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ABSTRACT

Critical infrastructure systems, such as gas pipeline networks, are essential to the modern
community’s survival. In severe seismic hazard zones, earthquakes can cause catastrophic
damages to gas pipeline networks. The damages disrupt the gas supply, resulting in various direct
and indirect losses to the utilities that serve the community. Resource constrained proactive
rehabilitation of these pipelines under seismic uncertainty presents a challenge for gas utilities.
Existing seismic susceptibility assessment models of gas pipeline networks have evaluated
connectivity loss (CL). However, there is limited research that determines the optimum
rehabilitation policy that minimizes connectivity loss within resource constraints. This study aims
to identify critical pipes of a gas pipeline network for rehabilitation minimizing the network’s
connectivity loss when only a limited length of pipes can be rehabilitated. With this aim in mind,
four specific tasks are completed: (1) characterization of spatial seismic hazards in terms of peak
ground velocity, (2) determination of pipe repair rate using the empirical fragility curves, (3)
evaluation of gas pipeline network’s connectivity loss, and (4) minimization of the expected value
of connectivity loss using a genetic algorithm (GA). A simulation-based approach is used to
evaluate the seismic hazard, network-level seismic susceptibility assessment, and evaluation of the
gas pipeline network’s connectivity loss while accounting for relevant uncertainties. Monte Carlo
simulations were carried out to emulate the stochastic nature of the damages to the gas pipeline
network. The methodology’s application has been illustrated on a reference network to identify
the critical pipelines of that gas pipeline network. The outcomes were compared with the
rehabilitation policies determined from a length-based rehabilitation approach. The comparison
demonstrated significant improvement in connectivity loss while using GA-based rehabilitation
approach. The proposed approach is expected to assist the gas utilities in making rehabilitation
decisions to reduce connectivity loss of the gas pipeline networks.

INTRODUCTION

Utility networks such as gas pipeline networks that are crucial for communities are known
as lifelines. Although earthquakes are infrequent, their impact on the performance of a gas pipeline
network can be substantial (FEMA 1992; O'Rourke and Palmer 1996; Cavalieri et al., 2014). Past
earthquakes (e.g., the San Fernando and Kanto earthquakes) revealed the vulnerability of gas
pipeline networks (Esposito et al. 2015). The primary purpose of a gas pipeline network is to
supply gas to the end users via buried pipelines, reduction stations, and demand nodes. When a
thermoelectric power station's connection is compromised, it can impair daily life by preventing
energy flow to households. In addition, the damage has the potential to start cascading disasters



like fires and explosions. Therefore, it is essential to accurately estimate the seismic susceptibility
of gas pipeline networks.

The behavior of a gas network can be idealized by a topological connectivity-based
analysis or a flow-based analysis. Topological connectivity-based analysis approaches are limited
to graph theory. Both simulation-based (Cimellaro et al. 2013; Esposito et al. 2015) and non-
simulation-based analysis (Chang and Song 2007; Kim and Kang 2013; Lim et al. 2015) can be
used for seismic susceptibility assessment of gas pipeline networks. Several simulation-based
works in the literature analyze gas pipeline networks from a topological point of view, whether
they are independent or interdependent with other crucial infrastructures (Poljansek et al. 2012;
Liu et al. 2018).

For a gas pipeline network, one possible system-level performance index from a
topological point of view is the connectivity loss (CL). Existing seismic susceptibility assessment
models of gas pipeline networks have evaluated CL employing a topological connectivity-based
analysis and using a simulation-based approach (Poljansek et al. 2012; Esposito et al. 2015;
Cavalieri 2020). However, limited research determines the optimum rehabilitation policy that
minimizes connectivity loss within resource constraints. This paper aims to identify the optimum
set of critical pipes of a gas pipeline network for rehabilitation minimizing the network’s
connectivity loss under resource constraints.

