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Abstract

Generating texts with a large language model (LLM) consumes massive amounts
of memory. Apart from the already-large model parameters, the key/value (KV)
cache that holds information about previous tokens in a sequence can grow to
be even larger than the model itself. This problem is exacerbated in one of the
current LLM serving frameworks which reserves the maximum sequence length of
memory for the KV cache to guarantee generating a complete sequence as they do
not know the output sequence length. This restricts us to use a smaller batch size
leading to lower GPU utilization and above all, lower throughput. We argue that
designing a system with a priori knowledge of the output sequence can mitigate
this problem. To this end, we propose S°, which predicts the output sequence
length, schedules generation queries based on the prediction to increase device
resource utilization and throughput, and handle mispredictions. Our proposed
method achieves 6.49 x throughput over those systems that assume the worst case
for the output sequence length.

1 Introduction

Text generation has become increasingly popular in various services, leading to a surge in the use of
large language models (LLMs) known for their high accuracy. LLMs have distinct features that dif-
ferentiate them from non-Transformer-based models, including a requirement for massive amounts
of compute and memory resources. Specifically, we observe that Transformer-based LLMs are often
limited by memory capacity and bandwidth, resulting in significant underutilization of compute re-
sources. When serving GPT-J on an NVIDIA A100 GPU, the utilization of GPU compute resources
can be as low as 0.4%. This highlights the memory-bound nature of the LLMs and the need for
efficient memory utilization to increase the utilization of GPU compute resources.

A common approach to boost GPU utilization and enhance throughput is to increase batch size. This
is due to the fact that inputs within a batch share the same model weights, thus the GPU only needs
to load the model weight from its high bandwidth memory (HBM) to the on-chip SRAM once and
reuse it for all inputs within the batch. The GPU uses more of its compute resources when processing
the same model weights. Increasing batch size is a simple optimization technique and is, therefore,
commonly used in serving convolutional and fully-connected neural network models [1,2].

However, the self-attention layer in Transformer-based text generation LLMs presents a challenge
to this simple optimization due to its autoregressive nature. Specifically, when generating a new
token in a sequence, the model needs to attend to all previous tokens in the sequence, requiring the
model to retain all information from previous tokens and store them in HBM. We call this region
in the HBM holding the information key/value cache (KV cache). The size of the KV cache grows
with larger batch sizes and longer sequences, which limits the maximum batch size, thereby low-
ering GPU utilization and ultimately reducing throughput. To support the growing KV cache size,
Huggingface’s Transformers library [3] constantly allocates new memory at each token generation
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Figure 1: Latency versus throughput trade-off among different models (left, online scenario with
single GPU running models within the size confines of the GPU) and the number of GPUs (right,
offline scenario distributing GPT-3 175B to 6, 8, and 10 GPUs) when generating 60 tokens, inspired
by FlexGen [6]. The markers in the lines represent batch sizes, from 1 to the maximum batch size
that can be loaded on an A100 GPU, incrementing by the power of two. Allocating the exact amount
of memory for each sequence expands the curve to higher throughput at the cost of higher latency.
The solid lines show the trade-off in vanilla systems and dotted lines show how much S* can expand
the trade-off. The numbers represent the maximum batch sizes for S* and vanilla systems. The
vertical line in the left figure denotes the latency SLO for reading a 60-token-long sequence.

and incurs latency overhead associated with memory allocation. This improves usability since users
do not have to know the output sequence length but suffers long inference latency. Alternatively,
NVIDIA’s FasterTransformer library [4] pre-allocates memory for the maximum sequence length,
which ends up wasting memory by allocating more than is necessary. This approach limits batch
size and prioritizes latency over throughput. The trend towards long maximum sequence lengths
in recent models (e.g., 8K or 32K) [5] amplifies the KV cache overhead, demanding more efficient
memory utilization in serving Transformer-based text generation models.

In light of these challenges, we propose S*, scheduling sequences with speculation, a framework that
maximizes throughput via predicting the output sequence length and reducing memory waste. The
frequent memory allocations in Huggingface’s Transformers and the limited batch size in Faster-
Transformer stem from the fact that we lack prior knowledge of the output sequence length. S3
addresses these issues by predicting the expected output sequence length and allocating the corre-
sponding amount of memory for each query. It also schedules sequences to increase the GPU utiliza-
tion. Finally, S* runs a supervisor in the background that detects mispredictions and adjusts the size
of allocated memory to be more accurate. By integrating these components together, S* optimizes
memory usage and scheduling to maximize throughput during deployment of Transformer-based
LLMs for text generation on GPUs.

There are two types of LLM deployment scenarios: online and offline. Online scenarios such as
chatbots [7, 8] require service providers to generate a sequence within a tight latency service level
objective (SLO) constraint. Offline scenarios include applications such as scoring [9] or data wran-
gling [10], and have loose latency SLOs, emphasizing throughput over end-to-end latency. In con-
trast, FaterTransformers [4] and xFormers [11] prioritize reducing latency. We argue that ensuring
the latency remains below the SLO constraint renders it unnecessary to prioritize further latency re-
duction. To this end, we design S? to achieve higher throughput under those latency SLOs. Figure 1
highlights how much S3 can improve throughput when trading off latency. For online scenarios, we
assume a latency SLO set to the average reading speed of English readers, 4 words per second [12]
and 0.1875 second per token [13]. The models on the left figure that are smaller than 100 billion pa-
rameters satisfy this SLO for all possible batch sizes. This SLO offers service providers to improve
throughput over all models. In fact, for LLAMA-33B [14], there are opportunities to get throughput
benefits with no latency penalties. The right figure, sweeping over different number of GPUs, shows
opportunities to maximize throughput in offline scenarios that have loose latency SLO.

