≡ J+
0 (p, E) from (39) that whenever the preceding inequality holds, we have

sup
x∈X

√
n
|h̃Ĵ(x)− h0(x)|

∥σ̂x,Ĵ∥sd
≤ C3(CE.1 + 1)Bβ−p/d−1/22p+d/2E−1

τ2dJ0(p,E)

τ⌈βJ0(p,E)⌉
θ∗1−α̂ < A0θ

∗
1−α̂ ,

where the final inequality holds uniformly for h0 ∈ Gp and p ∈ [p, p] for a constant A0 > 0
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because supJ∈T τ2dJ/τ⌈βJ⌉ <∞ by virtue of mild ill-posedness. Hence for any A ≥ A0,

inf
h0∈G

Ph0 (h0(x) ∈ Cn(x,A) ∀ x ∈ X )

≥ inf
p∈[p,p]

inf
h0∈Gp

Ph0
(
sup
x∈X

√
n
|ĥĴ(x)− h0(x)|

∥σ̂x,Ĵ∥sd
≤ z∗1−α + Aθ∗1−α̂

)
+ o(1)

≥ inf
p∈[p,p]

inf
h0∈Gp

Ph0
(
sup
x∈X

√
n
|ĥĴ(x)− h̃Ĵ(x)|

∥σ̂x,Ĵ∥sd
≤ z∗1−α

)
+ o(1)

≥ inf
p∈[p,p]

inf
h0∈Gp

Ph0
(

sup
(x,J)∈X×J

n

√
n
|ĥJ(x)− h̃J(x)|

∥σ̂x,J∥sd
≤ z∗1−α

)
+ o(1) ,

where the final line is because Ĵ ∈ J
n
:= {J ∈ T : 0.1(log J̄max(R2))

2 ≤ J ≤ J̄−
max(R1)}

with J̄−
max(R1) = sup{J ∈ T : J < J̄max(R1)} and Ĵ− ⊇ J

n
both hold wpa1 uniformly

for h0 ∈ Gp and p ∈ [p, p]; the former holds by (52) and Lemma E.1 and the latter holds

by Lemma E.5 and the fact that Ĵ = J̃ wpa1 H-uniformly. Let z∗1−α denote the 1 − α

quantile of sup(x,J)∈X×J
n
|Z∗

n(x, J)|. As z∗1−α ≤ z∗1−α must hold whenever Ĵ ⊇ J
n
, we

therefore have

inf
h0∈G

Ph0 (h0(x) ∈ Cn(x,A) ∀ x ∈ X )

≥ inf
p∈[p,p]

inf
h0∈Gp

Ph0
(

sup
(x,J)∈X×J

n

√
n
|ĥJ(x)− h̃J(x)|

∥σ̂x,J∥sd
≤ z∗1−α

)
+ o(1) = (1− α) + o(1) ,

where the last equality follows from Theorem E.2(i) and the definition of z∗1−α.

Part (ii): By Lemmas E.4, E.6, and E.7 and Assumption 4(i), we have

sup
x∈X

|Cn(x,A)| ≲ (1 + A)τĴ

√
(Ĵ log J̄max)/n

wpa1 H-uniformly. Then by (52) with J0 = J0(p,D) and Ā = 1 + A, we have that

sup
x∈X

|Cn(x,A)| ≲ ĀτJ+
0

√
(J+

0 log J̄max)/n ≲ ĀτJ0

√
(J0 log J̄max)/n ≲ Ā

√
log J̄max

θ∗1−α̂
J
−p/d
0

holds wpa1 uniformly for h0 ∈ Gp and p ∈ [p, p] and for all A > 0, where the second

inequality follows from the fact that the model is mildly ill-posed and the third is by

definition (39). It follows by Lemma E.6 that there is a constant C > 0 (independent of
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A) for which

inf
p∈[p,p]

inf
h0∈Gp

Ph0
(
sup
x∈X

|Cn(x,A)| ≤ C(1 + A)(J0(p,D))−p/d
)

→ 1 .

The result now follows from part (i), step 2 of the proof of Theorem 4.1, which shows that

infp∈[p,p] infh0∈Hp

(
J∗
n(p, E) ≤ J0(p,D)

)
→ 1 with J∗

n(p, E) ≍ (n/ log n)d/(2(p+ς)+d).

Proof of Theorem 4.3. In some of what follows, we use the fact that the sieve dimen-

sions for CDV wavelet bases are linked via J+ = 2dJ for J ∈ T . A similar argument (with

more complicated notation) applies for B-spline bases.

