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Abstract. Item response theory (IRT) has become one of the most pop-
ular statistical models for psychometrics, a field of study concerned
with the theory and techniques of psychological measurement. The IRT
models are latent factor models tailored to the analysis, interpretation,
and prediction of individuals’ behaviors in answering a set of mea-
surement items that typically involve categorical response data. Many
important questions of measurement are directly or indirectly answered
through the use of IRT models, including scoring individuals’ test per-
formances, validating a test scale, linking two tests, among others. This
paper provides a review of item response theory, including its statisti-
cal framework and psychometric applications. We establish connections
between item response theory and related topics in statistics, including
empirical Bayes, nonparametric methods, matrix completion, regular-
ized estimation, and sequential analysis. Possible future directions of
IRT are discussed from the perspective of statistical learning.

Key words and phrases: Psychometrics, measurement theory, factor
analysis, item response theory, latent trait, validity, reliability.

1. INTRODUCTION

Item response theory (IRT) models, also referred to as latent trait models,
play an important role in educational testing and psychological measurement as
well as several other areas of behavioral and cognitive measurement. Specifically,
IRT models have been widely used in the construction, evaluation, and some-
times scoring, of large-scale high-stakes educational tests (e.g., Birdsall, 2011;
Robin et al., 2014). Most national and international large-scale assessments for
monitoring education quality, such as the Programme for International Student
Assessment (PISA) and the Trends in International Mathematics and Science
Study (TIMSS), which are of lower-stakes for test-takers, are also analyzed and
reported under the IRT framework (Rutkowski et al., 2013). IRT models are a
building block of student learning models for intelligent tutoring systems and per-
sonalized learning (Chen et al., 2018c; Khajah et al., 2014a,b; Tang et al., 2019;
Wilson and Nichols, 2015). They also play an important role in the analysis
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of health-related quality of life (Cella et al., 2002; Hays et al., 2000); specifi-
cally, these models have been the central statistical tool for the development of
the Patient-Reported Outcomes Measurement Information System (PROMIS), a
state-of-the-art assessment system for self-reported health that provides a stan-
dardized measurement of physical, mental, and social well-being from patients’
perspectives (Cella et al., 2007). Furthermore, they are crucial to measuring psy-
chological traits in various domains of psychology, including personality and psy-
chopathology (Balsis et al., 2017; Reise and Waller, 2009; Wirth and Edwards,
2007). Besides these applications, IRT models receive wide applications in many
other areas, such as political voting, marketing research, among others (e.g., Ba-
fumi et al., 2005; De Jong et al., 2008).

IRT models are probabilistic models for individuals’ responses to a set of
items (e.g., questions), where the responses are typically categorical (e.g., bi-
nary/ordinal/nominal). These models are latent factor models from a statistical
perspective, dating back to Spearman’s factor model for intelligence (Spearman,
1904a). Some early developments on IRT include Richardson (1936), Ferguson
(1942), Lawley (1943, 1944), among others. In the 1960s, Rasch (1960) and Lord
and Novick (1968) laid the foundation of IRT as a theory for educational and psy-
chological testing. Specifically, Rasch (1960) proposed what now known as the
Rasch model, an IRT model with a very simple form that has important philo-
sophical implications on psychological measurement and possesses good statisti-
cal properties brought by its natural exponential family form. Lord and Novick
(1968) first introduced a general framework of IRT models and proposed several
parametric forms of IRT models. In particular, the two-parameter (2PL) and
three-parameter logistic (3PL) models (Birnbaum, 1968) were introduced that
are still widely used in educational testing these days. Following these pioneer
works, more flexible models and more powerful statistical tools have been de-
veloped to better measure human behaviors, promoting IRT to become one of
the dominant paradigms for measurement in education, psychology, and related
problems; see Carlson and von Davier (2017), Embretson and Reise (2000), and
van der Linden (2018) for the history of IRT.

IRT models are closely related to linear factor models (see e.g., Anderson
and Rubin, 1956; Bai and Li, 2012). The major difference is that linear factor
models assume that the observed variables are continuous, while IRT models
mainly focus on categorical variables. Due to their close connections, one can
view IRT models as factor models for categorical data (Bartholomew, 1980). IRT
models are also similar to generalized linear mixed models (GLMM; Berridge and
Crouchley, 2011; Searle and McCulloch, 2001) in terms of the model assumptions,
even though the two modeling frameworks are developed independently and focus
on different inference problems. These connections will be further discussed in
Section 2 below.

Classical test theory (CTT; Lord and Novick, 1968; Novick, 1966; Spearman,
1904b), also known as the true score theory, is another psychometric paradigm
that was dominant before the prevalence of IRT. Perhaps the key advantage of
IRT over CTT is that IRT takes item-level data as input and separately models
and estimates the person and item parameters. This advantage of IRT allows for
tailoring tests through judicious item selection to achieve precise measurement for
individual test-takers (e.g., in computerized adaptive testing) or designing parallel
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test forms with the same psychometric properties. It also provides mechanisms
for placing different test forms on the same scale (linking and equating) and
defining and evaluating test reliability and validity. These features of IRT will be
discussed in the rest of the paper.

This paper reviews item response theory, focusing on its statistical framework
and psychometric applications. In the review, we establish connections between
IRT and related topics in statistics, such as empirical Bayes, nonparametric meth-
ods, matrix completion, regularized estimation, and sequential analysis. The pur-
pose is three-fold: (1) to provide a summary of the statistical foundation of IRT,
(2) to introduce some of the major problems in psychometrics to general statistical
audiences through IRT as a lens, and (3) to suggest directions of methodological
development for solving new measurement challenges in the big data era.

The rest of the paper is organized as follows. In Section 2, we provide a review
of the statistical modeling framework of IRT and compare it with classical test
theory and several related models. In Section 3, we discuss the statistical analyses
under the IRT framework and their psychometric applications. In Section 4, we
discuss several future directions of methodological development for solving new
measurement challenges in the big data era. We end with a discussion in Section 5.

2. ITEM RESPONSE THEORY: A REVIEW AND RELATED

STATISTICAL MODELS

2.1 Basic Model Assumptions

To be concrete, we discuss the modelling framework in the context of educa-
tional testing, though it is applicable to many other areas. We have N individuals
responding to J test items. Let Yij ∈ {0, 1} be a random variable representing
test-taker i’s response to item j, where Yij = 1 indicates a correct response
and Yij = 0 otherwise. We further denote yij as a realization of Yij and denote
Yi = (Yi1, ..., YiJ)

> and yi = (yi1, ..., yiJ)
>. Note that we use boldface for vectors.

An IRT model specifies the joint distribution of Yi, i = 1, ..., N .
An IRT model assumes that Yi, i = 1, ..., N , are independent, and models the

joint distribution of random vector Yi through the introduction of individual-
specific latency. More precisely, a unidimensional IRT model assumes one latent
variable for each individual i, denoted by θi, which is interpreted as the indi-
vidual’s level on a certain latent trait (i.e., ability) measured by the test. It is
assumed that individuals’ response patterns are completely characterized by their
latent trait levels. This is reflected by the conditional distribution of Yi given
θi in an IRT model. The specification of this conditional distribution relies on
two assumptions (1) a local independence assumption, saying that Yi1, ..., YiJ are
conditionally independent given the latent trait level θi, and (2) an assumption
on the item response function (IRF), also known as the item characteristic curve
(ICC), defined as gj(θ|πj) := P (Yij = 1|θi = θ), where πj is a generic notation
for parameters of item j. For example, gj(θ|πj) takes the form

(2.1)
exp(θ − bj)

1 + exp(θ − bj)
,

(2.2)
exp(dj + ajθ)

1 + exp(dj + ajθ)
,
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and

(2.3) cj + (1− cj)
exp(dj + ajθ)

1 + exp(dj + ajθ)
,

in the Rasch, 2PL, and 3PL models (Birnbaum, 1968; Rasch, 1960), respectively,
where item parameters πj = bj , (aj , dj), and (aj , cj , dj), respectively. Probit (nor-
mal ogive) models, which were first proposed in Lawley (1943, 1944), are also
commonly used (Embretson and Reise, 2000). These models replace the logit link
in (2.1)-(2.3) by a probit link. That is, for example, the two-parameter probit
model has the IRF Φ(dj + ajθ), where Φ denotes the standard normal distribu-
tion. We also note that different items can have different IRFs. In summary, a
unidimensional IRT model assumes that Yij is gj(θi|πj) plus some noise, where
the noise is often known as the measurement error. In educational testing, the
IRF is usually assumed to be a monotonically increasing function (e.g., aj > 0
in the 2PL and 3PL models) so that a higher latent trait level leads to a higher
chance of correctly answering the item.

The complete specification of an IRT model remains to impose assumptions
on the θi. According to Holland (1990b), θi can be viewed from two perspectives,
known as the “stochastic subject” and the “random sampling” regimes, which
lead to different parameter spaces. The “stochastic subject” regime was first
adopted in the pioneering work of Rasch (1960). It treats each θi as an unknown
model parameter to be estimated from data rather than a random sample from
a certain population. This regime leads to the joint likelihood function (Lord,
1968)

(2.4) LJL(π1, ...,πJ , θ1, ..., θN ) =
N
∏

i=1

J
∏

j=1

gj(θi|πj)
yij (1− gj(θi|πj))

1−yij .

The “random sampling” regime assumes that θis are independent and identically
distributed samples from a population with a density function f defined with
respect to a certain dominating measure µ. As a result, one estimates the distri-
bution function f from data, instead of the individual θis. This regime leads to
the marginal likelihood function (Bock and Aitkin, 1981)

(2.5) LML(π1, ...,πJ , f) =

N
∏

i=1







∫ J
∏

j=1

gj(θ|πj)
yij (1− gj(θ|πj))

1−yijf(θ)µdθ







.

As discussed in Holland (1990b), both regimes have their unique strengths and
weaknesses but the “random sampling” regime may be more solid as a founda-
tion for statistical inference. The readers are referred to Holland (1990b) for a
detailed discussion of the IRT assumptions from a statistical sampling viewpoint.
We will revisit these likelihood functions in Section 3.1 when the corresponding
estimation problems are discussed. Specifically, we will demonstrate that, under
a double asymptotic regime where both the sample size N and the number of
items J growing to infinity, the two likelihoods converge in a certain sense. Thus,
the estimates obtained from one likelihood can approximate the other. As the
“random sampling” regime is probably more widely accepted in the literature,
we will adopt this regime in the rest of the paper, unless otherwise stated. We
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also point out that, besides these two regimes, IRT models can be understood
from a full Bayesian perspective or an “item sampling” rationale; see Thissen and
Steinberg (2009) for further discussions.

Unidimensional IRT models discussed above can be viewed as a special case of
multidimensional IRT models. In multidimensional IRT models, each individual
is characterized by a vector of latent variables, denoted by θi = (θi1, ..., θiK)>,
whereK is the number of latent variables. The specification of a multidimensional
IRT model is similar to that of a unidimensional model, except that gj and f
are multivariate. For example, the IRF of the multivariate two-parameter logistic
(M2PL) model (Reckase, 2009) takes the form

(2.6) gj(θ|πj) =
exp(dj + aj1θ1 + · · ·+ ajKθK)

1 + exp(dj + aj1θ1 + · · ·+ ajKθK)
,

where θ = (θ1, ..., θK)> and πj = {aj1, ..., ajK , dj}. In addition, the distribution
f is often assumed to be multivariate normal (see e.g., Reckase, 2009). Recall
that we denote vectors by boldface symbols. In the rest of the paper, we will
use the boldface symbol θi as a generic notation for the person parameters in
a general IRT model, unless the discussion is specifically about unidimensional
IRT models. Moreover, with slight abuse of notation, we denote the joint and
marginal likelihoods for a general IRT model as LJL(π1, ...,πJ ,θ1, ...,θN ) and
LML(π1, ...,πJ , f), respectively.