We evaluate S, assessing both its throughput and cost-efficiency. Our analysis includes both offline
and online scenarios. In online scenarios under the average reading speed latency SLO constraint,



we find that S* can generate up to 6.49x more sequences while adhering to the same SLO constraint.
In offline scenarios, we observe that S* achieves a speedup up to 6.49x for different models. S* does
not affect the models’ perplexity as it does not change the models’ architectures. Furthermore, we
evaluate the cost-efficiency of S and find that using 6 GPUs, S? provides almost identical throughput
compared to a vanilla system with 10 GPUs.

To summarize, we make the following contributions:

* We increase the achievable batch size under longer latency SLO and allow service providers
to serve with higher throughput in both online and offline scenarios by using larger batch
sizes.

* We fine-tune a Distillbert model to predict output sequence lengths given an input prompt.

» We provide a mechanism to recover from mispredictions. S* preempts sequences that ex-
ceed their allocated memory and retrain the predictor to learn from its mistakes.

2 Background and Motivation

2.1 Generative AI Models

A Transformer-based generative model is autoregressive. It predicts the most probable token based
on past tokens. Since the model generates one token at a time, it has to iterate over itself n times to
generate a sequence that is n-tokens long. One iteration involves an input token traversing through
the model which is a stack of transformer layers containing one attention, two layer norm, and
two feed-forward layers. Especially, the self-attention layer uses information on the past tokens to
generate the next token.

For example, the model at the i*” iteration attends the current token (t;) with every token it already
generated (%o, ...t;—1) in the self-attention layer. We can express the self-attention layer as:

g KT

Vn

where dj, is hidden dimension of the model, hoy:, ¢; € R are output hidden vector, current query
vector, respectively, and K,V € R**% are key and value matrices. The j;;, rows in the K and V
matrices represent key and value vectors of ¢;, respectively. The two dot products attend ; to all the
key and value vectors in the current sequence.

hout = softmaz( )V

The model stores K and V' matrices as the key/value (KV) cache to avoid having to generate key and
value vectors at each iteration. Otherwise, it has to store hidden states of every previous token and
multiply it with a weight matrix Wy € R%*2r at every transformer layer. This would require
2(i — 1)dy, FLOPs per layer almost identical to 2id;, FLOPs for the self-attention layer at ¢;. The
size of the KV cache is 4ld;, bytes per token when using half-precision numbers. The cache uses 2
bytes for every number for both the key and value cache where [ is the number of transformer layers
in a model. For example, GPT-NEOX [15], a 20 billion parameter model, has 44 layers and 6144
hidden dimensions and thus uses IMB per KV cache per token.

2.2 KV Cache Management on GPUs

The KV cache is relatively small (e.g., several MBs) and can be easily stored in the GPU HBM
(high-bandwidth memory) when the sequence is short as the cache stores information about the
previous tokens in the sequence. It grows as the model generates more tokens. Using this dynamic
nature, Huggingface’s Transformers [3] (HF-Transformers) constantly allocates more memory to
the KV cache and stalls the computation until it is complete. This approach allows the library to
allocate the exact amount of memory for each cache at the cost of frequent memory accesses.

To mitigate this, NVIDIA’s FasterTransformer library reserves the maximum sequence length of
memory for every sequence [4, 16]. It removes redundant memory accesses by simply filling in the
reserved memory in an append-only fashion. However, this approach comes with its own drawback
as it reserves more than strictly-necessary memory for sequences. For GPT-NEOX with a maximum
sequence length of 2048 tokens, FasterTransformer reserves 2048 tokens even for sequences that
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Figure 2: (a) GPT-J’s and (b)GPT-NEOX’s NVIDIA A100 compute utilization.

end up being 50 tokens long. The maximum batch size that FasterTransformer can use for this
model with a 80GB A100 GPU is less than 20 with the 40GB model size and 2.2GB per sequence.
The small batch size underutilizes the massive compute resources in the GPU. The rationale for
reserving the maximum sequence length amount of memory even with the underutilization problem
is to ensure that it generates full sequences and enhances user experience.

2.3 Observation

Language models are memory bound We demonstrate the extent of GPU resource underutiliza-
tion when we run GPT-J with 6B parameters on an A100 GPU. The relatively smaller model shows
a wider spectrum of different batch sizes and sequence lengths since we can fit larger batches with
longer sequences in the GPU. Fig. 2 (a) shows the GPU utilization swept over different batch sizes
and sequence lengths. As the figure denotes, increasing the batch size achieves a higher utilization
but eventually faces a memory cliff, where an out-of-memory (OOM) error kills the process. Take
the batches with 1024 sequence length for example. 32 sequences are the maximum batch size and
thus 12.56% is the maximum utilization that we can achieve with this sequence length. Fig. 2 (b)
shows similar underutilization in the larger GPT-NEOX model due to the memory cliff problem.
This model faces the memory cliff with smaller batch sizes and shorter sequences since the model
consumes more of the GPU memory. Please note that HF-Transformers still needs to know the
output sequence length before batching inputs to avoid the memory cliff.

