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Abstract

Objective.Dynamic positron emission tomography (PET) imaging, which can provide information on
dynamic changes in physiologicalmetabolism, is nowwidely used in clinical diagnosis and cancer
treatment.However, the reconstruction fromdynamic data is extremely challenging due to the limited
counts received in individual frame, especially in ultra short frames. Recently, the unrolledmodel-
based deep learningmethods have shown inspiring results for low-count PET image reconstruction
with good interpretability. Nevertheless, the existingmodel-based deep learningmethodsmainly
focus on the spatial correlations while ignore the temporal domain.Approach. In this paper, inspired
by the learned primal dual (LPD) algorithm,we propose the spatio-temporal primal dual network
(STPDnet) for dynamic low-count PET image reconstruction. Both spatial and temporal correlations
are encoded by 3D convolution operators. The physical projection of PET is embedded in the iterative
learning process of the network, which provides the physical constraints and enhances interpretability.
Main results.The experiments of both simulation data and real rat scan data have shown that the
proposedmethod can achieve substantial noise reduction in both temporal and spatial domains and
outperform themaximum likelihood expectationmaximization, spatio-temporal kernelmethod,
LPD and FBPnet. Significance.Experimental results show STPDnet better reconstruction performance
in the low count situation, whichmakes the proposedmethod particularly suitable inwhole-body
dynamic imaging and parametric PET imaging that require extreme short frames and usually suffer
fromhigh level of noise.

1. Introduction

With the ability of quantifying biochemical and physiological parameters in vivo, dynamic positron emission

tomography (PET) imaging plays an indispensable role in tumor detection (Kostakoglu et al 2003),

characterization of heart diseases (Machac 2005) and drug development (Boss et al 2008). However, image

reconstruction fromdynamic PETdata is challenging due to the ill-posedness of this inverse problem (Yu et al

2012, Liu et al 2015) and the low counting statistics of dynamic PETdata, especially in the early-time frame

reconstruction (Wernick et al 1999, Cui et al 2019a, 2019b).
Traditional reconstructionmethods generally act on individual time frame data, include analyticmethods,

iterativemethods and penalized log-likelihoodmethods. The images obtained by the analytical reconstruction

methods such asfiltered back-projection (FBP) (Brooks andChiro 1976) usually have undesirable artifacts.

Iterativemethods such asmaximum likelihood expectationmaximization (MLEM) algorithm (Shepp and

Vardi 1982) or its variant, the ordered-subsets accelerate version (Hudson and Larkin 1994) tend tofit the noise
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characteristics in PETdatawell, while the results are limited by the accuracy of the projectionmodel and the
noise is increasing after a certain number of iterations. Penalized log-likelihoodmethods (Fessler 1994,Wang
andQi 2012, Chen et al 2015, Xie et al 2020) further improve the image quality by introducing the regularization
term in the iteration framework.However, the design of the regularization is an open question and the hyper-
parameters are often hand-crafted. Thesemethods reconstructing from single time frame data does not take
advantage of the time dependence in dynamic PETdata.

By incorporating the temporal prior, spatio-temporal kernelmethods (KEM-ST) (Wang andQi 2014,
Wang 2018) and other spatio-temporally constrained strategies (Chen et al 2015, Zhang and Liu 2019) improves
the reconstruction. Nevertheless, for KEM-ST, global temporal kernelsmay notmatch the local temporal
characteristics in some atypical regions and the large temporal window size possibly result in over-smoothing.
Besides, the ultra short time frames are often required in clinical dynamic PET imaging, while thesemethods
may not performwell in such low counting situation.

