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NONCOMMUTATIVE TENSOR TRIANGULAR GEOMETRY

By DANIEL K. NAKANO, KENT B. VASHAW, and MILEN T. YAKIMOV

Abstract. We develop a general noncommutative version of Balmer’s tensor triangular geometry that
is applicable to arbitrary monoidal triangulated categories (MΔCs). Insight from noncommutative ring
theory is used to obtain a framework for prime, semiprime, and completely prime (thick) ideals of an
MΔC, K, and then to associate to K a topological space–the Balmer spectrum SpcK. We develop
a general framework for (noncommutative) support data, coming in three different flavors, and show
that SpcK is a universal terminal object for the first two notions (support and weak support). The first
two types of support data are then used in a theorem that gives a method for the explicit classification
of the thick (two-sided) ideals and the Balmer spectrum of an MΔC. The third type (quasi support) is
used in another theorem that provides a method for the explicit classification of the thick right ideals
of K, which in turn can be applied to classify the thick two-sided ideals and SpcK.

As a special case, our approach can be applied to the stable module categories of arbitrary finite
dimensional Hopf algebras that are not necessarily cocommutative (or quasitriangular). We illustrate
the general theorems with classifications of the Balmer spectra and thick two-sided/right ideals for the
stable module categories of all small quantum groups for Borel subalgebras, and classifications of the
Balmer spectra and thick two-sided ideals of Hopf algebras studied by Benson and Witherspoon.

1. Introduction.

1.1. From the commutative to the noncommutative settings. Balmer’s
tensor triangular geometry [1, 2] provides a powerful method for addressing prob-
lems in representation theory, algebraic geometry, commutative algebra, homotopy
theory and algebraic K-theory from one common perspective. In representation
theory alone this covers modular representations, representations of finite group
schemes, supergroups, quasitriangular quantum groups at roots of unity and oth-
ers.

The general setting of [1, 2] is that of a triangulated category K with a biexact
monoidal structure that is symmetric (or more generally braided). The key ingredi-
ents of Balmer’s theory are:
• A construction of a topological space SpcK consisting of prime thick ideals

of K (that is upgraded to a ringed space) and a characterization theorem that it is
the universal final object for support maps on objects of K;
• Methods for the explicit description of SpcK as a topological space via (co-

homological) support data for K.
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In this paper we develop general noncommutative versions of these ingredi-
ents of Balmer’s theory that deal with an arbitrary monoidal triangulated cate-
gory K (MΔC for short)–a triangulated category K with a biexact monoidal struc-
ture. Noncommutative versions of Balmer’s theory were sought after before, be-
cause there are many important MΔCs (e.g., the stable module categories of finite-
dimensional Hopf algebras which are not cocommutative). However, for various
reasons, a general noncommutative version of tensor triangular geometry has not
been fully developed. The key new ideas of our constructions are:
• Previous considerations of cohomological support maps in the noncommu-

tative setting [8, 30] focused on the fact that they do not satisfy the usual axioms for
commutative support data from [1]. These axioms are object-wise conditions for
K and mimic the treatment of completely prime ideals in a noncommutative ring.
Such ideals are too few in general. The novel feature of our approach is to define
the noncommutative Balmer spectrum SpcK and support data for K in terms of
tensoring of thick ideals of K, and not object-wise tensoring.
• In noncommutative ring theory, the prime spectrum of a ring is very hard to

describe as a topological space with the primary example being that of the spectra
of universal enveloping algebras of Lie algebras [14] and quantum groups [20]. In
the categorical setting, we present a method for computing the Balmer spectrum
SpcK that appears to be as applicable as its commutative counterparts.
• The set of right ideals of a noncommutative ring are rarely classifiable with

the exceptions of very few rings. Surprisingly, in the categorical setting, we are
successful in developing a method for the explicit classification of the thick right
ideals of an MΔC.

1.2. Different types of prime ideals of an MΔC and its Balmer spectrum.
We define below the various notions of primeness used throughout the paper.

(i) A thick (two-sided) ideal of an MΔC, K, is a full triangulated subcategory
of K that contains all direct summands of its objects and is closed under left and
right tensoring with arbitrary objects of K; denote by ThickId(K) the set of those;

(ii) A prime ideal of K is a proper thick ideal P such that I⊗ J ⊆ P⇒ I ⊆ P
or J⊆ P for all thick ideals I and J of K.

(iii) A semiprime ideal of K is an intersection of prime ideals of K.
(iv) A completely prime ideal of K is a proper thick ideal P such that A⊗B ∈

P⇒A ∈ P or B ∈ P for all A,B ∈K.
(v) The noncommutative Balmer spectrum of K is the topological space of

prime ideals of K with the Zariski topology having closed sets

V (S) = {P ∈ SpcK | P∩S =∅}

for all subsets S of K.

THEOREM 1.2.1. The following hold for an MΔC, K:
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(a) A proper thick ideal P of K is prime if and only if A⊗C⊗B ∈ P, for all
C ∈K⇒A ∈ P or B ∈ P for all A,B ∈K.

(b) A proper thick ideal P of K is semiprime if and only if A⊗C⊗A ∈ P, for
all C ∈K⇒A ∈ P for all A ∈ P.

(c) The Balmer spectrum SpcK is always nonempty.

The ideal-theoretic definitions of prime and semiprime ideals of an MΔC
and its noncommutative Balmer spectrum were introduced by Buan, Krause and
Solberg in [12]. The equivalent formulations of these objects in terms of object-
theoretic conditions given by Theorem 1.2.1 will play a key role in this paper in
the definitions of support data maps of various types and theorems for the effective
reconstruction of the noncommutative Balmer spectrum of an MΔC.

1.3. Support data and universality of the noncommutative Balmer spec-
trum. For a topological space X, let X , Xcl, and Xsp denote the collection of
all of its subsets, closed subsets and specialization closed subsets, respectively
(see Section 4.1). The three different kinds of noncommutative support data for
an MΔC, K, will be maps

σ : K→X
that respect the triangulated structure:

(i) σ(0) =∅ and σ(1) =X;
(ii) σ(A⊕B) = σ(A)∪σ(B), ∀A,B ∈K;
(iii) σ(ΣA) = σ(A), ∀A ∈K;
(iv) If A→ B → C → ΣA is a distinguished triangle, then σ(A) ⊆ σ(B)∪

σ(C).
In this paper, each kind of support datum will satisfy one additional condition

related to the monoidal structure. We present an overview for each type below. For
all of them the key role will be played by their extensions Φσ to the sets of thick
ideals ThickId(K) (and thick right ideals of K), given by

Φσ(I) =
⋃

A∈I

σ(A).

The strictest notion, that of support datum, is a map σ : K→ X satisfying the
additional assumption

(v)
⋃

C∈Kσ(A⊗C⊗B) = σ(A)∩σ(B), ∀A,B ∈K.
The map V defining the Zariski topology of SpcK is an example of a support
datum, and the condition (v) is nothing but a restatement of the characterization of
a prime ideal in Theorem 1.2.1(a).

A weak support datum is a map σ : K→X that (in place of (v)) satisfies the
property

(v′) Φσ(I⊗J) = Φσ(I)∩Φσ(J) for all thick ideals I and J of K.
Each support datum is a weak support datum.
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At various times in the paper, for each type of support data (resp. weak support
datum, and quasi support datum), we make a minor modification in the definition
by replacing (ii) with

(ii′) σ(
⊕

i∈IAi) =
⋃

i∈I σ(Ai), ∀Ai ∈K
for MΔCs, K admitting arbitrary set indexed coproducts. With this replacement,
we will use the term extended support datum (resp. extended weak support datum,
and extended quasi support datum).

THEOREM 1.3.1. Let K be an MΔC.
(a) The support V is the final object in the collection of support data σ such

that σ(A) is closed for each A ∈ K: for any such σ, there is a unique continuous
map fσ : X → SpcK satisfying

σ(A) = f−1
σ

(
V (A)

)
for A ∈K.

(b) The support V is the final object in the collection of weak support datum
σ such that Φσ(〈A〉) is closed for each A ∈ K: for any such σ, there is a unique
continuous map fσ : X→ SpcK satisfying

Φσ

(〈A〉)= f−1
σ

(
V (A)

)
for A ∈K,

where 〈A〉 denotes the smallest thick ideal of K containing A.

A version of the second part of this theorem was obtained in [12, Theorem 4.2].

1.4. Classification methods for the noncommutative Balmer spectra. In
the opposite direction, the different types of support data can be used for ex-
plicit descriptions of the noncommutative Balmer spectra of MΔCs as topological
spaces.

We refer the reader to Sections 2.1 and 5.1 for background on compactly gen-
erated MΔCs, K, and their compact parts Kc. For S ⊆ Kc, we will denote by 〈S〉
the smallest thick ideal of Kc containing S .

THEOREM 1.4.1. Let K be a compactly generated MΔC and σ : K→X be an
extended weak support datum for a Zariski space X such that Φ(〈C〉) is closed for
every compact object C . Assume that σ satisfies the faithfulness property (5.1.1)
and the realization property (5.1.2).

(a) The map

Φσ : ThickId
(
Kc

)→Xsp

is an isomorphism of ordered monoids, where the set of thick ideals of Kc is
equipped with the operation I, J �→ 〈I⊗ J〉 and the inclusion partial order, and
Xsp is equipped with the operation of intersection and the inclusion partial order.
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(b) The universal map fσ : X→ SpcKc from Theorem 1.3.1(b), given by

fσ(x) =
{
A ∈Kc : x �∈ Φσ(〈A〉)

}
for x ∈X,

is a homeomorphism.

Our third kind of support datum, which we name quasi support datum, is a map
σ : K→X that has the properties (i)–(iv) from the previous subsection, together
with the additional property

(v′′) σ(A⊗B)⊆ σ(A), for all A,B ∈K.
In ideal-theoretic terms, this property is equivalent to

(v′′) Φσ(〈〈A〉〉r) = σ(A), ∀A ∈K,
where 〈〈A〉〉r denotes the smallest thick right ideal of K containing A. (The double
bracket notation is used to distinguish thick ideals of K from those of Kc used
in Theorem 1.4.1, see Sections 5–7 for further details.) We can now summarize
our classification results for right ideals for the compact objects in a compactly
generated MΔC.

THEOREM 1.4.2. (a) Let K be a compactly generated MΔC and σ : K→
X be an assignment that satisfies properties (i), (ii′), (iii) and (iv) for extended
support datum, and such that σ when restricted to Kc is a quasi support datum for
a Zariski space X satisfying the realization property (7.1.2) and the homological
Assumption 7.2.1. Then the map

Φσ : {thick right ideals of Kc}→ Xsp

is a bijection.
(b) Let A be a finite-dimensional Hopf algebra over a field k that satisfies

the standard Assumption 7.4.1 for finite generation and the homological As-
sumption 7.2.1. Set X = Proj(H•(A,k)). The standard cohomological support
σ : stmod(A)→ Xcl is a quasi support datum, and as a consequence, there is a
bijection

Φσ : {thick right ideals of stmod(A)} → Xsp,

where stmod(A) is the stable (finite-dimensional) module category of A.

The maps in both parts are isomorphisms of monoids if and only if the quasi
support datum σ is a support datum. Section 8 illustrates how the classification of
thick right ideals of an MΔC from Theorem 1.4.2 can be converted to a classifica-
tion of its thick two-sided ideals and then to a description of its Balmer spectrum.

In noncommutative ring theory, general classification results for prime spectra
and sets of right ideals like the ones in Theorems 1.4.1 and 1.4.2 are not available.
Even worse, the Zariski topology of the prime spectrum of a noncommutative ring
is very rarely known. For instance, in the case of quantum groups prime ideals are
classified [20] but the problem for describing the Zariski topology is wide open
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with only a conjecture [11]: the inclusions between primes are unknown and only
the maximal ideals have been classified [33].

It is unlikely that the Balmer spectrum of each MΔC is a Zariski space. There-
fore, it would be desirable to find extensions of Theorem 1.4.1 and 1.4.2 with
weaker conditions.

1.5. Applications. In Sections 8 and 9 we illustrate Theorems 1.4.1
and 1.4.2 by giving classifications of the noncommutative Balmer spectra, thick
two-sided/right ideals for the stable module categories of all small quantum groups
for Borel subalgebras and classifications of the noncommutative Balmer spectra
and thick two-sided ideals of the Benson-Witherspoon Hopf algebras. The ap-
proach to the Balmer spectrum through Theorem 1.4.2 is applicable to the first case
and the one through Theorem 1.4.1 to the second case. The Benson-Witherspoon
Hopf algebras are the Hopf duals of smash products of a (finite) group algebra and
a coordinate ring of a group.

Sections 8 and 9 also illustrate that the three notions of noncommutative sup-
port data that we define are distinct. This differs from the commutative situation
where under natural assumptions a quasi support datum is a support datum [10,
Proposition 2.7.2].