Part (ii): First note by Lemma E.5 and the fact that J̄max(R) = J̄∗
max(R) (see (40))

holds for any R > 0 for all n sufficiently large (see part (ii), step 1 of the proof of Theorem

4.1), we have that J∗
max(R1) ≤ Ĵmax ≤ J∗

max(R2) wpa1 H-uniformly.

RecallM0(p,R2) from (41). By Lemma E.2, for all p ∈ [p, p] we have that M0(p,R2) ≥
M0(p,R2) ≥ 2−dJ∗

max(R2) holds for all n sufficiently large. Then by Lemmas E.4, E.6, and

E.7 and Assumption 4(i), there exist constants C,C ′ > 0 for which

sup
x∈X

|Cn(x,A)| ≤ C(1+A)τJ̃

√
(J̃ log(J̄∗

max(R2)))/n+AJ̃
−p/d ≤ C ′(1+A)(J∗

max(R2))
−p/d+AJ̃−p/d

holds wpa1 uniformly for h0 ∈ Hp and p ∈ [p, p], where the second inequality is by

definition ofM0(p,R2). The proofs of Theorem 4.1 and Corollary 4.1 show that J̄∗
max(R2) ≍

(log n)d/ς in the severely ill-posed case. Therefore, it suffices to show that there is a

constant c > 0 for which Ĵ ≥ c(log n)d/ς holds wpa1 uniformly for h0 ∈ Gp and p ∈ [p, p].

Recall β and E from the proof of Theorem 4.2 and J0(p, E) from (39). By similar

arguments to Lemma E.2, we may deduce that inf{J ∈ T : J ≥ βJ0(p, E)} > log Ĵmax

wpa1 uniformly for h0 ∈ Hp and p ∈ [p, p]. It then follows by the same argument as

part (i), step 1 of the proof of Theorem 4.2 that Ĵ ≥ βJ0(p, E) holds wpa1 uniformly for

h0 ∈ Gp and p ∈ [p, p]. But by Lemma E.6 and the fact that log J̄∗
max(R2) ≍ log log n for

severely ill-posed models, it follows that there is a constant C ′′ > 0 for which, by defining

J∗(p, C ′′) = sup

{
J ∈ T : τJ

√
(J log log n)/n ≤ C ′′J−p/d

}
,

we have infp∈[p,p] infh0∈Hp Ph0(J0(p, E) ≥ J∗(p, C ′′)) → 1. Finally, we may deduce by a

similar argument to part (ii), step 1 of the proof of Theorem 4.1 that J∗(p, C ′′) ≳ (log n)d/ς

for all p ∈ [p, p], which establishes the desired behavior of Ĵ .
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Part (i): By Theorem E.1 and Lemma E.5, there exists a constant A0 > 0 for which

|ĥJ̃(x)− h0(x)| ≤ |ĥJ̃(x)− h̃J̃(x)|+ A0J̃
−p/d

holds for all x ∈ X wpa1 H-uniformly. Then for any A ≥ A0, we have

inf
h0∈G

Ph0
(
h0(x) ∈ Cn(x,A) ∀ x ∈ X

)
≥ inf

h0∈G
Ph0
(
sup
x∈X

∣∣∣∣∣√nĥJ̃(x)− h̃J̃(x)

∥σ̂x,J̃∥sd

∣∣∣∣∣ ≤ z∗1−α

)
+ o(1) .

Suppose that J∗
max(R2) ≥ 22dJ∗

max(R1) ∈ T . Then by definition of J̄∗
max(R) and Remark

E.1, we have

τJ∗
max(R2)

τ22dJ∗
max(R1)

≍
τJ∗

max(R2)

τ22dJ∗
max(R1)

J∗
max(R2)

√
log J∗

max(R2)

22dJ∗
max(R1)

√
log J∗

max(R1)
≤ R2

R1

. (53)

But note that if J∗
max(R2) ≥ 22dJ∗

max(R1) then by severe ill-posedness we have

τJ∗
max(R2)

τ2dJ∗
max(R1)

≥
τ22dJ∗

max(R1)

τ2dJ∗
max(R1)

≍ eC((22dJ∗
max(R1))ς/d−(2dJ∗

max(R1))ς/d) = eC2ς(2ς−1)(J∗
max(R1))ς/d → +∞ ,

which contradicts (53). Therefore, J̄∗
max(R1) ∈ {2−dJ̄∗

max(R2), J̄
∗
max(R2)} holds for all n suf-

ficiently large, from which it follows by Lemma E.5 that Ĵmax ∈ {2−dJ̄∗
max(R2), J̄