As deep learningmethods show extraordinary capabilites inmedical imaging,many deep learning-based
PET image reconstructionmethods have been proposed (Gong et al 2019, Reader et al 2020), including direct
learningmethods (Zhu et al 2018), post-denoisingmethods (Cui et al 2019c,Hashimoto et al 2019, Zhou et al
2020,Hashimoto et al 2021,Onishi et al 2021) and deep unrollingmethods (Gong et al 2019, Lim et al 2020,
Mehranian andReader 2020,Hu and Liu 2022). Direct learningmethod are easy to implement, such as
DeepPET (Häggström et al 2019, Li et al 2022). However, it always requires a large number of training data pairs
and lacks interpretability and generalization ability (Whiteley et al 2020). Post-denoisingmethods are themost
commonway to apply deep learning techniques in PET.However, post-processing cannot save the lengthy
reconstruction time and its results are significantly affected by the pre-reconstruction algorithm (Cheng et al
2021). As an emerging technology, deep image prior (DIP) is widely used in dynamic PETdenoising. Cui et al
(2019c)used theDIP for unsupervised dynamic PETdenoising.Hashimoto et al (2019) utilizedCNNandDIP
for dynamic PET image denoising. However, theseDIP basedmethods are easy to overfit, which limits the
accuracy of parameter estimation. Deep unrollingmethods combine the physical characteristics of PET imaging
model with the powerful representation ability of deep neural network and show inspiring reconstruction
results.Mehranian et al (Mehranian andReader 2020) unrolled a forward backward splitting algorithmwith
CNN for PET image reconstruction. Lim et al (2020) unrolled the block coordinate descent algorithmwithUnet.
However,most of thesemethods focus only on the reconstruction of image domain and do not catch the
temporal characteristics of the dynamic PETdata. FBPnet (Wang and Liu 2020) is one of the few deep learning-
basedmethods that takes into account the temporal relationships of dynamic PET data. It combines the
traditional FBP algorithm and a denoising neural network and has good generalization ability. Nevertheless, this
methoddoes not do iterative refining, just like the FBP algorithm.

In this paper, we propose an unrolled deep learningmethod, the spatio-temporal primal dual network
(STPDnet), for dynamic low count PET image reconstruction. As one of themodel-based deep learnmethod,
the proposed STPDnet has good interpretability, as well as excellent learning ability. Themain contributions of
this paper include (1) introducing the STPDnet (Spatio-Temporal PrimalDual network), the first unrolled
neural network for dynamic low count PET image reconstruction; (2) using 3D spatio-temporal convolution
operators to simultaneouslymodel the spatial and temporal correlations in dynamicmeasured sinogram. Part of
this workwas previously accepted to the 2023 IEEE International SymposiumonBiomedical Imaging (ISBI)
(Hu et al 2023). This work has been substantially extendedwithmore detailed studies on the simulation data as
well as experimental evaluations of clinical rat data. Additionally, we present a comprehensive discussion of the
experimental results obtained from the proposedmethod, alongwith an analysis of its strengths and limitations.
Furthermore, a detailed literature review of relatedworks is also incorporated in this paper.

The rest of this paper is organized as follows. Section 2 introduces the network structure of proposed
STPDnet and details of the reconstruction process. Section 3 describes the simulations, data set and the
evaluationmethods. The experimental results are shown in section 4, followed by further discussion of the
results in section 5. Section 6 gives thefinal conclusions.

2.Method

2.1.Dynamic PET image reconstruction

Dynamic PET imaging enable real-time tracking of radiotracers, providing valuable insights into organ function
andmetabolism by extracting and analyzing the kinetic parameters of the reconstructed dynamic PET images. A
sequence of dynamic PET images is reconstructed from a time-dependent series of sinograms, providing a
comprehensive representation of the temporal evolution of the radiotracer distributionwithin the subject.

For dynamic PET imaging, the expectation of themeasurement data ¯ { ¯ }= Î ´yy i t
I

,
1 in an individual

frame t can bemodeled by a linear transformation as:
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¯ · ( )= +Gy x r, 1

where { }= Î ´xx j t
J

,
1 is the unknown image, Î ´G I J is the system responsematrix with j representing the

index of pixels and i representing the index of detectors.Gi,j denotes the probability that the ith detector received
the photon emitted from the jth voxel (Qi et al 1998). I is the total number of detector pairs and J is the total
number of voxels. Î ´r I 1 is the expectation of dynamic randomand scattered events.

Dynamic PET image reconstruction is an ill-posed problem,which can be solved byminimizing a
regularized objective function:

( ∣ ) ( ) ( )l- +
Î

L Ry x xmin 2
Xx

( ∣ ) ¯ ¯ ( )åå= -
= =

L y y yy x log , 3
i

I

t

T

i t i t i t
1 1

, , ,

whereX denotes the reconstructed image space. L(y|x) is the negative Poisson log-likelihood, which also called
the datafidelity term.T is the total number of time frames.R(x) is the regularization term controlled by the
parameterλ.