Acknowledgments. The authors would like to thank Cris Negron and Julia
Pevtsova for providing access to a preprint on their work on the support varieties
via noncommutative hypersufaces [28]. Discussions with Cris Negron provided
valuable insights for us to refine the results in Section 8 and to add Section 8.2.
We also acknowledge Henning Krause for useful discussions about prior work on
support theory and ideals in tensor triangular geometry.

2. Triangulated 2-categories.

2.1. Triangulated categories and compactness. For the definition and
properties on triangulated categories we refer the reader to [7, Section 1.3] or [27].
Let T be a triangulated category with shift Σ : T→ T. Since T is triangulated one
has a set of distinguished triangles:

M →N →Q→ ΣM.

An additive subcategory S of T is a triangulated subcategory if (i) S is non-
empty and full, (ii) for M ∈ S, ΣnM ∈ S for all n ∈Z, and (iii) if M →N →Q→
ΣM is distinguished triangle in T and if two objects in {M,N,Q} are in S then
the third is in S. A thick subcategory of T is a triangulated subcategory S with the
property that, M =M1⊕M2 ∈ S implies Mj ∈ S for j = 1,2.

In this paper, at some points we will assume that T admits set indexed co-
products. A localizing subcategory S is a triangulated subcategory of T that is
closed under taking set indexed coproducts. Recall that localizing subcategories
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are thick [6]. Given C a collection of objects of T, let LocT(C) = Loc(C) be the
smallest localizing subcategory containing C.

For A and B objects of T, we will denote the space of morphisms from A to B

by T(A,B). If T(C,−) commutes with set indexed coproducts for an object C in T
then C is called compact. The full subcategory of compact objects in T is denoted
by Tc. We say that T is compactly generated if the isomorphism classes of compact
objects form a set and if for each non-zero M ∈T there is a compact object C such
that T(C,M) �= 0. It turns out that when T is compactly generated there exists a
set of compact objects, C, such that LocT(C) = T (cf. [7, Proposition 1.47]).

2.2. 2-categories and triangulated 2-categories. Recall that a 2-category
is a category enriched over the category of categories. This means that a 2-category
K has the following structure:

(i) A collection of objects;
(ii) For any two objects A1 and A2, a collection of 1-morphisms, denoted

K(A1,A2);
(iii) For any two 1-morphisms f,g ∈ K(A1,A2), a collection of 2-morphisms

f → g, denoted K(f,g).
The 1- and 2-morphisms are composed in several ways and admit unit objects.
They satisfy a list of axioms, among which we single out the following ones:

(iv) K(A1,A2) is a 1-category, where the objects are the 1-morphisms of K,
and the morphisms are the 2-morphisms of K;

(v) Composition K(A2,A3)×K(A1,A2)→ K(A1,A3) is a bifunctor. For 1-
morphisms f ∈K(A2,A3) and g ∈K(A1,A2), the composition will be denoted by
f ◦g.
For details on 2-categories and their role in categorification, we refer the reader to
[21, 24].

We say that a 2-category K is a triangulated 2-category if K(A1,A2) is a tri-
angulated 1-category for all pairs of objects A1 and A2, and the compositions

K(A2,A3)×K(A1,A2)→K(A1,A3)

are exact bifunctors for all objects A1, A2, and A3 of K.
Throughout, we will assume that all triangulated 2-categories K which we

work with are small. This means that the objects of K form a set, the 1-morphisms
of K(A1,A2) form a set for all objects A1 and A2, and the 2-morphisms K(f,g)

form a set for all 1-morphisms f and g.
For a triangulated 2-category K, we will denote by K1 the isomorphism classes

of all 1-morphisms of K, and for any subsets X,Y of K1, we denote by X ◦ Y
the set of all isomorphism classes which have a representative of the form f ◦ g,
where f represents an element of X and g represents an element of Y and f , g are
composable in this order.
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A monoidal triangulated category (MΔC for short) is a monoidal category
T in the sense of [15, Definition 2.2.1] which is triangulated and for which the
monoidal structure ⊗ : T×T→ T is an exact bifunctor.

Remark 2.2.1. In the same way that 2-categories are generalizations of
monoidal categories, triangulated 2-categories are generalizations of monoidal
triangulated categories. From a monoidal triangulated category T one can build a
triangulated 2-category K with one object as follows:

(a) The 1-morphisms of K are defined to be the objects ofM, and composition
of 1-morphisms f and g is given by

f ◦g := f ⊗ g

where the monoidal product is the product in T;
(b) The 2-morphisms of K are the morphisms of T.

In the other direction, given a triangulated 2-category K with one object, one de-
fines a monoidal triangulated category T in the following manner:

(c) Objects are the 1-morphisms of K;
(d) The monoidal product between objects is defined by

f ⊗ g := f ◦g

where the right-hand side is composition of 1-morphisms in K;
(e) The morphisms of T are the 2-morphisms of K.

2.3. Triangulated 2-categories obtained as derived categories. The fol-
lowing example gives a natural construction of a triangulated 2-category.

Example 2.3.1. Let S be a set of (noncommutative) algebras. Then we define
the 2-category KS by:

(a) Objects are the elements of the set S;
(b) The 1-morphisms A1 → A2 are all finite-dimensional A2-A1 bimodules,

and composition of 1-morphisms is given by tensor product: if f1 : A1→ A2, then
f1 is an A2-A1 bimodule; likewise, for f2 : A2→A3, then f2 is a A3-A2 bimodule;
and then

f2 ◦f1 := f2⊗A2 f1;

(c) 2-morphisms f → g are bimodule homomorphisms.
KS is a 2-category where each KS(A1,A2) is an abelian 1-category. However,

this does not fit to the setting of abelian 2-categories treated in [31] because the
composition of 1-morphisms is not exact; instead, in general, it is only right exact.

Therefore, we consider the triangulated 2-category D−S , constructed from KS :
(d) Objects are the same as in KS , namely the elements of S;
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(e) The categories D−S (A1,A2) are the bounded above derived categories of
the corresponding abelian categories KS(A1,A2), and composition

D−S
(
A2,A3

)×D−S
(
A1,A2

)→ D−S
(
A1,A3

)

is given by the left derived tensor product:

f2 ◦f1 := f2⊗L
A2

f1

for f1 : A1→A2, f2 : A2→ A3.
This gives us a triangulated 2-category by [32, Exercise 10.6.2].

3. The prime, semiprime, and completely prime spectrum. In this sec-
tion, we extend the notions of prime, semiprime, and completely prime spectra of
noncommutative rings to the case of triangulated 2-categories.

3.1. Thick ideals of a triangulated 2-category. We start with some termi-
nology for 2-categories.

Definition 3.1.1. (a) A weak subcategory of a 2-category K is a subcol-
lection of objects I of K and a collection of subcategories I(A1,A2) of K(A1,A2),
for all A1,A2 ∈ I, such that composition in K restricts to a bifunctor

I
(
A2,A2

)× I
(
A1,A2

)→ I
(
A1,A3

)

for all A1,A2,A3 ∈ I.
(b) A thick weak subcategory of a triangulated 2-category K is a weak subcate-

gory I of K which has the same objects as K, and for any pair of objects A1,A2 ∈ I,
the categories I(A1,A2) are thick subcategories of K(A1,A2).

(c) A thick ideal of a triangulated 2-category K is a thick weak subcategory I
such that for any 1-morphism f in K and any 1-morphism g in I, if g and f are
composable in either order, then their composition is in I1.

For any collection of 1-morphisms M, we will denote by 〈M〉 the smallest
thick ideal containingM, which exists since the intersection of any family of thick
ideals is a thick ideal.

The following lemma is the primary tool by which we connect classical non-
commutative ring theory to the setting of triangulated 2-categories.

LEMMA 3.1.2. For every two collections M,N ⊆ K1 of 1-morphisms of a
triangulated 2-category K,

(3.1.1) 〈M〉1 ◦ 〈N〉1 ⊆ 〈M◦K1 ◦N〉1.
Proof. First, we will show that

(3.1.2) 〈M〉1 ◦N ⊆ 〈M◦K1 ◦N〉1.
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Let I denote the collection of all 1-morphisms f which have the property that for
all n ∈ N , t ∈ K1, one has ftn ∈ 〈M◦K1 ◦N〉. Note thatM⊆ I. We claim that
I is a thick ideal.

(1) Suppose that we have a distinguished triangle

f → g→ h→ Σf

such that two of f , g, and h are in I. Since composition is an exact functor, for any
t ∈K, n ∈ N ,

ftn→ gtn→ htn→ Σftn

is a distinguished triangle, and by assumption two out of three of its components
are in 〈M◦K◦N〉. Since it is an ideal, so is the third. Therefore, I is a triangulated
weak subcategory.

(2) Again, let t ∈ K and n ∈ N . Suppose f = g⊕h is in I. Then gtn⊕htn is
in 〈M◦K◦N〉; by its thickness, gtn and htn are in 〈M◦K◦N〉. Hence, g and h

are both in I. Therefore, I is a thick weak subcategory.
(3) Let f ∈ I, and let g and h be 1-morphisms of K such that the compositions

gf , fh are defined. Then for any t ∈ K, n ∈ N , gftn ∈ 〈M◦K ◦N〉 by the fact
that 〈M◦K◦N〉 is an ideal and ftn is in it; and fhtn ∈ 〈M◦K◦N〉 by the fact
that f ∈ I and ht is a 1-morphism of K. Therefore, I is a thick ideal of K.

Since I is a thick ideal containingM, 〈M〉 ⊆ I. From this, we obtain (3.1.2).
By symmetry, we can obtain

(3.1.3) M◦〈N〉1 ⊆ 〈M◦K◦N〉.
Then, by an identical argument to (1)–(3) but using instead I to be the set of mor-
phisms f for which ftn ∈ 〈M◦K◦N〉 for all t ∈ K1, n ∈ 〈N〉1, it can be shown
that 〈M1〉 ◦ 〈N1〉 ⊆ 〈M◦K1 ◦N〉1. This completes the proof. �

3.2. Prime ideals of a triangulated 2-category. We now introduce the key
notion of prime ideal and provide equivalent formulations on when an ideal is
prime. In the case of a monoidal triangulated category, this notion was introduced
in [12].

Definition 3.2.1. Let P be a proper thick ideal of K. Then P a prime ideal of K
if for every pair of thick ideals I and J of K,

I1 ◦J1 ⊆ P1⇒ I⊆ P or J⊆ P.

The set of all prime ideals P of a triangulated 2-category K will be denoted by
Spc(K).

THEOREM 3.2.2. Suppose P is a proper thick ideal of a triangulated 2-
category K. Then the following are equivalent:

(a) P is prime;
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(b) For all m,n ∈K1, m◦K1 ◦n⊆ P1 implies that either m or n is in P1;
(c) For every pair of right thick ideals I and J of K, I1 ◦J1 ⊆ P1 implies that

either I or J is contained in P;
(d) For every pair of left thick ideals I and J of K, I1 ◦ J1 ⊆ P1 implies that

either I or J is contained in P;
(e) For every pair of thick ideals I and J of K which properly contain P, I1 ◦

J1 �⊆ P1.

Proof. It is clear that just by definition (c)⇒(a), (d)⇒(a), and (a)⇒(e).
(a)⇒(b). Suppose P is prime and m ◦K1 ◦ n ⊆ P1. By Lemma 3.1.2, 〈m〉 ◦

〈n〉 ⊆ P, and thus either 〈m〉 or 〈n〉 ⊆ P; therefore, either m or n is in P.
(b)⇒(c). Suppose I, J right thick ideals and I1 ◦ J1 ⊆ P1, and suppose that

neither I nor J is contained in P. Then there exist morphisms f ∈ I, g ∈ J such
that neither f nor g is in P. Since I is a right ideal, f ◦K1 ⊆ I, and therefore
f ◦K1 ◦ g ⊆ P1. Since neither f nor g is in P, we have proved the contrapositive.
The direction (b)⇒(d) is analogous.

(e)⇒(b). Let m ◦K1 ◦ n ⊆ P1. Suppose neither m nor n is in P. Then by
Lemma 3.1.2

〈
P1∪{m}

〉
1 ◦

〈
P1∪{n}

〉
1 ⊆

〈(
P1∪{m}

)◦K1 ◦
(
P1∪{n}

)〉
1 ⊆ P1.

However, both 〈P1∪{m}〉 and 〈P1∪{n}〉 are thick ideals properly containing P,
thus proving the contrapositive. �

Recall that a multiplicative set M of 1-morphisms in a 2-category is a set of
non-zero 1-morphisms contained in K(A,A) for some object A such that for all
f,g ∈M, we have f ◦g ∈M.

THEOREM 3.2.3. Suppose M is a multiplicative subset of K1 for a triangu-
lated 2-category K, and suppose I is a proper thick ideal of K which intersectsM
trivially. If P is a maximal element of the set

X(M,I) :=
{

J a thick ideal of K : J⊇ I, J1∩M=∅

}
,

then P is a prime ideal of K.