As commonly seen in latent variable models (e.g., linear factor models), suit-
able constraints are needed to ensure model identifiability. We take the M2PL
model (2.6) as an example to illustrate this point, where θi is assumed to follow
a multivariate normal distribution. First, it is easy to observe that the model is
not determined under location-scale transformations of the latent variables, in
the sense that one can simultaneously transform the latent variables and the cor-
responding loading and intercept parameters without changing the distribution
of observed data. This indeterminacy is typically resolved by letting each latent
variable θik have mean 0 and variance 1. Second, the model also has rotational in-
determinacy, even after fixing the location and scale of the latent variables. That
is, one can simultaneously rotate the latent variables θi and the loading matrix
A = (ajk)J×K without changing the distribution of the response data. See Chap-
ter 8, Reckase (2009) for a further discussion about these indeterminacies of IRT
models.

The rotational indeterminacy is handled differently under the confirmatory
and exploratory settings of IRT analysis. Under the confirmatory setting, design
information (e.g., from the blueprint of a test) reveals the relationship between
the items and the latent variables being measured. This design information can be
coded by a J ×K binary matrix, often known as the Q-matrix (Tatsuoka, 1983),
Q = (qjk)J×K , where qjk = 1 if item j directly measures the kth dimension and
qjk = 0 otherwise. The Q-matrix imposes zero constraints on the loading parame-
ters. That is, ajk will be constrained to 0 when qjk = 0 so that Yij is conditionally
independent of θik given the rest of the latent traits. Figure 1 provides the path
diagram of the multidimensional IRT model given its Q-matrix. As indicated by
the directed edges from the latent traits to the responses, the two latent traits
are directly measured by items 1-3 and 3-5, respectively. The Q-matrix thus takes
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Fig 1. the path diagram of multidimensional IRT model given Q-matrix in equation 2.7. The
Q-matrix is indicated by the directed edges from the latent traits to the responses. The undirected
edge means that the two latent traits are allowed to be correlated. The individual subscript i is
omitted here for simplicity.

the form

(2.7) Q =

(

1 1 1 0 0
0 0 1 1 1

)>

.

For a carefully designed test whose Q-matrix satisfies suitable regularity con-
ditions, it can be shown that the rotational indeterminacy no longer exists, as
rotating the loading matrix will lead to violation of the zero constraints imposed
by the Q-matrix (Anderson and Rubin, 1956; Chen et al., 2020a). Under the ex-
ploratory setting, the Q-matrix is not available. However, one would still assume,
either explicitly or implicitly, that the relationship between the items and the
latent traits can be characterized by a sparse Q-matrix and thus the correspond-
ing loading matrix is sparse. Under this assumption, one fixes the rotation of the
latent vector according to the sparsity level of the corresponding loading matrix.
This problem plays an important role in the multidimensional measurement and
will be further discussed in Section 3.4.

2.2 Summary of IRT Analysis

We describe statistical analyses under an IRT model and their purposes while
leaving the more technical discussions to Section 3. We divide the analyses into
the following four categories:

1. Estimation of the item-specific parameters. The estimate can reveal the psy-
chometric properties of each item, and thus is often used to decide whether
an item should be chosen into a measurement scale, monitor the change in
items’ psychometric properties over time (e.g., change due to the leakage of
the item in an educational test that may be revealed by the change in the
parameter estimate), among others. Estimation methods have been devel-
oped under the “random sampling” and “stochastic subject” regimes; see
Section 3.1.

2. Estimation of the person-specific parameters. This problem is often referred
to as the prediction of person parameters under the “random sampling”
regime (Holland, 1990b) where they are viewed as random objects. This
problem is closely related to the scoring of individuals in the measurement
problem. For example, in a unidimensional IRT model for educational test-
ing where all the IRFs are monotone increasing in θ, two estimates sat-
isfying θ̂i > θ̂i′ implies that test-taker i is predicted to answer all items
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more correctly than test taker i′. This estimate is often interpreted as an
estimate of the test taker’s ability. For another example, when a multidi-
mensional IRT model is applied to a personality test, each component of
the estimate θ̂i may be interpreted as an estimate of the individual’s level
on a certain personality trait. As will be further discussed in Section 3.2,
supposing that all the item parameters have been accurately estimated, the
person parameters can be estimated based on the individual’s responses to
a subset of the items rather than all the test items. This is an important
feature of IRT that is substantially different from the classical test theory;
see a comparison between the two paradigms in Section 2.3 below.

3. Model evaluation. As the psychometric interpretations of an IRT model
rely on the (approximate) satisfaction of the model assumptions, these as-
sumptions need to be checked carefully, from the evaluation of individual
assumptions (e.g., the forms of IRF and marginal distribution, local inde-
pendence assumption, etc.) to assessing the overall goodness-of-fit. Many
statistical methods have been developed for evaluating IRT models; see
Section 3.3 for a discussion.

4. Learning the latent structure of IRT models. Like in exploratory factor anal-
ysis (e.g., Anderson, 2003), it is also often of interest to uncover the un-
derlying structure of a relatively large number of items in multidimensional
IRT models by learning the latent dimensionality and a sparse representa-
tion of the relationship between the latent variables and the items, i.e., the
Q-matrix mentioned previously. The learning of the latent dimensionality is
closely related to the determination of the number of factors in exploratory
factor analysis. The Q-matrix learning problem is closely related to, and
can be viewed as an extension of, the analytic rotation analysis (Browne,
2001) in exploratory factor analysis. Besides, the differential item func-
tioning problem to be discussed in Section 2.8 also involves learning the
relationship between the observed responses, latent traits, and individuals’
covariate information. Further discussions can be found in Section 3.4.

2.3 Comparison with Classical Test Theory

We now compare IRT with classical testing theory (CTT; Lord and Novick,
1968), a more classical paradigm for measurement theory. The major difference
is that CTT uses the test total score to measure individuals. It is suitable when
different individuals answer the same items, but is less powerful, and sometimes
infeasible, when individuals receive different test items (e.g., in computerized
adaptive testing where different test takers receive different sets of items). More
precisely, under the current notation, if all the items are equally weighted, then
the total score of individual i is defined as Xi :=

∑J
j=1 Yij . The CTT decomposes

the total score as Xi = Ti+ ei, where Ti is the true score of person i and ei is the
measurement error of the current test administration satisfying Eei = 0. Con-
ceptually, the true score Ti is defined as the expected number-correct score over
an infinite number of independent administrations of the same test, hypotheti-
cally assuming that the individual does not keep the memory of test items after
each administration (Chapter 2, Lord and Novick, 1968). CTT further assumes
that Ti and ei are uncorrelated and (Ti, ei), i = 1, ..., N , are i.i.d. samples from a
population. Under the CTT framework, the measurement of test-takers’ ability
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becomes to estimate Tis. A natural estimator of Ti is the total score Xi. This
estimator is unbiased, since E(Xi|Ti) = Ti.

A major contribution of CTT is to formally take the effect of measurement
error into account in the modeling of testing data. This uncertainty leads to the
concept of test reliability, defined as

ρ2TX :=
V ar(Ti)

V ar(Xi)
= 1− V ar(ei)

V ar(Xi)
,

which reflects the relative influence of the true and error scores on attained test
scores. This coefficient is closely related to the coefficient of determination (i.e.,
R-squared) in linear regression. However, it is worth noting that based on a single
test administration and without additional assumptions, one cannot disentangle
the effects of the true score and the measurement error from the observed total
scores. In other words, the true score Ti is not directly observed in CTT due to
its latency, unlike the dependent variables in linear regression. Consequently, ρ2TX

cannot be estimated with the total scores only. In fact, methods for the estimation
of test reliability, including Cronbach’s alpha (Cronbach, 1951) and the split-
half, test-retest, and parallel-form reliability coefficients (Chapter 9, Lord and
Novick, 1968), all require additional assumptions. These additional assumptions
essentially create repeated measurements of true score Ti. On the other hand,
repeated measurements are automatically taken into account in an IRT model by
modeling item-level data (each item as a repeated measure of the latent trait).
Consequently, similar reliability coefficients are more straightforward to define
and estimate under the IRT framework (Kim, 2012). For example, an analogous
definition of ρ2TX under a unidimensional IRT model is the so-called marginal
reliability, defined as V ar(E(θi|Yi))/V ar(θi).

The CTT and IRT frameworks are closely related to each other. In particular,
CTT can be regarded as a first-order IRT model (Holland and Hoskens, 2003).
That is, under a unidimensional IRT model given in Section 2.1, the true score
of a test can be defined as

Ti := E(Xi|θi) =
J
∑

j=1

gj(θi|πj).

Under the monotonicity assumption of the IRFs, the true score Ti can be viewed
as a monotone transformed latent trait level. The model parameters θi and πj

can be estimated from item-level data, leading to an estimate of the true score
Ti.

2.4 Connection with Linear Factor Model

We next discuss the connection between IRT models and linear factor models.
Specifically, we will show that these two types of models can be viewed as special
cases of a general linear latent variable modeling framework (GLLVM, Chapter
2, Bartholomew et al., 2011), where IRT models focus on categorical items while
linear factor models concern continuous variables. Moreover, it will be shown that
by taking an underlying variable formulation (Chapter 4, Bartholomew et al.,
2011), an IRT model can be viewed as a truncated version of the linear factor
model.
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2.4.1 A general linear latent variable modeling framework. The GLLVM frame-
work was first introduced in Bartholomew (1984), and this framework has been
further unified and extended in a wider sense in Moustaki and Knott (2000) and
Rabe-Hesketh and Skrondal (2004). Recall that an IRT model consists of (1) spec-
ification of the conditional distribution of each response Yij given the latent trait,
and (2) a local independence assumption and (3) an assumption on the marginal
distribution of θi. The GLLVM specifies a general family of latent variable models
following the three components (1)–(3). It allows for flexible choices of the con-
ditional distribution of Yij given θi in (1) and the marginal distribution of θi in
(3), where the latent variables θi are allowed to be unidimensional or multidimen-
sional. In this framework, the conditional distribution of Yij given θi is allowed
to be any generalized linear models (McCullagh and Nelder, 1989). Specifically,
one obtains a linear factor model if Yij given θi follows a normal distribution
N(dj+aj1θ1+ · · ·+ajKθK , σ2

j ) and θi follows a multivariate normal distribution.
In contrast, as reviewed previously, for binary response data, Yij given θi follows
a Bernoulli distribution with mean gj(θi|πj) in a (multidimensional) IRT model.

Most commonly used IRT models, including IRT models for other types of re-
sponses (e.g., ordinal/nominal) and multidimensional IRT models, can be viewed
as special cases of the GLLVM. Such models include the partial credit model
(Masters, 1982), the generalized partial credit model (Muraki, 1992), and the
graded response model (Samejima, 1969), the nominal response model (Bock,
1972), and their multidimensional extensions (Reckase, 2009). Under the GLLVM
framework, an IRT model can be further embedded into a structural equation
model, where the latent trait/traits measured by the IRT model can serve as
latent dependent or explanatory variables in a structural equation model for
studying the structural relationships among a set of latent and observed vari-
ables (Bollen, 1989).

2.4.2 Underlying variable formulation. Taking an underlying variable formu-
lation (Christoffersson, 1975; Muthén, 1984), one can obtain a multidimensional
IRT model by truncating a linear factor model. Suppose that Ỹi = (Ỹi1, ..., ỸiJ)

>

follows a linear factor model with K factors. Let Yij = 1{Ỹij≥0}. Then Yi =

(Yi1, ..., YiJ)
>, which contains truncated Ỹij , follows a K-dimensional IRT model.

More specifically, suppose that Ỹij given θi follows a normal distribution N(dj +
aj1θ1 + · · · + ajKθK , 1). Then P (Yij = 1|θi) = P (Ỹij ≥ 0|θi) = Φ(dj + aj1θ1 +
· · · + ajKθK). Recall that Φ is the cumulative distribution function of the stan-
dard normal distribution. Together with the assumptions of local independence
and the marginal distribution f , it specifies a multidimensional IRT model un-
der the probit link function. This formulation can be easily extended for ordinal
response data.