2.2. Primal dual hybrid gradient (PDHG) algorithm for PET

The dynamic PET image reconstruction problem can be reformulate to the saddle point problem (Ehrhardt et al
2019):

( ) ( ) ( )l< + > - +


*G L Rx r y y xmin sup , , 4
x y0

where L* is the convex conjugate of the log-likelihood L (Bauschke et al 2011) and< · , · > denotes the inner
product with ( )< > = TrA B A B, ,T .

The saddle point problem equation (4) can be solved by PDHGalgorithm (Chambolle andPock 2011)with
an introduced dual variableh ä Y.Y is themeasurement sinogram space. The scheme of PDHGalgorithm for
dynamic PET image reconstruction is shown in algorithm1. The iteration process is divided into three steps. In
thefirst step, the sumof themeasured sinogram and the forward projection of the estimated image is calculated
and then evaluated by the proximal operator. The proximal operator is defined by:

{∣∣˜ ∣∣ ( )} ( )
˜

= - +
Î

** Lx x xprox argmin . 5mL
Xx

2

After the dual variable hi t,
0 is updated (line 2), the back-projection is calculated. Similarly, the primal variable x is

updated through the proximal operator (line 3).

Algorithm1.Primal-dual hybrid gradient (PDHG) to solve the dynamic PET image reconstruction.

Input: image initialization x j t,
0 , dual variable initialization h i t,

0 , measured sinogram yi t, , step size { }=m mi t, , { }=n nj t, , { }=p pi t,

1: for [ ]Î ¼i 1, do

2: ( · ¯ )¬ +- -
* mh h G xproxi t

k
mL i t

k
j t
k

, ,
1

,
1

3: ( · )¬ --
*nx x G hproxj t

k
nR j t

k
i t
k

, ,
1

,

4: ¯ ( )= + - -px x x xj t
k

j t
k

j t
k

j t
k

, , , ,
1

5: end for

2.3. Spatio-temporal convolutional primal dual network

Previously, the learned primal dual (LPD) (Adler andÖktem2018) used two networks to represent the proximal
operators. The prior information and the update process can be learned from the training data. Although it has
achieved good results onCT, CS-MRI (Wang et al 2019) and static PET (Guazzo andColarieti-Tosti 2021), it is
not suitable for dynamic PETdatawith low count properties and strong temporal correlations. Themain
reasons are as follows: (1) by solely employing convolutional and activation function tofit the proximal
operator, gradient explosion issuesmay arise,making it challenging for the network to converge to a satisfactory
result, especially in the case of low count PETdata. (2)The temporal correlations ofmeasurement data is not
considered. Especially in dynamic PETdata, there is a strong dependence of different time frames.

Based on these observations, we proposed the STPDnet for low count dynamic PET image reconstruction.
Firstly, we replace the two proximal operators in the PDHGalgorithmwith the primal net P and the dual netD
based on spatio-temporal 3D convolution. 3D convolution is carried out in both spatial and temporal domains
to simultaneously extract the spatio-temporal features. The primal net is used to learn the spatio-temporal
correlations in the reconstructed image domain and update the primal variable xj,t. The dual net is used in the
measurement sinogramdomain to update the dual variablehi,t. Thus, the dual domain alternate iteration is

3
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formed.Meanwhile, we let the network learn the relationship between the input items of the proximal operator:

( · ) ( )= - -Dh h G x y, , 6i t
k

i t
k

j t
k

, ,
1

,
1

( · ) ( )= -
*Px x G h, , 7j t

k
j t
k

i t
k

, ,
1

,

where, (·) (·) ( · ·· ( ( ( ( (·)))))s s= = *D P w w wBN BN BNl
d d d3

2
3

1
3 denotes the structure of primal net and dual

net. { } =wq
d

q
l3

1 is the convolutionweights consisting of kernels with spatio-temproal kernel size (3× 3× 3) , BN
denotes the batch normalization layer,σ is the PReLU activation function and * is the convolution operation.