Proof. This follows directly from property (e) of Theorem 3.2.2. �

Every chain of ideals in X(M,I) has an upper bound given by the union of
these ideals. By Zorn’s Lemma, all sets X(M,I) have maximal elements.

COROLLARY 3.2.4. For every triangulated 2-category K, Spc(K) is nonempty.

Proof. This follows from Theorem 3.2.3 by takingM as the set {1A} for some
non-zero fixed object A and I as the zero ideal consisting of all zero 1-morphisms.

�
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3.3. The Zariski topology. With our notion of primeness, we can now de-
fine a topology on the set of prime ideals.

Definition 3.3.1. Define a map V from subsets of K1 to subsets of Spc(K) by

V (S) = {P ∈ SpcK : P∩S =∅}.

The Zariski topology on Spc(K) is defined as the topology generated by the closed
sets V (S) for any subset S of K1.

We call the topological space Spc(K) the Balmer spectrum of K. In the case
when K is a monoidal triangulated category (where the monoidal structure is sym-
metric, or more generally, braided), this reduces to the spectrum defined in [1]. In
that setting the notions of prime ideal and completely prime ideal coincide. For
general monoidal triangulated categories the topology was introduced in [12].

Remark 3.3.2. In the case that K is a monoidal triangulated category, i.e., a
triangulated 2-category with one object, all closed sets under the Zariski topology
are of the form V (S) described above. In that case, it is easy to see that V (0) =∅,
V (1) = Spc(K), V (S1)∪V (S2)= V (S1⊕S2), and

⋂
V (Si) = V (

⋃Si). However,
if K has more than one object, there is no longer any set S such that V (S) =
Spc(K), and, in general, the union V (S1)∪V (S2) cannot be written as V (S) for
some S .

Remark 3.3.3. It was stated in [12, Lemma 8.2] that SpcK is functorial for a
monoidal triangulated category K. The proof given there appears to have a gap.
In the proof it is stated but not justified that the Balmer support composed with a
monoidal triangulated functor is again a support datum. We do not expect such a
functoriality; the case of the spectrum of a noncommutative ring is well known to
be non-functorial.

3.4. Semiprime ideals of a triangulated 2-category. In this section we
define semiprime ideals in a triangulated 2-category and study their properties.

Definition 3.4.1. A thick ideal of a triangulated 2-category will be called
semiprime if it is an intersection of prime ideals, cf. [12].

THEOREM 3.4.2. Suppose Q is a proper thick ideal of a triangulated 2-
category K. Then the following are equivalent:

(a) Q is a semiprime ideal;
(b) For all f ∈K1, if f ◦K1 ◦f ⊆Q1, then f ∈Q1;
(c) If I is any thick ideal of R such that I1 ◦ I1 ⊆Q1, then I⊆Q;
(d) If I is any thick ideal properly containing Q, then I1 ◦ I1 �⊆Q1;
(e) If I is any left thick ideal of K such that I1 ◦ I1 ⊆Q1, then I⊆Q.
(f) If I is any right thick ideal of K such that I1 ◦ I1 ⊆Q1, then I⊆Q.
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Proof. (a)⇒(b). Suppose f ◦K1 ◦f ⊆Q1, and let Q =
⋂

α Pα for prime ideals
Pα. Then by Theorem 3.2.2, f is in Pα for each α, and hence f ∈Q.

(b)⇒(e). Suppose I1 ◦ I1 ⊆ Q1, and suppose I �⊆ Q. Then there is f ∈ I with
f �∈Q. Hence, since tf ∈ I for each t ∈K1, we have K1 ◦f ⊆ I, and hence f ◦K1 ◦
f ⊆Q1. Since f �∈Q1, Q does not satisfy property (b). The implication (b)⇒(f) is
analogous.

The implications (e)⇒(c) and (f)⇒(c) are clear, as is (c)⇒(d).
(d)⇒(a). Let Q a proper thick ideal satisfying (d), and let R be the semiprime

ideal defined as the intersection of all prime ideals containing Q; there is at least
one such prime ideal by Theorem 3.2.3. We will show that R = Q; to do this,
for an arbitrary 1-morphism f which is not in Q1, we will produce a prime ideal
which contains Q and does not contain f . Denote f := f1. Since f1 �∈Q1, we have
I(1) := 〈Q1∪{f1}〉 properly contains Q. Hence, there is some f2 ∈ I(1) ◦ I(1) with
f2 �∈ Q. Continue in this manner, defining I(i) := 〈Q1 ∪{fi}〉 and then fi+1 as an
element of I(i) ◦ I(i) which is not in Q1. Note that for any i,

I(i) ⊆ I(i−1) ◦ I(i−1) ⊆ I(i−1).

Now consider a maximal element of the set of ideals I such that Q ⊆ I and
fi �∈ I1 for all i. Call this maximal element P. We will demonstrate that P is prime.
Consider J, K two ideals properly containing P. By maximality of P, each of J and
K contain one of the fi. Let fj ∈ J, fk ∈ K. Without loss of generality, let j ≥ k.
Then since K contains both Q and fk,

K⊇ I(k) ⊇ Ik+1 ⊇ ·· · ⊇ I(j).

Therefore, fj is in both J and K. Then note that by Lemma 3.1.2,

fj+1 ∈ I(j) ◦ I(j) ⊆ 〈(
Q1∪

{
fj
})◦K1 ◦

(
Q1∪

{
fj
})〉

,

fj+1 �∈ P1.

Therefore,

fj ◦K1 ◦fj �⊆ P1,

which implies

J1 ◦K1 �⊆ P1.

Thus, by Theorem 3.2.2, P is prime. By construction, it contains Q and not f1,
which completes the proof. �

3.5. Completely prime ideals of a triangulated 2-category. In this
section we introduce the notion of completely prime ideals for a triangulated
2-category and show how these ideals arise via categories of 1-morphisms.
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Definition 3.5.1. A thick ideal P of a triangulated 2-category K will be called
completely prime when it has the property that for all f,g ∈K1:

f ◦g ∈ P1⇒ f ∈ P1 or g ∈ P1.

We have the following lemma, whose proof is direct and left to the reader.

LEMMA 3.5.2. Let K be a triangulated 2-category.
(a) If P is a completely prime ideal of K, then there exists an object A of K

and a completely prime ideal Q of the triangulated 2-category with 1-object KA

such that

(3.5.1) P(B,C) =

{
Q(A,A), if B = C =A

K(B,C), otherwise.

(b) If A is an object of K and Q is a completely prime ideal of KA such that

(3.5.2) K(B,A)◦K(A,B)⊆Q(A,A)

for every object B of K, then (3.5.1) defines a completely prime ideal P of K.

4. Noncommutative support data. In this section we develop a notion
of (noncommutative) support datum for monoidal triangulated categories K and
show that the Balmer spectrum of K provides a universal final object. In parallel to
noncommutative ring theory, we are lead to convert support data from maps with
a domain the set of objects of K to maps with a domain given by the (two-sided)
thick ideals of K, in which case the maps become simply morphisms of monoids.
The second incarnations will play a key role in the rest of the paper. The original
support datum maps are not uniquely reconstructed from them. To handle this, we
develop a notion of weak support datum and prove a universality property for the
Balmer spectrum in this setting also.

4.1. Defining noncommutative support data. Assume throughout the rest
of the paper that

K is a monoidal triangulated category (MΔC for short) and X

is a topological space.

Let X denote the collection of all subsets of X, Xcl the collection of all closed
subsets of X, and Xsp the collection of all specialization closed subsets of X, that
is, arbitrary unions of closed sets.

When it is necessary to emphasize the underlying topological space X, we will
use the notation Xcl(X) and Xsp(X).

Definition 4.1.1. Let K be a monoidal triangulated category and σ a map K→
X . We will say that σ is a (noncommutative) support datum if the following hold:

(a) σ(0) =∅ and σ(1) =X;
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(b) σ(A⊕B) = σ(A)∪σ(B), ∀A,B ∈K;
(c) σ(ΣA) = σ(A), ∀A ∈K;
(d) If A→ B → C → ΣA is a distinguished triangle, then σ(A) ⊆ σ(B)∪

σ(C);
(e)

⋃
C∈Kσ(A⊗C⊗B) = σ(A)∩σ(B), ∀A,B ∈K.

It follows from conditions (a) and (d) that σ is constant along the isomorphism
classes of objects of K. The same will be true for all other notions of support datum
that we consider in this paper. Recall the map V defined in Definition 3.3.1.

LEMMA 4.1.2. For any MΔC, K, the restriction to objects of K of the map V

is a support datum K→Xcl(Spc(K)).

Proof. By the definition of the Zariski topology, V (A) is closed for any A. We
verify the properties (a)–(e) in Definition 4.1.1 below.

(a) V (0) = ∅ because 0 is in every prime ideal of K. Since prime ideals are
required to be proper, 1 is in no prime ideal, and hence V (1) = Spc(K).

(b) Prime ideals are closed under sums and summands. Hence, if P is a prime
ideal, then A⊕B ∈ P if and only if both A and B are in P.

(c) Prime ideals are closed under shifts; hence, A is in a prime ideal P if and
only if ΣA is in P.

(d) Since prime ideals are triangulated, if

A→B→ C→ ΣA

is a distinguished triangle with P ∈ V (A), then A �∈ P and hence one of B or C be
not be in P. Therefore, P is in V (B) or V (C).

(e) First, we will show ⊆. Suppose P is in some V (A⊗C⊗B) for some C; in
other words, A⊗C⊗B �∈P. Then since P is a thick ideal, neither A nor B can be in
P, and hence P ∈ V (A) and V (B). For⊇, suppose P∈ V (A)∩V (B). Then by the
primeness condition, A⊗K⊗B �⊆ P, since that would imply either A or B would
be in P. Hence, there is some C with A⊗C⊗B �∈ P, and so P ∈ V (A⊗C⊗B)

for some choice of C . �

4.2. The final support datum. We begin with a lemma that shows that if
we have continuous maps from X to SpcK whose inverse images agree on closed
sets then the maps must be equal.

LEMMA 4.2.1. Let X be a set and f1, f2 : X → SpcK be two maps such that
f−1

1 (V (A)) = f−1
2 (V (A)) for all objects A of K. Then f1 = f2.

Proof. By assumption, for all A ∈ K and x ∈ X, f1(x) ∈ V (A)⇔ f2(x) ∈
V (A). Hence, for all x ∈X,

⋂

A∈K,f1(x)∈V (A)

V (A) =
⋂

A∈K,f2(x)∈V (A)

V (A),
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and thus,

V
(
K\f1(x)

)
= {f1(x)}=

⋂

A∈K,f1(x)∈V (A)

V (A) =
⋂

A∈K,f2(x)∈V (A)

V (A)

= {f2(A)}= V
(
K\f2(x)

)
.

Since f1(x) ∈ V (K\f1(x)), the above equality implies that f1(x) ∈ V (K\f2(x)).
Therefore, f1(x)⊆ f2(x), and analogously, f2(x)⊆ f1(x). Hence, f1 = f2. �

With the prior results we can show that there exists a final support datum.

THEOREM 4.2.2. In the collection of support data σ such that σ(A) is closed
for each object A, the support V is the final support object for every MΔC K: that
is, given any other support datum σ as above, there is a unique continuous map
fσ : X→ SpcK satisfying σ(A) = f−1

σ (V (A)). Explicitly, this map is defined by

fσ(x) =
{
A ∈K : x �∈ σ(A)

}
.

Proof. The uniqueness of this map follows directly from Lemma 4.2.1. We
need to show that the formula given for fσ(x) defines a prime ideal, and that
σ(A) = f−1

σ (V (A)), which will then imply that f is continuous.
The subset fσ(x) satisfies the two-out-of-three condition, since if

A→B→ C→ ΣA

is a distinguished triangle with B and C in fσ(x), this means that x is not in σ(A)

or σ(B), and by condition (d) of support data that implies that x �∈ σ(A), and so
A ∈ fσ(x). Additionally, A ∈ fσ(x) if and only if x �∈ σ(A), which, by condition
(c) for support data, happens if and only if x �∈ σ(ΣA), i.e., ΣA∈ fσ(x). Therefore,
fσ(x) is closed under shifts, and so it is triangulated.

The triangulated subcategory fσ(x) is also thick, because if A⊕B ∈ fσ(x)

then x is not in σ(A⊕B), and by condition (b) of support data x is not in σ(A) or
σ(B). Therefore, A and B are in fσ(x).

Next, we will observe that fσ(x) is a (two-sided) ideal. Suppose that A ∈
fσ(x). Then x �∈ σ(A). For any B, since by condition (e) for support data

σ(A⊗B)⊆ σ(A)∩σ(B),

we have x �∈ σ(A⊗B), and therefore A⊗B ∈ fσ(x). The same argument shows
that B⊗A ∈ fσ(x) as well.

