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Abstract

In this paper, we study the offline change point localization problem in a sequence of depen-
dent nonparametric random dot product graphs. To be specific, assume that at every time
point, a network is generated from a nonparametric random dot product graph model (see
e.g. Athreya et al., 2018), where the latent positions are generated from unknown underly-
ing distributions. The underlying distributions are piecewise constant in time and change
at unknown locations, called change points. Most importantly, we allow for dependence
among networks generated between two consecutive change points. This setting incorpo-
rates edge-dependence within networks and temporal dependence between networks, which
is the most flexible setting in the published literature.

To accomplish the task of consistently localizing change points, we propose a novel
change point detection algorithm, consisting of two steps. First, we estimate the latent
positions of the random dot product model, our theoretical result being a refined version
of the state-of-the-art results, allowing the dimension of the latent positions to diverge.
Subsequently, we construct a nonparametric version of the CUSUM statistic (e.g. Page,
1954; Padilla et al., 2019a) that allows for temporal dependence. Consistent localization
is proved theoretically and supported by extensive numerical experiments, which illustrate
state-of-the-art performance. We also provide in depth discussion of possible extensions to
give more understanding and insights.

Keywords: Dependent dynamic networks, Nonparametric random dot product graph
models, Change point localization.

1. Introduction

Computationally-efficient and theoretically-justified change point localization methods that
can handle new data types are in high demand, due to technological advances in a broad
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range of application areas including finance, biology, social sciences, to name only a few.
The literature on change point detection is extensive, including the univariate mean case
(e.g. Frick et al., 2014; Fryzlewicz, 2014; Wang et al., 2018b), the high-dimensional mean
case (e.g. Wang and Samworth, 2016; Cho, 2016), the robust mean case (e.g. Fearnhead and
Rigaill, 2018; Pein et al., 2017), the covariance case (e.g. Aue et al., 2009; Wang et al., 2017;
Avanesov and Buzun, 2018), the univariate nonparametric case (e.g. Zou et al., 2014; Padilla
et al., 2019a), and the multivariate nonparametric case (e.g. Arlot et al., 2012; Matteson
and James, 2014; Garreau and Arlot, 2018; Padilla et al., 2019b).

In this paper we are concerned with offline change point localization in dynamic net-
works. Let {A(t)}Tt=1 ⊂ {0, 1}n×n be a sequence of adjacency matrices generated from
a sequence of distributions {Lt}Tt=1, such that for an unknown sequence of change points
{ηk}Kk=1 ⊂ {2, . . . , T} with 1 = η0 < η1 < . . . < ηK ≤ T < ηK+1 = T + 1, we have that

Lt−1 6= Lt, if and only if t ∈ {η1, . . . , ηK}.

The goal is to estimate the change point collection {ηk}Kk=1 accurately.

The model described can be used to study various application problems. For instance,
in epidemiology, studying the dynamic networks formed by human interaction can facilitate
the detection of transmissible diseases outbreaks; in finance, dynamic networks formed
by within-companies transactions over time may possess abrupt changes which indicate
abnormal market behaviours; in neuroscience, we provide a detailed real data example in
the context of detecting changes in the neuronal activity in Section 4.2. In response to
the growing demand from applications, there has been recently an increasing interest in
the literature studying the model described above. Wang et al. (2018a) considered an
independent sequence of inhomogeneous Bernoulli networks and presented a nearly optimal
change point localization algorithm, accompanied with a phase transition phenomenon.
Zhao et al. (2019) assumed an independent sequence of graphon models with independent
edges and proposed consistent yet optimal localization result. Other network change point
papers include Wang et al. (2014), Cribben and Yu (2017), Liu et al. (2018), Chu and Chen
(2017), Mukherjee (2018), among others. We would like to mention that both Cribben
and Yu (2017) and Liu et al. (2018) have exploited the eigenvectors information to conduct
change point detection, but both lack theoretical results. Our paper, to the best of our
knowledge, is the first to provide theoretical justifications for eigenvector-based change
point detection methods. More in-depth comparisons with Wang et al. (2018a) will be
conducted later in the paper.

1.1 Random dot product graph models

Different from the aforementioned papers, in order to allow for dependence among edges,
we assume that at every time point, the network is generated from a random dot product
graph (e.g. Young and Scheinerman, 2007; Athreya et al., 2018). We formally define the
model in Definitions 1 and 2, which are both based on Athreya et al. (2018).

Definition 1 (Inner product distribution) Let F be a probability distribution whose
support is given by XF ⊂ Rd. We say that F is a d-dimensional inner product distribution
on Rd if for all x, y ∈ XF , it holds that x>y ∈ [0, 1].
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Definition 2 (Random dot product graph with distribution F ) Let F be an inner

product distribution with {Xi}ni=1
i.i.d.∼ F . Let X = (X1, . . . , Xn)> ∈ Rn×d. Suppose A is a

random adjacency matrix given by

P {A | X} =
∏

1≤i<j≤n
(X>i Xj)

Aij (1−X>i Xj)
1−Aij . (1)

We write A ∼ RDPG(F, n).

We would like to make a few comments regarding random dot product graph models.
For first time reading, one can safely skip this and jump to Section 1.2.

Equivalence of distributions

It can be seen from Definition 2 that the latent positions come into play only through
their inner products, i.e. we have

Aij ∼ Ber(X>i Xj), 1 ≤ i, j ≤ n.

This means that one can apply any orthonormal rotations to all the latent positions and
retain the same distribution of A. In light of this rotational invariance, we define the
equivalence of inner product distributions below, which is also from Athreya et al. (2018).

Definition 3 (Equivalence of inner product distributions) If both F (·) and G(·) are
inner product distributions defined on Rd, and there exists an orthogonal operator U : Rd →
Rd such that F = G ◦ U , then we say F and G are equivalent.

Community structures

The random dot product graph is a generalization of the stochastic block model (Holland
et al., 1983), where the latent positions X are assumed to be fixed and satisfy

XX> = ZQZ>,

where Z ∈ {0, 1}n×d is a membership matrix, with each row consisting of one and only one
entry being 1 and Q ∈ [0, 1]d×d is a connectivity matrix encoding the edge probabilities.

One may be puzzled by the observation that under Definition 2, we have that for any
(i, j) ∈ {1, . . . , n}2, i 6= j,

E(Aij) = E(X>i Xj) = E(X>1 X2),

where the second identity follows from the fact that within a network the latent positions are
i.i.d., and therefore one loses the community structure and connections from the stochastic
block model.

This observation is due to the randomness of the latent positions. To enforce a version
of “communities” under Definition 2, one may introduce a membership vector and treat the
distribution F as a mixture distribution. To be specific, we have an alternative to Definition
2 below.
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Definition 4 Let τ1, . . . , τn be i.i.d. random variables satisfying

P{τ = m} = πm, πm ≥ 0, m ∈ {1, . . . ,M},
M∑
m=1

πm = 1,

where M is a positive integer. Let {Fm}Mm=1 be a sequence of d-dimensional inner product
distributions. Assume that

Xi | τi
ind.∼ Fτi , i = 1, . . . , n.

Let X = (X1, . . . , Xn)> ∈ Rn×d. Suppose A is a random adjacency matrix given by

P {A | X} =
∏

1≤i<j≤n
(X>i Xj)

Aij (1−X>i Xj)
1−Aij .

We write A ∼ RDPG(F, n), where

F =
M∑
m=1

πmFm.

We remark that Definition 4 is a special case of Definition 2. Therefore the theoretical
results based on Definition 2 also hold for Definition 4. The vector τ prompts the ver-
tex correspondence in a dynamic network. For instance, one may assume a sequence of
RDPG(F, n) using Definition 4, with latent positions drawn independently and the mem-
bership vector unchanged. There are also other variants. For instance, one may also assume
instead that the membership vector τ is fixed.

1.2 List of contributions

We highlight the contributions of this paper.

First of all, we propose a novel algorithm for change point localization in dependent
dynamic random dot product graph models, see Algorithm 2. This proceeds by first esti-
mating the latent positions {X̂i(t)}n,Ti=1,t=1. However, due to the latent positions’ rotational-
invariance properties discussed in Section 1.1, one pertaining challenge in the RDPG liter-
ature is to match the rotations of the latent position estimators of different networks (e.g.
Athreya et al., 2018; Cape et al., 2019). We propose a novel way to get around this issue
with matching. Specifically, we define Ŷ t

ij = (Xi(t))
>Xj(t), and construct a Kolmogorov–

Smirnov CUSUM statistic (Padilla et al., 2019a) based on {Ŷ t
ij : (i, j) ∈ {(l, n/2 + l), l =

1, . . . , n/2}, t = 1, . . . , T}. One may question the power of the Kolmogorov–Smirnov dis-
tance, but it allows for more general distributions for latent positions. Among those distri-
butions stochastic block models are special cases. One may also question the effectiveness
of using only a subset of all the possible edges, we will discuss in Section 3.3 that in terms
of order, this is in fact the same as using all possible edges.

Secondly, under an appropriate signal-to-noise ratio condition, we prove that our pro-
posed method (Algorithm 2) can estimate the number and locations of change points consis-
tently, which will be formally stated in Section 3.2. It is worth mentioning that Theorem 9
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handles the situation where there exists dependence across time and among edges. This is
not shown in the existing network change point detection literature. To be more specific,
the dependence among edges are imposed by assuming the latent positions are random and
the edges are conditionally independent given the latent positions. Our proposed method
is also robust to some model mis-specification, see the discussions following Theorem 9 for
details.

Thirdly, we provide in-depth discussions on the characterization of jumps in Section 3.1.
Note that the data we have are a collection of adjacency matrices. However, as stated in
Definition 2, the data generating mechanism depends on latent positions’ distributions F s.
A natural question is whether the changes in F will lead to the changes in the distributions
of the adjacency matrices, and if so, whether we can characterize the changes. The results
we developed in Section 3.1 are interesting per se, and can shed light on network testing
problems.

Lastly, numerical experiments provide ample evidence on the strength of our proposed
approach. In particular, we highlight the advantage of our method in scenarios with depen-
dent networks.

The rest of the paper is organized as follows. Section 2 provides the formal problem
setup and our proposed method in detail, including discussions on possible extensions. The
characterization of the distributional changes and statistical guarantees for our approach
are collected in Section 3. We conclude with numerical experiments in Section 4 and final
discussions in Section 5. Technical details are deferred to the Appendix.

2. Methodology

2.1 Setup

We first formally state the full model descriptions.

Model 1 Let {A(1), . . . , A(T )} ⊂ Rn×n be a sequence of adjacency matrices of random dot
product graphs, satisfying the following.

1. (Random dot product graphs) For any t ∈ {1, . . . , T}, it holds that

P {A(t) | X(t)} =
∏

1≤i<j≤n
(Xi(t)

>Xj(t))
Aij(t)(1−Xi(t)

>Xj(t))
1−Aij(t),

where X(t) = (X1(t), . . . , Xn(t))> ∈ Rn×d satisfies the following.

There exists a sequence 1 = η0 < η1 < . . . < ηK ≤ T < ηK+1 = T + 1 of time points,
called change points. For k ∈ {0, . . . ,K}, we have that

Xi(ηk) ∈ Rd ind∼ Fηk , i = 1, . . . , n,

and for t ∈ {ηk + 1, . . . , ηk+1 − 1}, we have that

Xi(t)

{
= Xi(t− 1), with probability ρ,
ind∼ Fηk , with probability 1− ρ,

(2)

and with Ft’s satisfying Definition 1. Throughout, we write Pt = X(t)X(t)> for the
matrix of latent link probabilities at time t ∈ {1, . . . , T}.
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2. (Minimal spacing) The minimal spacing between two consecutive change points sat-
isfies

min
k=1,...,K+1

{ηk − ηk−1} = ∆ > 0.

3. (Minimal jump size) For each k ∈ {0, . . . ,K} and for any X,Y
i.i.d.∼ Fηk , denote

Gηk(z) = P
{
X>Y ≤ z

}
, z ∈ [0, 1].

The magnitudes of the changes in the data generating distribution are such that

κ = min
k=1,...,K+1

κk = min
k=1,...,K

sup
z∈[0,1]

|Gηk(z)−Gηk−1
(z)| > 0. (3)

4. Assume that for every k ∈ {0, . . . ,K} and i ∈ {1, . . . , n},

E
{
Xi(ηk)Xi(ηk)

>
}

= Σk ∈ Rd×d,

where Σk has eigenvalues µk1 ≥ · · · ≥ µkd > 0, with {µkl , k = 0, . . . ,K, l = 1, . . . , d} all
being universal constants.

In Model 1, between two consecutive change points, the latent positions are dependent
with exponentially decaying correlations; and for latent positions drawn at time points
separated by change points, they are independent. If ρ = 0 in (2), then all the latent
positions are independent, which implies that the adjacency matrices are independent.

The distributional changes occurring at change points are quantified through cumulative
distribution functions {Gηk} defined in Model 1(3). Intuitively, since the unconditional dis-
tributions of {A(t)} are completely characterized by the joint distributions of {Xi(t)

>Xj(t)},
it is natural to quantify the changes with respect {Gηk}. (A more detailed discussion on this
can be found in Section 3.1.) In particular, the changes are measured by the Kolmogorov–
Smirnov distance in (3), since the Kolmogorov–Smirnov distance does not require assump-
tions about the moments of the distributions, or about their discrete/continuous nature.
With the stochastic block model being a special case of the random dot product graph, the
distributions thereof are point-mass distributions, which handicaps the adoption of other
(potentially more powerful) distribution distances, including the total variation distance.

Model 1(4) is imposed to guarantee that the latent link probabilities satisfy rank(Pt) = d
with high probability. Without this full-rank assumption, assuming that r = rank(Σk) < d
implies that there exists a rank-r subspace which characterises the latent positions, and the
effective dimension is r instead of d. For simplicity, we assume that Σk is of full rank.

2.2 Methods

To arrive at our construction, we start by defining the main statistic, and its population
version. Without loss of generality, we assume that the number of nodes n is an even integer.
If n is odd, then we randomly ignore a certain but fixed node and all edges connecting to
it throughout the whole procedure.

Definition 5 (CUSUM statistics) Let O = {(i, n/2 + i), i = 1, . . . , n/2}.
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• (Sample version) With {A(t)}Tt=1 ⊂ Rn×n, let

X̂(t) = UA(t)ΛA(t)1/2,

where UA(t) ∈ Rn×d is an orthogonal matrix with columns being the leading d eigen-
vectors of A(t), and ΛA(t) ∈ Rd×d is a diagonal matrix with entries being the largest
d, in absolute value, eigenvalues of A(t).

For any t ∈ {1, . . . , T} and (i, j) ∈ O, let

Ŷ t
ij = X̂i(t)

>X̂j(t),

where X̂i(t)
> is the ith row of X̂(t). For any integer triplet (s, t, e), 0 ≤ s < t < e ≤ T

and z ∈ R, we define the CUSUM statistic as

Dt
s,e(z) =

∣∣∣∣∣
√

2(e− t)
n(e− s)(t− s)

t∑
k=s+1

∑
(i,j)∈O

1{Ŷ k
ij ≤ z}

−

√
2(t− s)

n(e− s)(e− t)

e∑
k=t+1

∑
(i,j)∈O

1{Ŷ k
ij ≤ z}

∣∣∣∣∣, (4)

and
Dt
s,e = sup

z∈[0,1]
|Dt

s,e(z)|.

• (Population version) With {A(t)}Tt=1 ⊂ Rn×n, recall that Pt = X(t)X(t)> and write

X(t) = UP (t)ΛP (t)1/2,

where UP (t) ∈ Rn×d is an orthogonal matrix with columns being the d eigenvectors
of Pt with largest absolute eigenvalues, and ΛP (t) ∈ Rd×d is a diagonal matrix with
entries being the leading d eigenvalues of Pt.

For any t ∈ {1, . . . , T} and (i, j) ∈ O, let

Y t
ij = Xi(t)

>Xj(t), (5)

where Xi(t)
> is the ith row of X. For any integer triplet (s, t, e), 0 ≤ s < t < e ≤ T

and z ∈ R, we define the CUSUM statistic as

D̃t
s,e(z) =

∣∣∣∣∣
√

2(e− t)
n(e− s)(t− s)

t∑
k=s+1

∑
(i,j)∈O

E
(
1{Y k

ij ≤ z}
)

−

√
2(t− s)

n(e− s)(e− t)

e∑
k=t+1

∑
(i,j)∈O

E
(
1{Y k

ij ≤ z}
) ∣∣∣∣∣

and
D̃t
s,e = sup

z∈[0,1]
|D̃t

s,e(z)|.
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We remark that in Definition 5, if the dth and (d + 1)th eigenvalues share the same
value, then one can randomly pick an eigenvector to construct X̂,X ∈ Rn×d. In addition,
we do not require a specific order of the eigenvectors in constructing X̂ and X.