METHODOLOGY

The optimization problem is formulated. Then it is solved using a genetic algorithm (GA).
The proposed GA-based rehabilitation approach integrates four different models illustrated in
Figure 1.
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Figure 1. Integrated models of the proposed GA-based rehabilitation approach

Gas distribution network data, and seismic intensity data are required to integrate the
various models. The seismic vulnerability model includes seismic repair rate calculation, a damage
model for connectivity analysis, Monte Carlo simulation for evaluating objective function, and a
genetic algorithm (GA) for identifying an optimal solution.
Model Formulation

The objective function is the minimization of the expected value of connectivity loss
(E[CL]) of a gas pipeline network when a limited length of the pipeline is allowed for

rehabilitation. The optimization problem is formulated as Equation 1.
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Subject to,
L < x% of L

where N is the policy set to choose from, n denotes a policy including a set of pipes selected
for rehabilitation, L denotes the total length of the gas pipeline network, and x% denotes a
percentage of the overall pipeline length that can be rehabilitated. We looked at 10%, 20%, and
30% of the total pipeline length that was allowed for rehabilitation in order to illustrate the
proposed approach.

Expected Connectivity Loss (E[CL])

Connectivity loss quantifies the average decline in sink nodes capacity to receive flow from
source nodes because of a hazard (Poljansek et al. 2012). In other words, it measures the decline
in the number of source nodes connected to a sink. The network's topology and, to some extent,
potential ideal flow patterns are taken into consideration while calculating this parameter. Each
sink is assumed to be linked to every source in the initial state. The number of sources linked to
the k™ sink in both the original network, N¥source,originat, and the damaged network, N¥source damaged,

must be first counted. Finally, using Equation 2, CL is determined.

k
source,damaged
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where () means taking an average across all sink vertices. Equation 3 gives a general
formula for determining the expected connectivity loss (E[CL]).
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where MCS is the predetermined number of Monte Carlo simulations for a particular gas
pipeline network, and V is the number of peak ground velocity (PGV) fields generated for a
scenario earthquake.

Seismic Vulnerability Model for Evaluation of Seismic Repair Rate

A seismic deaggregation analysis is used to select a scenario earthquake (Adachi and
Ellingwood 2008; Pudasaini and Shahandashti 2020a). A PGV field was generated for the selected
earthquake scenario (Abrahamson and Silva 2007; Sharveen et al. 2022). The formula for
determining PGV is demonstrated in Equation 4.

10g10 (PGVuV) =f (Mu, Ruy, eu) + OBvu+ Oweuy (4)

where PGVuy is the peak ground velocity for site v from source u at Ruy distance; My
represents the earthquake magnitude; 6u denotes the geological parameter that identifies the source
of the scenario earthquake; the interevent and intra-event residuals are denoted by Gsvu and Oweuv
respectively. Then, for the particular earthquake scenario, the seismic repair rate is calculated. The
seismic repair rate is the number of repairs required for every 1,000 meters of pipe (Pudasaini and
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Shahandashti 2021; Roy et al. 2022). Equation 5 illustrates the general formula for calculating
seismic repair rate, which was established using post-disaster information from previous
earthquakes in the United States and Mexico (O’Rourke and Ayala, 1993).

PGV 2.25
RRm: ( m,V)
10,000

6))
where RRm denotes the repair rate for one thousand meters of pipe m. PGV, v is the peak
ground velocity in cm/sec for the m™ pipe, and V" PGV field.

Damage Model for Connectivity Analysis

The ability to estimate the mean break occurrence rate makes the repair rate (RR) effective
for describing the likelihood of pipeline ruptures. A wide variety of damage mechanisms, such as
breaks or leaks, are included in repair rates. Typically, 15-20% of such mechanisms are breaks,
with the remaining 85-80% being leaks (Hwang et al. 1998).

The probability that the number of pipe breaks equals b within a specified pipeline segment
length L is estimated using a spatial Poisson process (Duefias-Osorio, 2007). Equation 6 illustrates
the general formula for estimating the probability of b number of breaks in a pipeline.

RRy, *L)°  _RpR. .
P (Break =b) = {(RRm -L) n;,* ) e~ RRm*L ©)
It is assumed that a pipeline segment's operation will be compromised by the occurrence

of at least one break. As a result, the probability of a pipeline break reduces to as Equation 7.