Comparedwith LPD, the 3D spatio-temporal convolution is adopted and the batch normalization (BN) is
introduced behind every convolution operator to enable the network to learnmore efficiently. The batch
normalization layermakes the network converges faster. In order to reduce the effect of low accuracy of
projection operator on reconstruction results, we add a convolution layer after each projection to learn the gap
between the simulated PETprojection and the real worldmeasurement. Techniques like BN and skip
connection allow the networkwith better generalization ability andmake it particularly suitable for the dynamic
PET image reconstruction in low count situation. The extended primalmemory and dualmemory are also
introduced in the STPDnet, which are obtained by appending a set of ‘lifting variables’ to the original primal and
dual variables. These lifting variables canmake the optimization problemmore amenable to specific operations,
such as convolution. The overall algorithmflowchart is presented in algorithm 2. The proposed network
containsK iterations, each iteration corresponds to one block as shown infigure 1.

Algorithm2.Algorithm for dynamic PET reconstructionwith spatio-temporal convolutional primal dual
net-work.

Input: image initialization ( )Îx Xj t
n

,
0 primal , dual variable initialization ( )Îh Yi t

n
,

0 dual , maximumnumber of iteration blocksK, measured

Sinogram y

1: for [ ]Îk K1, do

2: ( · )( )¬ - -Dh h G x y, ,i t
k

i t
k

j t
k

, ,
1 2

,
1

3: ( · )( )¬ -
*Px x G h,j t

k
j t
k

i t
k

, ,
1 1

,

4: end for

5: return ( )x ;K1

2.4. Implementation details

The proposed networkwas implemented using Pytorch 1.7 on aNVIDIATITAN-Xof 24 GB graphics card
memory. The number of iteration blocks (K )was 8. The dual variable hi t,

0 and image x j t,
0 were both initialized

with values of zero.During training, the dynamic low count sinogramwas fed into the network and themean

Figure 1.The network structure of the proposed spatio-temporal primal dual network (STPDnet).
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square error (MSE) loss was calculated between the network outputs and the label images. The learnable
parameters, include convolution kernels, biases, batch normalization parameters were optimized byAdam
optimizer withβ1= 0.9 andβ2= 0.999. The learning ratewas 8e-4 and decayed by a factor of 0.99 after each
epoch. The number of extendedmemory of the primal variable (nprimal) and dual variable(ndual)were 3. The
batchsize was 2.

3. Experimental setup

3.1.Data set

3.1.1. Simulation data

The 128× 128× 40 3DZubal brain phantom (Zubal et al 1994)was used in the simulation study and two
tumorswith different size were added. In the simulation, the graymatter towhitematter ratio of each phantom
wasmodeled as aGaussian variable with the variation of 0.1. The phantom contains 6 regions of interests (ROIs)
as shown infigure 2(a). The scanning schedule consisted of 18 time frames over 60min: 3× 60 s, 9× 180 s,
6× 300 s.

A three compartmentalmodel with Feng’s input function (Feng et al 1993)was adopted to simulate dynamic
18F-FDG scans. Regional TACs as shown infigure 2(b)were assigned to different regions to generate true tracer
radioactivity images. To simulate the population difference, k parameters weremodeled as aGaussian variable
with standard deviations of 0.1. Themean values of these k parameters were presented in table 1.

The systemmatrix used in the data projectionwas computed by usingMichigan Image Reconstruction
Toolbox (Noh et al 2009)with a strip-integralmodel for both simulation data and real rat data. The true tracer
radioactivity imageswere first forward projected to generate noise-free sinogram. The number of detector bins
and projection angles were 128 and 160. Poisson noise were introduced to the noise free sinogramwith 20%of
the counts. The total count of one simulated brain sample was approximately 2.4× 105 to simulate low count
situation. For a single slice sinogram, frame 1 only had about 5k events, whereas frame 18 had about 17k events.
In total, 40 4D training pairs with size of 128× 128× 40× 18were generated, where 33were randomly selected
as training data, 5 as the test data, 2 as the validation data. As our network needs both temporal and spatial data as

Figure 2.The Zubal phantomand time activity curves (TACs) used in the simulation study. (a)The 35th slice of the 3DZubal
phantom; (b) examples of the regional time activity curves.