Assuming normality in both the conditional distribution of Ỹi given θi and
the marginal distribution of θi, the underlying variable formulation is closely re-
lated to the tetrachoric/polychoric correlations for measuring the association be-
tween binary/ordinal variables, which dates back to the seminal work of Pearson
(1900a). As will be discussed in Section 3.1, this connection leads to a computa-
tionally efficient method for estimating the corresponding multidimensional IRT
models.
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2.5 Connection with Analysis of Contingency Tables

IRT models have a close relation with categorical data analysis, particularly the
analysis of large sparse multidimensional contingency tables; see Fienberg (2000).
In fact, response data for J items can be regarded as a J-way contingency table
with 2J cells, where each cell records the total count of a response pattern (i.e.,
a binary response vector). Note that the J-way contingency table is a sufficient
statistic for the raw response data. This contingency table is typically sparse, as
the sample size N is usually much smaller than the number of cells when the
number of items J is moderately large (e.g., J ≥ 20). Even when the sample size
and the number of cells are comparable, some cells can still be sparse since the
counts in the cells may be highly dependent on each other. Parsimonious models
have been proposed for analyzing high-way contingency tables, which impose
sparsity in the coefficients for higher-order interaction terms.

As pointed out in Holland (1990a), IRT models approximate the second-order
loglinear model for J-way contingency tables

(2.8) P (Yi = y) ∝ exp

(

d>y +
1

2
y>AA>y

)

,

where d = (d1, ..., dJ)
> and A = (ajk)J×K (K is often chosen to be much smaller

than J , leading to a parsimonious model). This model does not explicitly contain
latent variables. It is also known as an Ising model (Ising, 1925), an important
model in statistical mechanics. Note that the same notations are used in the
second-order loglinear model as those in the M2PL model in (2.6), for reasons
explained below. That is, the second-order loglinear model can be viewed as an
M2PL model with a special marginal distribution for the latent variables. More
precisely, if the joint distribution of (Yi,θi) takes the form

(2.9) f(y,θ) ∝ exp

(

−1

2
θ>θ + y>Aθ + d>y

)

,

then integrating out θ gives the second-order log-linear model (2.8). Furthermore,
it can be easily shown that the conditional distribution of Yi given θi is the same
as that of the M2PL model given by equation (2.6). Under the joint model (2.9),
the marginal distribution of θi becomes a Gaussian mixture. For more discussions
on the connection between IRT models and loglinear models, we refer readers to
Fienberg and Meyer (1983), Ip (2002a), and Tjur (1982).

2.6 Comparison with Generalized Linear Mixed Models

The specification of IRT models under the “random sampling” regime is simi-
lar to that of generalized linear mixed models (GLMM; Berridge and Crouchley,
2011; Searle and McCulloch, 2001), and many IRT models can be viewed as spe-
cial cases of GLMM. GLMM extends the generalized linear model to analyzing
grouped (i.e., clustered) data commonly seen in longitudinal or repeated mea-
sures designs. A GLMM adds a random effect into a generalized linear model
(e.g., logistic regression model) while keeping the fixed effect in the generalized
linear model for studying the relationship between observed covariates and an
outcome variable. The random effect is used to model the dependence among
outcome variables within the same group (cluster). The IRT models introduced

imsart-sts ver. 2014/10/16 file: output.tex date: August 13, 2021



A REVIEW OF ITEM RESPONSE THEORY 11

in Section 2.1 can all be viewed as special cases under the GLMM framework.
Specifically, each individual can be viewed as a group, and the individual’s item
responses can be viewed as repeated measures. The latent variables θi correspond
to the random effects in the GLMM. There are no observed covariates in these ba-
sic models but there are more complex IRT models to be discussed in Section 2.8
below that make use of individual-specific and item-specific covariates. Due to
the similarities between IRT models and GLMMs, the estimation methods to be
discussed in Section 3.1 for IRT models also apply to GLMMs.

While the two families of models largely overlap with each other in terms of the
model assumptions, their main purposes are different, at least in the historical
applications of these models. That is, the GLMM focuses on explaining data by
testing certain hypotheses about the fixed effect parameters (i.e., the regression
coefficients for observed covariates), treating the random effect as a component
of the model that is not of interest in the statistical inference but necessary for
capturing the within group-dependence. On the other hand, IRT models tend to
focus on measuring individuals. Thus, the inference about the latent variables θi,
the random effect from the GLMM perspective, is of particular interest. However,
it is worth pointing out an important family of IRT models, called the explana-
tory IRT models (De Boeck and Wilson, 2004), that combines the explanatory
perspective of GLMM and the measurement perspective of IRT. These models are
specified under the GLMM framework, incorporating person- and item-specific
covariates to explain the characteristics of individuals and items, respectively.

2.7 Connection with Collaborative Filtering and Matrix Completion

IRT models are also closely related to collaborative filtering (Koren and Bell,
2015; Zhu et al., 2016), a method of making automatic predictions (filtering)
about the interests of a user by collecting preference/taste information from many
users (collaborating) that is widely used in recommendation systems (e.g., e-
commerce). The user-by-item matrix in collaborative filtering can be viewed as
an item response data matrix, for which a large proportion of entries are missing
due to the nature of the problem. A famous example of collaborative filtering is
the Netflix challenge on movie recommendation (Feuerverger et al., 2012). Data
of this challenge are ratings from a large number of users to a large set of movies,
where many missing values exist as each user only watched a relatively small
number of movies. The goal is to learn the preferences of each user on movies
that they have not watched. The collaborative filtering problem, including the
Netflix example, can be cast into a matrix completion problem that concerns
filling the missing entries of a partially observed matrix. When the entries of the
data matrix are binary or categorical-valued, the problem is known as a one-bit
or categorical matrix completion problem.

Without further assumptions, the matrix completion problem is ill-posed since
the missing entries can be assigned arbitrary values. To create a well-posed prob-
lem, a low-rank assumption is typically imposed to reduce the number of param-
eters, which is similar to the introduction of low-dimensional latent variables in
IRT models. More precisely, for the completion of a binary or categorical matrix,
it is often assumed that the data matrix follows a probabilistic model param-
eterized by a low-rank matrix (Bhaskar, 2016; Bhaskar and Javanmard, 2015;
Cai and Zhou, 2013; Davenport et al., 2014; Zhu et al., 2016). From the sta-
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tistical sampling perspective, these models take the “stochastic subject” regime
that treats the user-specific parameters as fixed parameters. The specifications of
such models are very similar to multidimensional IRT models. In particular, the
one-bit matrix completion problem aims to recover the matrix (pij)N×J , where
pij = P (Yij = 1|θi) = gj(θi|πj). A major difference between collaborative filter-
ing and psychometric applications of IRT is that psychometric applications are
typically interested in the inference of the latent variables and the item parame-
ters, while collaborative filtering only focuses on the inference of pijs. As will be
discussed in Section 4.3, some psychometric problems may be viewed as collabo-
rative filtering problems, and may be solved efficiently by matrix completion and
related algorithms.

2.8 More Complex IRT Models and Their Psychometric Applications

In what follows, we review several more complex IRT models beyond the basic
forms given in Section 2.1, and discuss their psychometric applications. Note that
all these models can be viewed as special cases under the GLLVM framework
discussed in Section 2.4.

2.8.1 IRT models involving covariates. Sometimes, covariates of the individ-
uals are collected together with item response data. We use xi to denote p-
dimensional observed covariates of individual i. Covariate information can be
incorporated into the IRT model in different ways for different purposes. We
discuss two types of models often used in psychometrics.

First, the covariates may affect the distribution of the latent traits, but not
directly on those of the item responses. Such models are known as the latent
regression IRT models (Mislevy, 1984, 1985). They are useful in large-scale as-
sessments, such as PISA and TIMSS, for estimating group-level distributions of
the corresponding latent traits for policy-relevant sub-populations such as gender
and ethnicity groups. For example, covariate information can be incorporated into
a unidimensional IRT model (e.g., 2PL model) by assuming θi to follow a normal
distribution N(x>

i β, 1) instead of a standard normal distribution, where β is a
p-dimensional vector of the coefficients. Note that the rest of the model assump-
tions remain the same (i.e., the IRFs and the local independence assumption).
In particular, the covariates are not involved in the IRFs, so that the covariates
do not directly affect the distribution of item responses. This model implies that
the mean of the latent trait distribution depends on the covariates. When the co-
variates are indicators of group memberships (e.g., gender, ethnicity), the model
allows the group means to be different. Figure 2 provides a graphical representa-
tion of the latent regression IRT model and other relevant models. Specifically,
panels (a) and (b) of the figure show the path diagrams for a basic IRT model
and a latent regression IRT model, respectively. In panel (b), the arrow from x to
θ implies that the distribution of θi depends on the covariates and the absence
of an arrow from x to the responses implies that the covariates do not directly
affect the distribution of the response variables given the latent traits. The la-
tent regression models can also be regarded as a special explanatory IRT model
(De Boeck and Wilson, 2004); see Section 2.6 for a brief discussion of explanatory
IRT models.

Second, the covariates may affect the distributions of the latent traits and the
responses to some items. Such models are typically known as the Multiple Indi-
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Fig 2. Path diagrams for three IRT models, including (a) an IRT model without covariates, (b)
a latent regression model, and (c) an MIMIC model. The individual subscript i is omitted here
for simplicity.

cators, Multiple Causes (MIMIC) models, originally developed in the literature
of structural equation models (Goldberger, 1972; Robinson, 1974; Zellner, 1970)
and then extended to IRT models (Muthén, 1985, 1988) for studying differential
item functioning (DIF). DIF refers to the situation when items may function dif-
ferently for different groups of individuals (e.g., gender/ethnicity) or they may
measure even different things for members of one group as opposed to members of
another. For example, a reading comprehension item in a language test may show
DIF between the male and female groups if the content of the reading paragraphs
is about a specific topic that either males or females have more experience with.
The MIMIC model provides a nice way to describe the DIF phenomenon. For
simplicity, consider the case of a single binary covariate xi ∈ {0, 1} that indicates
the group membership. Then MIMIC model let the IRFs of the DIF items depend
on the group membership, while allowing the two groups to have different latent
trait distributions. For example, suppose that item j is the only DIF item among
J items. Then a simple MIMIC model for DIF can be set as follows. The IRF of
item j can be modeled as

(2.10)
exp(dj + ajθ + γjxi)

1 + exp(dj + ajθ + γjxi)
,

which takes a 2PL model framework with γj being the parameter characterizing
the group effect on the IRF. The rest of the items are DIF-free items, and thus,
their IRFs still take the standard 2PL form (2.2). The latent trait distribution can
be modelled by setting θi given xi to follow N(βxi, 1). Panel (c) of Figure 2 gives
the path diagram for a MIMIC model, where the second item is a DIF item.
In real-world DIF analysis, DIF items are unknown and need to be detected
based on data. As will be discussed in Section 3.4, the DIF analysis can be cast
into a model selection problem. Comparing with other statistical model selection
problems, such as variable selection in regression models, the current model has
additional location-shift indeterminacy brought by the introduction of covariates,
which complicates the analysis.

2.8.2 Discrete latent variables. The latent variables in an IRT model can also
be discrete, though in many commonly used models, especially unidimensional
models, they are assumed to be continuous variables. IRT models with categorical
latent variables are known as latent class models (Goodman, 1974a,b; Haberman,
1977b; Lazarsfeld, 1950, 1959; Lazarsfeld and Henry, 1968). In the context of
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psychological and educational measurement, a latent class model is preferred
when the goal of measurement is to classify people into groups, while an IRT
model with continuous latent variables is preferred if the goal is to assign people
scores on a continuum. In particular, the diagnostic classification models (DCMs),
also known as the cognitive diagnosis models, are a family of restricted latent class
models dating back to the works of Haertel (1989) and Macready and Dayton
(1977). DCMs have received much recent attention in educational assessment,
psychiatric evaluation, and many other disciplines (Rupp et al., 2010; von Davier
and Lee, 2019). In particular, such models have played an important role in
intelligent tutoring systems (Cen et al., 2006; Doignon and Falmagne, 2012) to
support personalized learning. In DCMs, an individual is represented by a latent
vector θi = (θi1, ..., θiK)>, each component of which is a discrete latent variable
that represents the individual’s status on a certain attribute. For example, in the
binary case, θik = 1 may represent the mastery of skill k, and θik = 0 otherwise. As
a result, a diagnostic classification model classifies each individual given their item
responses into a latent class that represents the individual’s profile on multiple
discrete attributes.