As the figures illustrate, increasing the batch size can enhance throughput in neural networks. This
approach does not require intricate optimizations and enables the GPU to load the model weight
from its HBM to the on-chip SRAM only once and share it among a larger number of inputs. By
doing so, the GPU can activate its idle compute resources and concurrently handle multiple inputs.
Nevertheless, the memory cliff poses a challenge, limiting the utilization of additional resources.
However, as we elaborate, this issue can be resolved.

Reasons behind the inefficiencies Both the frequent memory allocations in HF-Transformers and
the limited batch size in FasterTransformer come from the fact that we are not aware of the gener-
ated sequence length. If we know the precise length of the generated sequence, we can allocate
exact memory to each sequence and resolve the repetitive memory reservation and the unnecessary
memory allocation problems in HF-Transformers and FasterTransformer, respectively.

3 S3Design

S3 is a system-algorithm co-design framework that maximizes GPU utilization with sequence length
prediction to achieve higher throughput. S* has three components as shown in Fig. 3: 1) predictor,
2) scheduler, and 3) supervisor. A text generation query arrives in a request pool in the host DRAM.
The predictor then predicts its output sequence length which the scheduler uses to batch requests.
The scheduler dispatches the batch to the GPU and the text generator model generates texts in the
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Figure 3: Overview of S3. The boxes in yellow denote new components proposed by S

batch. The supervisor oversees the GPU utilization and handles mispredictions. We describe each
component in detail and how they interact with each other in this section.

Output sequence length predictor We use a predictor to predict the output sequence length and
resolve the frequent and redundant memory allocation problems. Specifically, we fine-tune a Distil-
bert [17] model that was trained for sequence classification to classify which length bucket the output
sequence length falls into. We bucketize the sequence lengthes since it is known that machine learn-
ing models are not as capable of the “last mile” search compared to narrowing the candidates down

to the last mile. Each bucket is allocated the range of ”ﬂznflfeqruz;cfufk’gih and we use 10 buckets.

To this end, we fine-tune the model on the Alpaca dataset [18], one of the representative question-
and-answering datasets, and use the questions as inputs and the lengthes of the answers as labels. We
observe that this predictor predicts the correct bucket with 98.61% accuracy. The average distance
between the wrong predictions and the correct bucket is 1.03 meaning that the error converges to 0
when we double the bucket size. We also evaluate the predictor on a model fine-tuned with Google
Natural-Question dataset [19] and observe an accuracy of 77.13%. It makes smaller mistakes more
often than larger ones. For completeness, we fine-tune a model on the Pile dataset [20], a non-
question-and-answering dataset, and see 65.6% accuracy. The predictor shows surprisingly high
accuracy compared to randomly guessing the bins as the latter is correct only 10% of the time.

We choose Distilbert, a 66 million parameter model for its small size and fast inference. The model
size is negligible since it is smaller than even a single transformer layer in the billion-scale models
(e.g., 214 million for 6 billion GPT-J [21] model). The latency is also negligible since the predictor
model runs only once when a request arrives at the server while the text generation model runs n
times to generate an n-token long output sequence. We measure that Distilbert takes 3.7ms to run
compared to several seconds for the text generation models on an NVIDIA A100 GPU.

Length-aware sequence scheduler The scheduler batches and schedules sequences based on the
predicted results to maximize the GPU utilization without exceeding the GPU HBM capacity. We
can formulate this problem as a variant of the bin packing problem with a single bin. The capacity
bin is the HBM size and the item weight is the size of the KV cache for each sequence.

We use the decreasing first fit algorithm [22] as the solution to the bin packing problem for its
simplicity. The scheduler queues the lengthiest sequences first, reserving room for shorter sequences
within the GPU’s available HBM. It orders sequences in the request pool by length in decreasing
order and iterates through the pool to check if the KV cache of the current sequence does not exceed
the available HBM. If so, it includes the sequence in the current batch and reduces the available HBM
by the size of the KV cache. The scheduler continues this process until either there is no available
HBM or it has iterated through the entire request pool. This approach has been consciously adopted
due to its minimal associated overhead, while still maintaining an approximately-optimal resolution
for the problem at hand.

The resulting batch is irregularly shaped where some sequences are longer than others. Unfortu-
nately, current frameworks either do not support irregularly shaped batch [3,4] or support it with
limited performance [23]. Those that do not support this functionality pad the short sequences with
padding tokens to match the length of sequences in the same batch. The padding tokens waste both
computation and memory since they do not hold any useful information. ORCA [16] introduces
an interesting solution to this problem termed selective batching. The authors of the work identify



Table 1: Model architecture used in the evaluations

Model Num Params Num layers Model dim  Num heads
GPT-J [21] 6B 28 5120 16
LLAMA 13B [14] 13B 40 4096 40
GPT-NEOX [15] 20B 44 6144 64
LLAMA 33B [14] 30B 60 6656 52
GPT3 175B [26] 175B 96 12288 96

that inputs to certain layers (e.g., feed-forward) share identical weights, in contrast to inputs to other
layers (i.e., self-attention) which do not share weights. Consequently, this enables a streamlined
batch processing flow, wherein layers with shared weights are batch-processed and the batch is mo-
mentarily unpacked to process each input serially through the attention layers. ORCA shows that
this has a negligible impact on the latency since the inputs to the self-attention layers do not share
weights and do not benefit from batching. As such, we follow ORCA and use its selective batching
technique.