P(Break>0) = 1- P (Break = 0) = 1- e~ RRp*L (7)

Then, for each pipeline, a random number between 0 and 1 is generated. A pipeline is
damaged if the value from Equation 7 is larger than the randomly generated number. Each
damaged pipeline is eliminated from the gas pipeline network. Then network analysis is performed
to determine which nodes remain connected in the damaged network. Finally, the connectivity
loss of the gas pipeline network is evaluated using Equation 2.

Genetic Algorithm for Identifying Optimal Solution

The workflow of GA based rehabilitation approach for identifying optimal seismic
rehabilitation policies for gas pipeline networks is illustrated in Figure 2, and each operator of the
algorithm is described below (Pudasaini et al. 2017; Pudasaini and Shahandashti 2018).

Initialization operator: Npop random policies within the rehabilitation length constraint are selected
as the current generation. Npop is the number of populations in the current generation.

Evaluation operator: The values of the objective functions are evaluated for the selected
rehabilitation policies.

Selection operator: Ranking is done based on E[CL] value. The policy with the lowest E[CL] value
will have the highest ranking. Then the two policies with the lowest E[CL] value is selected as the
parent rehabilitation policies.



Crossover operator: A two-point crossover is applied to generate one new offspring rehabilitation
policy for the selected parent rehabilitation policies. Each parent pair produces an offspring
rehabilitation policy.

Mutation operator: The genetic algorithm's initial mutation rate is 100%. In every generation, the
rate of mutation is reduced by 2%. Every offspring rehabilitation policy’s 20% of the binary strings
are randomly mutated. Repeated crossover and mutation operations were performed until the
rehabilitation length constraint was met.

Termination operator: When the algorithm's maximum generation is reached, it is terminated.
Otherwise, the current generation is updated each time. From the last generation the solution with

the lowest E[CL] is the optimum rehabilitation policy.
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Figure 2. The workflow of GA-based rehabilitation approach for identifying the optimal
seismic rehabilitation policies for gas pipeline networks

APPLICATION AND RESULTS

For testing and comparing the proposed modeling approach, the GasLib, which contains
publicly available gas transport network instances is used (Schmidt et al. 2017). The GasLib-134
network was subjected to the proposed methodology for seismic susceptibility assessment of the
network. The network comprises of 86 pipes, 45 short pipes, 3 entry, 45 exits, and 86 inner nodes.
The gas pipeline network has a total length of 1412 km, and its pipeline diameter ranges from 254
to 914.4 mm to include transmission and distribution links. The network was centered in Pasadena,
California. Figure 3 depicts the GasLib-134 network. After deaggregation analysis, a 7.12
magnitude earthquake originating at the Raymond fault was chosen as the scenario earthquake
(Pudasaini et al. 2017; Roy et al. 2021).



Figure 3. GasLib-134 network

A convergence analysis on the GasLib-134 network was done to find an appropriate
number of Monte Carlo simulations (Shahandashti and Pudasaini 2019; Pudasaini and
Shahandashti 2020b). The scenario earthquake was applied to the selected network without any
rehabilitation. According to the convergence analysis, 400 Monte Carlo runs were sufficient
(Figure 4). The expected connectivity loss of the GasLib-134 network without any rehabilitation
was estimated at 0.6990, applying 400 Monte Carlo simulations.
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Figure 4. Convergence analysis to find an appropriate number of Monte Carlo simulations
for the Gas-Lib 134 network

Table 1 displays the parameters of the genetic algorithm for determining the seismic
susceptibility of the gas pipeline network. At first, fifty random rehabilitation policies within the
length constraint are selected as the current generation. In the first generation, the mutation rate is
set to 100%. Fifty rehabilitation policies from the first generation were evaluated and ranked
according to their E[CL] values. The two policies with the lowest E[CL] values in the first
generation were chosen to produce an offspring rehabilitation policy. The two-point crossover was
selected as the crossover method to create an offspring rehabilitation policy. Repeated crossover
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and mutation operations were performed on the offspring rehabilitation policy until the length
constraint was met. In the first generation, the rehabilitation policy having the highest E[CL] value
was then substituted by the offspring rehabilitation policy. This substitution resulted in a new
current generation. The mutation rate was reduced by 2% for the following generation. For each
new generation, the genetic operations were repeated for 30 generations. The policy with the
lowest E[CL] value in the final generation represents the optimum rehabilitation policy.