Measurement based on DCMs is multidimensional and confirmatory in nature,
as these models are used to measure multiple fine-grained constructs of indi-
viduals simultaneously. As with the multidimensional IRT models discussed in
Section 2.1, the Q-matrix also plays an important role in the DCMs. Recall that
the Q-matrix takes the form Q = (qjk)J×K , where each entry qjk is binary, in-
dicating whether item j directly measures the kth dimension or not. Given the
Q-matrix, different IRFs have been developed to capture the way a set of relevant
attributes affect an item. For example, the Deterministic Inputs, Noisy “And”
gate (DINA) model (Junker and Sijtsma, 2001) is a popular diagnostic classifica-
tion model in educational measurement. The IRF of this model assumes that an
individual will answer an item correctly provided that the individual acquires all
the relevant skills, subject to noise due to slipping (when the individual can an-
swer correctly) and guessing (when the individual is not able to answer correctly)
behaviors. More precisely, the DINA model assumes binary latent variables (i.e.,
θk ∈ {0, 1}) and the following IRF,

(2.11) gj(θ|πj) =

{

1− sj if θk ≥ qjk, for all k = 1, ...,K,
gj otherwise,

where sj and gj are two item-specific parameters capturing the chances of an-
swering incorrectly due to carelessness when he/she is able to solve the problem
and of guessing the answer correctly, respectively, and πj = (sj , gj). The indicat-
ing event in (2.11), 1{θk≥qjk,k=1,··· ,K} is also known as the ideal response. Several
DCMs have been developed to account for different types of psychological pro-
cesses underlying item response behavior, such as the Deterministic Inputs, Noisy
“Or” gate (DINO) model (Templin and Henson, 2006) and reparametrized uni-
fied models (DiBello et al., 1995; Junker and Sijtsma, 2001), for which different
forms of IRFs are assumed. All these DCMs can be viewed as special cases of
a general diagnostic classification model (de la Torre, 2011; Henson et al., 2009;
von Davier, 2008), where the IRF takes the general form containing all the inter-
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actions of latent variables

(2.12)

h−1
j (gj(θ|πj)) =aj0 + aj1qj1θ1 + · · ·+ ajKqjKθK

+aj12qj1qj2θ1θ2 + · · ·+ aj,K−1,K−2qj,K−1qj,KθK−1θK

+ · · ·+ aj,1,··· ,K

K
∏

k=1

qjkθk.

In (2.12), hj is a link function (e.g., hj(x) = exp(x)/(1 + exp(x))), and the
item parameter vector πj = {aj0, aj1, · · · , aj,1,··· ,K}. Note that the latent variable
interactions are important to capture the disjunctive or conjunctive relationships
between the latent attributes in the special cases such as the DINA and DINO
models; see, e.g., de la Torre (2011) for more details.

Fundamental identifiability issues arise with the relatively more complex latent
structure in DCMs. The interpretation and measurement of the latent constructs
are only valid under an identifiable model. The identifiability problem of DCMs,
and more generally of multidimensional IRT models, has two levels. First, under
what measurement design are the model parameters (πj and parameters in f ,
the marginal distribution of θ) identifiable, assuming that the Q-matrix is known
and correctly specified? Second, if the Q-matrix is unknown, when can we simul-
taneously identify the model parameters and the Q-matrix from data? Efforts
have been made to address these questions; see Chen et al. (2015), Chen et al.
(2020a), Chiu et al. (2009), Fang et al. (2019), Fang et al. (2021), Gu and Xu
(2020), Liu et al. (2013), Xu and Zhang (2016), Xu (2017), and Xu and Shang
(2018).

2.8.3 Nonparametric IRT models. Nonparametric modeling techniques have
been incorporated into IRT, yielding more flexible models. They play an impor-
tant role in assessing the goodness-of-fit of parametric IRT models and providing
robust measurement against model misspecification.

Under the “random sampling” regime, one can assume either the IRF gj(θ|πj)
or the distribution f to be nonparametric. However, we note that model non-
identifiability generally occurs if assuming both to be nonparametric. In that case,
one can simultaneously transform the IRFs and the latent variable distribution
without changing the distribution of item responses; see Ramsay and Winsberg
(1991) for a discussion. Even with only one of the IRFs and the marginal distri-
bution f being nonparametric, model identifiability can still be an issue. This is
because, for binary response data, the sufficient statistic (i.e., count of each of
2J − 1 response patterns) is of dimension 2J − 1, which does not grow for a fixed
J . At the same time, there are infinitely many parameters in the nonparametric
model component. See Douglas (2001) for a discussion about the identifiability
of nonparametric IRT models and theory for the asymptotic identifiability when
both the sample size N and the number of items J grow to infinity.

Cressie and Holland (1983) studied the identifiability of a semiparametric
Rasch model, where the IRFs follow the form of a Rasch model and the marginal
distribution f is nonparametric. For the same model, de Leeuw and Verhelst
(1986) and Lindsay et al. (1991) further discussed the model identifiability and
proposed a nonparametric marginal maximum likelihood estimator in the sense
of Kiefer and Wolfowitz (1956), assuming f to be a mixture distribution with
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unspecified weights at unknown points. Their results suggest that, under suit-
able conditions, the estimation of the item parameters is consistent under the
asymptotic regime where J is fixed and N goes to infinity, even though there are
more parameters than the sample size. Haberman (2005) extended the analysis
by considering IRFs to take the 2PL and 3PL forms and found that the good
properties of the nonparametric marginal maximum likelihood estimator for the
semiparametric Rasch model do not carry over due to model non-identifiability.
There have been other developments in the nonparametric modeling of item re-
sponse functions. In these developments, the item response functions gj(θ|πj)
are replaced by nonparametric functions. Generally speaking, research in this
direction makes minimum assumptions on the item response functions, except
for certain monotonicity or smoothness assumptions. Nonparametric function es-
timation methods have been applied to the estimation of nonparametric IRFs,
such as spline methods; see Johnson (2007), Ramsay and Winsberg (1991), and
Winsberg et al. (1984).

Many developments on non-parametric IRT have been made under the “stochas-
tic subject” regime, either explicitly or implicitly, where the person parame-
ters are treated as fixed parameters. Thus, only the IRFs are considered non-
parametric. Specifically, Mokken scale analysis (Mokken, 1971; Mokkan and Lewis,
1982; Sijtsma and Molenaar, 2002), a pioneer work on non-parametric IRT, is de-
veloped under this regime. More precisely, a Mokken scale analysis model is a
unidimensional IRT model, assuming that each IRF is a non-parametric mono-
tonically nondecreasing function of the latent trait. Sometimes, it further makes
the “non-intersecting IRFs” assumption that imposes a monotone ordering of
IRFs. See Sijtsma and van der Ark (2017) for a discussion of these monotonicity
assumptions. More general non-parametric IRT models have been proposed, for
which theory and estimation methods have been developed. For an incomplete list
of these developments, see Douglas (1997), Guo and Sinharay (2011), Johnson
(2006), Ramsay and Abrahamowicz (1989), Sijtsma and Molenaar (2002), and
Stout (1990). We point out that these “stochastic subject” models have similar
identifiability issues as those under the “random sampling” regime. Therefore,
restrictions on the model are needed to resolve the indeterminacies, and a double
asymptotic regime is typically needed, i.e., both N and J growing to infinity,
for establishing consistent estimation of the non-parametric IRFs (e.g. Douglas,
1997).

Finally, we point out that essentially all the existing works on non-parametric
IRT models focus on unidimensional models. Non-parametric multidimensional
IRT models remain to be developed, given that multidimensional measurement
problems become increasingly more common these days. It is worth noting that
deep autoencoder models, a family of deep neural network models, are essen-
tially nonlinear and non-parametric factor models (Chapter 14, Goodfellow et al.,
2016). These models are flexible and control the latent dimension through the ar-
chitecture of the hidden layers in the deep neural network. In particular, the
M2PL model given in Section 2.1 can be viewed as a special autoencoder model
with one hidden layer. With this close connection, models and algorithms for deep
autoencoders may be borrowed to develop non-parametric multidimensional mea-
surement models.
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3. STATISTICAL ANALYSIS UNDER IRT FRAMEWORK

In this section, we discuss the statistical analyses under the IRT framework as
listed in Section 2.2.

3.1 Estimation of Item Parameters

We first consider the estimation of item parameters, which is often known as
item calibration. This estimation problem is closely related to the estimation of
fixed parameters in GLMMs and other nonlinear factor models, for which the
methods reviewed below are also generally suitable. We discuss these estimation
methods under the “random sampling” and “stochastic subject” regimes. As will
be further discussed in Section 3.1.3 below, the two regimes converge in a certain
sense when both the sample size and the number of items grow to infinity. In this
double asymptotic sense, estimation under the “stochastic subject” regime can be
viewed as an approximation to that under the “random sampling” regime, if one
believes that the latter is more solid philologically as a foundation for statistical
inference.

3.1.1 Marginal maximum likelihood estimation. The “random sampling” regime
treats the person parameters as samples from a distribution. The marginal max-
imum likelihood (MML) estimator is the main estimation method under this
regime and is also the most commonly used method in modern applications of
item calibration. Suppose that the indeterminacies of an IRT model have been
removed by imposing constraints on model parameters so that the model is iden-
tifiable. The MML simultaneously estimates the item parameters and the dis-
tribution of person parameters by maximizing the marginal likelihood function.
That is,

(3.1) (π̂1, ..., π̂J , f̂) = argmax
π1,...,πJ ,f

logLML(π1, ...,πJ , f).

Here, we assume the distribution f to take a parametric form. This estimator
can be viewed as an empirical Bayes estimator (Efron and Morris, 1973; Robbins,
1956); see Efron (2003) and Zhang (2003) for a review of empirical Bayes methods.

It is worth emphasizing that linking is automatically performed in the MML
estimator (3.1), as well as some of the estimators reviewed later including the
JML estimator. Suppose that each individual i is only given a subset of the test
items. This design is commonly used in large-scale assessments such as PISA and
TIMSS to achieve good content coverage without requiring each individual to
answer too many items. That is, let Bi ⊂ {1, ..., J} be the set of items assigned
to individual i. Then the marginal likelihood function can be written as
(3.2)

LML(π1, ...,πJ , f) =
N
∏

i=1







∫

∏

j∈Bi

gj(θ|πj)
yij (1− gj(θ|πj))

1−yijf(θ)µdθ







,

When there is sufficient overlap between the subsets Bi and given the standard
identifiability constraints for the IRT model, the item parameters and marginal
distribution f can still be identified based on the marginal likelihood (3.2). Con-
sequently, the item parameter estimates from the MML estimator based on (3.2)
automatically lie on the same scale. We refer the readers to Mislevy and Wu
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(1996) for further discussions on the application of IRT models to item response
data with missing values.

The optimization problem (3.1) is often solved by an Expectation-Maximization
(EM) algorithm (Bock and Aitkin, 1981; Dempster et al., 1977). When a mul-
tidimensional IRT model is fitted, the EM algorithm for solving (3.1) is usually
slow. This is because the algorithm has to frequently solve K-dimensional nu-
merical integrals, whose complexity increases exponentially with K. To speed up
the EM algorithm, stochastic versions of the EM algorithm have been proposed.
These algorithms avoid the numerical integration by Monte Carlo simulation (Cai,
2010a,b; Diebolt and Ip, 1996; Ip, 2002b; Meng and Schilling, 1996; Zhang et al.,
2020; Zhang and Chen, 2020). Among these developments, we draw attention
to the stochastic approximation methods, also known as the stochastic gradient
descent methods, proposed in Cai (2010a,b) and Zhang and Chen (2020), which
date back to the seminal work of Robbins and Monro (1951) on stochastic ap-
proximation and the work of Gu and Kong (1998) that combines Markov chain
Monte Carlo (MCMC) sampling and stochastic approximation for estimating la-
tent variable models.

