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Abstract—Human-robot collaboration is being implemented
into manufacturing processes at a higher rate than ever before.
However, many areas within human-robot collaboration still
need development in order for robots to understand and work
with humans in a human-human collaborative manner. Further
investigation will allow for increased safety and comfortability
for human workers as well as higher quality for complex, varying
tasks. In this study, we propose a dynamic human intention
understanding model based on the optical flow algorithm for
human-robot teams to improve their collaboration performance.
Our approach allows the robot to evaluate and follow its human
partner’s operation intentions dynamically during collaborative
tasks. The proposed model is experimentally implemented by
different human participants in real-world human-robot
collaborative contexts with accuracy and stability. Future work
for alleviating the limitations of the developed approach is also
discussed.

Keywords—Robotics, human-robot collaboration, human intention
understanding, smart manufacturing.

I. INTRODUCTION

Today, robots are everywhere. From cleaning and surveilling
to food delivery, they have become a vital part of how society
and the economy function. However, robots are often utilized
as tools towards a specified outcome rather than being viewed
as partners collaborating with human workers with the aim of
achieving a common goal [1]. Even in factories, they are fenced
off from human-occupied spaces for safety reasons [2]. Recently,
though, human-robot collaboration (HRC) has become more
frequent in use as development continuously demonstrates its
many advantages with complex, varying tasks [3, 4].

With the rise of Industry 4.0, HRC is being implemented
into many manufacturing processes [5]. This large-scale
implementation has arisen from the distinctive change
occurring in the manufacturing industry- from mass production
to mass customization of products [6]. This shift, from strict,
repetitive tasks that could be optimized using only robots, to
more flexible, variable tasks, has necessitated a cognitively
accustomed and adaptive partner- the human brain [7]. Thus,
there is a great need for investigation into HRC in order for
production line robots to be able to adapt to new tasks and
differing human partners [8].

To further development in these areas, the robot should be
able to work dynamically and safely by processing the human
partner’s intentions as fast and efficiently as possible during a
collaborative task. This active participation will allow for a
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larger flexibility of motion and success during the
collaboration, rather than adhering to a set plan of movements
for the task execution to proceed without error. However,
dynamic manufacturing has been met with many obstacles, as
until recently, robots did not share workspaces with human
workers [2]. As HRC becomes more prevalent, new
occupational risks arise due to the setting of shared areas which
allow for more physical contact between humans and robots
[9]. Therefore, understanding human intentions in the dynamic
collaboration process will enhance not only the quality and
efficiency of tasks but also the safety of human-robot
partnerships.

With the ability to anticipate human intentions, assigned
manufacturing tasks could be completed at a faster pace than
by methodically following a set number of steps [10]. There
have been several studies on interpreting human intention in
the context of robots. For instance, [11] utilized active
impedance control through a force-sensing handle on the robot
to estimate human intention and thus reduce effort and fatigue
risk. Robots could also learn about human intention through
prior demonstration. Using natural multi-modal human
demonstrations of hand-overs, a robot could learn and then be
programmed based on a particular human partner’s intentions
to assist in tasks [12]. These approaches demonstrate the
individuality of the human based on preferences, muscular
ability, and reaction, all of which play a role in the overall
human intention recognition process. Different from the above
studies, in this work, we propose a dynamic human intention
understanding model based on the optical flow algorithm for
human-robot teams to improve their collaboration performance.

II. METHODOLOGY
A. Optical Flow Algorithm

For the robot within this partnership to understand the
human’s dynamic intentions, an effective vision-based solution
for live-video processing to characterize the human’s operation
actions in real-time will be chosen. The primary approach
developed for human intention understanding in this study is
based on optical flow algorithms, specifically the Lucas-
Kanade method [13]. Optical flow is a technique used to track
movements over a sequence of image or video frames. This
algorithm works based on three assumptions: (a) brightness
constancy between frames, (b) spatial consistency, and (c)
temporal persistence [14]. The first assumption states that,



between two separate frames, any given pixel remains at an
equal brightness intensity. The second assumption, spatial
consistency, states that neighboring pixels have the same
motion as each other. For the Lucas-Kanade method, this
means pixels within a 3 x 3 pixel area around the chosen point.
Finally, the third assumption, exclusively for the Lucas-Kanade
method, states that between frames, only small movements can
be made for accuracy in object tracking [15].

There are several reasons for the utilization of the Lucas-
Kanade method in this work. First, this method, as compared to
others, is cost-effective and efficient in that it requires a lower
computational load [16]. This is especially significant in this
study, as we attempt to make the robot’s movements as real-
time and dynamic as possible while retaining locational and
interactive accuracy. Second, given that the camera’s location
is on the end-effector of the robot, the field of view is
restrictive. The object can only be moved with a small
magnitude in order to remain in the frame and, thus, have
calculable displacement vectors.

During human-robot collaborative tasks, such as product
co-assemblies or tool handovers, suppose the human partner is
moving the shared object along the x-y plane, which is parallel
to the floor of the collaborative workspace. The optical flow
algorithm works to find the difference between frames, at times
t and ¢t + At, of the movement of a chosen pixel. Let the
brightness intensity at this point be /(x, y, #) and the point move
by Ax, Ay, over time Af. For the first assumption, brightness
constancy, the following equation is found:

I(x,y,t) = I(x + Ax,y + Ay,t + At) (1)
For the third assumption, temporal persistence, and by
using Taylor series expansion, we can derive the next equation:
al al al

I(x,y,t)+an + 5Ay+;At—l(x + Ax, y +
Ay, t + At) 2

After simplification:
LVe+ LV,+ 1, =0 3)

where I, and I,, represent the image gradients, and I, represents
the gradient over time. V, and V,, in this case, represent
components of the output vector of object movement, x and y,
respectively [10]. So, if the image and time gradients are
known, the vector of movement will be evaluated as well.