Lastly, we verify that fσ(x) is prime. Suppose A⊗K⊗B⊆ fσ(x). Then for all
objects C , x �∈ V (A⊗C⊗B). Hence, by condition (e) of being a support datum,
x �∈ σ(A)∩σ(B), implying that it is not in σ(A) or σ(B). Therefore, either A or
B is in fσ(x).
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Lastly, we just verify the formula σ(A) = f−1
σ (V (A)). We have

x ∈ f−1
σ

(
V (A)

)⇔ fσ(x) =
{
B : x �∈ σ(B)

} ∈ V (A),

⇔ A �∈ {
B : x �∈ σ(B)

}

⇔ x ∈ σ(A).

This completes the proof. �

4.3. The map Φσ. For any map σ : K→X with a topological space X, we
associate a map Φσ from subsets of K to X given by

(4.3.1) Φσ(S) :=
⋃

A∈S
σ(A).

By definition, the map Φσ is order preserving with respect to the inclusion partial
order.

If σ : K→Xcl is a support datum, then Φσ(S) is a specialization-closed subset
of X for every S ⊆ K. We can now prove that the map Φσ respects the tensor
product property on ideals.

LEMMA 4.3.1. Let K be an MΔC and σ : K→Xcl be a support datum. Then

Φσ(I⊗J) = Φσ(I)∩Φσ(J)

for every two thick ideals I and J of K, recall (4.3.1).

Proof. We have

Φσ(I⊗J) =
⋃

A∈I, B∈J

σ(A⊗B) =
⋃

A∈I, B∈J, C∈K

σ(A⊗C⊗B)

=
⋃

A∈I, B∈J

σ(A)∩σ(B) =
(⋃

A∈I

σ(A)
)
∩
( ⋃

B∈J

σ(B)
)

=Φσ(I)∩Φσ(J). �

LEMMA 4.3.2. Let K be an MΔC and σ : K→X be a support datum. For any
subset S of K, Φσ(S) = Φσ(〈S〉).

Proof. We will check that by adjoining direct summands, shifts, cones, and
tensor products to S one does not alter Φσ(S); this will prove the statement.

Let M ⊕N ∈ S . Then, by condition (b) for support data, σ(M)⊆ σ(M ⊕N),
so adjoining M to S does not change

⋃
A∈S σ(A).

Let M ∈ S . Then, by condition (c) for support data, σ(ΣmM) = σ(M), so
adjoining shifts to S does not alter Φσ(S) either.

If A→ B → C → ΣA is a distinguished triangle with B and C in S then
σ(A)⊆ σ(B)∪σ(C) by condition (d) for support data, so adding A to S does not
change Φσ(S).
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Lastly, if M ∈ S , then by condition (5) for support data we have σ(M ⊗N)⊆
σ(M)∩σ(N) ⊆ σ(M). Hence, we can add M ⊗N to S without affecting σ(S).
Likewise for N ⊗M .

Therefore, closing S under summands, shifts, cones, and tensor product with
arbitrary objects of K does not alter Φσ, which proves the lemma. �

The following theorem summarizes our results for support data.

THEOREM 4.3.3. For an MΔC, K, and a support datum σ : K→Xcl, the map
Φσ is a morphism of ordered monoids from the set of thick ideals of K with the
operation I,J �→ 〈I⊗ J〉 and the inclusion partial order to Xsp with the operation
of intersection and the inclusion partial order.

Proof. Clearly, Φσ preserves inclusions. For every two thick ideals I and J
of K,

Φσ

(〈I⊗J〉)=Φσ(I)∩Φσ(J),

which follows from Lemmas 4.3.1 and 4.3.2. �

4.4. Weak support data. We now replace condition (e) in the definition of
support datum with the tensor product property on ideals to define the notion of
weak support data.

Definition 4.4.1. Let K be a monoidal triangulated category and σ a map K→
X . We will call σ a (noncommutative) weak support datum if

(a) σ(0) =∅ and σ(1) =X;
(b) σ(A⊕B) = σ(A)∪σ(B), ∀A,B ∈K;
(c) σ(ΣA) = σ(A), ∀A ∈K;
(d) If A→ B → C → ΣA is a distinguished triangle, then σ(A) ⊆ σ(B)∪

σ(C);
(e) Φσ(I⊗J) = Φσ(I)∩Φσ(J) for all thick ideals I and J of K

(recall (4.3.1)).

Note that, for any weak support datum σ : K→ X satisfying the additional
condition that each Φσ(〈A〉) is closed for any object A, and all thick ideals I of K,

Φσ(I) =
⋃

A∈I

Φσ(〈A〉) ∈ Xsp.

By Lemma 4.3.1, a support datum is automatically a weak support datum.
The following two lemmas provide information on ideals generated by objects

in the category K.

LEMMA 4.4.2. If σ : K→X is a weak support datum for an MΔC, K, and I
and J are thick ideals of K, then

Φσ

(〈I⊗J〉)=Φσ(I⊗J) = Φσ(I)∩Φσ(J).
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Proof. By assumption, Φσ(I⊗J) =Φσ(I)∩Φσ(J). Since every element of the
set I⊗ J is in I, and in J, we have 〈I⊗ J〉 ⊆ I∩ J. Hence, Φσ(〈I⊗ J〉) ⊆ Φσ(I)∩
Φσ(J). It is also automatic that Φσ(I⊗ J) ⊆ Φσ(〈I⊗ J〉). Therefore, we have the
commutative diagram

Φσ(I⊗J) Φσ(I)∩Φσ(J)

Φσ(〈I⊗J〉)

=

which gives the statement of the lemma. �

LEMMA 4.4.3. Suppose A→ B→ C→ ΣA is a distinguished triangle in an
MΔC, K, and σ a weak support datum. Then Φσ(〈A〉)⊆ Φσ(〈B〉)∪Φσ(〈C〉).

Proof. Define

I =
{
M ∈ 〈A〉 : Φσ(K⊗M ⊗K)⊆Φσ(〈B〉)∪Φσ(〈C〉)

}
.

We will show that I is a thick ideal which contains A; since it is contained in 〈A〉
by definition, it is therefore equal to 〈A〉.

Suppose M is in I, and let X and Y two arbitrary objects of K. We have
X ⊗ΣM ⊗ Y ∼= Σ(Σ−1(X)⊗M ⊗Σ−1(Y )), and hence σ(X ⊗ΣM ⊗ Y ) =

σ(Σ−1(X)⊗M ⊗Σ−1(Y ))⊆Φσ(〈B〉)∪Φσ(〈C〉), showing that Σ(M) ∈ I.
Let K→ L→M → ΣK be a distinguished triangle with L and M in I. Then

by the exactness of the tensor product, X⊗K⊗Y →X⊗L⊗Y →X⊗M⊗Y →
X⊗ΣK⊗Y is a distinguished triangle. Hence,

σ(X⊗K⊗Y )⊆ σ(X⊗L⊗Y )∪σ(X⊗M ⊗Y )⊆ Φσ(〈B〉)∪Φσ(〈C〉).
Therefore, K is in I.

Suppose M ⊕N is in I. Then σ(X ⊗M ⊗ Y ) ⊆ σ(X ⊗ (M ⊕N)⊗ Y ) ⊆
Φσ(〈B〉)∪Φσ(〈C〉), and so M is in I (and likewise, so is N ).

It is clear from the definition of I that it is closed under tensoring on the right
and left. By exactness of the tensor product, I contains A. Thus, I is a thick subideal
of 〈A〉 which contains A, and hence, I = 〈A〉. �

4.5. The final weak support datum. Using the final weak support data
one can identify the Balmer spectrum for K.

THEOREM 4.5.1. Suppose that K is an MΔC and σ : K→X is a weak support
datum satisfying the additional condition that Φσ(〈A〉) is closed for every object A
of K. Then there is a unique continuous map fσ :X→ SpcK satisfying Φσ(〈A〉) =
f−1
σ (V (A)), for all A ∈K. Explicitly, this map is defined by

fσ(x) =
{
A ∈K : x �∈ Φσ

(〈A〉)} for x ∈X.
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Proof. The uniqueness of this map follows directly from Lemma 4.2.1. The
continuity will follow from the claimed formula for f−1

σ (V (A)), since Φσ(〈A〉)
is closed by definition. We need to verify that fσ(x) is a prime ideal, and that
f−1
σ (V (A)) has the formula that has been claimed.

Since 〈M〉= 〈ΣM〉, we clearly have M in fσ(x) if and only if ΣM in fσ(x).
If A→ B → C → ΣA is a distinguished triangle with B and C in fσ(x), then
by Lemma 4.4.3 we have A in fσ(x). If M ⊕N is in fσ(x), then since M ∈
〈M ⊕N〉, we have Φσ(〈M〉) ⊆ Φσ(〈M ⊕N〉), and so M ∈ fσ(x) (and likewise
for N ). Suppose M ∈ fσ(x) and N is any object. Then since 〈M ⊗N〉 ⊆ 〈M〉,
we have Φσ(〈M ⊗N〉) ⊆ Φσ(〈M〉) and hence M ⊗N ∈ fσ(x) (and likewise for
N ⊗M ). Hence, fσ(x) is a thick ideal.

Now, suppose that there are thick ideals I and J with I⊗ J ⊆ fσ(x). Then for
each X ∈ I and Y ∈ J, x �∈ Φσ(〈X⊗Y 〉). But now we can observe that

⋃

X∈I, Y ∈J

Φσ

(〈X⊗Y 〉)⊇ Φσ(I⊗J) = Φσ(I)∩Φσ(J),

and therefore x �∈ Φσ(I)∩Φσ(J). Therefore, one of I and J must be in fσ(x).
Therefore, fσ(x) is a prime ideal. Last, we verify that f−1

σ (V (A)) = Φσ(〈A〉):

f−1
σ

(
V (A)

)
=

{
x : fσ(x) ∈ V (A)

}
=

{
x : A �∈ fσ(x)

}

=
{
x : x ∈ Φσ

(〈A〉)}=Φσ

(〈A〉). �

5. A noncommutative Hopkins’ theorem. In this section we prove a gen-
eralization of Hopkins’ theorem which will be used in next section for our first
approach to the explicit description of the (noncommutative) Balmer spectrum of
an MΔC as a topological space.

5.1. Compactly generated tensor triangulated categories. We say that a
monoidal triangulated category K is a compactly generated if K is closed under
arbitrary set indexed coproducts, the tensor product preserves set indexed coprod-
ucts, K is compactly generated as a triangulated category, the tensor product of
compact objects is compact, 1 is a compact object, and every compact object is
rigid (cf. [15, Definition 2.10.11]). In particular, Kc is an MΔC on its own.

In this context, given any subset S of Kc, the notation 〈S〉 will refer to the
thick two-sided ideal of Kc generated by S , whereas if S is any subset of K, then
the notation 〈〈S〉〉 will refer to the thick two-sided ideal of K generated by S .

Recall that for an MΔC, K, and a map σ : K→X , the map Φσ from subsets
of objects of K to X is defined by (4.3.1). At many points in this section and the
sequel we will be interested in weak support data which satisfy the following two



NONCOMMUTATIVE TENSOR TRIANGULAR GEOMETRY 1701

conditions:

Φσ

(〈〈M〉〉)=∅ if and only if M = 0, ∀M ∈K (Faithfulness property);(5.1.1)

For any W ∈ Xcl there exists M ∈Kc such that Φσ(〈M〉) =W(5.1.2)

(Realization property).

By rigidity, it follows that there exists an exact contravariant duality functor
(−)∗ : Kc→Kc such that

(5.1.3) K(N ⊗M,Q) = K
(
N,Q⊗M∗)

for M ∈ Kc and N,Q ∈ K [15, Proposition 2.10.8]. There are evaluation and co-
evaluation maps

ev : V ∗ ⊗V → 1,

coev : 1→ V ⊗V ∗,

such that the compositions

V
coev⊗ id−−−−−→ V ⊗V ∗ ⊗V

id⊗ev−−−−→ V,(5.1.4)

V ∗ id⊗coev−−−−−→ V ∗ ⊗V ⊗V ∗ ev⊗ id−−−−→ V ∗(5.1.5)

are the identity maps on V and V ∗, respectively.

LEMMA 5.1.1. For any object V of an MΔC, 〈V 〉= 〈V ∗〉.

Proof. By the Splitting Lemma for triangulated categories, if a morphism X
f−→

Y is a retraction, i.e., there exists a map Y
g−→X such that g ◦f = idX , then X is

a direct summand of Y . Since the compositions (5.1.4) and (5.1.5) are the identity
morphisms, V is a direct summand of V ⊗V ∗ ⊗V and V ∗ is a direct summand of
V ∗ ⊗V ⊗V ∗. Hence, V is in 〈V ∗〉, and V ∗ is in 〈V 〉. �

5.2. Localization/colocalization functors. Even though our goal is to
classify ideals in a compact MΔC, we will need to use the localization and colo-
calization functors as given in [5, Section 3] to construct non-compact objects that
will be used in the theory. In particular, we will employ the following facts stated
in [9, Theorem 3.1.1, Lemma 3.1.2].