We now demonstrate how the optimization problem (3.1) can be solved by
stochastic approximation. To simplify the notation, we use Ξ to denote all the
fixed parameters in π1, ...,πJ and f , and write the log marginal likelihood func-
tion as l(Ξ). We further denote

li(θi,Ξ) = log





J
∏

j=1

gj(θi|πj)
yij (1− gj(θi|πj))

1−yijf(θi)





as the log complete-data likelihood for individual i that is based on the joint
distribution of θi and Yi. Then it can be shown that the gradient of l(Ξ) takes
the form

∇l(Ξ) =
N
∑

i=1

E

(

∂li(θi,Ξ)

∂Ξ

∣

∣

∣
Yi = yi

)

,

where the conditional expectation is with respect to θi given Yi. With this ob-
servation, the stochastic approximation methods (Cai, 2010a,b; Zhang and Chen,
2020) for solving (3.1) iterate between two steps: (1) sample θi from its condi-
tional distribution given Yi, where the conditional distribution is based on Ξ(t),

the current value of Ξ, and (2) given the obtained samples θ
(t)
i , i = 1, ..., N , up-

date the value of Ξ by a stochastic gradient ascent, where the stochastic gradient
at Ξ(t) is given by

N
∑

i=1

∂li(θ
(t)
i ,Ξ)

∂Ξ
|Ξ=Ξ(t)

whose conditional expectation (given observed responses) is ∇l(Ξ). For multidi-
mensional IRT models with many latent traits, it may not be straightforward to
sample θi from the conditional distribution, and MCMC methods are needed to
perform the sampling step. Under mild conditions, Ξ(t) is guaranteed to converge
to the solution of optimization problem (3.1), even when the samples in the sam-
pling step are approximated by an MCMC algorithm (Zhang and Chen, 2020).
Typical of stochastic approximation, the performance of these algorithms is sen-
sitive to the step size in the stochastic gradient ascent step, where the step size
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is required to decay to 0 at a suitable rate to ensure convergence. Cai (2010a,b)
suggested to set the step size to delay at the rate 1/t, which is known to be
asymptotically optimal for the Robbins-Monro algorithm (Chung, 1954; Lai and
Robbins, 1979). However, the 1/t rate is well-known to yield unstable results in
practice as it decays to zero too fast. Zhang and Chen (2020) suggested to use a
slower-decaying step size and the Polyak–Ruppert averaging procedure (Polyak
and Juditsky, 1992; Ruppert, 1988) to improve the empirical performance of the
stochastic approximation algorithm while maintaining a fast theoretical conver-
gence rate.

3.1.2 Limited-information estimation methods. Alternative estimation meth-
ods are developed under the “random sampling” regime to bypass the high-
dimensional integrals in the MML. These methods are known as limited-information
methods. They do not consider the complete joint contingency table of all items,
but only marginal tables up to a lower order (e.g., two-way tables based on item
pairs).

We divide these methods into two categories. The first concerns the probit mod-
els discussed in Section 2.4.2 where the IRFs take a probit form, and marginal
distribution of the latent traits is also a multivariate normal distribution. Mak-
ing use of the underlying variable formulation, it can be shown that these IRT
models can be estimated by first estimating the multivariate normal distribu-
tion of the underlying variables and then recover the IRT parameters based on
the estimated distribution of the underlying variables. Note that the first step
can be done efficiently using the one-way and two-way tables based on all the
individual items and item pairs (Muthén, 1984), and the second step solves an
optimization problem with no integrals involved. Consequently, this method can
computationally efficiently estimate IRT models with many latent traits, espe-
cially when the number of items is not too large. Developments in this direction
include Christoffersson (1975), Lee et al. (1990, 1992, 1995), and Muthén (1978,
1984).

The second category of methods makes use of the composite likelihood method
(Besag, 1974; Cox and Reid, 2004; Lindsay, 1988). These methods allow for more
general forms of the IRFs but still require the marginal distribution of the latent
traits to be normal. More specifically, the fixed parameters are estimated by
maximizing a composite likelihood based on the lower-order marginal tables. In
particular, the pairwise likelihood is most commonly used that is constructed
based on item pairs, though more general composite likelihood functions can be
constructed based on triplets or quadruplets of items; see Jöreskog and Moustaki
(2001), Katsikatsou et al. (2012), Vasdekis et al. (2012), and Vasdekis et al.
(2014).

Although these limited-information methods are computationally less demand-
ing than the MML approach, there are some limitations. First, as mentioned
previously, these methods only apply to some restricted classes of IRT models
(e.g., probit IRFs, multivariate normal distribution for the latent traits). They
thus are not as generally appliable as the MML approach. Second, when the IRT
model is correctly specified, the limited-information methods suffer from some
information loss and thus are statistically less efficient than the MML estimator.
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3.1.3 Joint maximum likelihood estimation. The joint maximum likelihood
(JML) estimator refers to the estimation method that simultaneously estimates
the item and person parameters by maximizing the joint likelihood function intro-
duced in Section 2.1. This approach was first suggested in Birnbaum (1968), and
has been used in item response analysis for many years (Lord, 1980; Mislevy and
Stocking, 1989; Wood et al., 1978) until the MML approach becomes dominant.
Since the joint likelihood function does not involve integrals, the computation
of the JML estimator is typically much faster than that of the corresponding
MML estimator, especially when the latent dimension is high. Despite the com-
putational advantage, the JML estimator is still less preferred to the MML for
item calibration, possibly due to two reasons. The first one is philosophical. As
pointed earlier, the JML estimator naturally fits the “stochastic subject” regime,
which, however, is less well accepted than the “random sampling” regime. The
second reason is that the JML estimator lacks desirable asymptotic properties.
Under the standard asymptotic regime where the number of item is fixed and the
number of people goes to infinity, the JML estimation of the item parameters is
inconsistent. This inconsistency is due to that the sample size and the dimen-
sion of parameter space grow at the same speed. This phenomenon was originally
noted in Neyman and Scott (1948) under a linear model and further discussed
by Andersen (1970) and Ghosh (1995) under IRT models.

While these reasons are valid under a setting when J is small, they may no
longer be a concern under a large-scale setting when both the sample size N
and the number of items J are large. We provide some justifications for joint-
likelihood-based estimation, using the double asymptotic regime that both N and
J grow to infinity. We first point out that the two likelihood functions tend to ap-
proximate each other under this regime. To see this, we do local expansion of the
marginal likelihood function at the MML estimator (π̂1, ..., π̂J , f̂). Under the dou-
ble asymptotic regime and by making use of the Laplace approximation for inte-
grals, logLML(π̂1, ..., π̂J , f̂) can be approximated by logLJL(π̂1, ..., π̂J , θ̂1, ..., θ̂N )
plus some smaller-order terms, where π̂j is the same MML estimator and θ̂i is
given by

θ̂i = argmax
θ

log





J
∏

j=1

gj(θ|π̂j)
yij (1− gj(θ|π̂j))

1−yij



 .

See Huber et al. (2004) for more details about this expansion.
We further point out that some notion of consistency can be established for

the JML approach under the double asymptotic regime. Specifically, Haberman
(1977a) showed that person and item parameters of a Rasch model can be con-
sistently estimated when N and J grow to infinity at a suitable rate. Chen et al.
(2021) extended the analysis of Haberman (1977a) under a setting that many
entries of the response data matrix are missing. Chen et al. (2019, 2020a) con-
sidered a suitably constrained JML estimator for more general multidimensional
IRT models and showed that the estimator achieves the optimal rate under this
asymptotic regime. Specifically, the constrained JML estimator solves a JML
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problem with constraints on the magnitudes of person and item parameters

(3.3)
(θ̂1, ..., θ̂N , π̂1, ..., π̂J) = argmax

θ1,···θN ,π1,...,πJ

LJL(π1, ...,πJ ,θ1, ...,θN )

s.t. ‖θi‖ ≤ C, ‖πj‖ ≤ C, i = 1, ..., N, j = 1, ..., J,

where C is a pre-specified constant. Under mild conditions and assuming a fixed
latent dimension K, Chen et al. (2020a) showed that

(3.4)
‖P̂ − P ∗‖F√

NJ
= Op

(

1√
N ∧ J

)

is the optimal rate (in minimax sense) for estimating P ∗. Here, P̂ = (gj(θ̂i|π̂j))N×J

and P ∗ = (gj(θ
∗
i |π∗

j ))N×J , where θ̂i and π̂j are from (3.3), and θ∗
i and π∗

j are
the true parameter values that are required to satisfy the constraints in (3.3). By
making use of (3.4) and by proving extensions of the Davis-Kahan-Wedin sine
theorem (Davis and Kahan, 1970; Wedin, 1972) for the perturbation of eigenvec-
tors, it can be shown under suitable conditions that

(3.5)

√

∑J
j=1 ‖π̂j − π∗

j‖2
J

= Op

(

1√
N ∧ J

)

.

Under the typical setting where N is much larger than J , the rates in (3.4)
and (3.5) both become 1/

√
J ; that is, the accuracy of the JML estimator is

mainly determined by the number of items. We conjecture that maxj=1,...,J ‖π̂j−
π∗
j‖ = op(1), as both N and J grow to infinity. This conjecture may be proved

by a careful expansion of the joint likelihood function at the constrained JML
estimator.

With the above justifications, one may use the JML estimator as an approx-
imation to the MML estimator in large-scale applications, when both N and J
are large and the computation of the MML estimator is intensive.

3.1.4 Full Bayesian estimation. Full Bayesian methods have also been devel-
oped for the estimation of IRT models. These methods regard the unknown pa-
rameters in πj and f as random variables and impose prior distributions for them.
The estimation and associated uncertainty quantification are obtained based on
the posterior distributions of the unknown parameters. MCMC algorithms have
been developed for the full Bayesian estimation of different IRT models, espe-
cially multidimensional IRT models; see, for example, Culpepper (2015), Edwards
(2010) and Jiang and Templin (2019).

3.1.5 Other estimation methods. We summarize two other estimation meth-
ods commonly used in IRT analysis. One is the conditional maximum likelihood,
which essentially follows the “stochastic subject” regime. This method makes use
of a conditional likelihood function that does not contain any person parameters.
This estimator is not flexible enough in that the construction of the conditional
likelihood relies heavily on the raw total score being a sufficient statistic for the
person parameter and thus is only applicable to models within the Rasch family
(Andersen, 1970, 1977; Andrich, 2010; Rasch, 1960).

A two-step procedure is typically used to analyze unidimenisional non-parametric
IRT models that assume monotone IRFs (Douglas, 1997; Guo and Sinharay, 2011;
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Johnson, 2006). In the first step, one estimates the individuals’ latent trait level
based on their total scores. Note that this step only makes sense for unidimen-
sional IRT models with monotone IRFs. Then in the second step, the IRFs are
estimated using a non-parametric regression procedure that regresses the response
to each item on the estimated latent trait level. To obtain consistency in estimat-
ing the IRFs, one typically needs the measurement error in the first step to decay
to 0, which requires the number of items J to grow to infinity. See Douglas (1997)
for the asymptotic theory.

3.2 Estimation of Person Parameters

Here we discuss the estimation of person parameters, assuming that item pa-
rameters are known. This problem is closely related to the scoring of individuals
in psychological and educational measurement. Two settings will be discussed, an
offline setting for which response data have already been collected and an online
setting for which responses are collected sequentially in real-time.

3.2.1 Offline estimation. We first consider the offline setting for the estimation
of person parameters, assuming that the item parameters are known. This prob-
lem is similar to that of a regression problem. Specifically, the likelihood function
of person parameters factorizes into a product of the likelihood functions of indi-
vidual θis. As a result, θi can be estimated by the maximum likelihood estimator,
where the likelihood function of θi is given by

(3.6) Li(θi) =

J
∏

j=1

gj(θi|πj)
yij (1− gj(θi|πj))

1−yij .