Recall that the distributions of the latent positions are equivalent up to a rotation, see
Definition 3. To avoid extra efforts in matching the rotations when comparing two latent
position distributions, we resort to the inner products of latent positions instead of latent
positions itself. We explain this via (5). For any orthogonal matrix U ∈ Rd×d, it holds that

Y t
ij = (Xi(t))

>Xj(t) = (UXi(t))
>UXj(t).

With Definition 5, we arrive at our proposed procedure Algorithm 2 that builds on the
wild binary segmentation algorithm (Fryzlewicz, 2014). The method requires first estimat-
ing the latent positions, a subroutine shown in Algorithm 1 (adjacency spectral embedding,
see e.g. Sussman et al., 2012). Note that this only needs to be done once regardless of
the choice of the tuning parameter τ , and is parallelizable. Since the complexity of the
truncated principal component analysis is of order O(dn2), Algorithm 1 has the computa-
tional cost of order O(Tdn2). Once the latent positions are estimated, we run the remaining
steps in Algorithm 2, which amounts to running Algorithm 2 in Padilla et al. (2019a). For
a fixed τ which leads to K̃ change points, we have the computational complexity of or-
der O(K̃MTn log(n)), which translates to O(Tdn2 + K̃MTn log(n)) for the overall cost of
Algorithm 2, where M is the number of random intervals drawn in Algorithm 2.

Algorithm 1 ScaledPCA (A, d)

INPUT: Matrix A ∈ Rn×n, and tuning parameter d ∈ Z+.
A = (v1, . . . , vn)diag(λ1, . . . , λn)(v1, . . . , vn)>, where |λ1| ≥ . . . ≥ |λn|.
X ← (v1, . . . , vd)diag(|λ1|1/2, . . . , |λd|1/2)

OUTPUT: X

In every network, there are n(n − 1)/2 observations, but note that in Definition 5, we
in fact only use n/2 of them. This is for technical convenience, since due to the choice of
O, we obtain independent observations within one network. We acknowledge that there
are other variants of this treatment. For instance, instead using a fixed choice of O, one
can do multiple random sub-samplings and combine the results; one can also gather all the
observations and create a U -statistic instead. In Section 3.3, we will show that in terms of
rate, using n/2 edges is as effective as using all possible edges.

3. Theory

In this section, we provide the statistical guarantees for Algorithm 2. In order to enhance
the theoretical understanding, we take a step back and understand how the jump defined
in (3) through the cumulative distribution functions of the inner products can be related to
the jumps in terms of the distributions of the adjacency matrices. The main results which
provide theoretical guarantees of our algorithm are collected in Theorem 9.

3.1 Characterizations of the changes

We summarize the notation below and consider two different sets of models.
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Algorithm 2 NonPar-RDPG-CPD ((s, e), {(αm, βm)}Mm=1, τ)

INPUT: A sample {A(t)}et=s+1 ⊂ Rn×n, collection of intervals {(αm, βm)}Mm=1, tuning
parameters d ∈ Z+, and τ > 0.
for t = s+ 1, . . . , e do

X(t)← ScaledPCA(A(t), d)
end for
for m = 1, . . . ,M do

(sm, em)← [s, e] ∩ [αm, βm]
if em − sm > 1 then

bm ← argmaxsm+1≤t≤em−1D
t
sm,em

am ← Dbm
sm,em

else
am ← −1

end if
end for
m∗ ← argmaxm=1,...,M am
if am∗ > τ then

add bm∗ to the set of estimated change points
NonPar-RDPG-CPD((s, bm∗), {(αm, βm)}Mm=1, τ)
NonPar-RDPG-CPD((bm∗ + 1, e), {(αm, βm)}Mm=1, τ)

end if
OUTPUT: The set of estimated change points.
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G 6= G̃ F 6= F̃

L 6= L̃

First n−1 moments of
F and F̃ are not identical

Lemma 6 Lemma 8

+ Assumption 1

Lemma 7

Figure 1: Flowchart of Section 3.1. The notation A⇒ B means A implies B.

Model 2 We assume the following two independent models:

{Aij , 1 ≤ i < j ≤ n}|{Xi}ni=1
ind∼ Ber(X>i Xj), Xi

ind∼ F ∈ Rd;

and
{Ãij , 1 ≤ i < j ≤ n}|{X̃i}ni=1

ind∼ Ber(X̃>i X̃j), X̃i
ind∼ F̃ ∈ Rd.

For i 6= j, the cumulative distribution functions of X>i Xj and X̃>i X̃j are denoted by G(·)
and G̃(·), respectively. We further write L and L̃ for the joint unconditional distributions
of {Aij , 1 ≤ i < j ≤ n} and {Ãij , 1 ≤ i < j ≤ n}, respectively.

The rest of this subsection is summarized in Figure 1. The notation A ⇒ B means A
implies B.

Lemma 6 With the notation in Model 2, if F = F̃ , then G = G̃.

This follows automatically from the definitions, and is equivalent to the claim that if
G 6= G̃ then F 6= F̃ , which implies that (3) is equivalent to

Fηk 6= Fηk−1
, k ∈ {1, . . . ,K}.

However, F 6= F̃ does not imply L 6= L̃. As a simple toy example, consider F and F̃ to
be defined in Definition 1, with the same mean but different variances, and n = 2. Then
F 6= F̃ but L = L̃. 7 below shows that L is determined by the first n− 1 moments of F .

Lemma 7 Under Model 2, we have that L = L̃ if and only if there exists an orthogonal
operator U ∈ Rd×d, such that if d = 1,

EF (Xk
1 ) = E

F̃
{(UX̃1)k}, k = 1, . . . , n− 1,

if d > 1

EF

(
d∏
l=1

Xkl
1,l

)
= E

F̃

{
d∏
l=1

(UX̃1)kll

}
, kl ∈ Z, kl ≥ 0,

d∑
l=1

kl = k, k = 1, . . . , n− 1,

where X1,l and (UX̃1)l are the lth coordinates of the X1 and UX̃1.
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It can be seen from Lemma 7 that the unconditional distribution of the data matrix is
determined by the first n − 1 moments of the underlying distribution F . Unfortunately,
without additional assumptions, the first n− 1 moments do not determine the distribution
(e.g. Heyde, 1963)1. This means that only assuming (3) can not guarantee that the data
matrices A and Ã have different distributions.

The final claim we make in this subsection is that under some additional but weak
conditions, we will be able to guarantee that L 6= L̃.

Assumption 1 Under Model 2, let

κ0 = sup
z∈[0,1]

|G(z)− G̃(z)|.

It holds that

κ0

√
n > 3

√
log(n).

Lemma 8 Assume that Model 2 and Assumption 1 hold. Then we have that

L 6= L̃.

Lemma 8 suggests that under Assumption 1, G 6= G̃ implies L 6= L̃. This enhances
the rationale of imposing the distributional changes occurring at the change points on the
differences on G, as detailed in Model 1(4). Assumption 1 is a weak assumption, which
will be further elaborated in Section 3.2. The proofs of Lemmas 7 and 8 are collected in
Appendix A.

3.2 Consistent estimation of change points

We first state a signal-to-noise ratio condition below.

Assumption 2 (Signal-to-noise ratio) There exists a universal constant CSNR > 0,
such that there exists a diverging sequence aT →∞, as T →∞, satisfying

κ
√

∆n(1− ρ) > CSNR

√
T max{

√
d log(n ∨ T ), d3/2}+ aT .

To better understand Assumption 2, we would like to use Assumptions 2 and 3 in Wang
et al. (2018a) as benchmarks, since Wang et al. (2018a) studied a simpler problem assuming
independence within and across networks, and showed a phase transition phenomenon in
the minimax sense. However, we would like to emphasize that comparing Assumption 2
and Assumptions 2 and 3 in Wang et al. (2018a) is comparing apples and oranges, to
some extent. Even though the jump size κ are defined differently in these two papers,
both take values in (0, 1]. The parameter ρ in this paper indicates the correlation between
networks, while the parameter ρ in Wang et al. (2018a) represents the entrywise sparsity.
For simplicity, we let ρ = 1 in Wang et al. (2018a) for this discussion.

One key difference is that in Assumption 2, the required signal-to-noise ratio is inflated
by
√

1− ρ. We might view this as the effective sample size being shrunk from ∆ to (1−ρ)∆,

1. We are grateful to Richard J. Samworth for this reference and constructive discussions.
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due to the dependence across time. In Model 1, we do not allow ρ = 1, but allow ρ → 1,
as long as Assumption 2 holds. In the extreme case that ρ = 1, between two consecutive
change points, there is essentially only one observation. As long as Assumption 1 holds,
Lemma 8 shows that the distributions of the adjacency matrices before and after change
points are different, which implies that one can identify the change points with probability
1.

Another difference is that in our paper, the signal-to-noise ratio is inflated by
√
T

compared to Wang et al. (2018a). This is due to the fact that we estimate the latent
positions separately for every single network, while the graphons were estimated based on
a version of sample average of the adjacency matrices in Wang et al. (2018a). The reason
we estimate the positions separately roots in the difficulty of deriving theoretical properties
of eigenvectors of a sample average matrices. More discussions on this can be found in
Section 3.3.

We allow the dimensionality d to diverge, provided that Assumption 2 holds. The
dimensionality d is essentially the low rank condition imposed in Wang et al. (2018a). The
upper bound on the rank r in Wang et al. (2018a) comes into play with the term

√
r, while

we have d3/2 here. The difference again is rooted in the estimation of the latent positions,
although we do not claim optimality here.

The sequence aT can diverge at any arbitrarily slow rate. We will explain the role of aT
after we state Theorem 9.

Finally, we make connections between Assumptions 1 and 2. Recall that we use Assump-
tion 1 in Lemma 8, where only one observation is available for each distribution, i.e. ∆ = 1,
ρ = 0 and T = 2. Ignoring the universal constants, the only difference left between Assump-
tions 1 and 2 is the term d3/2. Of course, if d = O(1), then this is also a universal constant,
and there is no difference left. The interesting thing happens when d is allowed to diverge
faster than the poly-logarithm term. Assumption 1 is required to differentiate two different
distributions, which roughly speaking is related to a testing task; while Assumption 2 is
used below in Theorem 9 with the purpose of consistent localization, which is an estimation
problem. To this end, the extra d3/2 in Assumption 2 is a piece of evidence that estimation
is a harder problem than a testing one.

Theorem 9 Let data be from Model 1 and satisfy Assumption 2. Assume the following.

• The tuning parameter τ in Algorithm 2 satisfies

cτ,1T
1/2 max{

√
d log(n ∨ T ), d3/2} < τ < cτ,2κ

√
∆n(1− ρ), (6)

where cτ,1, cτ,2 > 0 are universal constants depending on all the universal constants in
Model 1 and Assumption 2.

• The tuning parameter d in Algorithms 1 and 2 are the true dimension d of the latent
positions.

• The intervals satisfy
max

m=1,...,M
(αm − βm) ≤ CR∆, (7)

where CR > 3/2 is a universal constant.
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Let {η̂k}K̂k=1 be the output of Algorithm 2. We have that

P
{
K̂ = K, |η̂k − ηk| ≤ Cε

T max{d log(n ∨ T ), d3}
κ2
kn(1− ρ)

, ∀k
}

≥ 1− C(n ∨ T )−c − CTe−n − exp
(
log(T/∆)− (4CR)−1T−1M∆

)
,

where C, c > 0 are universal constants depending only on the other universal constants.

The proof of Theorem 9 can be found in Appendix D, following two sets of lemmas –
technical details on estimating the latent positions and on change point analysis, collected
in Appendices B and C, respectively.

Suppose that Te−n → 0 and that M satisfies

T/∆ log (T/∆)

M
→ 0. (8)

Then it can be seen from Theorem 9 that with probability tending to 1, as T diverges, we
have that K̂ = K and

max
k=1,...,K

|η̂k − ηk|
∆

≤ max
k=1,...,K

Cε
T max{d log(n ∨ T ), d3}

∆κ2
kn(1− ρ)

≤ Cε
T max{d log(n ∨ T ), d3}

∆κ2n(1− ρ)
→ 0,

where the second inequality follows from the definition of κ and the convergence follows from
Assumption 2, with the aid of an arbitrarily diverging sequence aT . This implies that the
change point estimators we obtain are consistent, with a vanishing localization rate. Since
the quantity M only appears in the probability, we remark that the larger M is, the more
likely that our estimators would perform satisfactorily, while the higher the computational
cost is.

Algorithm 2 in fact can handle networks of varying size. For instance, if we do not allow
for the dependence across time, then Theorem 9 holds provided that all network sizes are
of the same order, which amounts to c1n ≤ nt ≤ c2n, t = 1, . . . , T , for universal constants
c1, c2 > 0.

In view of Theorem 9, the two most important tuning parameters in Algorithm 2 are
the threshold τ and the dimension d.

The threshold τ is set to satisfy (6). The upper and lower bounds in (6) are the lower
bound on the signals and the upper bound on the noise, in a large probability event,
respectively. If the input τ is larger than the upper bound in (6), then one may not be
able to detect all change points; while if the input is smaller than the lower bound, then
there is the risk of falsely detecting change points. Note that both the upper and lower
bounds involve unknown constants. We will discuss the practical guidance in choosing τ in
Section 4.

In Theorem 9, we assume that the input d should be the true dimension. This is a
seemingly strong condition. We would like to comment on this from a few different angles.

• In the context of stochastic block models, which are simpler than the RDPG models,
the parameter d is a lower bound on the number of communities. To estimate the
number of communities in a stochastic block model is yet open, despite a tremendous
amount of efforts (e.g. Bickel and Sarkar, 2016; Lei, 2016; Chen and Lei, 2018; Li et al.,
2016; Franco Saldaña et al., 2017). We do not intend to propose a method to estimate
the dimensionality here, but in practice, one could resort to the aforementioned papers.

13



Madrid Padilla, Yu and Priebe

• Without a theoretically-justified method to estimate d, we need to discuss on the
potential misspecification. If one overestimates d, i.e. with an input d1 > d, then our
method can still consistently estimate the change points under Assumption 2, with
a sufficiently large constant CSNR. This is due to the fact our statistic is a function
of inner products of latent position estimators. Overestimating d will only add extra
noise which is in fact of the same order of the noise introduced when estimating the
latent positions with true dimension d.

• Another possible misspecification is underestimating the dimension d, i.e. the input
of the algorithms is d2 < d. This is a more damning issue than overestimating d,
however it does not necessarily lead to inconsistent change point estimators. Now we
assume a toy example where the true dimension d = 3. Recall the definition on the
jump size κ that

κ = min
k=1,...,K

sup
z∈[0,1]

|Gηk(z)−Gηk−1
(z)|

= min
k=1,...,K

sup
z∈[0,1]

∣∣∣Pηk {X>Y ≤ z}− Pηk−1

{
X>Y ≤ z

}∣∣∣
= min

k=1,...,K
sup
z∈[0,1]

∣∣∣∣∣Pηk
{

3∑
i=1

XiYi ≤ z

}
− Pηk−1

{
3∑
i=1

XiYi ≤ z

}∣∣∣∣∣ .
If we underestimate d and we miss out the third dimension, our de facto jump size
becomes

κ1 = min
k=1,...,K

sup
z∈[0,1]

∣∣∣∣∣Pηk
{

2∑
i=1

XiYi ≤ z

}
− Pηk−1

{
2∑
i=1

XiYi ≤ z

}∣∣∣∣∣ .
Provided that the signal-to-noise ratio condition holds for κ1, i.e.

κ1

√
∆n(1− ρ) > CSNR

√
T max{

√
log(n ∨ T ), d3/2}+ aT ,

with the notation defined in Assumption 2, Theorem 9 still holds. In general, underes-
timating the dimension d decreases the true jump sizes at the change points. Identical
arguments to those in Theorem 9 can lead to consistent detection of change points,
whose decreased jump sizes satisfy the signal-to-noise ratio condition Assumption 2.