Table 1.Themean values of the simulatedK parameters.V denotes blood
volume ratio. The standard deviation (STD) of each value is the 10%of
itsmean.

Tissue K1 k2 k3 k4 V

Graymatter 0.100 0.140 0.170 0.013 0.103

Whitematter 0.050 0.110 0.050 0.006 0.026

Caudate 0.120 0.170 0.190 0.016 0.101

Putamen 0.130 0.160 0.170 0.010 0.092

Thalamus 0.130 0.160 0.140 0.012 0.152

Tumor 0.110 0.100 0.150 0.015 0.173
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input, each axial slice with 18 time frames (128× 128× 18)was used as one training sample,making total of
1600 data samples (1320 for training, 80 for validation, 200 for testing), the total image slices are 28800. The
training label is the noise-free activity images. A total of 5 realizations were simulated and eachwas trained and
tested independently for bias-variance analysis.

3.1.2. Rat data

Animal experiments were approved by the experimental animalwelfare and ethics review committee, andwere
performed in compliance with local legal requirements. Thirteen rat with gliomas datasets of one hour FDG
dynamic scan acquired on SiemensMicro-PET/CT Inveon scanner with 1mCi dose injectionwere employed in
this study. Data acquisition began right after the FDG injection. The scanning schedule consisted of 18 time
frames over 60min: 3× 60 s, 9× 180 s, 6× 300 s. Only the segments 0 of themichelogramswere used as
training and test sinogram (160 views, 128 bins) for low count simulation. For a single slice sinogram, frame 1
has 5k events, whereas frame 18 has 20k events approximately. These low-count sinogramwas taken as inputs,
the reconstructed PET images withCT attenuation correction and full 3D counts were used as labels. The images
reconstructed of one rat data sample with an array size of 128× 128× 120× 18. The systemmatrix used in the
reconstruction is the same as the simulation. 10 rats were selected randomly for training, 1 for validation and 2
for testing.

3.2.Data evaluation

Peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM)were used for overall image quality
evaluations of both simulation experiments and rat experiments. For quantitative comparison and bias variance
analysis in simulation experiments, contrast recovery coefficient (CRC) versus the standard deviation (STD)

curves and the bias versus the standard deviation curves were plotted. For the comparison of the accuracy of
reconstruction TACs, the Euclidean distances between the reconstructed TACs and label TACswere calculated.
Furthermore, the Patlak graphicalmethod is used for quantitative parameter comparisons.

The PSNR is defined by:

·

( )

( )=
å -=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

q

p q
PSNR 20 log , 8

n i
n

i i

10
max

1
1

2

where p is the reconstructed image, q is the ground truth, n is the number of image pixels, qmax is themaximum
value of the ground truth image.

The SSIM is defined by:

( )( )

( )( )
( )

m m s

m m s s
=

+ +

+ + + +

c c

c c
SSIM

2 2
9

p q pq

p q p q

1 2

2 2
1

2 2
2

whereμ andσ denote themean of the image and the variance of the image. ( )= ´c p1 0.01 max

and c2= ( )´ p0.03 max .
TheCRC is defined as:

( )
( )

( )å=
-

-=R
CRC

1
1

1
. 10

r

R
a

b

a

b
1

r

r

true

true

Here,R denotes the number of realizations. ār and b̄r are the average values of selected ROIs and background
regions in rth realization. atrue and btrue are the ground truth values of the target and the background region,
respectively. In the simulation study, the number of realizations is 5. The two tumor regionswere selected as
target ROIs and 8 four-pixel-size-diameter spheres were drawn inwhitermatter as background region. The
background STD is calculated as:

( )
( )å=

å -

=

- =

K

b b

b
STD

1
, 11

b k

K
R r

R
r k k

k1

1

1 1 ,
2

b

whereKb= 8 is the total number of ROIs in the background region and ¯ ( )= å =b R b1k r
R

r k1 , is the average of
the kth ROI overR realizations.

The bias of themean values in thewhole target region is defined by:

( )=
-p q

p
Bias , 12
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where p̄ is the average value of whole target region for all realizations, q is the ground truth value of thewhole
target region.