Also borrowing from ORCA the iteration-level scheduling technique, S® does not wait until all
sequences in the current batch finish generation. Instead, it checks if any sequence in the batch has
finished generation at every iteration. This grants S higher scheduling flexibility and removes any
redundant waiting time. Finally, if a model cannot fit in one GPU, S* uses pipeline parallelism and
shard the models in Transformer layer granularity.

Supervisor The supervisor is in charge of supervising the GPU utilization and handling mispre-
dictions. The supervisor runs in the background to check for the available space in the HBM and
passes the information to the scheduler. The scheduler then appends a sequence to the running batch
if the available memory is large enough for the sequence.

The supervisor is also responsible for handling mispredictions. In the case of short predictions,
the supervisor preempts those sequences that exceed their reserved memory. It monitors the length
of the current output sequences and evicts them if they are not finished but used up its reserved
memory. It asynchronously moves the current state of those sequences including the KV cache and
the generated tokens to the request pool and frees up the GPU memory. Now the K and V matrices
are fragmented with blank rows where the evicted KV cache was originally stored in. The supervisor
shifts the rows below the blank one so that all rows are stored contiguously. This memory format is
required by current libaries [24,25] and also resolves the fragmentation issue. Finally, the supervisor
doubles the assigned memory for the evicted sequences to fix the short misprediction.

Finally, the supervisor constantly trains the predictor in the background. It uses the sequences that
the predictor mistook to train the predictor so that it can learn from its mistakes. This training time
is relatively short and our measurement shows that each training iteration takes 11ms on average
while sequence generation takes several seconds or more. This implies that the retraining overhead
is less than 10% even if we train the predictor for 10 epochs.

Putting it all together We summarize this section with an explanation of how S* uses each com-
ponent to serve a sequence-generation request. First, text-generation requests arrive at the request
pool. The predictor predicts the output sequence length of the sequences in the pool. The supervisor
runs in the background and checks the current HBM usage. Next, the scheduler uses both the pre-
dictions and the available HBM to batch requests for maximum GPU utilization. It finishes its job
by scheduling that batch to the GPU which generates the scheduled sequences.

4 Evaluation

We show that S achieves higher throughput by predicting the output sequence length. It does so
by using larger batch sizes hence smaller numbers of iterations. One iteration refers to processing a
Transformer model once to generate a token. We also show that S* can reduce the cost of serving
models by using fewer GPUs.
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Figure 4: Latency and throughput of different models and datasets.

Table 2: Maximum throughput of the three systems measured in tokens/s
Baseline S3 Oracle

GPT-] 2061.16 | 2349.67 | 2569.09
LLAMA-13B | 1018.15 | 1641.55 | 1907.09
GPT-NEOX 490.15 | 1344.94 | 1530.05
LLAMA-30B 91.46 593.73 | 834.30

Environment We run our evaluation on an NVIDIA 80GB A100 GPU connected to the host
DRAM via PCle 4.0x8 in a Lenovo ThinkSystem SD650-N V2 Server [27].

Baselines We compare with ORCA [16], a Transformer serving system that increases throughput
by iteration level scheduling and selective batching. ORCA has to allocate the maximum sequence
length of memory when it is not aware of the output sequence length to guarantee full sequence
generation. S* predicts the output sequence length and allocates memory based on the prediction.
We implement the systems on top of FasterTransformer [4] since this library is faster than HF-
Transformers [3] due to more optimizations. We also compare S® with an ideal system with a
perfect predictor which we term Oracle.

Models We use models ranging from 6 billion parameters to 175 billion parameters for the evalu-
ation. The specifics of these models are explained in table 1.

4.1 Throughput Analysis

We evaluate S3’s throughput using Alpaca [18], Google Natural Questions (Google-NQ) [19], and
The Pile [20] datasets. Specifically, we query S* with questions and ask it to generate the answers.

Offline scenario: Maximum throughput Fig. 4 (a) - (¢) reports the maximum throughput in
sequences per second for different models and different datasets. We measure the throughput using
the maximum batch size of each configuration. It shows that S* outperforms ORCA by 1.13x and
up to 6.49x and closely matches Oracle, differing from 9.34% and up to 40.52%. The difference is
magnified with larger models because the batch size is limited even for S* since most of the HBM



Table 3: Average batch size and number of iterations for different models

Model ORCA S’ Oracle
Batch size Numiter Batchsize Numiter Batchsize Num iter
GPT-J 69.94 7988 530 1054 564.88 989
LLAMA 13B 31.61 17675 274.66 2034 527.04 1060
GPT-NEOX 16.89 33069 157.59 3545 292.19 1912
LLAMA 33B 4 139790 42.47 13155 77.35 7223
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Figure 5: Maximum throughput of GPT3 run- Figure 6: Latency breakdown of S.

ning on different numbers of GPUs.

is used to hold model weights. The batch size in S gets cut off before saturating the throughput as
shown in Fig. 1. We also report the throughput in tokens/s in table 2 evaluated on the Alpaca dataset.

We can notice that the maximum throughput increases by 6.49x while the batch size increases by
nearly 10x for every model. This comes from the unique behavior of Transformers. Feed-forward
layers in the models benefit from batching layers while self-attention layers do not. This is because
inputs in feed-forwards share the same weight while inputs in self-attentions attend to their own
sequences. S*’s performance benefit is increased when the parallelized portion is larger than the
serialized portion. However, increasing the batch size entails adding more serialized inputs thereby
growing the serialized portion. GPT-J is a good example of this characteristic which shows a similar
throughput jump of 1.13x from ORCA to S* and 1.09x from S* and Oracle while the batch size
differs by 8.69x and 1.97 x, respectively.