On a different note, without assuming (7), and using the trivial bound CR ≤ T/∆, it
can be shown that we will achieve a larger localization error. The resulting rate inflates
that of Theorem 9 by a factor of polynomials of T/∆.

3.3 Possible extensions

There are three aspects of the methods proposed in Section 2.2 that might not seem to be
satisfactory at first sight. In this subsection, we discuss possible extensions. Readers who
are not familiar with the area, may safely skip this subsection during the first time reading.

From dense to sparse networks
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The networks we are dealing with in this paper are dense, i.e. the average degrees are of
order of the network size. In order to allow for sparse networks, one might wish to replace
(1) in Definition 1 with the following

P {A | X} =
∏

1≤i<j≤n
(αX>i Xj)

Aij (1− αX>i Xj)
1−Aij ,

where α = α(n) ∈ (0, 1].
If α is known, then one could simply replace the definition of X̂ in Definition 5 with

X̂(t) = α−1/2UA(t)ΛA(t)1/2.

The signal-to-noise ratio and the localization errors will change correspondingly by a poly-
nomial factor of α, following the identical derivations.

If α is unknown but satisfies αn & log(n), then one could use graphon estimation
methods, e.g. the universal singular value thresholding (USVT) method (Chatterjee et al.,
2015), to first produce a USVT estimator of each P (t), namely Â(t). The quantity X̂(t)
can be defined to be

X̂(t) = U
Â

(t)Λ
Â

(t)1/2,

and the rest of the algorithm remains the same. The localization rate would change from

T max{d log(n ∨ T ), d3}
κ2n(1− ρ)

to
T max{

√
n/α, d3}

κ2
kn(1− ρ)

,

by simply using Theorem 1 in Xu (2018) instead of Lemma 11 in controlling large probability
events and following all the rest of our proofs. The term d log(n∨ T ) in the upper bound is
due to the fact that conditional on the latent positions, the entries in the upper triangular
matrix of A(t)’s are independent. This is not true for the USVT estimator Â, and therefore
the difference between the two different rates is not merely multiplying a polynomial factor
of the sparsity parameter α.

From individual estimation to a bulk estimation
In Algorithm 2, we estimate every individual network separately, which results in the

polynomial dependence on T in both the signal-to-noise ratio and the localization rate. One
natural question would be if there is a way to conduct Algorithm 1 to a bulk of adjacency
matrices at once in order to improve the statistical accuracy and computational efficiency.

There are two possible extensions. One is to use the omnibus embedding proposed
in Levin et al. (2017) and the other is to conduct Algorithm 1 to a sample average of
the adjacency matrices. Either way is suffered from the lack of some critical theoretical
understanding. When the bulk of adjacency matrices used to construct either the omnibus
matrix or the sample average matrix, are not generated from the same set of latent positions,
the behaviours of the sample eigenvectors remain unknown. In change point detection, one
needs to deal with intervals containing adjacency matrices coming from different latent
positions. Without knowing how the eigenvectors would behave, eigenvector-based change
points detection methods would not be able utilize bulk of adjacency matrices. In fact,
this is also the reason that the methods proposed in Cribben and Yu (2017) and Liu et al.
(2018) lack theoretical guarantees.
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From using n/2 edges to all edges
In Algorithm 2, we only use n/2 out of n(n − 1)/2 edges for technical convenience. In

our choice, all the edges are conditionally independent given the latent positions and the
concentration inequalities are easier to handle.

One extreme is to use all possible edges such that Dt
s,e(z) defined in Definition 5 is a

U -statistic. To be specific, (4) is replaced by

Dt
s,e(z) =

∣∣∣∣∣
√

2(e− t)
n(n− 1)(e− s)(t− s)

t∑
k=s+1

n−1∑
i=1

n∑
j=i+1

1{Ŷ k
ij ≤ z}

−

√
2(t− s)

n(n− 1)(e− s)(e− t)

e∑
k=t+1

n−1∑
i=1

n∑
j=i+1

1{Ŷ k
ij ≤ z}

∣∣∣∣∣.
Using the Hoeffding theorem (Theorem 5.2 in Hoeffding, 1948), we can see that in our cases,
the variance of using all edges and that of only using n/2 edges are of the same order. This
means that using all edges will not improve the statistical accuracy (in terms of rates) but
creates extra computational burden.

Generalised random dot product graph
The random dot product graph models have a generalisation, namely generalised random

dot product graph models (GRDPG, Rubin-Delanchy et al., 2017). Recalling Model 1,
GRDPG assumes that

P {A(t) | X(t)} =
∏

1≤i<j≤n
(Xi(t)

>Ip,qXj(t))
Aij(t)(1−Xi(t)

>Ip,qXj(t))
1−Aij(t),

where Ip,q = diag(1, . . . , 1,−1, . . . ,−1) with p ones and q minus ones. We remark that
the algorithms and theoretical results developed in this paper for RDPGs also hold for
GRDPGs.

4. Numerical Experiments

4.1 Simulations

We now assess the performance of our proposed estimator NonPar-RDPG-CPD (Algo-
rithm 2) in different scenarios, and compare our results with those produced by the network
binary segmentation (NBS) algorithm (Wang et al., 2018a) and the modified neighbourhood
smoothing (MNBS) algorithm (Zhao et al., 2019) 2. The measurements we adopt are the
absolute error |K̂ − K|, where K̂ and K are the numbers of the change point estimators
and the true change points, respectively, and the one-sided Hausdorff distance defined as

d(Ĉ|C) = max
η∈C

min
x∈Ĉ
|x− η|,

where C is the set of true change points, and Ĉ is the set of estimated change points. We
also consider the metric d(C|Ĉ). For Hausdorff distances, we report the medians over 100

2. Code implementing our method can be found in https://github.com/hernanmp/RDPG. The algorithms
are now included in the R package changepints (Xu et al., 2021).
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Monte Carlo simulations, and for |K̂ − K|, we report the means over 100 Monte Carlos
trials. By convention, if Ĉ = ∅, we define d(Ĉ|C) =∞ and d(C|Ĉ) = −∞.

Choice of tuning parameters. Recall that NonPar-RDPG-CPD involves three tuning
parameters: (1) the threshold τ for declaring change points, (2) the number of random
intervals M and (3) the dimension of the embedding d.

(1) We choose τ based on the model selection criteria from Zou et al. (2014). To be
specific, we stack all the Ŷ t

ij into one matrix Ẑ ∈ RT×n/2. For any given τ , we let

{η̂k, k = 0, . . . , K̂(τ) + 1} be the set of change points estimated by NonPar-RDPG-
CPD, with η̂0(τ) = 0 and η̂

K̂(τ)+1
(τ) = T . Define

BICτ =

n/2∑
l=1

[
K̂(τ)∑
k=0

T−1∑
t=2

{η̂k+1(τ)− η̂k(τ)}Ĥktl log(Ĥktl) + (1− Ĥktl) log(1− Ĥktl)

t(T − t)

+ ξK̂(τ)

]
,

where Ĥktl = Ĥ l
η̂k(τ):η̂k+1(τ)(Ẑt,l) with Ĥ l

η̂k(τ):η̂k+1(τ) being the empirical cumulative

distribution function of the observations {Ẑt,l}η̂k(τ)≤t≤η̂k+1(τ)−1 and ξ = log2.1(n)/5.

The metric BICτ is constructed by calculating along each column of Ẑ the BIC-type
scores defined in Equation (2.4) in Zou et al. (2014), and then aggregating the scores
to produce BICτ . We select the model with τ that minimizes BICτ .

(2) As for input representing the dimension of the latent positions d, we set d = 10
throughout this section, with varying d scenarios discussed in Appendix E. In gen-
eral, we find the procedure very robust to the choice of d provided it is no smaller
than the true dimension of the latent positions. This supports our discussions on
misspecification after Theorem 9.

(3) We also set M = 120, which is large enough for the various settings considered to
perform well.

As for the competitor NBS, we follow the proposal by the authors in Wang et al. (2018a)
setting τ to be of order n log2(T ). For the competitor MNBS, we use the default choice of
its tuning parameters with code generously provided by the authors of Zhao et al. (2019).
To be specific, the scaling parameter for the threshold is set as D0 = 0.25, the constant B0

for the neighborhood size is chosen as B0 = 3, the threshold size is set as δ0 = 0.1 and the
local window size is set as h =

√
T .

Disclaimer: We would like to emphasize that the comparisons to the competitors might
not be fair, due to the fact that the tuning parameter choosing schemes in Zhao et al. (2019)
and Wang et al. (2018a) are not meant for dependent networks.

We construct four different models, in each of which, T = 150 and K = 2. The
locations of the change points are evenly spaced, giving rise to three disjoint intervals
A1 = [1, 50], A2 = [51, 100] and A3 = [101, 150]. As for the sizes of networks, we consider
n ∈ {100, 200, 300}.

17



Madrid Padilla, Yu and Priebe

Scenario 1. Stochastic block models. We construct two matrices of probabilities,
P,Q ∈ Rn×n. The matrix P satisfies

Pi,j =

{
0.5, i, j ∈ Bl, l ∈ {1, . . . , 4},
0.3, otherwise,

where B1, . . . ,B4 are evenly sized communities of nodes that form a partition of {1, . . . , n}.
The matrix Q satisfies

Qi,j =

{
0.45, i, j ∈ Bl, l ∈ {1, . . . , 4},
0.2, otherwise.

We then construct a sequence of matrices {E(t)}Tt=1 ⊂ Rn×n such that

Ei,j(t) =

{
Pi,j , t ∈ A1 ∪ A3,

Qi,j , otherwise,

for every i, j ∈ {1, . . . , n}.
The data are then generated with a correlation parameter ρ ∈ {0, 0.5, 0.9}. Specifically,

for any ρ, we have Ai,j(1) ∼ Ber(Pi,j(1)), and between two consecutive change points,

Ai,j(t+ 1) ∼

{
Ber((1− Ei,j(t+ 1))ρ+ Ei,j(t+ 1)), Ai,j(t) = 1,

Ber((Ei,j(t+ 1))(1− ρ)), Ai,j(t) = 0,

for 1 ≤ i < j ≤ n.

Scenario 2. We first generate

Xi(t)
ind∼ Uniform[0.2, 0.8], i = 1, . . . , n, t ∈ A1 ∪ A3.

Then for any ε ∈ {0.05, 0.15, 0.3}, we generate

Xi(t) =

{
Zi(t) + 0.2, i ∈ {1, . . . , bnεc},
Zi(t), otherwise,

where Zi(t)
ind∼ Uniform[0.2, 0.8] for i ∈ {1, . . . , n} and t ∈ A2. Then we generate Ai,j(t) ∼

Ber(Xi(t)Xj(t)).

Scenario 3. For t ∈ {1, 101}, we generate Zi(t)
ind∼ N (0, I3), and for t ∈ A1∪A3\{1, 101},

we generate

Zi(t)

{
ind∼ N (0, I3), with probability 0.9,

= Zi(t− 1), with probability 0.1.

We then set

Pi,j(t) =
exp

{
Zi(t)

>Zj(t)
}

1 + exp {Zi(t)>Zj(t)}
.
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Furthermore, we generate Pi,j(51) ∼ Beta(100, 100), and for t ∈ {52, . . . , 100} we generate

P (t)

{
= P (t− 1), with probability 0.9,

∼ Beta(100, 100), with probability 0.1.

Once the mean matrices {P (t)}Tt=1Rn×n have been constructed, we independently draw
Ai,j(t) ∼ Ber(Pi,j(t)), for all i, j ∈ {1, . . . , n} and t ∈ {1, . . . , T}.

Scenario 4. For t ∈ {1, 101} we generate Xt ∈ R5 as

Xi(t) ∼ Dirichlet(1, 1, 1, 1, 1),

for all i ∈ {1, . . . , n}. Then for t ∈ A1 ∪ A3\{1, 101},

Xi(t)

{
= Xi(t− 1), with probability 0.9,

∼ Dirichlet(1, 1, 1, 1, 1) otherwise,

for all i ∈ {1, . . . , n}. We also have

Xi(51) ∼

{
Dirichlet(500, 500, 500, 500, 500), i ∈ {1, . . . , bnεc},
Dirichlet(1, 1, 1, 1, 1), i ∈ {bnεc+ 1, . . . , n},

and for t ∈ A2\{51},

Xi(t)


= Xi(t− 1), with probability 0.9,

∼ Dirichlet(500, 500, 500, 500, 500), with probability 0.1 if i ∈ {1, . . . , bnεc},
∼ Dirichlet(1, 1, 1, 1, 1), with probability 0.1, if i ∈ {bnεc+ 1, . . . , n},

for all i ∈ {1, . . . , n}, where ε ∈ {0.05, 0.15, 0.3}.
Examples of matrices A(t) generated in each scenario are depicted in Figures 2-3. We

can see qualitative differences among Scenarios 1-4. In particular, Scenario 1 produces
adjacency matrices with block structure. Interpretation is less clear for the other models,
but we see that Scenario 3 seems to generate more dense graphs than Scenarios 2 and
4.

Results comparing NonPar-RDPG-CPD with NBS are provided in Tables 1-4. We
observe that, overall, NonPar-RDPG-CPD provides generally reliable estimation of the
number of change points and their locations.

In Scenario 1 with ρ = 0, a model where the marginal distributions of A(t) only change
in mean, we see from Table 1 that NBS outperforms our proposed approach. This does not
come as a surprise since NBS is designed to detect change points in mean. However, as
ρ increases and the number of samples decreases, the most robust method seems to be
NonPar-RDPG-CPD.

Scenario 2 poses an interesting example where the behaviour of only a fraction of nodes
in the network changes at the change points. Furthermore, the data are generated under
an RDPG model. As shown in Table 2, NonPar-RDPG-CPD seems to be the best method
for estimating the number of change points. A possible explanation is that the underlying
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Figure 2: The top row shows two instances of data generated in Scenario 1. The left
panel corresponds to A(t) for t before the first change point, and the right panel
to A(t) between the first and second change points. The bottom row shows the
corresponding plots for Scenario 2 with ε = 0.05.

changes in the distributions of A(t) not only occur at the level of the means, and hence
the NBS might not be the ideal for this scenario even though it outperforms MNBS in this
framework. Our method was constructed under the assumption of the RDPG model.

To assess the robustness of our method to misspecification, we can look at the perfor-
mance of our method in the context of Scenario 3 which is not an RDPG. Interestingly,
Table 3 shows that NonPar-RDPG-CPD is the best in this model with MNBS coming in
second. In contrast, NBS suffers greatly, overestimating the number of change points. This
makes sense since between change points, the latent positions X(t) remain constant with
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Figure 3: The top row shows two instances of data generated in Scenario 3. The left
panel corresponds to A(t) for t before the first change point, and the right panel
to A(t) between the first and second change points. The bottom row shows the
corresponding plots for Scenario 4 with ε = 0.05.

probability 0.9 and change with probability 0.1. Hence, some of these changes in X(t) could
be confused as change points by NBS.