Under the Patlak graphicalmethod, the tracer concentration at time t is represented by aweighted sumof the
blood input functionCP(t) and its integral after a sufficient lenght of time t* as:

( ) ( ) ( ) ( )òk t t= + > c bt C d C t t t, , 13
t

p p
0

whereκ represent the Patlak slope image, and b denote the Patlak intercept image. In practice, the Patlak slope
image x is a crucial quantitativemetric as it reflects the influx rate of the PET tracer.

3.3. Referencemethods

Both simulation and rat noisy sinogramwas reconstructed independently by fivemethods: the traditional
MLEM (Shepp andVardi 1982), spatio-temporal kernelmethodwith the data-driven temporal kernel (KEM-
ST) (Wang 2018), LPD (Adler andÖktem2018), FBPnet (Wang and Liu 2020) and proposed STPDnet. The
MLEMandKEM-STwere run 30 iterations, the iterationwith the best PSNR and SSIMwere chosen for
comparison. The spatial and temporal kernelmatrixes were constructed using the same approach as described in
(Wang 2018). For LPD, FBPnet and STPDnet,MSE loss and andAdamoptimizer were used for training. The
total training epochswere 300, and the optimal epochwith theminimumvalidation loss were selected as the
final reconstructionmodel. The network structure of LPD and FBPnetwere set as same as the original paper.
The training setting of three learningmethodswere same.

4. Results

4.1. Simulation results

Figure 3 shows the 35th slice axial view of the reconstructed images byfive differentmethods and the ground
truth images for the 3th frame, 8th frame and 15th frame, respectively. It can be observed that little structural
informationwas recovered byMLEM, and only a few edge contourswere visible in ultra-low count situation.
KEM-ST achieved a significant PSNR increase as comparedwithMLEM,while the structure informationwas
stillmissing, especially in the early-time frame. LPD revealedmore cortex information and improved the SSIM
thanKEM-ST andMLEM.However, due to the lack of temporal informationmodeling, the reconstructed
images of different frames by LPD showed significant differences. Besides, the tumor regions that the red arrow
points to had barely been recovered. Figure 4 shows themean image PSNR andmean image SSIMover 18 time
frames of thefive differentmethods. KEM-ST had higher PSNR thanMLEM, but some structural similarities
were lost. The three learning-basedmethods outperformed theMLEMandKEM-ST for all frames. It can be seen
that the SSIMof FBPnet showed a significant drop in frame six.We checked out the results and found that the
sixth frame images reconstructed by FBPnet appeared a significant over-smoothing. Comparedwith the LPD
and FBPnet, the proposed STPDnet substantially improved PSNR and SSIM and showed stable results. Figure 5
shows theCRC versus STD curves at the tumor regions using different reconstructionmethods. It can be seen

Figure 3.The ground truth images and reconstructed images of 35th slice by different reconstructionmethods for the 3th frame (top
row), 8th frame (middle row) and 15th frame (bottom row). From left to right:MLEM,KEM-ST, LPD, FBPnet, proposed STPDnet
and ground truth.
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that the proposed STPDnet achieved highCRCwith lower STD than other four comparedmethods. TheCRCof

LPDwas very low because LPD can hardly recover the tumor regionwith the poor learning ability and the lack of

temporalmodeling. Figure 6 shows the STD versus Bias curves of whole target regions. The proposed STPDnet

had the lowest Bias in the same STD level than other four comparisonmethods. BothCRC versus STD curves

and STD versus Bias curves demonstrated that the proposed STPDnet outperformed othermethods in bias-

variance trade-off. Figure 7 shows the TACs of the tumor region reconstructed byfive differentmethods. The

TAC reconstructed byMLEM fluctuatedwidely and showed extreme noise. KEM-ST achieved a good noise

reduction in the temporal domain, while the accuracy needed further improvement. LPD also showed obvious

noise due to the lack of temporalmodeling. The TAC reconstructed by FBPnetwas very smooth but the gapwith

the ground truth TACwas still large. The proposed STPDnet performed the best both in the temporal noise

reduction and in the TAC accuracy. Tomeasure the TAC accuracy of different reconstructionmethods in the

whole tumor region, Themean L2 distance between the reconstructed TAC and the ground truth TAC for each

pixel in the tumor regionwas calculated as shown in table 2. As seen, the proposed STPDnet got themost

accurate TAC comparedwith othermethods, which shows that STPDnet has a good reconstruction ability in the

temporal domain. Figure 8 shows the Patlak slopes reconstructed by differentmethods and the ground truthKi

image calculated by using compartmentalmodels. It can be seen that the noise of the Patlak slopes obtained by