Online scenario: SLO-aware throughput We now consider a scenario with a latency SLO con-
straint. We set the SLO as 0.1875 seconds to generate one token given that average English readers
can read at 4 words per second [12] or 0.25 second per word, and 0.75 words per token [13]. We
next calculate the latency SLO for each sequence by multiplying 0.1875 by its sequence length (e.g.,
11.25s for a sequence with 60 tokens).

Fig. 4d reports the number of sequences that each model generates using ORCA, S3, and Oracle.
Oracle exceeds the SLO for GPT-J, LLAMA 13B, and GPT-NEOX when it chooses the maximum
batch size. So we limit the batch size for these models during this evaluation. S* generates a similar
number of sequences with the ideal case and 1.13 X to 6.49x more sequences compared to ORCA.
The throughput increase is similar to the offline scenario since S* meets the SLO in most cases with
its maximum batch size. However, the difference between S* and Oracle reduces by 10% compared
to the offline scenarios because we limit the batch size hence the throughput of Oracle.

4.2 Cost Analysis

We evaluate S3with different numbers of GPUs. We partition GPT-3 into 6 and 8 GPUs in a pipeline-
parallel manner, allocating 16 and 12 transformer layers per GPU for each configuration, respec-
tively. We also evaluate on 10 GPU setting where we allocate 10 layers to 9 GPUs and 6 to the
remaining GPU. S* pipelines each batch and schedules the a batch whenever the GPU processing
the first partition passes its result to the next batch. This reduces GPU idle time by having every
GPU processing batches concurrently.



Table 4: Average batch size and number of iterations for different system configurations on Alpaca

Num GPUs ORCA s . Oracle
Batch size Numiter Batch size Numiter Batch size Num iter

6 11.95 46734 114.22 4891 209.47 2667

8 28.68 19482 247.85 2254 470.65 1187

10 48.99 11403 399.62 1398 564.88 989

Table 5: Accuracies and runtime of different predictors on different datasets

. Datasets Runtime
Model accuracy (%) Modelsize ;.02 [18] Google [19] The Pile [20]  (ms)
MS-minibert 22M 98.06 77.99 60.1 23
Distilbert-base 66M 98.6 82.68 65.6 4.1
Bert-base 110M 99.54 85.08 68.2 7.6
Bert-large 340M 99.6 89.25 71.9 14.5

Fig. 5 reports the maximum throughput using the different numbers of GPUs. First, we can see that
S* achieves similar throughput using 6 GPUs compared to ORCA with 10 GPUs. ORCA shows
0.92% higher throughput than S? to be specific. More GPUs shard the model into finer pieces and
leave more space for storing the KV cache, allowing us to increase the batch size. Table 4 supports
this claim by reporting larger batch sizes with more GPUs. S? can achieve similar effect with fewer
GPUs by optimizing memory allocation strategy.

Naturally, it leads to a similar question with the one in the throughput evaluation on why S* with
6 GPUs shows similar throughput with ORCA with 10 GPUs even with 2.33x the batch size. The
answer is in the pipelined execution and the sequential nature of self-attention layers in Transformer-

based models as explained in 4.1. The systems complete a batch at every [m} instead

of at every [ layers. For example, S* with 6 GPUs completes a batch at every 16 layers instead of 96
for GPT3. Similarly, ORCA with 10 GPUs completes at every 10 layers and thus processes more
quickly. The increase in the latency negates the throughput benefit from S? such that the two systems
show almost identical throughput even with the 2.33x larger batch size when using S>.

4.3 Overhead: Latency Breakdown

We evaluate runtime latency of each component in S*. We classify the runtime latency into three
categories: generation, penalty, and overhead. Generation is the time S spent on processing the
model to generate tokens. Penalty denotes the time it took for S to preempt the KV cache and
hidden states from the GPU and load it back to the GPU. Overhead includes the time it took for
predictor, scheduler, and supervisor, combined. Fig. 6 show that penalty and overhead combined
are negligible (i.e., 11% on average) compared to the generation. Of course, the penalty would
increase if the predictor is less accurate and triggers more data traffic between the GPU and the
host. In contrast, the overhead will increase if we employ a more accurate but heavier predictor, thus
introducing a new trade-off.

4.4 Predictor Ablation Study

We vary the predictor size from 22M to 340M parameters and report their accuracies on different
datasets in table 5. We can observe a similar trend in all three datasets where a larger predictor
generates more accurate predictions. The accuracies differ among different datasets since the length
distribution differs. Specifically, Alpaca [18] showed the smallest variance among the length distri-
butions in the three datasets compared to The Pile [20] showing the greatest.

5 Related Works

Machine learning serving systems The high interest in machine learning has sparked numer-
ous research in its service platforms [1,4, 6, 16,28-38]. Especially, the surprising performance of
Transformer-based language models has directed many researchers to develop Transformer-specific



serving systems [4, 6, 34,37-39]. Most of the systems focus on reducing the latency without much
concern for throughput with the exceptions of [6,31]. The throughput-oriented systems use memory
hierarchy to store parts of the model in slower memory and to increase the batch size. However, they
all allocate the same memory to every sequence and do not consider preempting a sequence based
on a prediction. S* can improve these systems by reducing the required memory size, removing the
need for larger but slower memories such as SSDs, and reducing the fiscal cost of memory overall.