Finally, Scenario 4 consists of an example of Model 1. However, similarly as Scenario
2, the change points correspond to shifts in the behaviour of only some of the nodes in
the network. In particular, Table 4 suggests that our method performs reasonably well,
improving its performance when the signal-to-noise ratio increases. This is different from
the NBS which once again tends to overestimate the number of change points. As for the
MNBS, we see that this method is unable to detect the change points in this example.
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Figure 4: Examples of adjacency matrices, down-sampled to a 100×100, between the change
points estimated by NonPar-RDPG-CPD in the zebrafish example. From left
to right and from top to bottom, the first two rows of panels correspond to
t = 3, 7, 15, 32, 40, 45, 52, 60, 65, 75, 80 and 87. From left to right and from top to
bottom, the last two rows correspond to t = 6, 8, 9, 10, 11, 12 and 13.
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Table 1: Scenario 1

Method n ρ |K − K̂| d(Ĉ|C) d(C|Ĉ)
NonPar-RDPG-CPD 300 0 0.1 1.0 1.0

NBS 300 0 0.0 1.0 1.0
MNBS 300 0 1.16 50.0 0.0

NonPar-RDPG-CPD 200 0 0.0 1.0 1.0
NBS 200 0 0.0 1.0 1.0

MNBS 200 0 1.92 inf − inf
NonPar-RDPG-CPD 100 0 0.2 1.0 1.0

NBS 100 0 0.0 1.0 1.0
MNBS 100 0 0.84 50.0 0.0

NonPar-RDPG-CPD 300 0.5 0.0 0.0 0.0
NBS 300 0.5 21.2 1.0 43.0

MNBS 300 0.5 0.0 0.0 0.0
NonPar-RDPG-CPD 200 0.5 0.04 0.0 0.0

NBS 200 0.5 21.3 1.0 4.30
MNBS 200 0.5 0.0 0.0 0.0

NonPar-RDPG-CPD 100 0.5 0.16 0.0 0.0
NBS 100 0.5 21.3 1.0 42.0

MNBS 100 0.5 0.12 0.0 0.0
NonPar-RDPG-CPD 300 0.9 0.0 0.0 0.0

NBS 300 0.9 21.0 1.0 43.0
MNBS 300 0.9 3.12 0.0 36.0

NonPar-RDPG-CPD 200 0.9 0.0 0.0 0.0
NBS 200 0.9 21.0 1.0 43.0

MNBS 200 0.9 2.88 0.0 35.0
NonPar-RDPG-CPD 100 0.9 0.0 1.0 1.0

NBS 100 0.9 21.04 1.0 43.0
MNBS 100 0.9 3.28 0.0 35.0

4.2 Real data

Our goal is to estimate change points in the context of the neuronal activity in larval
zebrafish. The data consist of simultaneous whole-brain neuronal activity data at near
single cell resolution (Prevedel et al., 2014). The original data format is a matrix of size
5379 × 5000. This corresponds to the neural activity of 5379 neurons over 5000 frames,
where one second in time corresponds to 20 frames.

To construct the final sequence of networks, we proceed as in Park et al.. Specifically, we
first remove artificial neurons leaving us with a 5105 × 5000 matrix. Then we bin the data
into 100 non-overlapping periods. Each period corresponds to 2.5 seconds of the original
data. The resulting time series is then Z(t) ∈ R5105×50 for t ∈ {1, . . . , 100}. Following
Lyzinski et al. (2017), we finally construct the adjacency matrices A(t) ∈ R5105×5105 as

Ai,j(t) = 1{corr(Zi(t), Zj(t)) > 0.7}, t = 1, . . . , T,

where T = 100.
With the time series {A(t)}Tt=1 in hand, we proceed to run change point detection with

Algorithm 2. The implementation details are the same as those in Section 4.1. However,
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Table 2: Scenario 2

Method n ε |K − K̂| d(Ĉ|C) d(C|Ĉ)
NonPar-RDPG-CPD 300 0.3 0.04 0.0 0.0

NBS 300 0.3 0.28 1.0 1.0
MNBS 300 0.3 0.76 0.0 21.0

NonPar-RDPG-CPD 200 0.3 0.0 0.0 0.0
NBS 200 0.3 0.32 1.0 1.0

MNBS 200 0.3 0.48 0.0 1.0
NonPar-RDPG-CPD 100 0.3 0.08 3.0 3.0

NBS 100 0.3 0.08 1.0 1.0
MNBS 100 0.3 0.64 0.0 18.0

NonPar-RDPG-CPD 300 0.15 0.0 2.0 2.0
NBS 300 0.15 0.4 1.0 1.0

MNBS 300 0.15 0.76 0.0 21.0
NonPar-RDPG-CPD 200 0.15 0.04 3.0 3.0

NBS 200 0.15 0.28 1.0 1.0
MNBS 200 0.15 0.76 0.0 20.0

NonPar-RDPG-CPD 100 0.15 0.28 4.0 10.0
NBS 100 0.15 0.32 1.0 1.0

MNBS 100 0.15 0.48 1.0 5.0
NonPar-RDPG-CPD 300 0.05 0.72 36.0 5.0

NBS 300 0.05 0.84 1.0 9.0
MNBS 300 0.05 1.24 1.0 21.0

NonPar-RDPG-CPD 200 0.05 0.64 37.0 6.0
NBS 200 0.05 0.76 3.0 11.0

MNBS 200 0.05 0.6 4.0 8.0
NonPar-RDPG-CPD 100 0.05 0.72 19.0 15.0

NBS 100 0.05 1.4 inf − inf
MNBS 100 0.05 1.88 inf − inf

Table 3: Scenario 3

Method n |K − K̂| d(Ĉ|C) d(C|Ĉ)
NonPar-RDPG-CPD 300 0.24 0.0 0.0

NBS 300 15.04 1.0 43.0
MNBS 300 0.84 25 36

NonPar-RDPG-CPD 200 0.08 0.0 0.0
NBS 200 14.4 43.0 1.0

MNBS 200 0.84 23 36
NonPar-RDPG-CPD 100 0.52 3.0 5.0

NBS 100 13.96 1.0 43.0
MNBS 100 1.16 23 35

to facilitate computations at every instance of time we randomly sample 800 nodes in the
network and work with a down-sampled version of A(t). After running our method, we
estimate change points at t = 5, 10, 29, 36, 42, 50, 57, 62, 71, 79, 85, and 89. In the original
250 seconds time stamp, the changes correspond to 12.5 25.0, 72.5, 90.0, 105.0, 125.0, 142.5,
155.0, 177.5, 197.5, 212.5, and 222.5 seconds. Simple inspection suggests that our estimated
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Table 4: Scenario 4

Method n ε |K − K̂| d(Ĉ|C) d(C|Ĉ)
NonPar-RDPG-CPD 300 0.3 0.72 35.0 12.0

NBS 300 0.3 19.4 1.0 43.0
MNBS 300 0.3 2.0 inf − inf

NonPar-RDPG-CPD 200 0.3 0.84 40.0 10.0
NBS 200 0.3 19.4 1.0 43.0

MNBS 200 0.3 2.0 inf − inf
NonPar-RDPG-CPD 100 0.3 1.0 30.0 20.0

NBS 100 0.3 9.44 3.0 41.0
MNBS 100 0.3 2.0 inf − inf

NonPar-RDPG-CPD 300 0.15 0.8 34.0 17.0
NBS 300 0.15 20.24 1.0 43.0

MNBS 300 0.15 2.0 inf − inf
NonPar-RDPG-CPD 200 0.15 0.96 40.0 11.0

NBS 200 0.15 17.0 1.0 43.0
MNBS 200 0.15 2.0 inf − inf

NonPar-RDPG-CPD 100 0.15 0.84 34 18.0
NBS 100 0.15 10.64 1.0 41.0

MNBS 100 0.15 2.0 inf − inf
NonPar-RDPG-CPD 300 0.05 0.80 33.0 17.0

NBS 300 0.05 20.48 1.0 43.0
MNBS 300 0.05 2.0 inf − inf

NonPar-RDPG-CPD 200 0.05 0.88 38.0 19.0
NBS 200 0.05 17.56 1.0 43.0

MNBS 200 0.05 2.0 inf − inf
NonPar-RDPG-CPD 100 0.05 1.04 32.0 16.0

NBS 100 0.05 11.48 3.0 41.0
MNBS 100 0.05 2.0 inf − inf

change points are in agreement with the extracted intensity signal of Ca2+ fluorescence
using spatial filters in Figure 3 (c) in Prevedel et al. (2014). As remarked in Park et al.,
a lab scientist induced a change-point at the 16th second, by giving an olfactory stimulus
to the zebrafish. In the scale of our time series {A(t)}Tt=1, this change corresponds to t = 6
which seems to be captured by our algorithm that detected a change point at t = 5.

We also considered change point detection with the algorithm NBS (Wang et al., 2018a).
The set of estimated change points is roughly the same to that estimated by NonPar-RDPG-
CPD: 10, 14, 22, 26, 32, 36, 42, 50, 58, 62, 66, 72, 80, and 90. One important difference,
however, is that NBS did not detect a change point near t = 6, the change point created
by the lab scientist. We also tried the MNBS method (Zhao et al., 2019), but this only
detected changes at 14, 45, 66, 80. Tuning parameters of both NBS and MNBS are chosen
as described in Section 4.1.

Finally, we have included Figure 4 which shows down-sampled versions of A(t) for values
of t between estimated change points. This reinforces our intuition that the structural breaks
estimated with NonPar-RDPG-CPD are meaningful.
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5. Discussions

In this paper, we have studied the offline change point localization problem in a sequence
of dependent nonparametric random dot product graphs. We allow for a weakly dependent
process along the time and introduce the dependence within networks via latent positions.
In fact, conditional on the latent positions, the edges within a network are independent
and one may wish to further allow for dependence among edges conditional on the latent
positions. We remark that this is technically feasible - one can incorporate a weak depen-
dence version of Bernstein’s inequality (Lemma 14) in the estimation of the latent positions
(Lemma 11). Such deployment requires a data generating mechanism characterizing the de-
pendence among edges, but without a natural distance among edges, we refrain our pursuit
on this direction.
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Appendix A. Technical details of Section 3.1

Proof [Proof of Lemma 7] For any i, j ∈ {1, . . . , n}, i 6= j, it holds that

P{Aij |Xi, Xj} = X>i Xj = X>i U
>UXj ,

for any orthogonal operator U ∈ Rd×d. In this proof, by the equivalence in terms of the
distributions F and F̃ , we mean the equivalence up to a rotation, which is detailed in
Definition 3. Without loss of generality, if a rotation is needed, we omit it in the notation.

We divide this proof into two cases: (a) d = 1 and (b) d > 1.

(a) p = 1.

Since the entries of A and Ã are Bernoulli random variables, they only take values in
{0, 1}n×n. For any symmetric matrix v ∈ {0, 1}n×n, we have

P{A = v} = E

E

n−1∏
i=1

n∏
j=i+1

1{Aij = vij}

∣∣∣∣∣{Xl}nl=1


= E

n−1∏
i=1

n∏
j=i+1

{(XiXj)vij + (1−XiXj)(1− vij)}

 . (9)

If L = L̃, then we have the following.

• If vij ≡ 1, then

(9) = E

n−1∏
i=1

n∏
j=i+1

(XiXj)

 =
{
E(Xn−1

1 )
}n
,

which implies that EF (Xn−1
1 ) = E

F̃
(X̃n−1

1 ). Note that in order to have an edge, n ≥ 2,
which implies that n− 1 ≥ 1.

• If there is one and only one pair (i, j), i < j, such that vij = vji = 0, and vkl = 1,
(k, l) /∈ {(i, j), (j, i)}, then without loss of generality, we let (i, j) = (1, 2). If n = 2,
then

(9) = 1− {E(X1)}2,

which implies that EF (Xn−1
1 ) = E

F̃
(X̃n−1

1 ).

If n ≥ 3, then

(9) = E

n−1∏
i=3

n∏
j=i+1

(XiXj) ·
2∏
r=1

n∏
l=3

(XrXl) · (1−X1X2)


=
{
E(Xn−2

1 )
}2 {E(Xn−1

1 )
}n−2 −

{
E(Xn−1

1 )
}n
,

which implies EF (Xn−2
1 ) = E

F̃
(X̃n−2

1 ).
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• If n ≥ 3, then for k ∈ {2, . . . , n − 1} , without loss of generality, let v1j = vj1 = 0,
j ∈ {2, . . . , k + 1}, and vrs = vsr = 1 otherwise. We have that

(9) = E

 n−1∏
i=k+2

n∏
j=i+1

(XiXj) ·
k+1∏
l=1

n∏
i=k+2

(XlXi) ·
k+1∏
r=2

(1−X1Xr)


=
{
E(Xn−1

1 )
}n−k−1 E

[
k+1∏
l=1

Xn−k−1
l ·

k+1∏
r=2

(1−X1Xr)

]

=
{
E(Xn−1

1 )
}n−k−1

k∑
r=0

(
k

r

)
(−1)rE(Xn−k−1+r

1 )
[
E(Xn−k

1 )
]r
. (10)

Note that, if k = 2, then the summands in (10) include moments n−1, n−2 and n−3.
We have already shown that EF (Xn−1

1 ) = E
F̃

(X̃n−1
1 ) and EF (Xn−2

1 ) = E
F̃

(X̃n−2
1 ),

therefore (10) implies that EF (Xn−3
1 ) = E

F̃
(X̃n−3

1 ).

• By induction, for n > k0 and k0 ≥ 3, if it holds that EF (Xn−s
1 ) = E

F̃
(X̃n−s

1 ),

s = 1, . . . , k0, then we have EF (Xn−k0−1
1 ) = E

F̃
(X̃n−k0−1

1 ), due to the fact that
the summands in (10) include moment n− s, s = 1, . . . , k0 + 1.

We conclude that if L = L̃, then EF (Xk
1 ) = E

F̃
(X̃k

1 ), k = 1, . . . , n− 1.

If EF (Xk
1 ) = E

F̃
(X̃k

1 ), k = 1, . . . , n− 1, then it follows from that for any v,

(9) =

∑
i<j 1{vij=0}∑

l=0

(∑
i<j 1{vij = 0}

l

)
(−1)

∑
i<j 1{vij=0}−l

× E


∏
vij=1

XiXj

∑
i<j 1{vij=0}−l∏

r=1
virjr=0

XirXjr

 ,

which is a function solely of EF (Xk
1 ), k = 1, . . . , n− 1. We, therefore, have that L = L̃.

(b) d > 1.
Since the entries of A and Ã are Bernoulli random variables, they only take values in

{0, 1}n×n. For any symmetric matrix v ∈ {0, 1}n×n, we have

P{A = v} = E

E

n−1∏
i=1

n∏
j=i+1

1{Aij = vij}

∣∣∣∣∣{Xl}nl=1


= E

n−1∏
i=1

n∏
j=i+1

{(
d∑

k=1

Xi,kXj,k

)
vij +

(
1−

d∑
k=1

Xi,kXj,k

)
(1− vij)

} . (11)

If L = L̃, then we have the following.
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• If vij ≡ 1, then

(11) = E

n−1∏
i=1

n∏
j=i+1

(
d∑

k=1

Xi,kXj,k

)
= E

 n∏
j=2

(
p∑

k=1

X1,kXj,k

)
·
n−1∏
i=2

n∏
j=i+1

(
d∑

k=1

Xi,kXj,k

)
= E


 d∑
k2,...,kn=1

(
n∏
l=2

X1,kl

)
·

(
n∏
l=2

Xl,kl

) ·
n−1∏
i=2

n∏
j=i+1

(
d∑

k=1

Xi,kXj,k

)
=

d∑
k2,...,kn=1

E

(
n∏
l=2

X1,kl

)
E


(

n∏
l=2

Xl,kl

)
·

n−1∏
i=2

n∏
j=i+1

(
d∑

k=1

Xi,kXj,k

) , (12)

where the third identity follows from the independence assumption. Note that for any
(k2, . . . , kn) ∈ {1, . . . , p}⊗(n−1), the term

E


(

n∏
l=2

Xl,kl

)
·

n−1∏
i=2

n∏
j=i+1

(
d∑

k=1

Xi,kXj,k

)
in (12) does not involve X1, and the term

E

(
n∏
l=2

X1,kl

)
includes all possible terms of the form

E

(
d∏
l=1

Xkl
1,l

)
,

d∑
l=1

kl = n− 1, kl ≥ 0, l ∈ {1, . . . , d}. (13)

Due to the exchangeablility, we conclude that (11) is solely a function of polynomials
of (13).

If n = 2, then due to Definition 1, we have that L = L̃ implies that

E

(
d∏
l=1

Xkl
1,l

)
= E

(
d∏
l=1

X̃kl
1,l

)
,

d∑
l=1

kl = n− 1, kl ≥ 0, l ∈ {1, . . . , d}.

• If n ≥ 3, then we prove by induction. Assume that

E

(
p∏
l=1

Xkl
1,l

)
= E

(
p∏
l=1

X̃kl
1,l

)
,

p∑
l=1

kl = n− k, . . . , n− 1, kl ≥ 0, l ∈ {1, . . . , p},

where n− 1 ≥ n− k ≥ 2. We now proceed to prove that

E

(
p∏
l=1

Xkl
1,l

)
= E

(
p∏
l=1

X̃kl
1,l

)
,

p∑
l=1

kl = n− k− 1, . . . , n− 1, kl ≥ 0, l ∈ {1, . . . , d}.