THEOREM 5.2.1. Let K be a compactly generated triangulated category, C be
a thick subcategory of Kc and M an object of K.

(a) There exists a functorial triangle in K,

ΓC(M)→M → LC(M)→
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which is unique up to isomorphism, such that ΓC(M) is in Loc(C) and there are
no non-zero maps in K from C or, equivalently, from Loc(C) to LC(M).

(b) M ∈ Loc(C) if and only if ΓC(M)∼=M .

5.3. Hopkins’ theorem. For an object M ∈ Kc, recall that 〈M〉 ⊆ Kc de-
notes the thick tensor ideal in Kc generated by M , whereas 〈〈M〉〉 will denote the
thick tensor ideal in K generated by M . The following result is a generalization
of the theorem presented in [9, Theorem 3.3.1]. Recall the definition of extended
weak support datum from Section 1.3.

THEOREM 5.3.1. Let K be a compactly generated MΔC and σ : K→ X be
an extended weak support datum satisfying the faithfulness condition (5.1.1) for a
Zariski space X.

Fix an object M ∈Kc, and set Y :=Φσ(〈M〉) (defined in (4.3.1)). Then

IY = 〈M〉 where IY =
{
N ∈Kc : Φσ

(〈N〉)⊆ Y
}
.

Proof. Let I = IY and I′ = 〈M〉. By definition I′ = 〈M〉 is the smallest thick
(two-sided) tensor ideal of Kc containing M , so it follows that I⊇ I′.

Now let N ∈ K, and apply the exact triangle of functors ΓI′ → Id→ LI′ → to
ΓI(N):

(5.3.1) ΓI′ΓI(N)→ ΓI(N)→ LI′ΓI(N)→

One can conclude that σ(LI′ΓI(N)) ⊆ Y because (i) the first term belongs to
Loc(I′) ⊆ Loc(I) (since I′ ⊆ I) and (ii) ΓI(N) belongs to the triangulated sub-
category Loc(I).

According to Theorem 5.2.1(a) there are no non-zero maps from I′ to
LI′ΓI(N). Consequently, for any S,Q ∈Kc, one can use (5.1.3) to show that

(5.3.2) 0 = K
(
S⊗M ⊗Q,LI′ΓI(N)

) ∼= K
(
S,LI′ΓI(N)⊗Q∗ ⊗M∗).

Since K is compactly generated it follows that LI′ΓI(N)⊗Q∗ ⊗M∗ = 0 in K.
Hence LI′ΓI(N)⊗Kc⊗M∗ = 0, and since one can find a set of compact objects
C with Loc(C) = K, this implies LI′ΓI(N)⊗K⊗M∗ = 0. One can now conclude
the following:

∅=Φσ

(〈〈LI′ΓI(N)⊗K⊗M∗〉〉)

=Φσ

(〈〈LI′ΓI(N)〉〉⊗ 〈〈M∗〉〉)

=Φσ

(〈〈LI′ΓI(N)〉〉)∩Φσ

(〈〈M〉〉)

⊇ Φσ

(〈〈LI′ΓI(N)〉〉)∩Φσ

(〈M〉)

=Φσ

(〈〈LI′ΓI(N)〉〉)∩Y
=Φσ

(〈〈LI′ΓI(N)〉〉).
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The second equality is an application of Lemma 3.1.2. The third equality uses
condition (v) in Definition 4.4.1. Therefore, by (5.1.1), LI′ΓI(N) = 0 in K, and it
follows that ΓI(N)∼= ΓI′ΓI(N) via (5.3.1).

Finally, consider N ∈ I. Then by Theorem 5.2.1(b), ΓI(N)∼=N , thus ΓI′(N)∼=
N and N ∈ Loc(I′). Now by [26, Lemma 2.2] we see that in fact N ∈ I′. Conse-
quently, I⊆ I′. �

6. Classifying thick (two-sided) ideals and Balmer’s spectrum of an
MΔC. In this section we present a method for the classification of the thick
(two-sided) ideals of an MΔC and our first approach towards the explicit descrip-
tion of the Balmer spectrum of an MΔC as a topological space. They are based on
the use of a weak support datum having the faithfulness and realization properties
(5.1.1)–(5.1.2).

6.1. The map Θ. Let K be a compactly generated MΔC, and σ : Kc→X
be a weak support datum. Denote by Θσ the map from specialization-closed subsets
of X to subsets of Kc given by

(6.1.1) Θσ(W ) =
{
M ∈Kc : Φσ

(〈M〉)⊆W
}
.

The following result verifies that Θσ(W ) is a thick tensor ideal.

PROPOSITION 6.1.1. Let σ : Kc→X be a weak support datum for a compactly
generated MΔC, K. For any W ∈ Xsp, Θσ(W ) is a thick tensor ideal of Kc.

Proof. Since 〈M〉 = 〈ΣM〉, we have M ∈ Θσ(W ) if and only if ΣM ∈
Θσ(W ). Suppose M ⊕N ∈Θσ(W ). Then since M and N are in 〈M ⊕N〉, it fol-
lows that M and N are in Θσ(W ). If A→B→C→ΣA is a distinguished triangle
with B and C in Θσ(W ), then by Lemma 4.4.3, Φσ(〈A〉) ⊆ Φσ(〈B〉)∪Φσ(〈C〉)
and so A ∈Θσ(W ). If M is in Θσ(W ), then since N⊗M and M ⊗N are both in
〈M〉, we have N and M in Θσ(W ). �

Suppose S is any subset of the topological space X. Denote by

(6.1.2) Ssp the largest specialization-closed set contained in S.

That is, Ssp is the union of all closed sets contained in S. With this definition, we
can describe the image of fσ.

PROPOSITION 6.1.2. Suppose K is a compactly generated MΔC with a weak
support datum σ : Kc→X such that Φσ(〈C〉) is closed for every compact object
C . Then the map fσ : X → SpcKc defined in Theorem 4.5.1 associated to the
restriction of σ to Kc satisfies fσ(x) = Θσ((X\{x})sp), ∀x ∈X.
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Proof. Observe that

fσ(x) =
{
M ∈Kc : x �∈ Φσ

(〈M〉)}

=
{
M ∈Kc : Φσ

(〈M〉) ⊆X\{x}}

=
{
M ∈Kc : Φσ

(〈M〉) ⊆ (
X\{x})sp

}
=Θσ

((
X\{x})sp

)
. �

We end this subsection by recording a useful fact that will be used later.

LEMMA 6.1.3. Suppose X is a Zariski space. Then, for all x,y ∈X,
(
X\{x})sp =

(
X\{y})sp ⇔ x= y.

Proof. Suppose (X\{x})sp = (X\{y})sp. Then there is no closed set which
contains y and not x, and vice versa. Therefore, {x} = {y}. In a Zariski space,
every irreducible set has a unique generic point, but since x and y are generic
points of their closures, we have x= y by the assumed uniqueness. �

6.2. Classification of thick tensor ideals and the Balmer spectrum. If
K is a compactly generated MΔC with a weak support datum σ, we have now
exhibited maps

ThickId
(
Kc

) Φσ−→←−
Θσ

Xsp.

If X is a Zariski space and σ satisfies the additional conditions (5.1.1) and (5.1.2),
one can now classify thick tensor ideals of Kc and the Balmer spectrum.

THEOREM 6.2.1. Let K be a compactly generated MΔC and σ : K→X be an
extended weak support datum for a Zariski space X such that Φσ(〈C〉) is closed
for every compact object C . Recall the maps Φσ and Θσ defined in (4.3.1) and
(6.1.1), and the map fσ from Theorem 4.5.1 and Proposition 6.1.2.

(a) If σ satisfies the faithfulness property (5.1.1), then Θσ ◦Φσ = id.
(b) If σ satisfies the realization property (5.1.2), then:

(i) Φσ ◦Θσ = id.
(ii) The map fσ is injective.

(c) If σ satisfies both conditions (5.1.1) and (5.1.2), then:
(i) Φσ and Θσ are mutually inverse maps. They are isomorphisms of or-

dered monoids, where the set of thick ideals of Kc is equipped with the operation
I,J �→ 〈I⊗J〉 and the inclusion partial order, and Xsp is equipped with the opera-
tion of intersection and the inclusion partial order.

(ii) For every prime ideal P of Kc, there exists x ∈ X with Φσ(P) =
(X\{x})sp.

(iii) The map fσ : X → SpcKc is a homeomorphism.

Proof. We first show (a). Given a thick tensor ideal I of Kc, set W = Φσ(I)
and IW =Θσ(W ). Then by definition

IW =Θσ(W ) = Θσ

(
Φσ(I)

)
=

{
M : Φσ

(〈M〉)⊆ Φσ(I)
}⊇ I.
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For the reverse inclusion, let N ∈ IW , so Φσ(〈N〉) ⊆W . Since X is a Zariski
space, Φσ(〈N〉) = W1 ∪ ·· · ∪Wn, where the Wi are the irreducible components
of Φσ(〈N〉). Moreover, each Wi has a generic point xi with {xi} = Wi. Since
Wi ⊆W one has xi ∈W . By definition of W , there exists Mi ∈ I such that xi ∈
Φσ(〈Mi〉). Since each Φσ(〈Mi〉) is closed, it follows that Wi ⊆ Φσ(〈Mi〉). Now
set M :=

⊕n
i=1Mi ∈ I. Then

Φσ

(〈N〉)⊆
n⋃

i=1

Φσ

(〈Mi〉
)
=Φσ

(〈M〉) ⊆W.

We claim that 〈N〉 ⊆ 〈M〉. Observe that I is a thick tensor ideal containing
〈M〉, so 〈M〉 ⊆ I. This implies that the aforementioned assertion will complete the
proof of the inclusion IW ⊆ I.

To prove the claim, we employ Hopkins’ theorem (Theorem 5.3.1). By
this result one has 〈M〉 = IΦσ(〈M〉). However, Φσ(〈N〉) ⊆ Φσ(〈M〉), so
〈N〉 ⊆ IΦσ(〈M〉) = 〈M〉.

Next, we show (b)(i). We have automatically that

Φσ

(
Θσ(W )

)
=Φσ

(
IW

)
=

⋃

M∈IW

Φσ

(〈M〉)⊆W.

For the reverse inclusion, express W =
⋃

j∈J Wj for some index set J and closed
subsets Wj ∈ X . By the assumption (5.1.2), there exist objects Nj ∈ Kc such that
Φσ(〈Nj〉) = Wj for j ∈ J . It follows that Nj ∈ IW so W ⊆ ⋃

M∈IW Φσ(〈M〉).
Consequently, Φσ(Θσ(W )) =W .

For (b)(ii), we just note that by (b)(i), Θσ is injective. By Lemma 6.1.3,
the map sending x �→ (X\{x})sp is injective. By Proposition 6.1.2, fσ(x) =

Θσ((X\{x})sp). Hence, f is injective.
By (a) and (b), (c)(i) is automatic. We now show (c)(ii). Suppose P is a prime

ideal. By (b)(i), we can write arbitrary specialization-closed sets as Φσ(I) and
Φσ(J) for some ideals I and J. We have

Φσ(I)∩Φσ(J)⊆ Φσ(P)

�
Φσ(I⊗J)⊆Φσ(P)

�
I⊗J⊆ P

�
I or J⊆ P

�
Φσ(I) or Φσ(J)⊆ Φσ(P).
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Hence, Φσ(P) has the property that for any specialization-closed sets S and T

of X, S ∩T ⊆ Φσ(P)⇒ S or T ⊆ Φσ(P). We claim that the only sets with this
property are sets of the form (X\{x})sp. Suppose Φσ(P) is not a set of this form.
Then for every point x in its complement, there exists some closed set Vx which
does not contain x and is not contained in Φσ(P). We have

⋂
x∈Φσ(P)c Vx ⊆Φσ(P),

but for each x, Vx �⊆ Φσ(P). By assumption X is Noetherian, so there is a finite
subset S of Φσ(P)c with

⋂
x∈Φσ(P)c Vx =

⋂
x∈S Vx, and since this is now a finite

intersection this shows that there exist closed sets S and T with S ∩T ⊆ Φσ(P),
but neither S nor T is contained in Φσ(P). Since this is a contradiction, Φσ(P) has
the form (X\{x})sp for some x.

Now we will show (c)(iii), that fσ is a homeomorphism. Given a prime ideal P
of K, there exists x ∈X such that Φσ(P) = (X\{x})sp, and so

P =Θσ

(
Φσ(P)

)
=Θσ

((
X\{x})sp

)
= fσ(x)

by Proposition 6.1.2. This shows that fσ is surjective, and hence bijective by (b)(ii).
We now show that fσ is a closed map. To an arbitrary closed set, which by (5.1.2)
is of the form Φσ(〈M〉), we apply fσ:

fσ
(
Φσ

(〈M〉))= fσ
(
f−1
σ

(
V (M)

))
= V (M),

using the surjectivity of fσ and the formula for f−1
σ (V (M)) given in Theo-

rem 4.5.1. Since V (M) is closed, fσ is a closed and continuous bijection, and
hence a homeomorphism. �

7. Noncommutative geometry for one-sided ideals. In this section we
present a method for the classification of the thick right ideals of an MΔC. We
introduce a new concept (quasi support datum) to deal with thick one-sided ideals.