FastServe [39] tackles the head-of-line blocking problem caused by query-level scheduling while
S* addresses the inefficient memory allocation issue. It proactively manages KV cache similar to
S*’s supervisor by migrating sequences between the host memory and the GPU HBM. However,
FastServe does not have an output sequence length predictor and thus uses a skip-join Multi-Level
Feedback Queue since it is unaware of the job execution time. We expect S* to work with FastServe
so that S*’s predictor delivers more information to FastServe for better scheduling.

Reducing the KV cache overhead The issue of attention layers in Transformers requiring
quadratic computation and memory with respect to the sequence length has been extensively studied.
Various approaches have been proposed to address this problem. Low-rank approximation [40,41]
and exploiting sparsity [42—44] are among the methods that aim to mitigate the issue. Another ap-
proach, known as multi-query attention [37,45], suggests reducing the cache size by utilizing one
attention head per key-value (KV) cache instead of employing multiple attention heads, as illus-
trated in Table 1. Additionally, works focusing on model size reduction through compression [46]
and quantization [6, 47, 48] can also contribute to reducing the size of the KV cache. These ap-
proaches are complementary to our work and can be employed to reduce the penalty caused by
mispredictions, allowing for the use of a less accurate but lighter predictor.

Sequence length prediction While there are limited works that predict output sequence length
based on an input sequence, Yan et al. [49] propose a convolution-based small network with embed-
ding layers to forecast output sequence length in machine translation. In our approach, we employ
a similar strategy but utilize a small Transformer-based predictor to estimate the output sequence
lengths in text generation tasks. This predictor allows us to accurately predict the output sequence
length for text generation workloads.

6 Limitations and Conclusion

Limitations We make the following assumptions in this work. We assume that text generation
request traces mimic the publicly available question-and-answering datasets since there are no
publicly-available traces. Analyzing the actual trace would facilitate deploying S* in commercial
workloads. Similarly, text generation task does not have any standardized latency SLO constraint as
in other machine learning workloads [50] since it is a relatively new service. So we assume average
reading speed of an English reader as our SLO. We will be able to evaluate S? in broader scenarios
if organizations publicly release different SLOs for different text generation applications.

Conclusion In summary, we introduce S, a framework designed to achieve high throughput in
serving Transformer-based generative models. S* leverages a predictor to estimate the output length
of generated sequences and schedules them accordingly to maximize throughput. Additionally, S*
handles potential prediction errors to guarantee reliability. By allocating varying memory sizes to
different inputs, S* acknowledges that not all sequences should be treated equally. This approach
expands the conventional trade-off between latency and throughput frontier, paving the way for new
possibilities in optimizing the latency-throughput trade-off.

7 Acknowledgement

We thank the anonymous reviewers for their thoughtful comments and suggestions. This material is
based upon work supported by the National Science Foundation under Grant No. 1704834 and No.
2118985 and supported in part by the Application Driving Architectures (ADA) Research Center
and the National Science and Technology Council, Taiwan, under Grant No. 112-2222-E-A49-002-
MY2. Chun-Feng Wu acknowledges the support from the Yushan Young Scholar Program by the
Ministry of Education (MOE) in Taiwan.

10



References

[1] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and I. Stoica, “Clipper: A
Low-Latency online prediction serving system,” in /4th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). Boston, MA: USENIX Association,
Mar. 2017, pp. 613-627. [Online]. Available: https://www.usenix.org/conference/nsdil7/
technical-sessions/presentation/crankshaw

[2] R. Chard, Z. Li, K. Chard, L. Ward, Y. Babuji, A. Woodard, S. Tuecke, B. Blaiszik, M. J.
Franklin, and I. Foster, “Dlhub: Model and data serving for science,” in 2019 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), 2019, pp. 283-292.

[3] H. Face, “Transformers,” https://github.com/huggingface/transformers.
[4] NVIDIA, “FasterTransformer,” https://github.com/NVIDIA/FasterTransformer.
[5] OpenAl, “OpenAl research GPT4,” https://openai.com/research/gpt-4.

[6] Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin, D. Y. Fu, Z. Xie, B. Chen, C. Barrett, J. E.
Gonzalez, P. Liang, C. Ré, 1. Stoica, and C. Zhang, “High-throughput Generative Inference of
Large Language Models with a Single GPU,” arXiv e-prints, p. arXiv:2303.06865, Mar. 2023.

[7] Google, “Bard,” https://bard.google.com/.
[8] OpenAl, “ChatGPT,” https://chat.openai.com/.

[9] P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu, M. Yasunaga, Y. Zhang, D. Narayanan,
Y. Wu, A. Kumar, B. Newman, B. Yuan, B. Yan, C. Zhang, C. Cosgrove, C. D. Manning, C. Ré,
D. Acosta-Navas, D. A. Hudson, E. Zelikman, E. Durmus, F. Ladhak, F. Rong, H. Ren, H. Yao,
J. Wang, K. Santhanam, L. Orr, L. Zheng, M. Yuksekgonul, M. Suzgun, N. Kim, N. Guha,
N. Chatterji, O. Khattab, P. Henderson, Q. Huang, R. Chi, S. M. Xie, S. Santurkar, S. Ganguli,
T. Hashimoto, T. Icard, T. Zhang, V. Chaudhary, W. Wang, X. Li, Y. Mai, Y. Zhang, and
Y. Koreeda, “Holistic Evaluation of Language Models,” arXiv e-prints, p. arXiv:2211.09110,
Nov. 2022.