∗
max(R2)}

wpa1 H-uniformly. Therefore, J̃ ≤ 2−dJ̄∗
max(R2) holds wpa1 H-uniformly. But by part

(ii) we also have that J̃ ≥ cJ̄∗
max(R2) holds for a sufficiently small c > 0 wpa1 uniformly

h0 ∈ Gp and p ∈ [p, p]. Therefore, J̃ ∈ J
n
:= {J ∈ T : cJ̄∗

max(R2) ≤ J ≤ 2−dJ̄max(R2)}
and Ĵ ⊇ J

n
both hold wpa1 uniformly for h0 ∈ Gp and p ∈ [p, p].

Let z∗1−α denote the 1 − α quantile of sup(x,J)∈X×J
n
|Z∗

n(x, J)|. As z∗1−α ≤ z∗1−α must

hold whenever Ĵ ⊇ J
n
, we therefore have

inf
h0∈G

Ph0 (h0(x) ∈ Cn(x,A) ∀ x ∈ X )

≥ inf
p∈[p,p]

inf
h0∈Gp

Ph0
(

sup
(x,J)∈X×J

n

√
n
|ĥJ(x)− h̃J(x)|

∥σ̂x,J∥sd
≤ z∗1−α

)
+ o(1) = (1− α) + o(1) ,

where the last equality follows from Theorem E.2(i) and the definition of z∗1−α.
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E.4 Supplemental Results: UCBs for Derivatives

Here we present supplemental results for the proofs of Theorems 4.4 and 4.5. Throughout

this subsection, for any fixed R > 0, let J̄max ≡ J̄max(R). Also let Jmin → ∞ as n → ∞
with Jmin ≤ J̄max. Define Jn = {J ∈ T : Jmin ≤ J ≤ J̄max}. Also recall δn from (43). We

introduce the bootstrap process for the derivatives:

Za∗n (x, J) ≡ Da∗
J (x)

σ̂aJ(x)
=

1

∥σ̂ax,J∥sd

(
1√
n

n∑
i=1

L̂aJ,xb
K(J)
Wi

ûi,Jϖi

)
,

where ∥σ̂ax,J∥2sd ≡ nσ̂a2J (x) = L̂aJ,xΩ̂J,J(L̂
a
J,x)

′ and L̂aJ,x = (∂aψJx )
′[Ŝ ′

JĜ
−1
b,J ŜJ ]

−1Ŝ ′
JĜ

−1
b,J with

∂aψJx denoting the derivative applied element-wise: ∂aψJx = (∂aψJ1(x), . . . , ∂
aψJJ(x))

′.

Proofs of these supplemental results are presented in our earlier working paper version

Chen et al. (2022), where they are labelled as Lemmas E.12, E.13, and E.14, respectively.

Lemma E.8 Let Assumptions 1-3 hold. Then: there is a universal constant CE.8 > 0

such that

inf
h0∈H

Ph0
(

sup
(x,J)∈X×Jn

∣∣∣∣∣∥σ̂ax,J∥2sd∥σax,J∥2sd
− 1

∣∣∣∣∣ ≤ CE.4δn

)
→ 1 .

Lemma E.9 Let Assumptions 1-4 hold. For a given α ∈ (0, 1), let za∗1−α denote the 1−α

quantile of sup(x,J)∈X×Ĵ |Za∗n (x, J)|. Then: with J̄max(R) as defined in (38) for any R > 0,

there exists a constant CE.9 > 0 for which

inf
h0∈H

Ph0
(
za∗1−α ≤ CE.9

√
log J̄max(R)

)
→ 1 .

Lemma E.10 Let Assumptions 1-4 hold and let Jmin ≍ (log J̄max)
2. Then: there exists a

sequence γn ↓ 0 for which

sup
s∈R

∣∣∣∣∣Ph0
(

sup
(x,J)∈X×Jn

∣∣∣∣∣√n∂aĥJ(x)− ∂ah̃J(x)

∥σ̂ax,J∥sd

∣∣∣∣∣ ≤ s

)
−P∗

(
sup

(x,J)∈X×Jn

|Za∗n (x, J)| ≤ s

)∣∣∣∣ ≤ γn

holds wpa1 H-uniformly.