In the next section we illustrate how one can extract an explicit description of
the Balmer spectrum of an MΔC and a classification of its thick two-sided ideals
out of the classification of thick one-sided ideals given in this section.

7.1. Quasi support data. A thick right ideal of an MΔC, K, is a full tri-
angulated subcategory of K that contains all direct summands of its objects and is
closed under right tensoring with arbitrary objects of K.

Definition 7.1.1. Let K be a monoidal triangulated category, X a topological
space, and σ a map K→X . We call σ a (noncommutative) quasi support datum if

(a) σ(0) =∅ and σ(1) =X;
(b) σ(A⊕B) = σ(A)∪σ(B) ∀A,B ∈K;
(c) σ(ΣA) = σ(A), ∀A ∈K;
(d) If A→ B → C → ΣA is a distinguished triangle, then σ(A) ⊆ σ(B)∪

σ(C);
(e) σ(A⊗B)⊆ σ(A), ∀A,B ∈K.
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For an extended quasi support datum we replace (b) with
(b′) σ(

⊕
i∈IAi) =

⋃
i∈IAi, ∀Ai ∈K.

Similarly to the previous two sections, we will be interested in quasi support
data σ : K→X that satisfy the following one-sided type assumptions:

Φ
(〈〈M〉〉r

)
=∅ if and only if M = 0,

for all M ∈K (Faithfulness property);
(7.1.1)

For any W ∈ Xcl there exists M ∈Kc

such that Φ
(〈M〉r

)
=W (Realization property).

(7.1.2)

Here and below, similarly to the two-sided case, for M ∈Kc, 〈M〉r denotes the
smallest thick right ideal of Kc containing M ; that is the intersection of all thick
right ideals containing M . For M ∈K, 〈〈M〉〉r denotes the smallest thick right ideal
of K containing M .

7.2. One-sided Hopkins’ theorem for quasi support data. We first state
an assumption that acts as a (one-sided) replacement for condition (e) in the defini-
tion of weak support datum. Recall the definition (4.3.1) of the map Φσ. Similarly
to the arguments in Section 4.4, one shows that in the presence of the other condi-
tions for quasi support datum, condition (e) is equivalent to

(7.2.1) Φσ

(〈〈M〉〉r
)
= σ(M), ∀M ∈K.

ASSUMPTION 7.2.1. Suppose that M,N ∈Kc are such that

Φσ

(〈N〉r
)⊆ σ(M).

Set I′ = 〈M〉r. If M∗ ⊗LI′(N) = 0, then LI′(N) = 0 (for the localization functor
as in Section 5.2).

With this assumption, one proves the following one-sided version of Theo-
rem 5.3.1. Similarly to (6.1.1), for a quasi support datum σ : K→X for a com-
pactly generated MΔC K, denote by Θσ the map from specialization-closed sub-
sets of X to subsets of Kc:

Θσ(W ) =
{
M ∈Kc : Φσ

(〈M〉r
)⊆W

}
, for W ∈ Xsp.

THEOREM 7.2.2. Let K be a compactly generated MΔC and σ : K→X be an
assignment to subsets of a Zariski space X that satisfies the conditions (a), (b′), (c),
(d) for an extended quasi support datum, such that σ : Kc→X is a quasi support
datum for a Zariski space X. Assume that Assumption 7.2.1 holds. Then for each
object M ∈Kc,

Θσ

(
Φσ

(〈M〉r
))

= 〈M〉r.
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7.3. Classification of thick tensor one-sided (right) ideals. With Theo-
rem 7.2.2, we can state a classification theorem for thick (right) ideals for Kc. The
proof follows the same line of reasoning as given in Theorem 6.2.1.

THEOREM 7.3.1. Let K be a compactly generated MΔC and σ : K→ X be
an assignment to subsets of a Zariski space X that satisfies the conditions (a), (b′),
(c), (d) for an extended quasi support datum. Suppose that σ restricts to a quasi
support datum on Kc where Φσ(〈C〉) is closed for every C ∈Kc. Moreover, assume
that σ satisfies the realization property (7.1.2) and Assumption 7.2.1 holds.

Then the maps Φσ and Θσ

{
thick right ideals of Kc

} Φσ−→←−
Θσ

Xsp

are mutually inverse.

Remark 7.3.2. The set of thick right ideals of Kc is an ordered monoid with
the operation I,J �→ 〈I⊗ J〉r and the inclusion partial order. The set Xsp is an or-
dered monoid with the operation of intersection and the inclusion partial order. The
maps Φσ and Θσ preserve inclusions but in general they are not isomorphisms of
monoids.

More precisely, Φσ and Θσ are isomorphisms of ordered monoids if and only
if σ : K→X is a support datum.

Indeed, Φσ is an isomorphism of monoids if and only if Φσ(〈I⊗J〉r) =Φσ(I)∩
Φσ(J) for all thick right ideals I and J of Kc. This in turn is equivalent to Φσ(I⊗
J) = Φσ(I)∩Φσ(J) by an argument similar to the proof of Lemma 4.3.2. Since
I = ∪A∈I〈A〉r, the last property is equivalent to Φσ(〈A〉r⊗ 〈B〉r) = Φσ(〈A〉r)∩
Φσ(〈B〉r), ∀A,B ∈K. By (7.2.1) the last property is equivalent to

⋃

C∈K

σ(A⊗C⊗B) = σ(A)∩σ(B), ∀A,B ∈K,

which is the fifth property in the definition of support data.

7.4. Finite-dimensional Hopf algebras. Let A be a non-semisimple
finite-dimensional Hopf algebra over a field k. It is well known that A is a
self-injective algebra. Denote by Mod(A) the abelian category of (possibly
infinite-dimensional) A-modules and by mod(A) its abelian subcategory of
finite-dimensional A-modules. Both categories are monoidal with an exact tensor
product. Both categories are Frobenius. Denote by K = StMod(A) and stmod(A)
the corresponding stable categories. K = StMod(A) is a compactly generated
MΔC with Kc = stmod(A), see [7, Example 1.48].

We first state a condition that provides a method for constructing a quasi-
support data for Kc = stmod(A).



NONCOMMUTATIVE TENSOR TRIANGULAR GEOMETRY 1709

ASSUMPTION 7.4.1. Given A a finite-dimensional Hopf algebra.
(a) The cohomology ring R= H•(A,k) is a finitely generated algebra.
(b) Given M,N ∈mod(A), Ext•A(M,N) is a finitely generated R-module.

Assumption 7.4.1 will be referred to as the (fg) assumption. This assumption is
conjectured to hold in broad generality by Etingof and Ostrik, that is, for all finite
tensor categories, which includes categories of modules of finite-dimensional Hopf
algebras [16, Conjecture 2.18]. Given the (fg) assumption, one can construct the
cohomological support datum on Kc as follows. Let M be an object of Kc and let

(7.4.1) σ(M) = Proj
({

P ∈ Spec(R) : Ext•A(M,M)P �= 0
})

.

Clearly, σ(M)∈Xcl for M ∈Kc. Next we will verify (7.1.1). One has Φσ(〈M〉r)=
∅ if and only if σ(N) =∅ for all N ∈ 〈M〉r if and only if N = 0 for all N ∈ 〈M〉r
(cf. [17, Proposition 2.3]) if and only if M = 0.

Next, we can verify (7.1.2). Let ζ ∈ Hn(A,C) and let Lζ be the kernel of the
map ζ : Ωn(C)→C. Moreover, let Z(ζ) = {P ∈ Proj(Spec(R)) : ζ ∈ P}. One has
σ(Lζ) = Z(ζ). We have the following result from [17, Theorem 2.5].

PROPOSITION 7.4.2. Let M ∈ stmod(A), and ζ,ζi ∈ R be homogeneous ele-
ments of positive degree (1≤ i≤ t).

(a) σ(Lζ ⊗M) = σ(Lζ)∩σ(M).
(b) σ(⊗t

i=1Lζt ⊗M) = [∩ti=1σ(Lζ)]∩σ(M).

Now let W ∈Xcl. There exists ζ1, ζ2, . . . , ζt ∈R such that W =Z(ζ1)∩Z(ζ2)∩
·· ·∩Z(ζt). Then by Proposition 7.4.2, it follows that W = σ(Lζ1⊗Lζ2⊗·· ·⊗Lζt)

(cf. [17, Remark 2.7]).
In [5], Benson, Iyengar and Krause constructed an extension of the cohomo-

logical support map σ to the set of objects of K= StMod(A). This map takes values
in the subsets of the space of homogeneous prime ideals of H•(A,k) and satisfies
conditions (a), (b′), (c), (d) for an extended quasi support datum. The map

A ∈K �→ σ(A)∩Proj
(

H•(A,k)
)

is an extension of σ to K with values in X (Proj(H•(A,k))), which still satisfies
conditions (a), (b′), (c), (d).

With the verifications above, we can now state the following result.

THEOREM 7.4.3. Let A be a finite-dimensional Hopf algebra over a field k

that satisfies (fg) and Assumption 7.2.1. With the cohomological support datum
there exists a bijection between

{
thick right ideals of stmod(A)

} Φσ−→←−
Θσ

Xsp
(

Proj
(

H•(A,k)
))
.
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8. Small quantum group for Borel subalgebras. In this section, we use
the method from Section 7 to classify the thick right ideals of the stable module
categories of the small quantum groups for the Borel subalgebras of all complex
simple Lie algebras. Based on these results, we then provide a classification of
the thick two-sided ideals of these categories and an explicit description of their
Balmer’s spectra.

8.1. Small quantum group for Borel subalgebras. Let g be a complex
simple Lie algebra and ζ be a primitive �th root of unity in C. Assume that � > h

where h is the Coxeter number associated to the root system of g. Let b be the
Borel subalgebra of g corresponding to taking the negative root vectors and u be
the unipotent radical of b. Let uζ(b) (resp. uζ(g)) be the small quantum group for
b (resp. g). Moreover, let Uζ(b) (resp. Uζ(g)) be the Lusztig A-forms specialized
at ζ . The later algebras are often referred to as the big quantum group.

The Steinberg module St is a projective and injective module in mod(Uζ(g)).
This fact allows one to prove that there exists enough projectives in the category
and the module category is self injective. Therefore, one can consider the stable
module category of finite-dimensional modules, stmod(Uζ(g)). This category is a
symmetric MΔC. A classification of thick tensor ideals and the computation of the
Balmer spectrum was achieved in [10].

The Steinberg module St does not remain projective upon restriction to
mod(Uζ(b)). Thus, the construction of the stable module category does not follow
immediately from the aforementioned argument. The small quantum group is a
finite-dimensional Hopf algebra which means that it is self-injective, and in this
case one can discuss the stable module category.

For stmod(uζ(g)) the classification of thick tensor ideals and computation of
the Balmer spectrum remain as open questions. In this section we will address these
issues for stmod(uζ(b)).

8.2. Action of Π. Denote for brevity

A= uζ(b).

Let X1 denote X(T )/�X(T ), where X(T ) is the weight lattice corresponding to
a maximal split torus T . For each λ ∈X1, define an automorphism γλ of A which
is defined by γλ(Eα) = ζ〈λ,α〉Eα for all α ∈Φ+ and γλ(Ki) =Ki for i= 1, . . . ,n.
Here Φ+ are the set of positive roots in the set of roots Φ and 〈−,−〉 denotes the
inner product on the Euclidean space spanned by the roots.

Let Π= {γλ : λ ∈X1}, which is a group under composition. Moreover, Π acts
on the cohomology ring R= H2•(A,k)∼= S•(u∗). The action of λ is given explic-
itly on homogeneous elements of R (interpreted as n-fold extensions) by sending
each module M to the twist Mγλ , a new module with action a ·m= γλ(a)m for all
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a ∈ A and m ∈Mγλ . Since k
γλ ∼= k, which follows from the definitions of the co-

product and counit on A, this action sends an n-fold extension of k by k to another
such extension.

The following result demonstrates that the action of Π on the stable module
category for the small quantum Borel algebra is trivial. Let X(T )/ZΦ denote the
weight lattice modulo the root lattice, and (�, |X(T )/ZΦ|) = gcd(�, |X(T )/ZΦ|).

THEOREM 8.2.1. Let uζ(b) be the small quantum group for the Borel subal-
gebra b with � > h and (�, |X(T )/ZΦ|) = 1. Then the action of Π on Proj(S•(u∗))
is trivial.

Proof. It suffices to prove that the action of Π on the cohomology ring R is
trivial. This action can be described as follows.