[10] A. Narayan, I. Chami, L. Orr, S. Arora, and C. Ré, “Can Foundation Models Wrangle Your
Data?” arXiv e-prints, p. arXiv:2205.09911, May 2022.

[11] B. Lefaudeux, F. Massa, D. Liskovich, W. Xiong, V. Caggiano, S. Naren, M. Xu, J. Hu, M. Tin-
tore, S. Zhang, P. Labatut, and D. Haziza, “xformers: A modular and hackable transformer
modelling library,” https://github.com/facebookresearch/xformers, 2022.

[12] M. Brysbaert, “How many words do we read per minute? a review and meta-analysis
of reading rate,” Journal of Memory and Language, vol. 109, p. 104047, 2019. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0749596X19300786

[13] OpenAl, “OpenAl API Documentation,” https://help.openai.com/en/articles/
4936856-what-are-tokens-and-how-to-count-them.

[14] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozi¢re,

N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample, “Llama:
Open and efficient foundation language models,” arXiv preprint arXiv:2302.13971, 2023.

[15] S. Black, S. Biderman, E. Hallahan, Q. Anthony, L. Gao, L. Golding, H. He, C. Leahy,
K. McDonell, J. Phang, M. Pieler, U. S. Prashanth, S. Purohit, L. Reynolds, J. Tow, B. Wang,
and S. Weinbach, “GPT-NeoX-20B: An open-source autoregressive language model,” in
Proceedings of BigScience Episode #5 — Workshop on Challenges & Perspectives in Creating
Large Language Models. virtual+Dublin: Association for Computational Linguistics, May
2022, pp. 95-136. [Online]. Available: https://aclanthology.org/2022.bigscience-1.9

[16] G.-I. Yu,J. S. Jeong, G.-W. Kim, S. Kim, and B.-G. Chun, “Orca: A distributed serving system
for Transformer-Based generative models,” in 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22). Carlsbad, CA: USENIX Association, Jul. 2022, pp.
521-538. [Online]. Available: https://www.usenix.org/conference/osdi22/presentation/yu

[17] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter,” arXiv e-prints, p. arXiv:1910.01108, Oct. 2019.

[18] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B.
Hashimoto, “Stanford alpaca: An instruction-following llama model,” https://github.com/
tatsu-lab/stanford_alpaca, 2023.

11



[19] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein,
L. Polosukhin, M. Kelcey, J. Devlin, K. Lee, K. N. Toutanova, L. Jones, M.-W. Chang, A. Dai,
J. Uszkoreit, Q. Le, and S. Petrov, “Natural questions: a benchmark for question answering
research,” 2019.

[20] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite,
N. Nabeshima, S. Presser, and C. Leahy, “The Pile: An 800GB Dataset of Diverse Text for
Language Modeling,” p. arXiv:2101.00027, Dec. 2020.

[21] B. Wang and A. Komatsuzaki, “GPT-J-6B: A 6 Billion Parameter Autoregressive Language
Model,” https://github.com/kingoflolz/mesh- transformer-jax, May 2021.

[22] D. S. Johnson, “Near-optimal bin packing algorithms,” Ph.D. dissertation, Massachusetts In-
stitute of Technology, 1973.

[23] PyTorch, ‘“Pytorch Nested Tensor,” https://pytorch.org/docs/stable/nested.html.

[24] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala, “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems 32. Curran Asso-
ciates, Inc., 2019, pp. 8024-8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[25] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard er al., “Tensorflow: A system for large-scale machine learning,” in 72th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 16), 2016, pp. 265—
283.

[26] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei, “Language Models are Few-Shot Learners,” arXiv e-prints, p. arXiv:2005.14165,
May 2020.

[27] Lenovo, “Lenovo ThinkSystem SD650-N V2 Server,” https://lenovopress.lenovo.com/
Ip1396-thinksystem-sd650-n-v2-server.

[28] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS: Automated model-
less inference serving,” in 2021 USENIX Annual Technical Conference (USENIX ATC
21). USENIX Association, Jul. 2021, pp. 397-411. [Online]. Available: https:
/Iwww.usenix.org/conference/atc21/presentation/romero

[29] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vigfusson, and
J. Mace, “Serving DNNs like clockwork: Performance predictability from the bottom
up,” in I4th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, Nov. 2020, pp. 443-462. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/gujarati

[30] S. Choi, S. Lee, Y. Kim, J. Park, Y. Kwon, and J. Huh, “Serving heterogeneous machine
learning models on Multi-GPU servers with Spatio-Temporal sharing,” in 2022 USENIX
Annual Technical Conference (USENIX ATC 22). Carlsbad, CA: USENIX Association,
Jul. 2022, pp. 199-216. [Online]. Available: https://www.usenix.org/conference/atc22/
presentation/choi-seungbeom

[31] R. Yazdani Aminabadi, S. Rajbhandari, M. Zhang, A. A. Awan, C. Li, D. Li, E. Zheng,
J. Rasley, S. Smith, O. Ruwase, and Y. He, “DeepSpeed Inference: Enabling Efficient In-
ference of Transformer Models at Unprecedented Scale,” arXiv e-prints, p. arXiv:2207.00032,
Jun. 2022.