(14)
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To show this, we assume that v1j = vj1 = 0, j ∈ {2, . . . , k+1}, and vrs = 1 otherwise.
We have that

(11) = E

k+1∏
j=2

(
1−

s∑
s=1

X1,sXj,s

)
·

n∏
l=k+2

(
d∑
s=1

X1,sXl,s

)
·
n−1∏
i=2

n∏
r=i+1

(
d∑
s=1

Xi,sXr,s

)
= (−1)kE

{
n∏

l=k+2

(
d∑
s=1

X1,sXl,s

)
·
n−1∏
i=2

n∏
r=i+1

(
d∑
s=1

Xi,sXr,s

)}
+ f(X)

= (−1)k
d∑

sk+2,...,sn=1

E

(
n∏

l=k+2

X1,sl

)
E

{
n∏

l=k+2

(
d∑
s=1

Xl,s

)

×
n−1∏
i=2

n∏
r=i+1

(
d∑
s=1

Xi,sXr,s

)}
+ f(X),

where f(X) is solely a function of

E

(
d∏
l=1

Xkl
1,l

)
,

d∑
l=1

kl = n− k, . . . , n− 1, kl ≥ 0, l ∈ {1, . . . , d}.

Note that
d∑

sk+2,...,sn=1

E

(
n∏

l=k+2

X1,sl

)
is a function of

E

(
d∏
l=1

Xkl
1,l

)
,

d∑
l=1

kl = n− k − 1, kl ≥ 0, l ∈ {1, . . . , d}.

Therefore we have shown (14).

To this end, we have that L = L̃ implies that

E

(
d∏
l=1

Xkl
1,l

)
= E

(
d∏
l=1

X̃kl
1,l

)
,

d∑
l=1

kl = 1, . . . , n− 1, kl ≥ 0, l ∈ {1, . . . , d}. (15)

To show that (15) implies that L = L̃, we notice that for any v,

(11) =

∑
i<j 1{vij=0}∑

l=0

(−1)l

[{ ∑
{(i1,j1),...,(il,jl)}
∈{(i,j): vij=0, i<j}

[
l∏

r=1

{
d∑

k=1

(Xil,kXjl,k)

}]}

×
∏

(i,j): vij=1, i<j

(
d∑

k=1

Xi,kXj,k

)]
,
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which is solely a function of

E

(
d∏
l=1

Xkl
1,l

)
,

d∑
l=1

kl = 1, . . . , n− 1, kl ≥ 0, l ∈ {1, . . . , d}.

The final claim holds.

Proof [Proof of Lemma 8] For simplicity, we assume n is an even number. Let O =
{(i, n/2 + i), i = 1, . . . , n/2}. Let

z∗ ∈ argsup
z∈[0,1]

|G(z)− G̃(z)|.

Note that∣∣∣∣∣∣
√

2

n

∑
(i,j)∈O

(
1{Yij ≤ z∗} − 1{Ỹij ≤ z∗}

)∣∣∣∣∣∣
=

∣∣∣∣∣
√

2

n

∑
(i,j)∈O

{
(1{Yij ≤ z∗} − E [1{Yij ≤ z∗}])−

(
1{Ỹij ≤ z∗} − E

[
1{Ỹij ≤ z∗}

])}

+

√
n

2

{
E [1{Yij ≤ z∗}]− E

[
1{Ỹij ≤ z∗}

]} ∣∣∣∣∣
≥
√
n

2

∣∣∣E [1{Yij ≤ z∗}]− E
[
1{Ỹij ≤ z∗}

]∣∣∣−
∣∣∣∣∣∣
√

2

n

∑
(i,j)∈O

(1{Yij ≤ z∗} − E [1{Yij ≤ z∗}])

∣∣∣∣∣∣
−

∣∣∣∣∣∣
√

2

n

∑
(i,j)∈O

(
1{Ỹij ≤ z∗} − E

[
1{Ỹij ≤ z∗}

])∣∣∣∣∣∣
=κ0

√
n/2−

∣∣∣∣∣∣
√

2

n

∑
(i,j)∈O

(1{Yij ≤ z∗} − E [1{Yij ≤ z∗}])

∣∣∣∣∣∣
−

∣∣∣∣∣∣
√

2

n

∑
(i,j)∈O

(
1{Ỹij ≤ z∗} − E

[
1{Ỹij ≤ z∗}

])∣∣∣∣∣∣ . (16)

Next, it follows from Hoeffding’s inequality that

P

{
max

{∣∣∣∣∣∣
√

2

n

∑
(i,j)∈O

(1{Yij ≤ z∗} − E [1{Yij ≤ z∗}])

∣∣∣∣∣∣ ,∣∣∣∣∣∣
√

2

n

∑
(i,j)∈O

(
1{Ỹij ≤ z∗} − E

[
1{Ỹij ≤ z∗}

])∣∣∣∣∣∣
}
>
√

log(n)

}
≤ 2n−4. (17)
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Combining (16) and (17), we have that with probability at least 1 − 2n−4,∣∣∣∣∣∣
√

2

n

∑
(i,j)∈O

(
1{Yij ≤ z∗} − 1{Ỹij ≤ z∗}

)∣∣∣∣∣∣ ≥ κ0

√
n/2− 2

√
log(n). (18)

We then prove by contradiction. If L = L̃, then it follows from Hoeffding’s inequality
that

P


∣∣∣∣∣∣
√

2

n

∑
(i,j)∈O

(
1{Yij ≤ z∗} − 1{Ỹij ≤ z∗}

)∣∣∣∣∣∣ ≤√log(n)

 ≥ 1− 2n−4. (19)

Due to Assumption 1, (18) and (19) contradict with each other, which implies that L 6= L̃.

Appendix B. Large probability events

Define

∆t
s,e(z) =

e∑
k=s+1

wk
∑

(i,j)∈O

(
1{Ŷ k

ij ≤ z} − E
{
1{Y k

ij ≤ z}
})

,

where

wk =


√

2
n

√
e−t

(e−s)(t−s) , k = s+ 1, . . . , t,

−
√

2
n

√
t−s

(e−s)(e−t) , k = t+ 1, . . . , e.

In this section, we are to show the following two events hold with probability tending
to 1, as (n ∨ T )→∞,

B1 =

{
max

0≤s<t<e≤T
∆t
s,e ≤ C9

√
T

1− ρ
max{d log(n ∨ T ), d3/2

√
log(n ∨ T )}

}

and

B2 =

{
max

0≤s<t<e≤T
sup
z∈[0,1]

∣∣∣∣∣∣
√

2

n(e− s)

e∑
k=s+1

∑
(i,j)∈O

(
1{Ŷ k

ij ≤ z} − E
{
1{Y k

ij ≤ z}
})∣∣∣∣∣∣

≤ C9

√
T

1− ρ
max{d log(n ∨ T ), d3/2

√
log(n ∨ T )}

}
.

This is formally stated in Lemma 16. To reach there, we denote

E1 =

{
max

t=1,...,T
‖U>Pt

(A(t)− Pt)UPt‖F ≤ C1

√
log(n ∨ T )

}
,

E2 =

{
max

t=1,...,T
‖(A(t)− Pt)UPt‖2→∞ ≤ C2

√
d log(n ∨ T )

}
,
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E3 =

{
max

t=1,...,T
‖A(t)− Pt‖op ≤ C3

√
n

}
and

E4 =

{
2−1n min

k=1,...,K
µkd ≤ min

t=1,...,T
λd(Pt) ≤ max

t=1,...,T
λ1(Pt) ≤ (3/2)n max

k=1,...,K
µk1

}
,

where C1 > 4
√

6, C2 > 4
√

6, C3 > 0 are universal constants. Throughout, ‖ · ‖2→∞ denotes
the two-to-infinity norm. To be specific, for any matrix M ∈ Rm1×m2 ,

‖M‖2→∞ = max
x∈Rm2 : ‖x‖2=1

‖Ax‖∞,

where ‖Ax‖∞ denotes the largest absolute value of the entries in Ax.

Lemma 10 Under Model 1, for any t ∈ {1, . . . , T}, it holds that

P{λd+1(Pt) = 0} = 1.

Proof For any t ∈ {1, . . . , T} , we have that

Pt = X(t)(X(t))>.

For any realisation of X(t) ∈ Rn×d, λd+1(Pt) = 0. Thus the final claim holds.

Lemma 11 Under Model 1, we have that

max
{
P
{
E1 | {X(t)}Tt=1

}
, P {E1}

}
≥ 1− (n ∨ T )−c1 , (20)

max
{
P
{
E2 | {X(t)}Tt=1

}
, P {E2}

}
≥ 1− (n ∨ T )−c2 (21)

and

max
{
P
{
E3 | {X(t)}Tt=1

}
, P {E3}

}
≥ 1− 4Te−n, (22)

where c1, c2 > 0 are universal constants depending on C1 and C2, respectively.

Proof We start with P
{
E1 | {X(t)}Tt=1

}
. For any (i, j) ∈ {1, . . . , d}⊗2 and any t ∈

{1, . . . , T}, it satisfies that

[U>Pt
(A(t)−Pt)UPt ]ij = 2

n−1∑
k=1

n∑
l=k+1

(UPt)li(A(t)−Pt)lk(UPt)kj+
n∑
k=1

(UPt)ki(A(t)−Pt)kk(UPt)kj .

(23)
For any ε > 0, there exists an absolute constant c > 0 such that

P

{∣∣∣∣∣2
n−1∑
k=1

n∑
l=k+1

(UPt)li(A(t)− Pt)lk(UPt)kj

∣∣∣∣∣ > ε

∣∣∣∣∣{X(t)}Tt=1

}
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≤2 exp

{
− cε2∑n−1

k=1

∑n
l=k+1(UPt)

2
li(UPt)

2
kj

}

≤2 exp

− cε2√∑n
k=1

∑n
l=1(UPt)

2
li(UPt)

2
kj

 = 2 exp{−cε2}, (24)

where the first inequality follows from Theorem 2.6.3 in Vershynin (2018), and the identity
follows from the definitions of UP . Moreover,∣∣∣∣∣

n∑
k=1

(UPt)ki(A(t)− Pt)kk(UPt)kj

∣∣∣∣∣ ≤
n∑
k=1

|(UP )ki(UP )kj | ≤

√√√√ n∑
k=1

(UP )2
ki

n∑
k=1

(UP )2
kj = 1. (25)

Combining (23), (24) and (25), and taking ε to be (C1/2)
√

log(n ∨ T ), we have that

P{Ec1 | {X(t)}Tt=1} ≤ 2Td2 exp

{
−C

2
1

32
log(n ∨ T )

}
≤ (n ∨ T )−c1 ,

where c1 > 0 depends on C1.
In addition, it holds that

P{E1} = E
{
P{E1 | {X(t)}Tt=1}

}
≥ 1− (n ∨ T )−c1 ,

therefore, (20) follows.

We then show that (21) holds. For i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, we have that

[{A(t)− Pt}UPt ]ij =
∑

l∈{1,...,n}\{i}

{(A(t)− Pt}il(UPt)lj + {A(t)− Pt}ii(UPt)ij .

Since
|{A(t)− Pt}ii(UPt)ij | ≤ 1

and by Hoeffding’s inequality that there exists a universal constant c > 0, for any ε > 0,

P


∣∣∣∣∣∣

∑
l∈{1,...,n}\{i}

{A(t)− Pt}il(UPt)lj

∣∣∣∣∣∣ > ε

∣∣∣∣∣{X(t)}Tt=1


≤2 exp

{
− cε2∑

l∈{1,...,n}\{i}(UPt)
2
lj

}
≤ 2 exp{−cε2}, . (26)

we have that

P
{

max
t=1,...,T

‖{A(t)− Pt}Ut‖22→∞ > (ε+
√
d)2

}

=P

 max
t=1,...,T

max
i=1,...,n

d∑
j=1

[
n∑
l=1

{A(t)− Pt}il(UPt)lj

]2

> (ε+
√
d)2


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≤nTd max
t=1,...,T

max
i=1,...n

max
j=1,...,d

P


∣∣∣∣∣
n∑
l=1

{A(t)− Pt}il(UPt)lj

∣∣∣∣∣
2

>
(ε+

√
d)2

d


≤nTd max

t=1,...,T
max
i=1,...n

max
j=1,...,d

P


∣∣∣∣∣∣

∑
l∈{1,...,n}\{i}

{A(t)− Pt}il(UPt)lj

∣∣∣∣∣∣ > ε√
d


≤2nTd exp

{
−cε

2

d

)
,

and (21) follows by taking ε = C2/c
√
d log(n ∨ T ).

Lastly, it follows from Eq.(4.18) in Vershynin (2018) that there exists a universal constant
C3 > 0, such that

P{‖A(t)− Pt‖op > C
√
n | {X(t)}Tt=1} ≤ 4e−n,

which leads to (22).

Lemma 12 Under Model 1, it holds that

P
{

2−1n min
k=1,...,K

µkd ≤ min
t=1,...,T

λd(Pt) ≤ max
t=1,...,T

λ1(Pt) ≤ (3/2)n max
k=1,...,K

µk1

}
> 1− (n ∨ T )−c5 ,

Proof We first fix t ∈ {1, . . . , T} and for simplicity drop the dependence on t notation-
ally. For i ∈ {1, . . . , n}, let Yi = XiΣ

−1/2 and Y = (Y1, . . . , Yn)> = XΣ−1/2, satisfying
E{n−1Y >Y } = Id.

It follows from Lemma 4.1.5 in Vershynin (2018) that for any ε > 0, if

‖n−1Y >Y − I‖op ≤ max{ε, ε2}, (27)

then the eigenvalues of n−1Y >Y satisfy

(1−max{ε, ε2})2 ≤ λmin(n−1Y >Y ) ≤ λmax(n−1Y >Y ) ≤ (1 + max{ε, ε2})2,

which implies that

n(1−max{ε, ε2})2 ≤ λmin(Σ−1/2X>XΣ−1/2)

≤λmax(Σ−1/2X>XΣ−1/2) ≤ n(1 + max{ε, ε2})2.

Denote S = Σ−1/2X>XΣ−1/2. We then have

λ1(P ) = λmax(X>X) = λmax(Σ1/2SΣ1/2) ≤ n(1 + max{ε, ε2})2 max
k=1,...,K

µk1

and

λd(P ) = λmin(X>X) = λmin(Σ1/2SΣ1/2) = max
dim(E)=d

min
v∈SE
〈Σ1/2SΣ1/2v, v〉

= max
dim(E)=d

min
v∈SE
〈SΣ1/2v,Σ1/2v〉 = max

dim(E)=d
min
v∈SE

‖Σ1/2v‖2
〈
S

Σ1/2v

‖Σ1/2v‖
,

Σ1/2v

‖Σ1/2v‖

〉
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≥ max
dim(E)=d

min
v∈SE

〈
S

Σ1/2v

‖Σ1/2v‖
,

Σ1/2v

‖Σ1/2v‖

〉
min

k=1,...,K
µkd ≥ max

dim(E)=d
min
v∈SE
〈Sv, v〉 min

k=1,...,K
µkd

≥n(1−max{ε, ε2})2 min
k=1,...,K

µkd.

Now it suffices to investigate (27). Since

‖n−1Y >Y − I‖op = sup
v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

{
(Y >i v)2 − 1

}∣∣∣∣∣ ,
taking N to be a 1/4-net on Sd−1, it holds that

P

{
‖n−1Y >Y − I‖op > C

√
log(n ∨ T )

n

}

≤ 9d max
v∈N

P

{∣∣∣∣∣ 1n
n∑
i=1

{
(Y >i v)2 − 1

}∣∣∣∣∣ > C

√
log(n ∨ T )

n

}
≤2× 9d exp{−c log(n ∨ T )},

where C, c > 0 are universal constants.

Thus we have that

P
{

2−1n min
k=1,...,K

µkd ≤ min
t=1,...,T

λd(Pt) ≤ max
t=1,...,T

λ1(Pt) ≤ (3/2)n max
k=1,...,K

µk1

}
> 1− (n ∨ T )−c4 ,

where c4 > 0 is a universal constant.

Lemma 13 is adapted from Theorem 8 in Athreya et al. (2018).

Lemma 13 It holds that

P

{
max

t=1,...,T
min
W∈Od

‖X̂(t)−X(t)W‖2→∞ > CW

√
d log(n ∨ T ) ∨ d3/2

n1/2

}
≤1− (n ∨ T )−c1 − (n ∨ T )−c2 − 4Te−n − (n ∨ T )−c4 .