If λ ∈ X1, a ∈ C
∗, one can define an automorphism γ̂λ of A: γ̂λ(Eα) =

a〈λ,α〉Eα for all α ∈Φ+ and γ̂λ(Ki) =Ki for i= 1, . . . ,n. Note that this is also an
automorphism on the subalgebra, uζ(u) which is generated by Eα, α ∈ Φ+. When
a= ζ where ζ is a primitive �th root of unity, γ̂ = γ.

This automorphism γ̂ acts on the bar resolution of uζ(u) (cf. [3, Sec-
tion 2.8]) and the differentials respect the action of this automorphism. Therefore,
the automorphism will act on the cohomology H•(uζ(u),C). One has that
R = H•(uζ(u),C)uζ (t) = S•(u∗)(1) [18, Theorem 2.5] where uζ(t) is the subalge-
bra of A generated by Ki for i = 1, . . . ,n. The twist means that all the weights in
the cohomology of R are of the form �σ where σ is in the weight lattice. From
the bar resolution, we can conclude that �σ must be in the root lattice. Since
(�, |X(T )/ZΦ|) = 1, it follows that σ is in the root lattice.

Let f ∈R of weight �σ. Then f can be expressed as a sum of tensor products
of elements in uζ(u) such that �σ =

∑
α∈Φ+ nαα. Therefore, the automorphism

γ̂λ(f)= a〈λ,�σ〉= (a�)〈λ,σ〉. Specializing a= ζ shows that γ acts trivially on R. �

8.3. Classification of one-sided (right) ideals. The small quantum group
A = uζ(b) is a finite-dimensional Hopf algebra over C. For � > h (h is the Cox-
eter number for the underlying root system), the (fg) assumption holds and the
cohomology ring H2•(A,C)∼= S•(u∗). The odd degree cohomology is zero.

Assumption 7.2.1 holds by [10, Section 7.4] as long as W (M) =W (M∗) for
every M ∈ stmod(uζ(b)), where W = σ is the cohomological support. We can
prove this under the assumption that Π acts trivially on R (i.e., (�, |X(T )/ZΦ|) =
1). In checking Assumption 7.2.1 for M = 0, we also use the well-known faithful-
ness property for the cohomological support.

First note that M ∈ stmod(uζ,Γ(b)) is rigid, thus M is a summand of M ⊗
M∗ ⊗M , and

W (M)⊆W
(
M ⊗M∗ ⊗M

)
.
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Using the fact that M has a composition series by subquotients isomorphic to the
one dimensional modules λ ∈X1, one has

W
(
M ⊗M∗ ⊗M

)
=

⋃

λ∈X1

W
(
λ⊗M∗ ⊗M

)
.

The cohomological support W is a quasi support datum, and Π act trivially on
supports. Consequently,

W
(
λ⊗M∗ ⊗M

)⊆W
((
M∗)γλ ⊗λ⊗M

)⊆W
(
(M∗)γλ

)

= γ−1
λ ·W

(
M∗)=W (M∗)

for all λ∈X1. Combining the above inclusions gives W (M)⊆W (M∗). The other
inclusion is proved by interchanging M with M∗ and using the fact that (M∗)∗ ∼=
M .

We can therefore employ Theorem 7.4.3 to give a classification of one-sided
tensor ideals for the stable module category of uζ(b).

THEOREM 8.3.1. Let uζ(b) be the small quantum group for the Borel sub-
algebra b with � > h and gcd(�, |X(T )/ZΦ|) = 1. Then there exists a bijection
between

{
thick right ideals of stmod

(
uζ(b)

)}

Φ−→←−
Θ

{
specialization closed sets of Proj

(
S•(u∗)

)}
.

8.4. Classification of two-sided ideals and the Balmer spectrum. First,
we fix some notation:

(i) The cohomology ring of A= uζ(b) will be denoted by

R= Ext•A(k,k) = H•(A,k).

(ii) The space of (nontrivial) homogeneous prime ideals of R will be de-
noted by

X = ProjR.

The set of subsets, closed subsets, and specialization-closed subsets of X will be
denoted respectively by X , Xcl, and Xsp.

(iii) We will use the support function on StMod(A) from [5], using the coho-
mology ring R defined above. It is defined using the localization and colocalization
functors from Theorem 5.2.1. This support will be denoted by

W̃ (−) : StMod(A)→Xsp.

It extends the corresponding cohomological support functions from (7.4.1).
(iv) The map Φ associated to the support W̃ will be denoted by Φ

˜W
. It takes

thick subcategories of StMod(A) to subsets of X .
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In order to explicitly describe the Balmer spectrum of stmod(A), we must pro-
duce a support having the faithfulness and realization properties (5.1.1)–(5.1.2).
By [5, Theorem 5.2], the weak support datum W̃ : StMod(A)→X (Proj(R)) has
the faithfulness property (5.1.1). However, to get the realization property (5.1.2),
we will need to consider a new support datum built from W̃ .

Each λ ∈X1 corresponds to a one-dimensional simple module, which we will
denote again by λ, where Eα acts by 0, and Ki acts by ζ〈λ,αi〉. All the simple
modules of A arise in this way. Using the definition of the coproduct on A, one can
directly verify that there exists an isomorphism of A-modules:

(8.4.1) λ⊗Q⊗λ−1 ∼=Qγλ .

Hence, the action of Π on R can be realized as conjugation by the module λ under
the tensor product.

From the action of Π on R, one can construct the stack quotient XΠ := Π-
Proj(R), the space of non-zero homogeneous Π-prime ideals of R, as studied by
Lorenz in [22]. These are non-zero Π-invariant homogeneous ideals P of R that
have the property IJ ⊆ P ⇒ I ⊆ P or J ⊆ P for all Π-invariant homogeneous
ideals I , J of R. The stack quotient XΠ is a Zariski space by the argument in [9,
Section 2.3]. The space of Π-orbits in Proj(R) will be denoted by

X̃Π =Π\Proj(R).

By [22, Section 1.3], there are maps

p

X

X̃Π XΠ

Π ·p ⋂
x∈Πx ·p

π1

π

π2

and the topologies on X̃Π and XΠ are defined to be the final topologies with respect
to the surjections from X.

Denote

W = π ◦W̃ : StMod(A)→X (XΠ

)
.

This is a quasi support datum. Then ΦW will denote the associated map given by
(4.3.1).

The quasi support datum W clearly satisfies W (M) ∈ Xcl(XΠ) for M ∈ Kc.
Next we will verify (7.1.1). One has ΦW (〈M〉) =∅ if and only if W (N) =∅ for
all N ∈ 〈M〉 if and only if N = 0 for all N ∈ 〈M〉 if and only if M = 0. Note that
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the last if and only if statement holds because if P is a projective A-module then
C⊗P and P ⊗C are projective A-modules for any C ∈Kc.

Finally, let M be an object in Kc. Note that by the quasi support property on
tensor products and the fact that λ⊗λ−1 ∼= k, we have

W̃ (λ⊗M) = W̃
(
λ⊗M⊗λ−1⊗λ

)⊆ W̃
(
λ⊗M ⊗λ−1)⊆ W̃ (λ⊗M),

which then implies by (8.4.1) that

(8.4.2) W̃ (λ⊗M) = W̃
(
Mγλ

)
.

Now we can observe

Φ
˜W
(〈M〉) =

⋃

C,D∈Kc

W̃ (C⊗M ⊗D) =
⋃

C∈Kc

W̃ (C⊗M).

The last equality follows because W̃ is a quasi support datum. Next observe that
since the simple modules for A are given by {λ : λ ∈X1}, by the property of the
quasi support on short exact sequence, and by (8.4.1) and (8.4.2), one obtains

⋃

C∈Kc

W̃ (C⊗M) =
⋃

λ∈X1

W̃ (λ⊗M) =
⋃

λ∈X1

W̃
(
Mγλ

)
=

⋃

λ∈X1

γ−1
λ ·W̃ (M).

Therefore,

(8.4.3) Φ
˜W
(〈M〉) = Π ·W̃ (M).

We can conclude that ΦW takes two-sided ideals in Kc to specialization closed
sets in XΠ = Π-Proj(R), and that the extension W of W̃ satisfies the conditions
(5.1.1)–(5.1.2).

At this point we will assume that the action of Π on the cohomology ring R is
trivial. Then (i) W = W̃ and (ii) W̃ (T ) = W̃ (T ∗) for any T ∈ stmod(uζ(b)). Since
we know only that W̃ is a quasi support, rather than a weak support, one needs to
verify an appropriate version of Assumption 7.2.1 for Hopkins’ theorem to hold.
The statement needed to apply the proof in Theorem 5.3.1 is given as follows: if
LI′ΓI(N)⊗Q∗⊗M∗= 0 for all Q∈ stmod(uζ(b)) then LI′ΓI(N) = 0. In the proof
of Theorem 5.3.1, it was shown that

W̃
(
LI′ΓI(N)

)⊆ Y =Φ
˜W

(〈M〉) =
⋃

Q

W̃ (Q⊗M).

Since LI′ΓI(N)⊗Q∗ ⊗M∗ = 0, it follows by [10, Theorem 6.2.1] that

∅= W̃
(
LI′ΓI(N)

)∩ [∪Q W̃
(
Q∗ ⊗M∗)]

= W̃
(
LI′ΓI(N)

)∩ [∪Q W̃ (Q⊗M)
]
= W̃

(
LI′ΓI(N)

)∩Y.

Therefore, W̃ (LI′ΓI(N)) =∅ and LI′ΓI(N) = 0.
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Now one can apply the argument given in Theorem 6.2.1(c)(i) to conclude
that Φ

˜W
is an order-preserving bijection between thick two-sided ideals of

stmod(uζ(b)) and specialization-closed sets of Proj(S•(u∗)). Then this implies

that W̃ is not just a quasi support, but in fact a weak support, by the following
argument, which is a noncommutative version of [10, Proposition 6.2.1].

First observe that every thick ideal I of stmod(uζ(b)) is semiprime. As noted
in the proof of Lemma 5.1.1, each compact object V is a direct summand of V ⊗
V ∗ ⊗V . This implies

V ⊗ stmod
(
uζ(b)

)⊗V ⊆ I⇒ V ⊗V ∗ ⊗V ∈ I⇒ V ∈ I,

and by Theorem 3.4.2, I is semiprime.
Next by the semiprimeness of 〈I⊗J〉 and I∩J, we have inclusions

〈I⊗J〉 I∩J

⋂
I⊗J⊆P P

⋂
I∩J⊆P P

where the intersections range over P in Spc(stmod(uζ(b))) satisfying the given
conditions; hence 〈I⊗J〉= I∩J. Therefore,

Φ
˜W

(〈I⊗J〉)=Φ
˜W
(I∩J)

= Φ
˜W
(I)∩Φ

˜W
(J),

where the second equality follows from the fact that Φ
˜W

is an order-preserving
bijection between thick ideals and specialization-closed sets of Proj(S•(u∗)), and
so W̃ is a weak support datum. The theorem below now follows immediately.

THEOREM 8.4.1. Let uζ(b) be the small quantum group for the Borel sub-
algebra b with � > h and gcd(�, |X(T )/ZΦ|) = 1. The thick two-sided ideals of
stmod(uζ(b)) coincide with the thick one-sided ideals of stmod(uζ(b)).

(a) Then there exists a bijection between
{

thick two-sided ideals of stmod
(
uζ(b)

)}

Φ−→←−
Θ

{
specialization closed sets of Proj

(
S•

(
u∗
))}

.

(b) There exists a homeomorphism f : Proj(S•(u∗))→ Spc(stmod(uζ(b))).

We expect that there exists a wide class of finite-dimensional Hopf algebras A
satisfying the (fg) assumption for which

(a) the one-sided thick ideals of stmod(A) are in bijection with the specializa-
tion closed subsets of Proj(H•(A,k)) as in Theorem 7.4.3, while

(b) the spectrum Spc(stmod(A)) is homeomorphic to Π-Proj(H•(A,k)) and
the two-sided thick ideals of stmod(A) are in bijection with the specialization
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closed subsets of Π-Proj(H•(A,k)), where Π is the group of invertible objects of
stmod(A).

The small quantum Borel uζ(b) is very special in that the action of Π on
Proj(H•(uζ(b),k)) is trivial. This is not the case in general as illustrated in the
next section with the Benson-Witherspoon Hopf algebras.

9. Benson-Witherspoon Hopf algebras. In this section, we use the
method of Section 6, to give an explicit description of the Balmer spectra of the
stable module categories of the Benson-Witherspoon Hopf algebras [8] and a
classification of their thick two-sided ideals.

9.1. The smash coproduct of a group algebra and group coordinate ring.
The Benson-Witherspoon Hopf algebras are the Hopf duals of smash products of a
group algebra and a coordinate ring of a group. They were studied in [8].