MLEMandKEM is very severe. Under low count conditions, traditionalmethods are difficult to obtain accurate

Patlak slopes. LPDhas a obvious noise suppression, but the structural information is not well recovered,

especially in the simulated tumor region. FBPnet has significant improvements in noise suppression and

structure recovery, but the overallKi value is high, and the tumor boundary is not clear. The proposedmethod

performs the best among all comparisonmethods.

Figure 4.Plots ofmean image PSNR andmean image SSIMof simulation test set over 18 time frames reconstructed by different
methods. (a)Themean of PSNRof the test set; (b) themean of SSIMof the test set.

Figure 5.TheCRCversus STD curves of tumorROI by varying iteration numbers or training epochs for the (a) 3th frame, (b) 8th
frame, (c) 15th frame. For theMLEMandKEM-ST,markers were plotted every 5 iterations; for LPD, FBPnet and proposed STPDnet,
markers were plotted every 50 epochs.
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Figure 6.The STDversus Bias curves by varying iteration numbers or training epochs for the (a) 3th frame, (b) 8th frame, (c) 15th
frame. For theMLEMandKEM-ST,markers were plotted every 5 iterations; for LPD, FBPnet and proposed STPDnet,markers were
plotted every 50 epochs. Bias was calculated based on thewhole target region.

Figure 7.Time activity curves of tumor region reconstructed by different reconstructionmethods.

Figure 8.The reconstructed Patlak slopes of 35th slice of the test set using differentmethods.

Table 2.The L2 distance between the ground truth TACs and reconstructed TACs by differentmethods
in the tumor region.

MLEM KEM-ST LPD FBPnet Proposed

L2 distance (meanstd) 2.450.006 1.650.28 1.750.21 0.760.43 0.67± 0.46
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4.2. Rat data results

Figure 9 shows the reconstruction images of whole body data of rats by differentmethods in frame 8 and frame

15. It can be observed that traditionalMLEMwas very noisy, KEM-ST can distinguish among hot region of

suspected tumor to some extent, but the noise of imagewas very serious. LPD showed relatively smooth images,

butmisjudged some hot regions of suspected tumors badly, especially in some early-time frames such as frame 8.

The samemisjudgement occurred in the reconstruction results of FBPnet. The proposed STPDnet achieved the

best performance both in the overall contour of the image and in the detailed area of suspected tumor. Figure 10

shows themean image PSNR andmean image SSIMof rat test set over 18 time frames achieved by the five

differentmethods. As the scanning time increased, the counts were getting higher, the PSNR and SSIM showed a

rising trend. In general, themean image PSNR andmean image SSIMof rat test set by proposed STPDnetwere

higher than those by other comparisonmethods. Figure 11 shows the box plots of PSNR and SSIM for all frames,

the proposed STPDnet achieved the highest PSNR and SSIMover all time frames. Figure 12 shows the J-shape

tumor ROI in the rat brain and the box plot of the L2 distance between reconstructed TAC and full dose TAC in

Figure 9.Reconstruction images of rat data by differentmethods. From top to bottom: thorax slice in frame 8, brain slice in Frame 8,
thorax slice in frame 15, brain slice in frame 15.

Figure 10.Plots ofmean image PSNR andmean image SSIMof rat test set over 18 time frames reconstructed by differentmethods. (a)
Themean of PSNRof the test set; (b) themean of SSIMof the test set.
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the pixels of tumor ROI region. It can be seen that the proposedmethod outperformed other comparison
methods in terms of reconstructed TAC accuracy and stability in the temporal domain.

5.Discussion

In this study, we propose an unrolled deep learningmethod, STPDnet, for dynamic low count PET image
reconstruction, which achieved better performance comparedMLEM,KEM-ST, LPD and FBPnet in both
simulation data and real rat data. In this section, we give some discussions and comments on the STPDnet.