Proof [Proof of Lemma 13] We first work on a fixed t ∈ {1, . . . , T}, and then use union
bounds arguments to reach the final conclusion. For simplicity, we drop the dependence on
t for now. Recall that

X̂ = UAS
1/2
A and X = UPS

1/2
P .

Define W ∗ = W1W
>
2 , where W1 and W2 are the left and right singular vectors of U>P UA,

that U>P UA = W1Λ1W
>
2 . Since W ∗ ∈ Od, we have that

min
W∈Od

‖X̂ −XW‖2→∞ ≤ ‖X̂ −XW ∗‖2→∞.
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In the rest of this proof, denote by λ1, . . . , λn as the eigenvalues of P , with |λ1| ≥ · · · |λn|;
denote by λ̂1, . . . , λ̂n the eigenvalues of A, with |λ̂1| ≥ · · · ≥ |λ̂n|.

Step 1. We first provide a deterministic upper bound for ‖W ∗S1/2
A − S1/2

P W ∗‖F.
We have,

W ∗SA = (W ∗ − U>P UA)SA + U>P UASA = (W ∗ − U>P UA)SA + U>P AUA

= (W ∗ − U>P UA)SA + U>P (A− P )UA + U>P PUA

= (W ∗ − U>P UA)SA + U>P (A− P )(UA − UPU>P UA) + U>P (A− P )UP + SPU
>
P UA

= (W ∗ − U>P UA)SA + U>P (A− P )(UA − UPU>P UA) + U>P (A− P )UP

+ SP (U>P UA −W ∗) + SPW
∗,

where the second and the fourth inequalities are due to

AUA = UASAU
>
AUA = UASA and U>P P = U>P UPSPU

>
P = SPU

>
P ,

respectively. Therefore,

‖W ∗SA − SPW ∗‖F ≤ ‖W ∗ − U>P UA‖F(‖SA‖op + ‖SP ‖op) + ‖U>P (A− P )(UA − UPU>P UA)‖F
+ ‖U>P (A− P )UP ‖F

≤ ‖In − Λ1‖F‖W1‖op‖W2‖op(‖SA‖op + ‖SP ‖op)

+ ‖A− P‖op‖UA − UPU>P UA‖F + ‖U>P (A− P )UP ‖F
≤ ‖In − Λ1‖F(2λ1 + ‖A− P‖op) + ‖A− P‖op‖UA − UPU>P UA‖F

+ ‖U>P (A− P )UP ‖F = (I) + (II) + (III), (28)

where λ1 is the largest singular value of P and the last inequality is due to Weyl’s inequality.
In addition, let {θ1, . . . , θd} be the principal angles between the column spaces spanned

by UA and UP . We thus have

‖In − Λ1‖F =

√√√√ d∑
i=1

(1− cos θi)2 ≤
√
d(1− cos2 θ1) =

√
d sin2 θ1 =

√
d min
W∈Od

‖UA − UPW‖2op

≤
√
d min
W∈Od

‖UA − UPW‖2F ≤
4d3/2‖A− P‖2op

λ2
d

, (29)

where the first and second inequalities are due to cos θi, sin θi ∈ [0, 1], and the last inequality
is due to Theorem 2 in Yu et al. (2014) and the fact that λd+1 = 0.

As for term (II), there exists W ∈ Od such that

‖UA − UPU>P UA‖F =
√

tr(UAU>A − UAU>AUPU>P ) =
√
d− tr(U>AUPWW>U>P UA)

=

√√√√ d∑
i=1

(1− cos2 θi) =

√√√√ d∑
i=1

sin2 θi ≤
2
√
d‖A− P‖op

λd
. (30)
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Term (III) is dealt in Lemma 11.

As for ‖W ∗S1/2
A −S1/2

P W ∗‖F, we note that the ij-th entry of W ∗S
1/2
A −S1/2

P W ∗ satisfies
that

|W ∗ij(λ̂
1/2
j − λ1/2

i )| =

∣∣∣∣∣W ∗ij(λ̂j − λi)λ̂
1/2
j + λ

1/2
i

∣∣∣∣∣ =

∣∣∣∣∣(W ∗SA − SPW ∗)ijλ̂
1/2
j + λ

1/2
i

∣∣∣∣∣ ≤ |(W ∗SA − SPW ∗)ij |λ
1/2
d

,

which means

‖W ∗S1/2
A − S1/2

P W ∗‖F ≤
‖W ∗SA − SPW ∗‖F

λ
1/2
d

≤
8d3/2‖A− P‖2opλ1

λ
5/2
d

+
4d3/2‖A− P‖3op

λ
5/2
d

+
2d1/2‖A− P‖2op

λ
3/2
d

+
‖U>P (A− P )UP ‖F

λ
1/2
d

. (31)

Step 2. We then provide an upper bound for minW∈Od
‖X̂ −XW‖2→∞. Since

min
W∈Od

‖X̂ −XW‖2→∞ ≤ ‖X̂ −XW ∗‖2→∞,

in the rest of this step, we work on ‖X̂ −XW ∗‖2→∞. We have that

‖X̂ −XW ∗‖2→∞ = ‖UAS1/2
A − UPS1/2

P W ∗‖2→∞
=‖UAS1/2

A − UPW ∗S1/2
A + UP (W ∗S

1/2
A − S1/2

P W ∗)‖2→∞
≤‖(UA − UPU>P UA)S

1/2
A ‖2→∞ + ‖UP (U>P UA −W ∗)S

1/2
A ‖2→∞

+ ‖UP (W ∗S
1/2
A − S1/2

P W ∗)‖2→∞
=(I) + (II) + (III). (32)

As for term (I), it holds that

(UA − UPU>P UA)S
1/2
A = (A− P )UAS

−1/2
A − UPU>P (A− P )UAS

−1/2
A

=(A− P )UPW
∗S
−1/2
A − UPU>P (A− P )UPW

∗S
−1/2
A

+ (I − UPU>P )(A− P )(UA − UPW ∗)S−1/2
A ,

which satisfies

‖(A− P )UPW
∗S
−1/2
A ‖2→∞ ≤ ‖(A− P )UP ‖2→∞(λ̂d)

−1/2,

‖UPU>P (A− P )UpW
∗S
−1/2
A ‖2→∞ ≤ ‖U>P (A− P )UP ‖F(λ̂d)

−1/2

and

‖(I − UPU>P )(A− P )(UA − UPW ∗)S−1/2
A ‖2→∞

≤‖A− P‖op‖UA − UPW ∗‖F(λ̂d)
−1/2 ≤

4d3/2‖A− P‖3op(λ̂d)
−1/2

λ2
d

,
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which is due to (30). Therefore we have that

‖(I)‖2→∞ ≤ ‖(A− P )UP ‖2→∞(λ̂d)
−1/2 + ‖U>P (A− P )UP ‖F(λ̂d)

−1/2

+
4d3/2‖A− P‖3op(λ̂d)

−1/2

λ2
d

. (33)

As for term (II), it holds that

‖UP (U>P UA−W ∗)S
1/2
A ‖2→∞ ≤ ‖I−Λ1‖F(λ1+‖A−P‖op)1/2 ≤

4d3/2‖A− P‖2op

λ2
d

√
3λ1

2
. (34)

As for term (III), it holds that

‖UP (W ∗S
1/2
A − S1/2

P W ∗)‖2→∞ ≤ ‖(W ∗S1/2
A − S1/2

P W ∗)‖F. (35)

Combining (31), (32), (33), (34) and (35), we have that

min
W∈Od

‖X̂ −XW‖2→∞ ≤ ‖(A− P )UP ‖2→∞(λ̂d)
−1/2 + ‖U>P (A− P )UP ‖F(λ̂d)

−1/2

+
4d3/2‖A− P‖3op(λ̂d)

−1/2

λ2
d

+
4d3/2‖A− P‖2op

λ2
d

√
3λ1

2

+
8d3/2‖A− P‖2opλ1

λ
5/2
d

+
4d3/2‖A− P‖3op

λ
5/2
d

+
2d1/2‖A− P‖2op

λ
3/2
d

+
‖U>P (A− P )UP ‖F

λ
1/2
d

≤ ‖(A− P )UP ‖2→∞√
λd − ‖A− P‖op

+
‖U>P (A− P )UP ‖F√
λd − ‖A− P‖op

+
4d3/2‖A− P‖3op

λ2
d

√
λd − ‖A− P‖op

+
4d3/2‖A− P‖2op

λ2
d

√
3λ1

2

+
8d3/2‖A− P‖2opλ1

λ
5/2
d

+
4d3/2‖A− P‖3op

λ
5/2
d

+
2d1/2‖A− P‖2op

λ
3/2
d

+
‖U>P (A− P )UP ‖F

λ
1/2
d

,

where the second inequality follows from that λ̂d ≥ λd − ‖A− P‖op. It holds on the event
E1 ∩ E2 ∩ E3 ∩ E4, that

P

{
max

t=1,...,T
min
W∈Od

‖X̂(t)−X(t)W‖2→∞ > CW

√
d log(n ∨ T ) ∨ d3/2

n1/2

}
≤ 1− (n ∨ T )−c1 − (n ∨ T )−c2 − (n ∨ T )−c4 − 4Te−n,

where CW > 0 is a universal constant depending only on C1, C2, C3,maxk=1,...,K µ
k
1 and

mink=1,...,K µ
k
d.

We first state a weakly dependent version of Bernstein inequality. This is in fact Theo-
rem 4 in Delyon (2009). The notation in Lemma 14 only applies within Lemma 14.
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Lemma 14 Let {X1, . . . , XT } be centred random variables. Define

g =

T∑
t=2

t−1∑
s=1

‖Xs‖∞‖E(Xt | Fs)‖∞, v =

T∑
t=1

‖E(X2
t | Ft−1)‖∞

and
m = max

t=1,...,T
‖Xt‖∞,

where Fs = σ{X1, . . . , Xs}, s ≥ 1, is the natural σ-field generated by {Xi}si=1. For any
ε > 0, it holds that

P

{∣∣∣∣∣
T∑
t=1

Xt

∣∣∣∣∣ > ε

}
≤ 2 exp

(
− ε2

2(v + 2g) + 2εm/3

)
.

Lemma 15 Under Model 1, it holds that for any z ∈ R,

P
{

max
0≤s<t<e≤T

∣∣∆t
s,e(z)

∣∣ ≥ C8

√
T max{

√
d log(n ∨ T ), d3/2}

}
≤ 4(n ∨ T )−c + 4Te−n,

where c = min{c1, c2, c4, c5} − 1 > 0 is a universal constant.
In addition,

P

{
max

0≤s<t<e≤T

∣∣∣∣∣∣
√

2

n(e− s)

e∑
k=s+1

∑
(i,j)∈O

(
1{Ŷ k

ij ≤ z} − E
{
1{Y k

ij ≤ z}
})∣∣∣∣∣∣

≥ C8

√
T

1− ρ
max{

√
d log(n ∨ T ), d3/2}

}
≤ 4(n ∨ T )−c + 4Te−n, (36)

where c = min{c1, c2, c4, c5} − 1 > 0 is a universal constant.

Proof For any (i, j) ∈ O and t ∈ {1, . . . , T}, it holds that∣∣∣Ŷ t
ij − Y t

ij

∣∣∣ =
∣∣∣(X̂i(t))

>X̂j(t)− (Xi(t))
>Xj(t)

∣∣∣ =
∣∣∣(X̂i(t))

>X̂j(t)− (WtXi(t))
>WtXj(t)

∣∣∣
≤
∣∣∣(X̂i(t)−WtXi(t))

>WtXj(t)
∣∣∣+
∣∣∣(X̂i(t)−WtXi(t))

>(WtXj(t)− X̂j(t))
∣∣∣

+
∣∣∣(X̂j(t)−WtX̂j(t))

>WtXi(t)
∣∣∣

≤2 max
t=1,...,T

min
W∈Od

‖X̂(t)−X(t)W>‖2→∞ max
t=1,...,T
i=1,...,n

‖Xi(t)‖

+

(
max

t=1,...,T
min
W∈Od

‖X̂(t)−X(t)W>‖2→∞
)2

≤2 max
t=1,...,T

min
W∈Od

‖X̂(t)−X(t)W>‖2→∞ +

(
max

t=1,...,T
min
W∈Od

‖X̂(t)−X(t)W>‖2→∞
)2

,

where Wt ∈ Od satisfies

‖X̂(t)−X(t)W>t ‖2→∞ = min
W∈Od

‖X̂(t)−X(t)W>‖2→∞.
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We fix the chosen pairs O ⊂ {1, . . . , n}⊗2 with |O| = n/2, which is assumed to be an
integer. As for the sequence {wk}, it holds that

e∑
k=s+1

∑
(i,j)∈O

w2
k = 1. (37)

We have for any z ∈ R, it holds that

∣∣∆t
s,e(z)

∣∣ ≤
∣∣∣∣∣∣

e∑
k=s+1

wk
∑

(i,j)∈O

(
1{Ŷ k

ij ≤ z} − 1{Y k
ij ≤ z}

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
e∑

k=s+1

wk
∑

(i,j)∈O

(
1{Y k

ij ≤ z} − E
{
1{Y k

ij ≤ z}
})∣∣∣∣∣∣ = (I) + (II).

Term (II). As for (II), notice that

E
(
1{Y k

ij ≤ z} − E
{
1{Y k

ij ≤ z}
})

= 0.

In order to apply Lemma 14, we let

Vi(k) = wk1{Y k
ij ≤ z} − wkE

{
1{Y k

ij ≤ z}
}
,

with i = 1, . . . , n/2, k = 1, . . . , T . We order {Vi(k)} as

V1(1), . . . , V1(T ), V2(1), . . . , V2(T ), . . . , Vn/2(1), . . . , Vn/2(T ). (38)

Denote Fi,t as the natural σ-field generated by Vi(t) and all the random variables before it
in the order of (38), and denote Fi,t,− as the natural σ-filed generated by all the random
variables before Yi(t) in the order of (38) excluding Yi(t). If (i, t) = (1, 1), then Fi,t,− is the
σ-field generated by constants.

In addition, for the notation in Lemma 14, we have that

v =

n/2∑
i=1

e∑
t=s+1

∥∥E(Vi(t)
2 | Fi,t,−)

∥∥
∞

=

n/2∑
i=1

∑
k: ηk∈(s,e)

[
(wηk+1)2E

{
1{Y ηk+1

ij ≤ z}
}

(1− E
{
1{Y ηk+1

ij ≤ z}
}

)
]

+

n/2∑
i=1

∑
t∈(s,e]

t/∈{ηk+1}

(1− ρ)(wt)
2E
{
1{Y t

ij ≤ z}
}

(1− E
{
1{Y t

ij ≤ z}
}

)

+

n/2∑
i=1

∑
t∈(s,e]

t/∈{ηk+1}

ρ(wt)
2‖(1{Y t−1

ij ≤ z} − E
{
1{Y t−1

ij ≤ z}
}

)2‖∞
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≤ 1 + ρ, (39)

where the last inequality is due to (37),

m ≤ max
t=1,...,T

|wt|, (40)

and

g = (n/2)
∑

k:ηk∈(s,e)

min{ηk+1, e}∑
t=ηk+2

t∑
u=ηk+1

+

ηk0+1∑
t=s+1

t−1∑
u=s+2

 |wtwu|ρt−u. (41)

Combining (39), (40), (41) and Lemma 14, we have for any ε > 0, it holds that

P ((II) ≥ ε) ≤ 2 exp
{
−Cε2/((1− ρ)−1 + ε)

}
.

We thus denote

E5 =

 max
1<s<t<e≤T

∣∣∣∣∣∣
e∑

k=s+1

wk
∑

(i,j)∈O

(
1{Y k

ij ≤ z} − E
{
1{Y k

ij ≤ z}
})∣∣∣∣∣∣ ≥ C5

√
log(n ∨ T )

1− ρ

 ,

where C5 > 0 is a universal constant, and therefore it holds that

P{E5} ≤ (n ∨ T )−c5 ,

where c5 > 0 is a universal constant.

Term (I). As for (I), we have that

E
{∣∣∣1{Ŷ k

ij ≤ z} − 1{Y k
ij ≤ z}

∣∣∣}
≤max

{
P
{(
Ŷ k
ij ≤ z

)
∩
(
Y k
ij > z

)}
, P
{(
Ŷ k
ij > z

)
∩
(
Y k
ij ≤ z

)}}
= max{(I.1), (I.2)}.