In more detail, let G and H be finite groups, with H acting on G by group
automorphisms. Let k be a field of positive characteristic dividing the order of G.
Define A as the Hopf algebra dual to the smash product k[G]#kH , where k[G] is
the dual of the group algebra of G, and kH is the group algebra of H . Denote by
pg the dual basis element of k[G] corresponding to g ∈G. By definition, this smash
product is k[G]⊗kH as a vector space, and multiplication is given by

(
pg⊗x

)(
ph⊗y

)
= pg

(
x(1) ·ph

)⊗x(2)y = pgpx·h⊗xy = δg,x·hpg⊗xy

for all g ∈G and x,y ∈H . Now define

A= Homk

(
k[G]#kH,k

)
.

As an algebra, A= kG⊗k[H]. The comultiplication in A is given by

Δ
(
g⊗px

)
=

∑

y∈H

(
g⊗py

)⊗ (
y−1 ·g⊗py−1x

)
.

The counit and antipode are given by

ε
(
g⊗px

)
= δx,1 and S

(
g⊗px

)
= x−1 · (g−1)⊗px−1.

Note that while G is a subalgebra of A, via the map g �→ g⊗ 1, it is not a Hopf
subalgebra, since

ΔG(g) = g⊗ g

and

ΔA(g⊗1) =
∑

x∈H
ΔA

(
g⊗px

)
=

∑

x,y∈H

(
g⊗py

)⊗ (
y−1 ·g⊗py−1x

)

�= (g⊗1)⊗ (g⊗1).
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An A-module is the same as an H-graded kG-module. We may write any A-
module M in the form

M =
⊕

x∈H
Mx⊗kx,

where the Mx are kG-modules. The action of kG is on the first tensor and k[H]

acts on the second.
In [8], Benson and Witherspoon prove the following formula for the decompo-

sition of a tensor product of A-modules:

(
M ⊗kx

)⊗ (
N ⊗ky

)
=

(
M ⊗ xN

)⊗kxy

on homogeneous components. Here and below for M ∈ Mod(kG) and x ∈ H ,
xM ∈Mod(kG) denotes the conjugate of M by the action of x ∈ H → Aut(G).
On homogeneous components, the dual of a module is given by

(
M ⊗kx

)∗
= x

(
M∗)⊗kx−1.

9.2. Support data for StMod(A) and StMod(kG). By the definition of the
smash product, we have an embedding of Hopf algebras

k[G] ↪→ k[G]#kH.

Hence, when we dualize to the smash coproduct, we get a Hopf algebra surjection

kG�A.

We will use the following notation:
(i) The cohomology rings of A and kG will be denoted by

RA = Ext•A(k,k) and RG = Ext•G(k,k),

respectively.
(ii) Denote the spaces

XA = ProjRA and XG = ProjRG.

The collections of their specialization closed subsets and all subsets will be denoted
respectively by

XA
sp , XA, XG

sp , XG.

(iii) We will use the support functions on StMod(A) and StMod(kG) from [5],
where the relevant ring R is taken to be RA and RG, respectively. They are defined
using the localization and colocalization functors from Theorem 5.2.1. They take
values in the sets of all subsets of the spaces of homogeneous prime ideals of RA
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and RG, respectively. By the discussion after the proof of [5, Lemma 10.1], the
second extension takes values in XG:

WG(−) : StMod(kG)→XG.

In other words, the irrelevant ideal of RG is not in the image WG(M) for any
M ∈ StMod(kG). The first extension takes values in XA by Theorem 9.2.3(c)

W̃A(−) : StMod(A)→XA.

These support maps extend the corresponding cohomological support functions
from (7.4.1).

(iv) The map Φ associated to the support W̃A will be denoted by Φ̃A. It takes
thick subcategories of StMod(A) to subsets of XA.

(v) The functor Mod(kG)→Mod(A) defined on objects by

M �→M ⊗ke

will be denoted by F .

Remark 9.2.1. In [8], Benson and Witherspoon give an example of A-modules
M and N such that M ⊗N is projective and N ⊗M is not projective. This shows
that in general, the (strong) tensor product property does not hold for the cohomo-
logical support W̃A. In other words, it is not necessarily true that W̃A(M ⊗N) =

W̃A(M)∩ W̃A(N). Furthermore, there are no support data maps in the sense of
Balmer σ : StMod(A)→X such that σ(A)=∅⇔A∼= 0. (If there were such maps,
then σ(M ⊗N) = σ(M)∩σ(N) = σ(N ⊗M), so M ⊗N ∼= 0⇔N ⊗M ∼= 0.)

LEMMA 9.2.2. The functor F descends to a fully faithful tensor triangulated
functor StMod(kG)→ StMod(A), which we also denote by F .

Proof. By the formula for the tensor product of A-modules, F is monoidal,
since

F(M ⊗N)∼=F(M)⊗F(N).

It is clear that F is exact, and it is fully faithful since morphisms of A-modules
are the same as graded morphisms of kG-modules. The functor F descends to a
functor StMod(kG)→StMod(A) because it sends projective modules to projective
modules, and has the property that for each morphism f in Mod(kG), if F(f)
factors through a projective module in Mod(A), then f factors through a projective
module in Mod(kG). �

Denote by For : Mod(A)→Mod(kG) the forgetful functor. It is clear that it
descends to a tensor triangulated functor StMod(A)→ StMod(kG), which we also
denote by For.

THEOREM 9.2.3. For all Benson-Witherspoon Hopf algebras A the following
hold:
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(a) There is a canonical isomorphism RG
∼=RA. (Denote R :=RG

∼=RA).
(b) If C and Q are kG-modules, there is an isomorphism of R-modules

Ext•G(C,Q) ∼= Ext•A
(F(C),F(Q)

)
,

and A satisfies the (fg) Assumption 7.4.1.
(c) For an A-module N ,

W̃A(N) =WG

(
For(N)

)
.

(d) For an A-module Q,

Φ̃A

(〈Q〉)=H ·WG

(
For(Q)

)
.

Proof. For (a) and (b), suppose

0→F(Q)→N1→ ··· →Ni→F(C)→ 0

is an exact sequence representing an element of Ext•A(F(C),F(Q)). Then we
claim it is equivalent to an exact sequence which is supported only at the identity
component. To do this, we may just note that the natural maps give an equivalence
of extensions:

0 F(Q) N1 · · · Ni F(C) 0

0 F(Q) (N1)e · · · (Ni)e F(C) 0.

This gives a vector space isomorphism

Ext•A(F(Q),F(C)) ∼= Ext•G(Q,C).

This isomorphism is compatible with the actions of RA and RG because F is a
monoidal functor. This decomposition allows us to conclude Assumption 7.4.1 for
A, since it is well known that this assumption holds for kG.

For (c), write N =
⊕

z∈HNz⊗kz with Nz ∈mod(kG). Note that by [5, The-
orem 5.2],

W̃A(N) =
⋃

C compact

minHom•StMod(A)(C,N),

where, for an RA-module L, minL refers to the minimal primes in the support of
L. Hence,

W̃A(N) =
⋃

C∈mod(kG), z∈H
minHom•StMod(A)

(
C⊗kz,N

)

=
⋃

C,z

minHom•StMod(A)

(
C⊗kz,Nz⊗kz

)
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=
⋃

C,z

minHom•StMod(A)

(
C⊗ke,

(
Nz⊗kz

)⊗ (
k⊗kz

)∗)

=
⋃

C,z

minHom•StMod(A)

(
C⊗ke,Nz⊗ke

)

=
⋃

C,z

minHom•StMod(kG)

(
C,Nz

)
=

⋃

z

WG

(
Nz

)
.

The second to last equality follows from the fact that for i > 0,

Homi
StMod(A)

(
C⊗ke,Nz⊗ke

)∼= ExtiA
(
C⊗ke,Nz⊗ke

)

by [13, Proposition 2.6.2], which is isomorphic to ExtiG(C,Nz) by (2). Addition-
ally, for i= 0 we have

HomStMod(A)

(
C⊗ke,Nz⊗ke

)∼= HomStMod(kG)

(
C,Nz

)

since the functor F is fully faithful.
For (d), we have

Φ̃A

(〈Q〉)=
⋃

M,N,x,y,z

W̃A

((
Mx⊗kx

)⊗ (
Qz⊗kz

)⊗ (
Ny⊗ky

))

=
⋃

M,N,x,y,z

W̃A

((
Mx⊗xQz⊗xzNy

)⊗kxzy

)

=
⋃

M,N,x,y,z

WG

(
Mx⊗xQz⊗xzNy

)

=
⋃

M,N,x,y,z

(
WG

(
Mx

)∩WG

(x
Qz

)∩WG

(xz
Ny

))

=
⋃

x,z

x ·WG

(
Qz

)
=H · (WG

(
For(Q)

))
. �

COROLLARY 9.2.4. For all Benson-Witherspoon Hopf algebras A,

W̃A : StMod(A)→XA

is an extended weak support datum on StMod(A) satisfying the faithfulness condi-
tion (5.1.1).

Proof. The fact that W̃A satisfies conditions (a)–(d) in Definition 4.4.1 follows
from Theorem 9.2.3(c) and the fact that WG is a support datum for StMod(kG).
For condition (e) in Definition 4.4.1, we need to verify the property

Φ̃A

(〈M〉⊗ 〈N〉)= Φ̃A

(〈M〉)∩ Φ̃A

(〈N〉).
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This follows as both sides are equal to
[
H ·WG

(
For(M)

)]∩ [H ·WG

(
For(N)

)]

by Theorem 9.2.3(d).
To check the faithfulness of W̃A, assume that M = ⊕x∈HMx ⊗ kx ∈

Mod(A) is such that Φ̃A(〈M〉) = ∅. Applying Theorem 9.2.3(d), gives that
H ·WG(For(M)) = ∅. By the faithfulness of W̃A, For(M) = ⊕x∈HMx is a
projective kG-module, and thus, Mx are projective kG-modules for all x ∈ H .
This implies that M is a projective A-module. �

9.3. Classification of thick two-sided ideals and the Balmer spectrum of
stmod(A). In order to explicitly describe the Balmer spectrum of stmod(A),
we must produce a weak support datum having the faithfulness and realization
properties (5.1.1)–(5.1.2). By [5, Theorem 5.2], the weak support datum W̃A :
StMod(A)→XA = X (Proj(RA)) has the faithfulness property (5.1.1). However,
to get the realization property (5.1.2), we will need to consider a new support datum
built from W̃A. Denote

XH =H-Proj(RA),

the space of non-zero homogeneous H-prime ideals of A in the sense of Lorenz
[22], i.e., non-zero H-invariant homogeneous ideals P of RA that have the property
IJ ⊆ P ⇒ I ⊆ P or J ⊆ P for all H-invariant homogeneous ideals I,J of RA.
XH is a Zariski space by the argument in [9, Section 2.3]. The topological space
of H-orbits in XA = Proj(RA) will be denoted by

X̃H =H\Proj
(
RA

)
.

By [22, Section 1.3], there are maps

p

XA

X̃H XH

H ·p ⋂
h∈H h ·p

π1

π

π2

and the topologies on X̃H and XH are defined to be the final topologies with re-
spect to the surjections from XA.

Denote
WA = π ◦W̃A : StMod(A)→X (XH

)
.

Denote by ΦA the associated map ΦWA
map given by (4.3.1).
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LEMMA 9.3.1. For all Benson-Witherspoon Hopf algebras A, WA is a weak
support datum satisfying the faithfulness and realization conditions (5.1.1)–(5.1.2).

Proof. Since W̃A is a weak support datum satisfying the faithfulness property,
the same is true for WA = π ◦W̃A.

Because XH is equipped with the final topology with respect to π, and the
preimage of WA(Q) = π(W̃A(Q)) is W̃A(Q), which is closed, we have that
WA(Q) is closed in XH .

Let Y ⊆XH be closed. Then π−1(Y ) is a closed H-stable subset of XA. This
implies there is some Q with

WG(Q) = π−1(Y ).

Since π−1(Y ) is H-stable, using Theorem 9.2.3, we may check

ΦA

(〈F(Q)〉) = π ◦ Φ̃A

(〈F(Q)〉) = π
(
H ·WG(Q)

)

= π
(
H ·π−1(Y )

)
= π

(
π−1(Y )

)
= Y.

Hence, WA(−) also satisfies the realizability property. �

Applying Theorem 6.2.1 we obtain:

THEOREM 9.3.2. Let A = Homk(k[G]#kH,k) where G and H are finite
groups with H acting on G and k is a base field of positive characteristic dividing
the order of G. Let RA be the cohomology ring of A, i.e., RA = Ext•A(k,k). The
following hold:

(a) There exists a bijection

{
thick two-sided ideals of stmod(A)

}

ΦA−→←−
ΘA

{
specialization closed sets of H-Proj(RA)

}
,

where ΘA is the map given by (6.1.1) for the weak support datum WA.
(b) There exists a homeomorphism f : H-Proj(RA)→ Spc(stmod(A)).
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[25] A. Neeman, The chromatic tower for D(R). With an appendix by Marcel Bökstedt, Topology 31 (1992),

no. 3, 519–532.



1724 D. K. NAKANO, K. B. VASHAW, AND M. T. YAKIMOV

[26] , The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao
and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. (4) 25
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