5.1. The number of unrolled blocks

As one of the deep unrolledmethods, the performance of STPDnet is highly related to the number of unrolled
blocks.Within a certain range, increasing the number of unrolled blocks can enhance the network’s learning and
representation capabilities. However, it also leads to issues such as largememory usage and extended training
times.Moreover, the number of unrolled blocks cannot be increased indefinitely, as this would result in severe
over-fitting. So there are trade-offs between network effects and time or space consumption.We have trained
and tested STPDnet under different numbers of the unrolled block, and quantified the reconstructed results as
shown infigure 13(a). It can be observed that as the block number increases, the PSNR and SSIMof the
reconstruction results show an increasing trend, and achieves the best performances when the block number is
8. Therefore, we chose 8 as thefinal number of blocks in the experiment. As the block number continues to

Figure 11.The box plots of PSNR and SSIMof rat test set for all frames. (a)The box plot of PSNRof the rat test set; (b) the box plot of
SSIMof the rat test set.

Figure 12. J-shape tumorROI and the box plot of the L2 distance between reconstructed TAC and full dose TAC in the pixels of tumor
ROI region. (a)The rat brainwithmarked J-shape tumor ROI. (b)The box plot of the L2 distance.
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increase, the effectiveness of the network does not continue to improve.We assume that the networkmay be too
deep and it is difficult to obtain an acceptable convergence solutionwith the increased difficulties in training.

5.2. The number of extended primal anddual space

Following LPD, the primal space and the dual space, which corresponding to the reconstructed image space and
themeasured sinogram space are both extended to allow the STPDnet some ‘memory’ between the iterations.
However, in different inverse problems, the optimal amount of expansion space should also be different, which
has not been discussed in previous studies.We test the optimal amount of expansion primal/dual space for low
count dynamic PET reconstruction problemwhen the block number is 8. The results are shown infigure 13(b).
The network achieves the best performancewhen the number of extended primal/dualmemory is 3.

5.3. Limitations

As one of the supervised learningmethods, for STPDnet, a certain number of training data pairs is necessary. In
order to obtain high-quality label data, a longer scan time or high level of dose is needed, whichmight introduce
motion artifacts. However, unlikeDeepPET, STPDnet does not necessitate extremely large data requirements
due to the combination of physical projection process in the iterative framework. The domain shift between
simulation data and clinical data is an inescapable challenge. Augmenting the quantity of simulated data, for
instance, by varying the phantom shapes, count levels, and input function types, could theoretically alleviate the
domain shift. Nevertheless, the resulting immense volume of data would considerably extend the training
period, especially when using the deep unrolledmethod that includes a projection process within the network
architecture. Consequently, training timesmay be unacceptably prolongedwhen handling large datasets.

The input of STPDnet is 3D sinogramdata, namely 2D spatial dimension and 1D temporal dimension.
However, dynamic PET reconstruction is a fully 4Dproblem and STPDnet cannot achieve fully 4D
reconstruction due to the increased data size andmemory requirement. Besides, TOF information is not
considered in STPDnet. AlthoughTOF information can greatly improve the quality of the reconstructed image,
the space consumption brought byTOF information is not only unbearable for STPDnet, but also a problem for
any deep learning algorithmbased on sinogramdata.

6. Conclusion

In this paper, we have developed a STPDnet for low count dynamic PET image reconstruction. The simulation
results show that the STPDnet yields better performance in both quantitative analysis and bias variance analysis
and show substantial noise reduction in both spatial domain and temporal domain comparedwithMLEM,
KEM-ST, LPD and FBPnet. Real rat results show STPDnet better reconstruction performance in the low count
situation, whichmakes the proposedmethod particularly suitable inwhole-body dynamic imaging and
parametric PET imaging that require extreme short frames and usually suffer fromhigh level of noise. Future
workwill focus on kinetic parameters estimation of clinical patient data.

Figure 13.PSNR and SSIM yielded by different number of unrolled blocks and different number of extended primal/dualmemory.
(a)Average PSNR and SSIM calculated based test images with unrolled block number from2 to 12. (b)Average PSNR and SSIM
calculated based test images with extended primal/dualmemory from2 to 7.
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