Let

E6 =

{
max

t=1,...,T
min
W∈Od

‖X̂t −XtW‖ ≤ CW
√
d log(n ∨ T ) ∨ d3/2

n1/2

}
.

On the event E6, it holds that

max
t=1,...,T
(i,j)∈O

∣∣∣Ŷ t
ij − Y t

ij

∣∣∣ ≤ 3CW

√
d log(n ∨ T ) ∨ d3/2

n1/2
= δ

and

P

 max
t=1,...,T
(i,j)∈O

∣∣∣Ŷ t
ij − Y t

ij

∣∣∣ ≤ δ


≥1− (n ∨ T )−c1 − (n ∨ T )−c2 − (n ∨ T )−c4 − 4Te−n = 1− pδ.
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Therefore,

(I.1) = P
{(
Ŷ k
ij ≤ z

)
∩
(
Y k
ij > z

) ∣∣Y k
ij > z + δ

}
P{Y k

ij > z + δ}

+ P
{(
Ŷ k
ij ≤ z

)
∩
(
Y k
ij > z

) ∣∣Y k
ij < z + δ

}
P{Y k

ij < z + δ}

≤ pδ(1− Fk(z + δ)) + Fk(z + δ)− Fk(z) ≤ pδ + δCF

and

(I.2) = P
{(
Ŷ k
ij > z

)
∩
(
Y k
ij ≤ z

) ∣∣Y k
ij ≤ z − δ

}
P{Y k

ij ≤ z − δ}

+ P
{(
Ŷ k
ij > z

)
∩
(
Y k
ij ≤ z

) ∣∣Y k
ij > z − δ

}
P{Y k

ij > z − δ}

≤ pδFk(z − δ) + Fk(z)− Fk(z − δ) ≤ pδ + δCF .

Then we have,

E

∣∣∣∣∣∣
e∑

k=s+1

wk
∑

(i,j)∈O

(
1{Ŷ k

ij ≤ z} − 1{Y k
ij ≤ z}

)∣∣∣∣∣∣ ≤ 2

√
n

2

√
(e− t)(t− s)

e− s
(pδ + δCF )

≤ 2

√
n

2
min{

√
e− t,

√
t− s}(pδ + δCF ).

Therefore, following from similar arguments as those used in bounding (II), we have
that for any ε > 0, it holds that

P

{∣∣∣∣∣
e∑

k=s+1

wk
∑

(i,j)∈O

(
1{Ŷ k

ij ≤ z} − 1{Y k
ij ≤ z}

)

− E


e∑

k=s+1

wk
∑

(i,j)∈O

(
1{Ŷ k

ij ≤ z} − 1{Y k
ij ≤ z}

)
∣∣∣∣∣ > ε

}
≤2 exp

{
−Cε2/((1− ρ)−1 + ε)

}
,

which implies that

P

{∣∣∣∣∣
e∑

k=s+1

wk
∑

(i,j)∈O

(
1{Ŷ k

ij ≤ z} − 1{Y k
ij ≤ z}

) ∣∣∣∣∣
> E

∣∣∣∣∣∣
e∑

k=s+1

wk
∑

(i,j)∈O

(
1{Ŷ k

ij ≤ z} − 1{Y k
ij ≤ z}

)∣∣∣∣∣∣+ ε/2

}

≤P

{∣∣∣∣∣
e∑

k=s+1

wk
∑

(i,j)∈O

(
1{Ŷ k

ij ≤ z} − 1{Y k
ij ≤ z}

) ∣∣∣∣∣
> 2

√
n

2
min{

√
e− t,

√
t− s}(pδ + δCF ) + ε/2

}
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≤2 exp
{
−Cε2/((1− ρ)−1 + ε)

}
+ pδ.

Lastly, we have that

P

{
max

0≤s<t<e≤T

∣∣∆t
s,e(z)

∣∣ ≥ C8

√
T

1− ρ
max{

√
d log(n ∨ T ), d3/2}

}

≤P

{∣∣∆t
s,e(z)

∣∣ > C5

√
log(n ∨ T )

1− ρ
+
√

2nmin{
√
e− t,

√
t− s}(pδ + δCF )

}
≤4(n ∨ T )−c + 4Te−n,

where c = min{c1, c2, c4, c5} − 1 > 0 is a universal constant.

The result (36) follows from the identical arguments.

Lemma 16 Let

∆t
s,e = sup

z∈R
|∆t

s,e(z)|.

It holds that

P

{
max

0≤s<t<e≤T
∆t
s,e > C9T

1/2(1− ρ)−1/2 max{
√
d log(n ∨ T ), d3/2}

}
≤ 11(n ∨ T )−c + 8Te−n.

In addition,

P

{
max

0≤s<t<e≤T
sup
z∈R

∣∣∣∣∣∣
√

2

n(e− s)

e∑
k=s+1

∑
(i,j)∈O

(
1{Ŷ k

ij ≤ z} − E
{
1{Y k

ij ≤ z}
})∣∣∣∣∣∣

≤C9T
1/2(1− ρ)−1/2 max{

√
d log(n ∨ T ), d3/2}

}
≤ 11(n ∨ T )−c + 8Te−n. (42)

Proof Let

δ = 3CW

√
d log(n ∨ T ) ∨ d3/2

n1/2
. (43)

Let zm = mδ, m = 1, . . . , b1/δc. Let Im = [zm − δ, zm + δ], for m = 1, . . . , b1/δc − 1, and
Ib1/δc = [zb1/δc−1, 1]. Let M = b1/δc. Then

sup
z∈R
|∆t

s,e(z)| ≤ max
j=1,...,M

{
|∆t

s,e(zj)|+ sup
z∈Ij
|∆t

s,e(zj)−∆t
s,e(z)|

}
. (44)

It follows from Lemma 15 that

P
{

max
j=1,...,M

|∆t
s,e(zj)| ≥ C8

√
T (1− ρ)−1/2 max{

√
d log(n ∨ T ), d3/2}

}
≤ 4(n∨T )−c+4Te−n.

(45)
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For every z ∈ R, on the event max
k=1,...,T
(i,j)∈O

∣∣∣Ŷ k
ij − Y k

ij

∣∣∣ ≤ δ
 ,

it holds that ∣∣∣1{Ŷ k
ij ≤ z} − 1{Y k

ij ≤ z}
∣∣∣ ≤ 1{Y k

ij ∈ [z − δ, z + δ]}.

For any z ∈ R, there exist zm and zm+1, m ∈ {1, . . . ,M = 1}, such that

[z − δ, z + δ] ⊂ [zm − δ, zm + δ] ∪ [zm+1 − δ, zm+1 + δ].

Let

Bm =

e∑
k=s+1

∑
(i,j)∈O

1{Y k
i,j ∈ Im}, m = 1, . . . ,M.

Therefore∣∣∆t
s,e(zm)−∆t

s,e(z)
∣∣

≤

∣∣∣∣∣∣
e∑

k=s+1

∑
(i,j)∈O

wk
{
1{Ŷ k

i,j ≤ zm} − 1{Y k
i,j ≤ zm}

}∣∣∣∣∣∣
+

∣∣∣∣∣∣
e∑

k=s+1

∑
(i,j)∈O

wk
{
1{Ŷ k

i,j ≤ z} − 1{Y k
i,j ≤ z}

}∣∣∣∣∣∣
+

∣∣∣∣∣∣
e∑

k=s+1

∑
(i,j)∈O

wk
{
1{Y k

i,j ≤ zm} − 1{Y k
i,j ≤ z}

}∣∣∣∣∣∣+

∣∣∣∣∣∣
e∑

k=s+1

∑
(i,j)∈O

wk
{
Gk(zm)−Gk(z)

}∣∣∣∣∣∣
≤

(√
2(e− t)

n(e− s)(t− s)
∨

√
2(t− s)

n(e− s)(e− t)

)(∣∣∣∣∣∣
e∑

k=s+1

∑
(i,j)∈O

∣∣1{Ŷ k
i,j ≤ zm} − 1{Y k

i,j ≤ zm}
∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣
e∑

k=s+1

∑
(i,j)∈O

∣∣1{Ŷ k
i,j ≤ z} − 1{Y k

i,j ≤ z}
∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣
e∑

k=s+1

∑
(i,j)∈O

1{Y k
i,j ≤ Im}

∣∣∣∣∣∣
)

+

∣∣∣∣∣∣
e∑

k=s+1

∑
(i,j)∈O

wk
{
Gk(zm)−Gk(z)

}∣∣∣∣∣∣
≤

(√
2(e− t)

n(e− s)(t− s)
∨

√
2(t− s)

n(e− s)(e− t)

)(∣∣∣∣∣∣
e∑

k=s+1

∑
(i,j)∈O

1{Y k
i,j ∈ Im}

∣∣∣∣∣∣
+ sup
m=1,...,M−1

∣∣∣∣∣∣
e∑

k=s+1

∑
(i,j)∈O

1{Y k
i,j ∈ [zm − δ, zm+1 + δ]}

∣∣∣∣∣∣+

∣∣∣∣∣∣
e∑

k=s+1

∑
(i,j)∈O

1{Y k
i,j ∈ Im}

∣∣∣∣∣∣
)

+

 e∑
k=s+1

∑
(i,j)∈O

|wk|

 max
k=s+1,...,e

|Gk(z)−Gk(zm)|
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≤ 4

(√
2(e− t)

n(e− s)(t− s)
∨

√
2(t− s)

n(e− s)(e− t)

)
max

m=1,...,M
Bm +

√
2n(e− t)(t− s)

e− s
δCG.

(46)

Since

max
m=1,...,M

Bm

≤

∣∣∣∣∣∣
e∑

k=s+1

∑
(i,j)∈O

(1{Y k
i,j ∈ Im} − P{1{Y k

i,j ∈ Im}})

∣∣∣∣∣∣+

∣∣∣∣∣∣
e∑

k=s+1

∑
(i,j)∈O

P{1{Y k
i,j ∈ Im}}

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
e∑

k=s+1

∑
(i,j)∈O

(1{Y k
i,j ∈ Im} − P{1{Y k

i,j ∈ Im}})

∣∣∣∣∣∣+ (e− s)nδCG,

and

P

 max
m=1,...,M

∣∣∣∣∣∣
e∑

k=s+1

∑
(i,j)∈O

(1{Y k
i,j ∈ Im} − P{1{Y k

i,j ∈ Im}})

∣∣∣∣∣∣ ≤ C9

√
n(e− s) log(n ∨ T )

1− ρ


≥1− (n ∨ T )−c9 ,

where C9, c9 > 0 are universal constants, we have that

P

{(√
2(e− t)

n(e− s)(t− s)
∨

√
2(t− s)

n(e− s)(e− t)

)
max

m=1,...,M
Bm

≥ C10T
1/2(1− ρ)−1/2(

√
d log(n ∨ T ) ∨ d3/2)

}
≤ (n ∨ T )−c10 , (47)

where C10, c10 > 0 are universal constants.
Combining (43), (44), (45), (46) and (47), the proof is complete.

Appendix C. Change point analysis lemmas

Lemma 17 Under Model 1, for any pair (s, e) ⊂ (0, T ) satisfying

ηk−1 ≤ s ≤ ηk ≤ . . . ≤ ηk+q ≤ e ≤ ηk+q+1, q ≥ 0,

let
b1 ∈ arg max

b=s+1,...,e−1
D̃b
s,e.

Then b1 ∈ {η1, . . . , ηK}.
Let z ∈ argmaxx∈R |D̃b

s,e(x)|. If D̃t
s,e(z) > 0 for some t ∈ (s, e), then D̃t

s,e(z) is either
monotonic or decreases and then increases within each of the interval (s, ηk), (ηk, ηk+1), . . .,
(ηk+q, e).

46



Change point in dependent dynamic RDPG

This is identical to Lemma 7 in Padilla et al. (2019a) and we omit the proof here.

Lemma 18 Under Model 1, let 0 ≤ s < ηk < e ≤ T be any interval satisfying

min{ηk − s, e− ηk} ≥ c1∆,

with c1 > 0. Then we have that

max
t=s+1,...,e−1

D̃t
s,e ≥

2−3/2c1κ∆
√
n√

e− s
.

Proof Recall that
Gηk(z) = P

{
(X1(ηk))

>X2(ηk) ≤ z
}
.

Let
z0 ∈ argmax

z∈[0,1]
|Gηk(z)−Gηk+1

(z)|.

Without loss of generality, assume that Fηk(z0) > Fηk+1
(z0). For s < t < e, note that

D̃t
s,e(z0) =

∣∣∣∣∣
√

n(e− t)
2(e− s)(t− s)

t∑
k=s+1

Gk(z0)−

√
n(t− s)

2(e− s)(e− t)

e∑
k=t+1

Gk(z0)

∣∣∣∣∣
=

∣∣∣∣∣
√

n(e− s)
2(t− s)(e− t)

t∑
k=s+1

G̃k(z0)

∣∣∣∣∣ ,
where G̃k(z0) = Gk(z0)− (e− s)−1

∑e
k=s+1Gk(z0).

Under Model 1 , it holds that G̃ηk(z0) > κ/2. Therefore

ηk∑
k=s+1

G̃k(z0) ≥ (c1/2)κ∆, and

√
n(e− s)

2(t− s)(e− t)
≥
√

n

2(e− s)
.

Then

max
t=s+1,...,e−1

D̃t
s,e ≥

2−3/2c1κ∆
√
n√

e− s
.

Lemma 19 Under Model 1,if ηk is the only change point in (s, e), then

D̃ηk
s,e ≤ κk

√
n/2 min{

√
ηk − s,

√
e− ηk}; (48)

if (s, e) ⊂ (0, T ) contain two and only two change points ηk and ηk+1, then we have

max
t=s+1,...,e−1

D̃ηk
s,e ≤

√
n/2

√
e− ηk+1κk+1 +

√
n/2
√
ηk − sκk; (49)

if (s, e) ⊂ (0, T ) contains two or more change points, including ηk and ηk+1, which satisfy
that ηk − s ≤ c1∆, for c1 > 0, then

D̃ηk
s,e ≤

√
c1D̃

ηk+1
s,e +

√
2(ηk − s)nκk. (50)
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Proof As for (48), it is due to that

D̃ηk
s,e =

√
n(ηk − s)(e− ηk)

2(e− s)
sup
z∈R

∣∣Gηk(z)−Gηk+1(z)
∣∣ ≤ κk√n/2 min{

√
ηk − s,

√
e− ηk}.

Eq. (49) follows similarly.
As for (50), we consider the distribution sequence {Ht}et=s+1 be such that

Ht =

{
Gηk+1, t = s+ 1, . . . , ηk,

Gt, t = ηk + 1, . . . , e.

For any s < t < e, define

Hts,e = sup
z∈R

∣∣Hts,e(z)
∣∣ ,

where

Hts,e(z) =

√
n(t− s)(e− t)

2(e− s)

{
1

t− s

t∑
l=s+1

Hl(z)− 1

e− t

e∑
l=t+1

Hl(z)

}
.

For any t ≥ ηk and z ∈ R, it holds that

∣∣∣D̃t
s,e(z)−Hts,e(z)

∣∣∣ =

√
2(e− t)

n(e− s)(t− s)
n(ηk − s)

2

∣∣Gηk+1
(z)−Gηk(z)

∣∣ ≤√n(ηk − s)
2

κk.

Thus we have

D̃ηk
s,e = sup

z∈R

∣∣∣D̃ηk
s,e(z)−Hηks,e(z) +Hηks,e(z)

∣∣∣ ≤ sup
z∈R

∣∣∣D̃ηk
s,e(z)−Hηks,e(z)

∣∣∣+Hηks,e

≤ Hηks,e +

√
n(ηk − s)

2
κk ≤

√
(ηk − s)(e− ηk+1)

(ηk+1 − s)(e− ηk+1)
Hηk+1
s,e +

√
n(ηk − s)

2
κk

≤
√
c1D̃

ηk+1
s,e +

√
2n(ηk − s)κk.