E.5 Proofs of Theorems 4.4 and 4.5 on UCBs for Derivatives

Proof of Theorem 4.4. The proof follows similar arguments to the proof of Theorem 4.2.

Here we state the necessary modifications.

Part (i), step 1: Identical to part (i), step 1 of the proof of Theorem 4.2.
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Part (i), step 2: Note that by Theorem E.1 and a similar argument to the proof of

Corollary 3.1 of Chen and Christensen (2018), we have

inf
h0∈H

Ph0
(
∥∂ah̃J − ∂ah0∥∞ ≤ C6J

(|a|−p)/d ∀ J ∈ [1, J̄max] ∩ T
)

→ 1

for some constant C6 > 0. Moreover, by Lemma E.8 and Assumption 4(iii) there is a

constant C7 > 0 for which

inf
h0∈H

Ph0
(

sup
(x,J)∈X×Ĵ

τJJ
1/2+|a|/d

∥σ̂ax,J∥sd
≤ C7

)
→ 1 .

It now follows by (52) that

|∂ah̃Ĵ(x)− ∂ah0(x)|
∥σ̂a

x,Ĵ
∥sd

≤ C6C7
Ĵ−p/d

τĴ

√
Ĵ

≤ C6C7β
−p/d2p

(2dJ0(p, E))
−p/d

τ⌈βJ0(p,E)⌉
√
βJ0(p, E)

,

wpa1 uniformly for h0 ∈ Gp and p ∈ [p, p] and x ∈ X . The remainder of the proof of this

part now follows by identical arguments to part (i), step 2 of the proof of Theorem 4.2,

using Lemma E.10 in place of Theorem E.2(i).

Part (ii): By Lemma E.6, Lemmas E.8 and E.9 and Assumption 4(iii), we have

sup
x∈X

|Ca
n(x,A)| ≲ (1 + A)τĴ Ĵ

1/2+|a|/d
√

(log J̄max)/n

wpa1 H-uniformly. Then by display (52), with J0 = J0(p,D) we have that

sup
x∈X

|Ca
n(x,A)| ≲ (1 + A)τJ+

0
(J+

0 )
1/2+|a|/d

√
(log J̄max)/n

≲ (1 + A)τJ0J
|a|/d
0

√
(J0 log J̄max)/n ≲ (1 + A)

√
log J̄max

θ∗1−α̂
J
(|a|−p)/d
0

holds wpa1 uniformly for h0 ∈ Gp and p ∈ [p, p], where the second inequality follows from

the fact that the model is mildly ill-posed and the third is by definition (39). The result

now follows by similar arguments to part (ii) of the proof of Theorem 4.2.

Proof of Theorem 4.5. The proof follows similar arguments to the proof of Theorem 4.3.

Here we state the necessary modifications.

Part (i): By Lemma E.5, Theorem E.1, and similar arguments to the proof of Corollary
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3.1 of Chen and Christensen (2018), there exists a constant A0 > 0 for which

|∂aĥJ̃(x)− ∂ah0(x)| ≤ |∂aĥJ̃(x)− ∂ah̃J̃(x)|+ A0J̃
(|a|−p)/d

holds for all x ∈ X wpa1 H-uniformly. Then for any A ≥ A0, we have

inf
h0∈G

Ph0
(
∂ah0(x) ∈ Ca

n(x,A) ∀ x ∈ X
)
≥ inf

h0∈G
Ph0
(
sup
x∈X

∣∣∣∣∣√n∂aĥJ̃(x)− ∂ah̃J̃(x)

∥σ̂a
x,J̃

∥sd

∣∣∣∣∣ ≤ za∗1−α

)
+o(1) .

The remainder of the proof now follows similarly to the proof of Theorem 4.3, using

Lemma E.10 in place of Theorem E.2(i).

Part (ii): By Lemmas E.2, E.6, E.8, and E.9 and Assumption 4(iii), there exist con-

stants C,C ′ > 0 for which

sup
x∈X

|Ca
n(x,A)| ≤ C(1 + A)τJ̃ J̃

1/2+|a|/d
√

log(J̄∗
max(R2))/n+ AJ̃ (|a|−p)/d

≤ C ′(1 + A)(J∗
max(R2))

(|a|−p)/d + AJ̃ (|a|−p)/d

holds wpa1 uniformly for h0 ∈ Hp and p ∈ [p, p]. The remainder of the proof now follows

similarly to the proof of Theorem 4.3.
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