When the distribution f is specified, θi can also be estimated by a Bayesian
method, such as the maximum a posteriori probability (MAP) or expected a
posteriori (EAP) estimator. In fact, the posterior distribution of θi is proportional
to Li(θi)f(θi).

The estimation of θi leads to the scoring of individuals. Specifically, in a unidi-
mensional IRT model for an educational test, the estimates θ̂i provide a natural
ranking of the test-takers in terms of their proficiency on the construct measured
by the test. Note that πj and f may be estimated using the procedures described
in Section 3.1 above and then treated as known for the estimation of the person
parameters. We also point out that some methods described in Section 3.1 au-
tomatically provide person parameter estimates as byproducts, such as the JML
estimator, and the Bayesian estimator based on an MCMC algorithm in which
posterior samples of the person parameters are obtained.

One advantage of scoring by IRT is that linking is automatically performed
through the calibration of the items so that the item parameters are on the same
scale as that of the latent traits. As a result, the estimated person parameters
are aligned on the same scale, even when different students receiving different
subsets of the items. In that case, for each person i, a likelihood function similar
to that of (3.6) can be derived, where items involved in the likelihood function
are the ones that person i receives. This property of IRT leads to an important
application of IRT, the computerized adaptive testing (CAT). In CAT, a pool
of items (also known as an item bank) is pre-calibrated, and test-takers receive
different sets of items following a sequential item selection design. CAT applies an
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online (i.e., sequential) method for estimating person parameters, which is made
possible by techniques from sequential analysis, a branch of statistics concerned
with adaptive experimental design and optimal stopping. We discuss this problem
below.

3.2.2 Online estimation via computerized adaptive testing. IRT also serves as
the foundation for computerized adaptive testing (CAT), a computer-based test-
ing mode under which items are fed to an individual sequentially, adapting to
the current knowledge about the individual’s latent traits. In educational test-
ing, the use of CAT avoids giving capable test-takers too many easy items and
giving less capable test-takers too many difficult ones. Consequently, CAT can
lead to accurate measurement of the individuals with a smaller number of items,
in comparison with non-adaptive testing. The concept of adaptive testing was
originally conceptualized by Lord (1971) in his attempt to apply the stochastic
approximation algorithm of Robbins and Monro (1951) to design more efficient
tests. This idea of adaptive testing was realized in early works on CAT, including
Lord (1977) and Weiss (1974, 1978, 1982). A comprehensive review of the prac-
tice and statistical theory of CAT can be found in Chang (2015), van der Linden
and Glas (2010) and Wainer et al. (2000).

The CAT problem can be regarded as a sequential experimentation and esti-
mation problem, where an IRT model is assumed with known item parameters
and continuous latent traits. The aim of CAT is to achieve a pre-specified level
of accuracy in estimating each person parameter with a test length as short as
possible. A CAT algorithm has three building blocks, (1) a stopping rule which
decides whether to stop testing or not at each step based on the individual’s cur-
rent performance (i.e., performance on the finished items), (2) an item selection
rule, which decides which item to give to the test-taker in the next step, and (3)
an estimator of the individual’s latent traits θ and its inference.

There are statistical problems arising from the above CAT procedure. First,
given a stopping rule and an item selection rule, how do we obtain θ̂ and its
standard error? The setting is different from estimating person parameters based
on static item response data, as the responses are no longer conditionally inde-
pendent given the latent trait level due to sequential item selection. This problem
was investigated in Chang and Ying (2009), where θ̂ can be obtained by solving
a score equation. Theoretical results of consistency, asymptotic normality, and
asymptotic efficiency were established by making use of martingale theory.

Second, how should the item selection rule and stopping rule be designed? This
problem is closely related to the early stopping problem and the sequential exper-
imental design problem in the literature of sequential analysis, where the former
dates back to Wald’s pioneer works on sequential testing (Wald, 1945; Wald and
Wolfowitz, 1948) and the latter dates back to Chernoff’s seminal works on se-
quential experimental design (Chernoff, 1959, 1972). These problems are major
topics of sequential analysis; see Lai (2001) for a comprehensive review. More
specifically, the optimal sequential decision on early stopping and item selection
can be formulated under the Markov decision process (MDP) framework (Put-
erman, 2014), a unified probabilistic framework for optimal sequential decisions.
In this MDP, the goal is to minimize a certain loss function (or equivalently, to
maximize a certain utility function) that concerns both the accuracy of measure-
ment and the number of items being used, with respect to early stopping and
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item selection as possible actions that need to be taken at each step based on the
currently available information.

A seemingly standard MDP problem, the item selection and early stopping
problems in CAT typically cannot simply be solved by dynamic programming,
the standard method for MDPs, due to the huge state space and action space. In
fact, obtaining an exact optimal solution under a nonasymptotic setting is NP-
hard under the CAT setting. Therefore, the developments of CAT procedures are
usually guided by asymptotic analysis, heuristics of finite sample performance,
and also practical constraints such as speed of the algorithm, item exposure, and
balance of contents. For a practical solution to the CAT problem under unidi-
mensional IRT models, Lord (1980) proposed to select the next item as the one
with the maximum Fisher information at the current point estimate of θ, and
Chang and Ying (1996) proposed methods based on a Kullback–Leibler (KL) in-
formation index, which takes uncertainty in the point estimate of θ into account
under a Bayesian setting. Although these maximum information item selection
methods are asymptotically efficient, they often do not perform well at the early
stage of a CAT when the estimation of θ is inaccurate. This is because, an item
with maximum information at the estimated θ may not be informative at the true
value of θ when the true value and its estimate are far apart at the early stage.
In addition, the use of maximum information item selection methods could lead
to skewed item exposure rates. That is, some items could be frequently used in
a CAT whereas others might never be used, which may lead to item leakage. To
improve item selection at the early stage of a CAT, Chang and Ying (1999) pro-
posed a multistage item selection method. This method stratifies the item pool
into less discriminating items and discriminating items, where a discriminating
item tends to have a large information index (e.g., Fisher information) at a cer-
tain θ value while a less discriminating item has a relatively smaller information
index for all values of θ. It uses less discriminating items early in the test when
estimation is inaccurate, and saves highly discriminating items until later stages.
The stopping of a CAT procedure is often determined by the asymptotic vari-
ance of the θ estimate (Weiss and Kingsbury, 1984) and the sequential confidence
interval estimation (Chang, 2005).

CAT methods have also been developed under DCMs where the latent variables
are discrete. The CAT problem becomes a sequential classification problem under
this setting, which is different from sequential estimation. New methods have been
developed for the item selection, early stopping, and making final classification.
See Cheng (2009), Liu et al. (2015), Tatsuoka and Ferguson (2003), and Xu et al.
(2003).

The past decade has seen the increasing use of computerized multistage testing
(Yan et al., 2016) in the educational testing industry, a testing mode that can be
viewed as a special case of the CAT. Instead of adaptively selecting individual
items, computerized multistage testing divides a test into multiple stages and
adaptively selects a group of items for each stage based on an individual’s pre-
vious performance. Instead of solving a standard sequential design problem as in
CAT, computerized multistage testing involves solving a group sequential design
problem. We note that similar group sequential design problems have been widely
encountered in clinical trials, for which statistical methods and theory have been
developed; see, for example, Chapter 4, Bartroff et al. (2012).
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3.3 Evaluation of IRT Models

The psychometric validity of an IRT model relies on the extent to which its as-
sumptions hold. In what follows, we discuss the evaluation of the overall goodness-
of-fit of an IRT model and the assessment of specific model assumptions.

3.3.1 Overall goodness-of-fit. Assessing the overall goodness-of-fit of an IRT
model can be cast into testing the null hypothesis of data being generated by the
IRT model. In principle, this problem can be solved by Pearson’s chi-squared test
(Pearson, 1900b) given data with a large sample size. However, as mentioned in
Section 2.5, the J-way contingency table is typically sparse when the number of
items J is moderately large, resulting in the failure of the asymptotic theory for
Pearson’s chi-squared test.

There are two types of methods that give valid statistical inference for sparse
contingency tables. The first type is bootstrap methods (e.g., Collins et al., 1993;
Bartholomew and Tzamourani, 1999), which is typically time consuming. The
second method is based on assessing the fit of lower-way marginal tables, such
as two- or three-way tables based on item pairs or triplets, rather than a com-
plete table with 2J cells. Asymptotic theory holds for these marginal tables since
they have much smaller numbers of cells. Developments in this direction include
Bartholomew and Leung (2002), Christoffersson (1975), Maydeu-Olivares and Joe
(2005, 2006) and Reiser (1996).

When an overall goodness-of-fit test suggests a lack of fit, it is desirable to
obtain information about which specific assumptions are being violated. Methods
for assessing individual assumptions of an IRT model will be discussed below.
In addition, as statistical models are only an approximation to the real data
generation mechanism, IRT models are typically found to lack fit when applying
to real-world item response datasets that have a reasonably large sample size
(Maydeu-Olivares and Joe, 2006).

3.3.2 Dimensionality. IRT models are often used in a confirmatory manner
where the number of latent traits is pre-specified, especially for unidimensional
IRT models. A question that needs to be answered is whether the pre-specified
latent dimension is sufficient or some extra dimensions are needed. It is natural to
answer this question by the comparison of IRT models with different numbers of
latent traits. For example, to assess unidimensional assumption of the 2PL model,
we may compare it with an M2PL model that has two or more latent traits. While
seemly a simple problem of comparing nested models, the asymptotic reference
distribution for the corresponding likelihood ratio test is not a chi-squared dis-
tribution due to the null model lying at boundary points or singularities of the
parameter space in this problem (Chen et al., 2020b). This asymptotic reference
distribution can be derived using a more general theory for the likelihood ratio
test statistic (Chernoff, 1954; Drton, 2009).

Alternatively, one may also use an exploratory approach to directly learn the
latent dimension from data, and then compare it with the pre-sepecified dimen-
sion. See Section 3.4 for further discussions.

3.3.3 Local independence. The local independence assumption plays an essen-
tial role in IRT models. It is closely related to the dimensionality assumption
that is discussed in Section 3.3.2, in the sense that the existence of extra latent
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dimensions can cause the violation of the local independence assumption. The lo-
cal independence assumption is often assessed through an analysis of the residual
dependence given the hypothesized latent traits. The goal is to find dependence
patterns in data that are not attributable to the primary latent dimensions. Such
patterns could reveal how the hypothesized latent structure is violated, and to
what extent the violation is.

One type of methods is based on the residuals for lower-way marginal tables
(e.g., Chen and Thissen, 1997; Liu and Maydeu-Olivares, 2013; Yen, 1984). These
methods search for subsets of items (e.g., item pairs) that violate the local inde-
pendence assumption, by defining residual-based diagnostic statistics and testing
the goodness-of-fit of the corresponding lower-way marginal tables based on these
statistics. Although these methods have reasonably good power according to sim-
ulation studies, there is a gap. That is, the null hypothesis in the hypothesis tests
based on different marginal tables is always “the fitted IRT model holds for all
items”, rather than “local independence holds within the corresponding subset
of items”. Therefore, from the perspective of hypothesis testing, when the null
hypothesis is rejected for a marginal table, it does not directly lead to the conclu-
sion that the local independence assumption is violated due to the corresponding
subset of items.

Alternatively, one can model the local dependence structure. When taking this
approach, it is important to impose certain parsimony/sparsity assumptions on
the residual dependence structure to ensure the identifiability of the primary
dimensions. Several modeling approaches have been taken. First, the local de-
pendence may be modeled by additional latent traits with a sparse loading struc-
ture (e.g., Bradlow et al., 1999; Cai et al., 2011; Gibbons and Hedeker, 1992).
These methods typically require knowing a priori the subsets of items, which
are known as the testlets or item parcels, that require additional latent traits.
Second, copula-based models have been proposed (Braeken, 2011; Braeken et al.,
2007), where copula models are used for the conditional distribution of (Y1, ..., YJ)
given the primary latent dimensions. These models typically impose relatively
strong parametric assumptions on the copula function. Finally, Markov random
field IRT models have also been developed (Chen et al., 2018d; Hoskens and
De Boeck, 1997; Ip, 2002a; Ip et al., 2004) that model the conditional distribution
of (Y1, ..., YJ) given the primary latent dimensions using a Markov random field
model. Markov random field models (Koller and Friedman, 2009; Wainwright and
Jordan, 2008), also known as undirected graphical models, are a powerful tool for
modeling the dependence structure of multivariate data. Specifically, these models
represent the conditional independence relationships between random variables
using an undirected graph. When all the items are binary, this conditional model
becomes an Ising model (Ising, 1925). Specifically, Chen et al. (2018d) proposed
a flexible Markov random field IRT model and developed a Lasso-based method
for learning a sparse Markov random field. Comparing with other methods, this
approach does not require prior knowledge about the local dependence structure
or impose a strong distributional assumption. It also gives a visualization of the
local dependence structure, which facilitates the interpretation.