[32] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-H. S. Lee, D. Brooks, and C.-
J. Wu, “DeepRecSys: A System for Optimizing End-To-End At-scale Neural Recommendation
Inference,” arXiv e-prints, p. arXiv:2001.02772, Jan. 2020.

[33] S. Hsia, U. Gupta, B. Acun, N. Ardalani, P. Zhong, G.-Y. Wei, D. Brooks, and C.-J.
Wu, “Mp-rec: Hardware-software co-design to enable multi-path recommendation,” in

12



Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, ser. ASPLOS 2023. New York,
NY, USA: Association for Computing Machinery, 2023, p. 449—465. [Online]. Available:
https://doi.org/10.1145/3582016.3582068

[34] J. Fang, Y. Yu, C. Zhao, and J. Zhou, “TurboTransformers: An Efficient GPU Serving System
For Transformer Models,” arXiv e-prints, p. arXiv:2010.05680, Oct. 2020.

[35] C.-E. Wu, C.-J. Wu, G.-Y. Wei, and D. Brooks, “A joint management middleware to improve
training performance of deep recommendation systems with ssds,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference (DAC 22), 2022, pp. 157-162.

[36] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Rajashekhar, S. Ramesh, and
J. Soyke, “TensorFlow-Serving: Flexible, High-Performance ML Serving,” arXiv e-prints, p.
arXiv:1712.06139, Dec. 2017.

[37] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, A. Levskaya, J. Heek,
K. Xiao, S. Agrawal, and J. Dean, “Efficiently scaling transformer inference,” arXiv preprint
arXiv:2211.05102, 2022.

[38] X. Wang, Y. Xiong, Y. Wei, M. Wang, and L. Li, “LightSeq: A High Performance Inference
Library for Transformers,” arXiv e-prints, p. arXiv:2010.13887, Oct. 2020.

[39] B. Wu, Y. Zhong, Z. Zhang, G. Huang, X. Liu, and X. Jin, “Fast Distributed Inference Serving
for Large Language Models,” arXiv e-prints, p. arXiv:2305.05920, May 2023.

[40] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins,
J. Davis, A. Mohiuddin, L. Kaiser, D. Belanger, L. Colwell, and A. Weller, “Rethinking At-
tention with Performers,” arXiv e-prints, p. arXiv:2009.14794, Sep. 2020.

[41] V. Likhosherstov, K. Choromanski, J. Davis, X. Song, and A. Weller, “Sub-Linear Memory:
How to Make Performers SLiM,” arXiv e-prints, p. arXiv:2012.11346, Dec. 2020.

[42] 1. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The Long-Document Transformer,”
arXiv e-prints, p. arXiv:2004.05150, Apr. 2020.

[43] M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham, A. Ravula,
Q. Wang, L. Yang, and A. Ahmed, “Big Bird: Transformers for Longer Sequences,” arXiv
e-prints, p. arXiv:2007.14062, Jul. 2020.

[44] H. Wang, Z. Zhang, and S. Han, “SpAtten: Efficient Sparse Attention Architecture with Cas-
cade Token and Head Pruning,” arXiv e-prints, p. arXiv:2012.09852, Dec. 2020.

[45] N. Shazeer, “Fast Transformer Decoding: One Write-Head is All You Need,” arXiv e-prints,
p. arXiv:1911.02150, Nov. 2019.

[46] J. W. Rae, A. Potapenko, S. M. Jayakumar, and T. P. Lillicrap, “Compressive Transformers for
Long-Range Sequence Modelling,” arXiv e-prints, p. arXiv:1911.05507, Nov. 2019.

[47] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer, “I-BERT: Integer-only BERT
Quantization,” arXiv e-prints, p. arXiv:2101.01321, Jan. 2021.

[48] Z. Liu, Y. Wang, K. Han, W. Zhang, S. Ma, and W. Gao, “Post-training quantization for
vision transformer,” in Advances in Neural Information Processing Systems, M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34. Curran Associates,
Inc., 2021, pp. 28 092-28 103. [Online]. Available: https://proceedings.neurips.cc/paper_files/
paper/2021/file/ec8956637a99787bd197eacd77acceSe-Paper.pdf

[49] Z. Yang, Y. Gao, W. Wang, and H. Ney, “Predicting and using target length in neural
machine translation,” in Proceedings of the 1st Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and the 10th International Joint Conference on
Natural Language Processing. Suzhou, China: Association for Computational Linguistics,
Dec. 2020, pp. 389-395. [Online]. Available: https://aclanthology.org/2020.aacl-main.41

[50] V. Janapa Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B. Anderson,
M. Breughe, M. Charlebois, W. Chou, R. Chukka, C. Coleman, S. Davis, P. Deng, G. Diamos,
J. Duke, D. Fick, J. S. Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. St. John, P. Kan-
war, D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius, C. Osborne, G. Pekhi-
menko, A. Tejusve Raghunath Rajan, D. Sequeira, A. Sirasao, F. Sun, H. Tang, M. Thomson,
F. Wei, E. Wu, L. Xu, K. Yamada, B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “MLPerf
Inference Benchmark,” arXiv e-prints, p. arXiv:1911.02549, Nov. 2019.

13



	Introduction
	Background and Motivation
	Generative AI Models
	KV Cache Management on GPUs
	Observation

	S3 Design
	Evaluation
	Throughput Analysis
	Cost Analysis
	Overhead: Latency Breakdown
	Predictor Ablation Study

	Related Works
	Limitations and Conclusion
	Acknowledgement