Table 1. Genetic algorithm parameters

Single objective GA Parameters Values
Maximum Generation 30
Number of policies in each Generation 50
Maximum Monte Carlo Simulations 400
Type of Crossover Two- point crossover
Initial Mutation Rate 100%
Mutation Rate Reduction 2% every generation
Number of Strings Mutated 20% of the binary strings

The outcomes of the suggested GA-based rehabilitation approach for various rehabilitation
length constraints for the GasLib-134 network are listed in Table 2. The identified critical pipelines
from the proposed GA-based rehabilitation approach are highlighted in bright red in Figure 5.

Table 2. The outcomes of the proposed GA-based rehabilitation approach for various
rehabilitation length constraints for the GasLib-134 network

Policy Rehabilitation length ~ Rehabilitation length Total pipeline E[CL] Variance

ID constraints (%) constraints (km) rehabilitated (km) of E[CL]
Gio 10 144.7022 126.6884 0.6011 0.049941
G20 20 289.4045 286.8107 0.5430 0.062821
G3o 30 434.1067 430.6717 0.4817 0.073650

Gyo Gy T TN Gsp
N
e ﬂ

Figure 5. Critical pipelines identified by proposed GA-based rehabilitation approach for
GasLib-134 network

The proposed approach was compared with the outcomes of a simple length-based
rehabilitation approach. In this approach, rehabilitating longer pipelines such that the total pipeline
rehabilitated stays within the constraint set by the available resources. The longest unrehabilitated
pipe was rehabilitated first. This process is repeated until the total pipe length for rehabilitation is
less than the rehabilitation length constraint. Table 3 summarizes the outcomes of length-based



rehabilitation approach for GasLib-134 network. Figure 6 highlights the critical pipes in bright red
that were identified by the length-based rehabilitation approach for GasLib-134 network.

Table 3. The outcomes of a length-based rehabilitation approach for various rehabilitation
length constrain for GasLib-134 network

Policy Rehabilitation length = Rehabilitation length ~ Total pipeline E[CL] Variance

ID constraints (%) constraints (km) rehabilitated (km) of E[CL]
Lio 10 144.7022 116.3667 0.6794 0.041833
Lo2o 20 289.4045 261.6027 0.6548 0.054019
Lso 30 434.1067 433.0187 0.6341 0.036696
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Figure 6. Critical pipelines identified by a length-based rehabilitation approach for
GasLib-134 network

Figures 5 and 6 show that some of the identified critical pipes are different in the GA-based
rehabilitation approach from the length-based rehabilitation approach. Figure 7 compares the
E[CL] values obtained from the two approaches - GA-based rehabilitation and length-based. When
compared to the solution set produced by the length-based rehabilitation approach, the solution
from the GA-based rehabilitation approach generated 7-15% lower E[CL] values for the specified
network and the scenario earthquake.
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Figure 7. Comparison of the E[CL] values of the rehabilitation policies found using the
GA-based rehabilitation approach and the length-based rehabilitation approach for the
GasLib-134 network
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CONCLUSION

Various methodologies for seismic susceptibility assessment of gas pipeline networks have
been proposed, but there is limited research identifying the critical pipelines for seismic
rehabilitation of gas pipeline networks. This was addressed by creating a GA-based rehabilitation
approach and integrating it with a network-level seismic susceptibility assessment model. The
proposed approach reduced the expected connectivity loss in a gas pipeline network by considering
resource constraints. The outcomes of GA-based rehabilitation approach were then contrasted with
the outcomes recommended by a simple length-based rehabilitation approach. The comparison
revealed that, compared to the latter, the suggested methodology identified rehabilitation policies
that yield much reduced expected connectivity loss. When adopting a GA-based rehabilitation
approach, the comparison showed a 7-15% improvement in connectivity loss. It is anticipated that
the suggested approach will help the gas utilities in their decision-making regarding rehabilitation
to reduce the expected connectivity loss of the gas pipeline network.
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