3.3.4 Item response functions. Finally, a key assumption of an IRT model is
the functional form of the IRFs, especially when parametric IRFs are assumed.
This assumption is commonly assessed by residual analysis. Hambleton et al.
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(1991) first proposed item-specific standardized residuals for unidimensional IRT
models that assess the fit of an IRF at different latent trait levels. Haberman and
Sinharay (2013) and Haberman et al. (2013) modified the method of Hamble-
ton et al. (1991) and further developed asymptotic normality results to provide
theoretical guarantee for the residual-based statistical inference.

Alternatively, one may also fit IRT models with non-parametric IRFs and then
compare the fitted parametric IRFs with their non-parametric counterparts. See
Section 2.8 for a review of non-parametric IRT models.

3.4 Learning the Latent Structure

3.4.1 DIF analysis. DIF analysis, which is introduced in Section 2.8, is essen-
tial for ensuring the validity of educational and psychological measurement. The
basic idea of DIF analysis is to compare multiple groups for their performance
on one or multiple potential items, taking into consideration that the groups
may have different ability distributions. The DIF problem can be viewed as a
multi-group comparison problem. However, it differs from standard settings of
the analysis of variance or covariance in that the latent trait values, which are
not directly observed, need to be controlled in the DIF analysis. Many statistical
procedures have been developed for DIF analysis; see Holland and Wainer (1993)
and Roussos and Stout (2004) for a review.

Consider the DIF formulation described in Section 2.8 under a MIMIC model.
Recall that xi = 0 and 1 indicate the reference and focal group memberships,
respectively. In the DIF analysis, the IRFs may depend on the group membership.
That is, we define a group-specific IRF as gj(θ|πx

j ) = P (Yij = 1|θi = θ, xi = x),

where π0
j and π1

j denote the group-specific item parameters. In addition, the
distribution of θi can depend on the group membership. Under this formulation,
the DIF items are those satisfying π0

j 6= π1
j . That is, two individuals from different

groups would perform differently on a DIF item, even when they have the same
latent trait levels. In educational testing, it could mean an item being more
difficult for a test taker from one group than one from the other group even
though the two test takers have the same ability level, which is a threat to the
fairness of the test. Under the path diagram in panel (c) of Figure 2, the DIF
items are the ones with directed edges from x. The goal of DIF analysis is to
detect all the DIF items from data, i.e., to learn the edges from x to Yjs.

The DIF analysis is complicated by the unobserved θi, which needs to be con-
ditioned upon in the group comparison. This complication is due to an intrinsic
identifiability issue. More specifically, consider the MIMIC model example given
in Section 2.8. The model remains unchanged if we subtract any constant c0 from
the parameter β in the marginal distribution of θi given xi and further replace
γj in the item response function by γj + ajc0. To ensure identifiability, one needs
to assume that there are a sufficient number of DIF-free items to fix the latent
variable distribution, which becomes assuming γj = 0 for many j in this specific
MIMIC model.

The Mantel-Haenszel procedure (Holland and Thayer, 1988) is widely adopted
for DIF analysis. This procedure compares the two groups’ performance on an
item based on the Mantel-Haenszel statistic (Mantel and Haenszel, 1959), using
the total score as a matching variable. By stratifying data using the total score,
which serves as a proxy of the latent ability being measured, the group difference
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in the latent ability distributions is accounted for in the comparison. This proce-
dure has a theoretical guarantee under the Rasch model. That is, the p-value given
by the Mantel-Haenszel procedure is valid when data follow the Rasch model, for
which the total score is a sufficient statistic for the person-specific latent variable.
Note that the Mantel-Haenszel procedure implicitly assumes that the rest of the
items are DIF-free to fix the latent variable distribution when analysing one item.

Another popular approach to DIF analysis takes a general nonparametric IRT
setting, as first proposed in Shealy and Stout (1993a,b). Specifically, Shealy and
Stout (1993a,b) laid a theoretical foundation for DIF analysis from a nonparamet-
ric multidimensional IRT perspective. Under this general statistical framework,
they provided mathematical characterizations of different DIF types and further
pointed out the importance of simultaneously analyzing the bias in a set of items.
They also proposed a nonparametric procedure, known as the SIBTEST. Similar
to the Mantel-Haenszel procedure, SIBTEST compares the overall performance
of the reference and focal groups on one or multiple suspected items to detect
DIF, by matching individuals on a known subset of DIF-free items. Further de-
velopments in this direction include Chang et al. (1996), Douglas et al. (1996),
Jiang and Stout (1998), Li and Stout (1996), Nandakumar and Roussos (2004),
Stout et al. (1997), among others.

Both the Mantel-Haenszel and SUBTEST procedures are hypothesis-testing-
based. Possibly more naturally, one can view the DIF problem as a model selection
problem. More specifically, in the specific MIMIC example discussed previously,
the DIF problem becomes to find the non-zero γjs, under the sparsity assump-
tion described above. Taking this view, several regularized estimation methods
have been developed for the detection of DIF items under MIMIC-type mod-
els; see Belzak and Bauer (2020), Huang (2018), Magis et al. (2015), and Tutz
and Schauberger (2015). In these methods, the DIF-free items are identified by
LASSO-type regularizations.

3.4.2 Exploratory analysis of latent structure. As pointed out in Sections 2.1
and 2.8, the Q-matrix structure plays an important role in multidimensional
IRT models. Although domain experts usually have ideas about the latent traits
underlying the items, it is also helpful to consider an exploratory analysis setting
under which the meanings of the latent traits and the structure of the Q-matrix
are unknown. Under this setting, we may learn the latent traits and the Q-matrix
from data and use the learned structure to validate the current hypotheses or
generate new hypotheses about data.

Analytic rotation methods, which are originally developed for exploratory fac-
tor analysis, can be used to solve this structural learning problem under sev-
eral multidimensional IRT models, including the M2PL model described in Sec-
tion 2.1 and its probit counterpart in Section 2.4. More specifically, consider an
exploratory M2PL model, for which there are no zero constraints on the load-
ing matrix A, and θi follows a standard multivariate normal distribution. Let
Â be an MML estimate of the loading matrix A, which is not unique due to
the rotational indeterminacy. More specifically, replacing Â by ÂT and replacing
the covariance matrix of θi by T−1(T−1)> lead to the same marginal likelihood
function value. Matrix T is called an oblique rotation matrix when the diagonal
entries of T−1(T−1)> all take value one. In the special case when the matrix
T is an orthonormal matrix, T−1(T−1)> becomes an identity matrix and the
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matrix T is known as an orthogonal rotation matrix. A rotation method mini-
mizes a loss function H(ÂT ) with respect to an oblique or orthogonal rotation
matrix T , and then uses ÂT̂ as the final estimate of the loading matrix where
T̂ denotes the corresponding minimizer. The loss function is designed to impose
approximate sparsity on the resulting loading matrix ÂT̂ , implicitly assuming
that there is an unobserved sparse Q-matrix. Different analytic rotation meth-
ods have been proposed that consider different loss functions, including Jennrich
(2004, 2006), Jennrich and Bentler (2011), Jennrich and Sampson (1966), Kaiser
(1958), among others. A comprehensive review of rotation methods can be found
in Browne (2001). Among these methods, we draw attention to a special case of
the component loss functions proposed in Jennrich (2004, 2006). This loss func-
tion takes the form H(A) = ‖A‖1 =

∑J
j=1

∑K
k=1 |ajk|. As we discuss below, it is

closely related to the regularized estimation approach to this problem. The an-
alytic rotation methods have some limitations. First, these methods do not give
a sparse estimate of the loading matrix, though they may resolve the rotational
indeterminacy issue and lead to a consistent estimator of the true loading ma-
trix (Jennrich, 2004, 2006). Consequently, obtaining the Q-matrix estimate and
further, the interpretation of the latent traits are not straightforward. Second,
these methods are only applicable to multidimensional IRT models in which the
latent traits follow a multivariate normal distribution and the IRFs take a simple
generalized linear model form.

Regularized estimation methods have also been proposed that do not suffer
from the above limitations. Specifically, consider the M2PL model. A LASSO-
based regularization method solves the optimization

(3.7)
(π̂λ

1 , ..., π̂
λ
J , Σ̂

λ) = argmin
π1,...,πJ ,Σ



− logLML(π1, ...,πJ ,Σ) + λ
J
∑

j=1

K
∑

k=1

|ajk|



 ,

s.t. σkk = 1, k = 1, ...,K.

With slight abuse of notation, LML(π1, ...,πJ ,Σ) denotes the marginal likelihood
function. Note that we assume θi to follow a multivariate normal distribution with
mean zero and covariance matrix Σ whose diagonal entries all take value one. The
Lasso penalty can lead to a sparse estimate of the loading matrix A, which further
gives an estimate of the Q-matrix. In (3.7), λ is a non-negative tuning parame-
ter that can be chosen by information criteria or cross-validation. Note that this
approach is closely related to the rotation approach. That is, when λ converges
to zero, the solution in (3.7) will converge to the oblique rotation solution under
the L1 loss function mentioned above. We note that the LASSO penalty (Tibshi-
rani, 1996) in (3.7) can be replaced by non-convex penalty functions, including
the widely used SCAD and MCP penalties (Fan and Li, 2001; Zhang, 2010).
Compared with the analytic rotation methods, this approach is more general and
can be applied to a wide range of IRT models, including multidimensional IRT
models with continuous latent traits (Sun et al., 2016) and DCMs (Chen et al.,
2015; Xu and Shang, 2018). The optimization for these regularized estimators,
such as (3.7), is more complicated than that for MML estimation when the latent
dimension is high due to the non-smooth penalty term. To solve this optimization
problem, Zhang and Chen (2020) proposed a stochastic approximation algorithm
that combines a standard stochastic approximation algorithm with the proximal
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method (Parikh et al., 2014) to handle non-smooth penalty terms.
Besides the above methods, several alternative methods have been developed

for DCMs. In particular, Chiu (2013) and de la Torre and Chiu (2016) proposed
iterative search algorithms for Q-matrix validation and refinement. Chen et al.
(2018a) and Culpepper (2019) proposed full Bayes methods forQ-matrix learning.

3.4.3 Learning the latent dimension. Statistical methods have been developed
for determining the latent dimension K under an exploratory analysis setting.
Some of them only apply to the probit model described in Section 2.4.2. These
methods arise from exploratory linear factor analysis, by making use of the con-
nection between the probit model and the linear factor models. More precisely,
consider the underlying variable formulation for the probit model given in Sec-
tion 2.4.2. When the true latent dimension is K, then the true correlation matrix
of the underlying variables can be decomposed as the sum of a rank-K matrix
and a diagonal matrix. Consequently, the latent dimensionality can be deter-
mined based on the estimated correlation matrix, which, as discussed in Sec-
tion 3.1.2, can be efficiently computed. These methods include eigenvalue thresh-
olding Kaiser (1960), subjective search for eigengap based on scree plot Cattell
(1966), parallel analysis (Horn, 1965), among others.