Lemma 20 For any z0 ∈ R and (s, e) ⊂ (0, T ) satisfying the following: there exits a true
change point ηk ∈ (s, e) such that

min{ηk − s, e− ηk} ≥ c1∆, (51)

D̃ηk
s,e(z0) ≥ (c1/2)

√
n/2

κ∆√
e− s

, (52)

where c1 > 0 is a sufficiently small constant, and that

max
t=s+1,...,e

|D̃t
s,e(z0)| − D̃ηk

s,e(z0) ≤ 2−3/2c3
1(e− s)−7/2∆4κ

√
n, (53)
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for all d ∈ (s, e) satisfying

|d− ηk| ≤ c1∆/32, (54)

it holds that

D̃ηk
s,e(z0)− D̃d

s,e(z0) > c|d− ηk|∆D̃ηk
s,e(z0)(e− s)−2,

where c > 0 is a sufficiently small constant.

Proof The proof is identical to the proof of Lemma 11 in Padilla et al. (2019a) after letting
nmin = nmax = n/2.

Lemma 21 Under Model 1, consider any generic (s, e) ⊂ (0, T ), satisfying

min
l=1,...,K

min{ηl − s, e− ηl} ≥ ∆/16, ηk ∈ (s, e).

and

e− s ≤ CR∆.

Let

κmax
s,e = max

l=1,...,K
ηl∈(s,e)

κl,

and b ∈ argmaxs<t<eD
t
s,e. For some c1 > 0 and γ > 0, suppose that

Db
s,e ≥ c1κ

max
s,e

√
∆n, (55)

max
t=s+1,...,e−1

sup
z∈R

∣∣∆t
s,e(z)

∣∣ ≤ γ, (56)

and

max
0≤s<e≤T

sup
z∈R

∣∣∣∣∣∣
√

2

n(e− s)

e∑
t=s+1

∑
i,j∈O

(
1{Ŷ ti, j ≤ z} −Gt(z)

)∣∣∣∣∣∣ ≤ γ. (57)

If there exits a sufficiently small 0 < c2 < c1/2 such that

γ ≤ c2κ
max
s,e

√
∆n, (58)

then there exists a change point ηk ∈ (s, e) such that

min{e− ηk, ηk − s} ≥ ∆/4 and |ηk − b| ≤ Cε
γ2

κ2
kn
,

where Cε > 0 is a sufficiently large constant.
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Proof
Without loss of generality, assume that D̃b

s,e > 0 and that D̃t
s,e is locally decreasing at

b. Observe that there has to be a change point ηk ∈ (s, b), or otherwise D̃b
s,e > 0 implies

that D̃t
s,e is decreasing, as a consequence of Lemma 17. Thus, if s ≤ ηk ≤ b ≤ e, then

D̃ηk
s,e ≥ D̃b

s,e ≥ Db
s,e − γ ≥ (c1 − c2)κmax

s,e

√
∆n/2 ≥ 2−3/2c1κ

max
s,e

√
∆n, (59)

where the second inequality follows from (56), and the third inequality follows from (55)
and (58). Observe that e− s ≤ CR∆ and that (s, e) contains at least one change point.

Step 1. In this step, we are to show that

min{ηk − s, e− ηk} ≥ min{1, c2
1}∆/16. (60)

Suppose that ηk is the only change point in (s, e). Then (60) must hold or otherwise it
follows from (48) in Lemma 19, we have

Dηk
s,e ≤ κk

√
∆n

c1

4
,

which contradicts (59).
Suppose (s, e) contains at least two change points. Then ηk − s < min{1, c2

1}∆/16
implies that ηk is the most left change point in (s, e). Therefore it follows from (50) that

D̃ηk
s,e ≤

c1

4
D̃
ηk+1
s,e +

√
2n(ηk − s)κk ≤

c1

4
max

t=s+1,...,e
D̃t
s,e +

c1κk
√
n∆

4
√

2

≤ c1

4
max

t=s+1,...,e
Dt
s,e +

c1

4
γ +

c1κk
√
n∆

4
√

2

< max
t=s+1,...,e

Dt
s,e − γ, (61)

where the last inequality follows from that

max
t=s+1,...,e

Dt
s,e = Db

s,e ≥ 2−3/2c1κ
max
s,e

√
∆n,

as implied by (59). Therefore, (61) contradicts

D̃ηk
s,e ≥ D̃b

s,e − γ,

which is also implied by (59).

Step 2. It follows from Lemma 20 that

D̃ηk
s,e − D̃ηk+c1∆/32

s,e ≥ cc1∆

32
∆D̃ηk

s,e(e− s)2 ≥ cc1

32C2
R

(c1κ
√

∆n− 2γ) ≥ 2γ. (62)

We claim that b ∈ (ηk, ηk+c1∆/32). By contradiction, suppose that b ≥ ηk+c1∆/32. Then

D̃b
s,e ≤ D̃ηk+c1∆/32

s,e < D̃ηk
s,e − 2γ ≤ max

t=s+1,...,e
D̃t
s,e − 2γ ≤ max

t=s+1,...,e
Dt
s,e − γ = Db

s,e − γ, (63)
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where the first inequality follows from Lemma 17, the second follows from (62), and the
fourth follows from (56). Note that (63) shows that

D̃b
s,e < Db

s,e − γ,

which is a contradiction with (59) showing that

D̃b
s,e ≥ D̃b

s,e − γ.

Therefore we have b ∈ (ηk, ηk + c1∆/32).

Step 3. This follows from the identical arguments as those in Step 3 in the proof of
Lemma 15 in Padilla et al. (2019a) by letting nmin = nmax = n/2 and translating notation
appropriately. We have that

|b− ηk| ≤ Cε
γ2

nκ2
k

,

where Cε > 0 is a universal constant.

Appendix D. Proof of Theorem 9

Proof [Proof of Theorem 9] Since ε is the upper bound of the localisation error, by induction,
it suffices to consider any interval (s, e) ⊂ (1, T ) that satisfies

ηk−1 ≤ s ≤ ηk ≤ . . . ≤ ηk+q ≤ e ≤ ηk+q+1, q ≥ −1,

and
max

{
min{ηk − s, s− ηk−1}, min{ηk+q+1 − e, e− ηk+q}

}
≤ ε,

where q = −1 indicates that there is no change point contained in (s, e).
By Assumption 2, it holds that

ε = Cε
T max{d log(n ∨ T ), d3}

κ2n(1− ρ)
< ∆/4.

It has to be the case that for any change point ηk ∈ (0, T ), either |ηk − s| ≤ ε or |ηk − s| ≥
∆− ε ≥ 3∆/4. This means that min{|ηk − s|, |ηk − e|} ≤ ε indicates that ηk is a detected
change point in the previous induction step, even if ηk ∈ (s, e). We refer to ηk ∈ (s, e) an
undetected change point if min{|ηk − s|, |ηk − e|} ≥ 3∆/4.

In order to complete the induction step, it suffices to show that we (i) will not detect
any new change point in (s, e) if all the change points in that interval have been previous
detected, and (ii) will find a point b ∈ (s, e) such that |ηk − b| ≤ ε if there exists at least
one undetected change point in (s, e).

Recall the definitions Y k
ij = (Xi(k))>Xj(k) and Ŷ k

ij = (X̂i(k))>X̂j(k). For j = 1, 2,
define the events

Bj(γ) =

 max
1≤s<b<e≤T

sup
z∈[0,1]

∣∣∣∣∣∣
e∑

k=s+1

w
(j)
k

∑
(i,j)∈O

(
1{Ŷ k

ij ≤ z} − E
{
1{Y k

ij ≤ z}
})∣∣∣∣∣∣ ≤ γ

 ,
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where

w
(1)
k =


√

2
n

√
(e−b)

(b−s)(e−s) , k = s+ 1, . . . , b,

−
√

2
n

√
(b−s)

(e−b)(e−s) , k = b+ 1, . . . , e,
, w

(2)
k =

√
2

n

1√
e− s

,

and
γ = CγT

1/2 max{
√
d log(n ∨ T ), d3/2},

with a sufficiently large constant Cγ > 0.
Define

S =
K⋂
k=1

{αs ∈ [ηk − 3∆/4, ηk −∆/2], βs ∈ [ηk + ∆/2, ηk + 3∆/4], for some s = 1, . . . , S} .

It follows from Lemma 16 that for j = 1, 2, it holds that

P{Bj} ≥ 1− 11(n ∨ T )−c − 8Te−n.

The event S is studied in Lemma 13 in Wang et al. (2018b). The rest of the proof assumes
the the event B1(γ) ∩ B2(γ) ∩ S.

Step 1. In this step, we will show that we will consistently detect or reject the existence
of undetected change points within (s, e). Let am, bm and m∗ be defined as in Algorithm 2.
Suppose there exists a change point ηk ∈ (s, e) such that min{ηk − s, e − ηk} ≥ 3∆/4. In
the event S, there exists an interval (αm, βm) selected such that αm ∈ [ηk−3∆/4, ηk−∆/2]
and βm ∈ [ηk + ∆/2, ηk + 3∆/4].

Following Algorithm 2, (sm, em) = (αm, βm) ∩ (s, e). We have that min{ηk − sm, em −
ηk} ≥ (1/4)∆ and (sm, em) contains at most one true change point.

It follows from Lemma 18, with c1 there chosen to be 1/4, that

max
sm<t<em

D̃t
sm,em ≥

2−7/2κ∆
√
n√

e− s
,

Therefore

am = max
sm<t<em

Dt
sm,em ≥ max

sm<t<em
D̃t
sm,em − γ ≥ 2−7/2C

−1/2
R κ

√
∆n− γ.

Thus for any undetected change point ηk ∈ (s, e), it holds that

am∗ = sup
1≤m≤S

am ≥ 2−7/2C
−1/2
R κ

√
∆n− γ ≥ cτ,2κ

√
∆n, (64)

where the last inequality is from the choice of γ and cτ,2 > 0 is achievable with a sufficiently
large CSNR in Assumption 2. This means we accept the existence of undetected change
points.

Suppose that there are no undetected change points within (s, e), then for any (sm, em),
one of the following situations must hold.

(a) There is no change point within (sm, em);
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(b) there exists only one change point ηk ∈ (sm, em) and min{ηk − sm, em − ηk} ≤ εk; or

(c) there exist two change points ηk, ηk+1 ∈ (sm, em) and ηk− sm ≤ εk, em− ηk+1 ≤ εk+1.

Observe that if (a) holds, then we have

max
sm<t<em

Dt
sm,em ≤ max

sm<t<em
D̃t
sm,em + γ = γ < τ,

so no change points are detected.

Cases (b) and (c) are similar, and case (b) is simpler than (c), so we will only focus on
case (c). It follows from Lemma 19 that

max
sm<t<em

D̃t
sm,em ≤

√
n/2

√
em − ηk+1κk+1 +

√
n/2
√
ηk − smκk

≤
√

2CεT
1/2 max{

√
d log(n ∨ T ), d3/2},

therefore

max
sm<t<em

Dt
sm,em ≤ max

sm<t<em
D̃t
sm,em + γ ≤ 2γ < τ.

Under (6), we will always correctly reject the existence of undetected change points.

Step 2. Assume that there exists a change point ηk ∈ (s, e) such that min{ηk−s, ηk−e} ≥
3∆/4. Let sm, em and m∗ be defined as in Algorithm 2. To complete the proof it suffices to
show that, there exists a change point ηk ∈ (sm∗, em∗) such that min{ηk − sm∗, ηk − em∗} ≥
∆/4 and |bm∗ − ηk| ≤ ε.

To this end, we are to ensure that the assumptions of Lemma 20 are verified. Note that
(55) follows from (64), (56) and (57) follow from the definitions of events B1(γ) and B2(γ),
and (58) follows from Assumption 2.

Thus, all the conditions in Lemma 20 are met. Therefore, we conclude that there exists
a change point ηk, satisfying

min{em∗ − ηk, ηk − sm∗} > ∆/4 (65)

and

|bm∗ − ηk| ≤ Cε
γ2

nκ2
k

≤ ε,

where the last inequality holds from the choice of γ and Assumption 2.

The proof is completed by noticing that (65) and (sm∗ , em∗) ⊂ (s, e) imply that

min{e− ηk, ηk − s} > ∆/4 > ε.

As discussed in the argument before Step 1, this implies that ηk must be an undetected
change point.
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Table 5: Performance of NonPar-RDPG-CPD with data generated under Scenario 3 for
varying values of d.

d n |K − K̂| d(Ĉ|C) d(C|Ĉ)
7 300 0.3 0.0 0.0
9 300 0.2 0.0 0.0

11 300 0.2 0.0 0.0
13 300 0.2 0.0 0.0
15 300 0.3 0.0 0.0
17 300 0.2 0.0 0.0
7 200 0.2 0.0 0.0
9 200 0.2 0.0 0.0

11 200 0.1 0.0 0.0
13 200 0.1 1.0 0.0
15 200 0.1 1.0 0.0
17 200 0.1 1.0 1.0
7 100 0.3 2.0 2.0
9 100 0.2 1.0 3.0

11 100 0.5 5.0 5.0
13 100 0.5 3.0 5.0
15 100 0.5 6.0 7.0
17 100 0.6 10.0 10.0

Appendix E. Sensitivity analysis of the input d

We proceed with the same setting as in Section 4.1, focusing on Scenario 3. The only
difference with Section 4.1 is that now we explore the sensitivity of NonPar-RDPG-CPD to
the choice d, by considering the performance of our algorithm for d ∈ {7, 9, 11, 13, 15, 17}.
The results in Table 5 show that, overall, NonPar-RDPG-CPD is not sensitive to d, when
it is not smaller than the true dimension of the latent positions.

Appendix F. Additional experiment on community structure changes
only

In this section we consider an additional scenario to the ones described in Section 4. Keeping
everything as in Section 4, with ρ = 0.5, we modify Scenario 1 by setting the matrix Q as

Qi,j =

{
0.5, i, j ∈ Cl, l ∈ {1, 2, 3},
0.3, otherwise.

where C1 = B1, C2 = B2 and C3 = B3 ∪B4, with B1, . . . ,B4 as in Scenario 1. We refer to the
resulting model as Scenario 5, which consists of an example where the change happens in
the community structure.

The results in Table 6 show that in the setting of Scenario 5 our proposed approach still
outperforms the competing methods.
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Table 6: Scenario 5

Method n |K − K̂| d(Ĉ|C) d(C|Ĉ)
NonPar-RDPG-CPD 300 0.0 1.0 1.0

NBS 300 21.6 1.0 43
MNBS 300 0.9 0.0 20.0

NonPar-RDPG-CPD 200 0.1 3.0 3.0
NBS 200 21.2 1.0 43

MNBS 200 1.1 4.0 19.0
NonPar-RDPG-CPD 100 0.6 15.0 15.0

NBS 100 22.0 2.0 44.0
MNBS 100 1.1 5.0 20.0

Appendix G. Additional simulation results on varying κ

We now consider the setting of Scenario 3 and allow for an extra parameter σ2. Specifically,

the data are now generated as follows. For t ∈ {1, 101}, we generate Zi(t)
ind∼ N (0, σ2I3),

and for t ∈ A1 ∪ A3\{1, 101}, we generate

Zi(t)

{
ind∼ N (0, σ2I3), with probability 0.9,

= Zi(t− 1), with probability 0.1.

We then set

Pi,j(t) =
exp

{
Zi(t)

>Zj(t)
}

1 + exp {Zi(t)>Zj(t)}
.

Furthermore, we generate Pi,j(51) ∼ Beta(100, 100), and for t ∈ {52, . . . , 100} we gen-
erate

P (t)

{
= P (t− 1), with probability 0.9,

∼ Beta(100, 100), with probability 0.1.

Once the mean matrices {P (t)}Tt=1Rn×n have been constructed, we independently draw
Ai,j(t) ∼ Ber(Pi,j(t)), for all i, j ∈ {1, . . . , n} and t ∈ {1, . . . , T}. We consider experiments
with σ2 ∈ {1.5, 2, 2.5}. This additional parameter is meant to capture different levels of
jump sizes κ.

For the model above and with the same setting from Section 4.1, the results in Tables
7–9 show that our method once again outperforms the competing approaches.
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NonPar-RDPG-CPD 300 0.2 0.0 0.0

NBS 300 15.1 1.0 43.0
MNBS 300 1.1 28.0 36.0

NonPar-RDPG-CPD 200 0.52 0.0 0.0
NBS 200 14.0 1.0 44.0

MNBS 200 1.0 25.0 35.0
NonPar-RDPG-CPD 100 0.32 1.0 1.0

NBS 100 14.0 1.0 45.0
MNBS 100 1.0 25.0 34.0

Table 8: σ2 = 2.0.

Method n |K − K̂| d(Ĉ|C) d(C|Ĉ)
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