Besides, information criteria are commonly used for determining the latent di-
mension. Specifically, the Akaike information criterion (Akaike, 1974) and Bayesian
information criterion (Schwarz et al., 1978), which are calculated based on the
marginal likelihood, are widely used for comparing IRT models of different latent
dimensions (Cohen and Cho, 2016). Unlike the exploratory-factor-analysis-based
methods, these information criteria are applicable to all parametric IRT models
that treat the latent variables as random. Treating the latent variables as fixed
parameters, Chen and Li (2021) proposed an information criterion based on the
joint likelihood. Their method guarantees consistent selection of the latent di-
mension under a high-dimensional setting where the sample N and the number
of items J grow to infinity simultaneously, and the latent dimension may also
diverge.

Under nonparametric IRT modelling, Stout (1987, 1990) introduced the con-
cept of essential dimensionality, aiming at finding the dominant dimensions in
the data while allowing for the presence of ignorable nuisance dimensions. Sev-
eral methods for assessing and choosing the essential dimension were proposed;
see Stout (1987), Stout (1990), Nandakumar and Stout (1993), and Zhang and
Stout (1999). They established consistency results under a double asysmptotic
regime where both N and J grow to infinity.

4. NEW CHALLENGES AND OPPORTUNITIES

4.1 Measurement in Big Data Era

In the previous discussions, the IRT framework is tailored to the analysis of
nicely structured item response data from traditional educational and psycho-
logical assessments. This specialization is a limitation for the generalization and
extension of IRT methods to measurement problems based on more complex hu-
man behavioral data, which are becoming increasingly prevalent in the big data
era.

For example, with the wide use in daily teaching of digital devices and informa-
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tion technology (e.g., tablets, computers, and online grading systems), students’
item responses to all the homework/exam questions throughout their entire aca-
demic life can be recorded. In addition, students’ learning process data may also
become available, including the processes of reading, searching, and problem-
solving (e.g., Zhang and Chang, 2016). Moreover, new measurement tools are
being developed to measure people’s skills that are difficult to assess by tradi-
tional paper-and-pencil tests, such as critical thinking, collaboration, and complex
problem-solving (OECD, 2018). For example, complex problem-solving skills are
currently assessed in large-scale assessments, including the PISA, Programme for
the International Assessment of Adult Competencies (PIAAC) and the National
Assessment of Education Progress (NAEP) using simulated tasks in computers.
Data collected were not only test-takers’ success or failure in solving such tasks,
but also their entire problem-solving processes recorded by computer log files that
may contain important information about their complex problem-solving ability.
In psychology, researchers tend to study psychological constructs using not only
item response data but also a much wider range of daily behavioral data including
those from social media, facial expression, and writing and speech (e.g., Inkster
et al., 2016; Nave et al., 2018; Wang and Kosinski, 2018).

As revealed by the above examples, human behavioral data of much higher vol-
ume, variety, and velocity are being collected nowadays. It is widely believed that
rich information in such big data can substantially improve our understanding of
human behavior and facilitate its prediction. The obtained insights and predic-
tion, assisted by information technology, can lead to effective personalized inter-
ventions, such as personalized learning systems that suggest learning strategies
adaptive to person-specific learning history and characteristics and personalized
monitoring and intervention system for mental health patients.

On the one hand, such big data can still be viewed as people’s responses to
complex items in our study and daily life. Thus, the fundamental latent dimension
view of IRT should still apply to such big data. It is reasonable to believe that
people’s behaviors are mainly driven by some intrinsic and relatively stable latent
traits. Therefore, such latent traits may be measured and be used to predict
people’s future behaviors. On the other hand, compared with traditional item
response data, big data have a far more complex structure and a much higher
volume. As a result, most of the traditional IRT models and algorithms are no
longer suitable.

The question now becomes how the methodological framework of IRT may be
extended to embrace the opportunities and challenges in the big data era. While
taking educational and psychological theories as the theoretical ground and en-
suring the primacy of measurement validity, more flexible models and compu-
tationally faster algorithms from statistical and machine learning fields may be
incorporated into the IRT framework to better measure human traits. The follow-
ing sections will discuss two future directions that we believe are important and
require methodological developments. We also note that many other promising
directions are omitted here due to the space limit.

4.2 Learning the Structure of Fine-grained Constructs

The ultimate goal of psychological measurement is to understand human be-
havioral patterns, i.e., to obtain knowledge about how people learn, think, and
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make decisions. Such knowledge is often gained from taxonomic analysis of in-
dividual differences. With big data, evidence-based taxonomy of educational or
psychological constructs at a higher resolution becomes possible. For example,
in the field of psychopathology, the traditional classification system of mental
health disorders, widely adopted in the standard diagnostic criteria (Diagnostic
and Statistical Manual of Mental Disorders (DSM; American Psychiatric Associ-
ation, 2013) and the International Classification of Diseases (ICD; World Health
Organization, 1992)), has received criticism for having limited reliability and va-
lidity (Kotov et al., 2017). A better-structured, finer-grained, and evidence-based
taxonomic system needs to be developed (Kotov et al., 2017).

For another example, knowledge maps play an important role in designing
a curriculum or in an e-learning system for conceptualizing and organizing the
structure of the basic units of learning. They can be a powerful tool for guid-
ing teaching and learning (Knight, 2013, Chapter 4). Each node of a knowledge
map represents a concept or skill. An edge between two nodes captures their
relationship, such as whether acquiring one concept requires another as a prereq-
uisite. Examples can be found in Kingston and Broaddus (2017) on the develop-
ment and use of digital knowledge maps for supporting formative assessments in
mathematics, where a knowledge map can consist of thousands of nodes (points
of mathematical knowledge) and thousands of connections between these nodes.
Traditionally, knowledge maps were designed by domain experts, which are some-
times subjective. Rich data from daily teaching and e-learning platforms can be
used to facilitate the design of knowledge maps. Data can tell us whether a node
needs to be split into multiple ones and whether learning a certain concept/skill
relies on certain concepts/skills as prerequisites.

These taxonomic problems are closely related to, but more complex than, the
Q-matrix learning problem reviewed in Section 3.4.2. Specifically, data are more
complex, multi-modal, and collected sequentially. For example, to design a knowl-
edge map, one needs to consider the existing curriculum design, data from domain
experts on each node’s definition and the relationships between nodes, and stu-
dents’ learning history data. In addition, the improvement of the knowledge map
is sequential, iterating between the steps of data collection under an existing
knowledge map and updating the knowledge map. Moreover, a knowledge graph
takes the form of a directed graph (Kingston and Broaddus, 2017), and the taxo-
nomic structure of psychopathology is believed to be efficiently captured by a tree
structure with many levels (Kotov et al., 2017). These structure learning prob-
lems are harder to formulate and solve than the previously discussed Q-matrix
problem. Similar to the learning of Q-matrix in multidimensional IRT models
(Chen et al., 2015; Liu et al., 2012, 2013; Xu and Shang, 2018), these taxonomic
problems may be formulated under latent variable models and solved by similar
regularized estimation methods for structure learning.

4.3 Measurement from a Prediction Perspective

Measurement and prediction are closely related. A major purpose of measure-
ment is to make predictions, even for the traditional use of measurement results.
For instance, an important use of test scores in education is to find the strengths
and weaknesses of a student, which can provide predictions of the potential learn-
ing outcome in their subsequent learning trajectory. Accurate forecasting of stu-
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dents’ potential learning outcomes can help teachers to make a tailored teaching
plan. In mental health, an individual’s responses to a mental health question-
naire not only tell clinicians the individual’s current mental health status but
also reveal the likelihood of developing certain mental health disorders in the
near future.

A related and more challenging problem is to make many predictions simul-
taneously. One such application is in personalized learning, where personalized
formative assessment questions need to be selected from a large pool of items
to meet the need of every student. A good formative assessment should achieve
a balance in both its contents and difficulty/complexity, so that best serves the
purpose of monitoring student learning. In this problem, to assemble a suitable
set of formative assessment items, we need to predict every student’s performance
on each of the candidate items in the pool, which involves hundreds or even more
simultaneous predictions for each student. Data in these predictive analyses may
not be well-organized and may have massive missingness compared to conven-
tional IRT analysis.

Latent variable models are a powerful tool that supports making such pre-
dictions because these models can learn the joint distribution of multivariate
data even when massive missing data exist. One or multiple predictions can be
made for the unobserved data given the observed ones with the learned joint dis-
tribution. Moreover, assumptions of latent variable models essentially reduce the
dimensionality of the joint distribution of multivariate data, which will reduce the
variance of prediction according to basic principles of statistical learning. Note
that latent variable models, including nonlinear latent factor models and neural
network models, have been popular tools for prediction tasks in other areas. These
models may be borrowed to solve prediction problems in educational and psy-
chological measurement. We note that some new developments have been made
in this direction for analyzing and predicting log-file data of complex problem-
solving processes; see Chen (2020), Tang et al. (2020), Tang et al. (2021), Wang
et al. (2020), and Zhang et al. (2021).

Conventional IRT analysis takes a causal explanation perspective, which has
substantial distinctions from the prediction perspective. While a model with high
explanatory power may also have high predictive power, it is not always the case.
It is well-known that a model selected for causal explanation may not have the
best prediction performance (Shmueli, 2010). Therefore, a predictive model may
take a very similar form as a multidimensional IRT model, estimating and select-
ing a predictive model often need to follow a different criterion from conventional
IRT analysis. New criteria for estimation and model selection, such as cross-
validation, need to be developed.

Learning a predictive model from data is computationally intensive, involving
an iterative process that alternates between model fitting (solving an optimization
problem) and model evaluation (via cross-validation). The computation becomes
more demanding when many latent variables are needed to capture an individual’s
behavioral patterns. The problem is further exacerbated when online predictions
need to be made (e.g., personalized learning). Given such high computational
demand, it may be more suitable to use joint-likelihood-based estimators that
treats the person-specific latent variables as fixed parameters (Chen et al., 2019,
2020a) for parameter estimation, due to its computational advantage.

imsart-sts ver. 2014/10/16 file: output.tex date: August 13, 2021



34

Moreover, in some human behavior prediction problems, such as personalized
learning, an individual’s latent characteristics can substantially change within
a relatively short period of time. Dynamic latent variable models need to be
developed for solving such problems. We note that there have been some works
in this direction, including Chen et al. (2018b) and Wang et al. (2018).

Finally, we point out that fairness is a key issue when making predictions, es-
pecially when interventions (e.g., learning interventions) are made based on the
prediction results. The fairness issue is closely related to the DIF problem dis-
cussed in Section 3.4.1 that has also received wide attention in the statistics and
machine learning communities (e.g., Barocas et al., 2018). Further developments
that extend DIF analysis to ensure fairness are needed in the predictive modeling
of multivariate behavioral data.

5. DISCUSSIONS

In this paper, we provide an overview of the statistical framework of IRT,
and further showcase several applications in classical educational/psychological
testing, such as test scoring, item calibration, computerized adaptive testing,
differential item functioning, among others. Note that this list of topics is far
from complete due to the space limit. Several important applications of IRT are
not reviewed, including the detection of fraudulent behaviors and test assembly,
among others. As we can see from the discussion, latent variables play a central
role in IRT, serving as its philosophical foundation and methodological under-
pinning. We make the connection between the latent factor framework of IRT
and new statistical techniques such as nonparametric methods, matrix comple-
tion, regularized estimation, and sequential analysis, and further offer a view of
psychological measurement from the prediction perspective.

Thanks to the development of technology and data science, a personalization
revolution is ongoing in all areas of our life, including mental health, education,
social networking, among others (Lee, 2018). As a scientific discipline studying
the measurement of individual characteristics supported by statistical methodol-
ogy and substantive theory from psychology and education, psychometrics will
play a key role in this personalization revolution. It will contribute to a better
society, for example, by suggesting better learning strategies for learners and by
providing early warnings to mental health patients through more accurate mea-
surement and measurement supported prediction (Kapczinski et al., 2019; Zhang
and Chang, 2016). As previously discussed, these problems need to be solved
from two different perspectives – high-resolution taxonomic analysis for better
explaining individual differences and predictive analytics for making personalized
recommendations. Latent variable models and the previously discussed compu-
tationally efficient methods for the structure learning and estimation of latent
variable models may play an important role in solving these new problems.
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