The second assumption, specifically the 3 x 3 grid of
chosen points used in the Lucas-Kanade method, creates a
system of equations of vectors all with the same movement.
This system can then be converted into matrix notation as such

-1
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Thus, we are left with an equation that takes the image and
time gradients of a chosen point and outputs a vector of
movement.
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B. Data Collection

To enhance the quality of human-robot collaborative tasks,
the robot should have the ability to process and respond to
human movement by understanding human intentions. With
this understanding, the robot then moves accordingly to work
with its human partner. As shown in Fig. 1, in the human-
robot collaboration process, the movement of the object, as
enacted by the human, is captured through a vision system
configured on the end-effector of the robot. The live video
feed is processed in real-time by a workstation using the
Lucas-Kanade optical flow algorithm, resulting in a vector of
displacement showing the change in position of the object.
This information is further employed to evaluate the human’s
operation intentions in the collaborative task using the
proposed human intention understanding model. Then the
evaluated human intentions will be utilized to control the
robot during the collaboration with its human partner.
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Fig. 1. Human intention acquisition and processing.

To accurately collect the object movement and location
data, the vision system movement was also considered. Since
the vision system is attached to the end-effector, it will
visualize its own movement towards the now stationary
object’s location as a second movement of the object [17]. In
other words, as the robot moves towards the object, it interprets
the changing pixels in its view as a movement of the object, as
if the vision system was stationary throughout the task. To
prevent this error, the data collection alternates between the
movement of the object and the movement of the robot. When
the robot moves, data collection of the object is paused, and
vice versa. Thus, the movement vectors of the object and end-
effector of the robot will be accurately processed in order to
ascertain the success of the collaborative task.

C. Human Intention Understanding

In this study, we define the “understanding” of human
intentions of the robot as the accurate evaluation of unknown,
uncertain, and unplanned human operation movements of a
chosen object in a shared workspace in human-robot
collaboration. To be able to have the robot accurately
understand dynamic human intentions in the collaboration
process, as shown in Eq. 5, a human intention understanding
model was developed. In this model, H signifies human



intention, (x, y, d) represents the dynamic location of the
object’s center point in three-dimensional space (where d is
the depth distance between the robot vision system and the
object operated by the human), and F is an iterating whole
number representing the current frame, starting at the first
frame, F' = 1. This model is recursive, in which the intention-
evaluation function, f{...), uses the previous status of human
intention to determine the human’s intention at the current
status.

H(xp, yp, dp) = f(H(Xp-1,Yr-1,dp-1)) Q)

The construction of the intention-evaluation function,
f(...), is characterized in Fig. 2. There are three main steps in
this function: (1) optical flow calculations, (2) depth sensing,
and (3) deprojection. The inputs for this function are the
following: (a) the current frame, denoted by F, (b) the
previous frame, denoted by F-/, and (c) the previous location
of the object in pixel coordinates. The first step, optical flow
calculations as elaborated on in section II.A, takes the
previous (x, y) coordinates of the object and uses a function
from the OpenCV library to calculate a displacement vector,
which is also written in terms of (x, y).
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Fig. 2. The construction of the intention-evaluation function.

However, one limitation of optical flow is that its
capabilities are restricted to two dimensions. To fully evaluate

human intentions, a third dimension is added, such that the
robot understands object movement in the same fashion that a
human comprehends it. Thus, the second step, depth sensing, is
created. An Intel Realsense™ depth camera D435i [18] is used
to develop our robot vision system. Using the vision system
and a function from the pyrealsense2 library, a depth, d, is
measured in meters of the object’s z-distance from the vision
system in the current frame. This data point, since it is given in
meters, is located in real-world coordinates, denoted by 7,
rather than in pixel coordinates, denoted by p.

Although depth is given in the function as a real-world
coordinate, x and y are not. It is necessary to convert the
object’s location to real-world coordinates as the local robot
controller must communicate with the robot using locations in
terms of real-world coordinates for the robot to move to the
real-world location of the object at the current time. Thus, the
last step in the intention-evaluation function is to deproject the
two-dimensional output of the optical flow algorithm to a
three-dimensional point in the real world. To do this, a depth is
paired with the pixel (x, y) coordinates and passed into a
function from the pyrealsense2 library. The output of the
function f is a three-dimensional point in real-world
coordinates which is accurate to the actual location of the
object operated by the human in the shared workspace.

Collaborative

Fig. 3. Experimental Platform.
III. EXPERIMENTAL RESULTS AND ANALYSIS
A. Experimental Setup

The experiment platform consists of a collaborative robot, a
vision system (developed by the Intel Realsense D435i), a
workstation (Thinkstation P520), a shared workspace, and the
target object (in this case, a blue car model). The Franka Emika
Panda, a 7-DoF collaborative robot with a robotic arm, two-
finger parallel gripper, pilot user interface, and Franka-Control-
Interface (FCI) controller, is employed in this work [10]. The
experimental platform is shown in Fig. 3. The experiment was
carried out in two separate trials, by two different people, each
possessing their own intentions. In each trial, the participant
begins moving the object after the robot calibrates itself, by
moving from the ready state to a position above the stationary
blue car. Then, the participant picks up the car and makes a set
of stochastic movements in three-dimensional space. This
movement is identified by the vision system and converted into
locational data.



After the collected data is fed to the workstation and the
human intention understanding model, the robot system
controller receives the intention understanding results via a
Robot Operating System (ROS), an open-source framework
that enables large-scale cross-platform maneuvering and
communication [10]. Additionally, Movelt!, a package that
facilitates dynamic robot manipulation and motion planning, is
implemented for robot control [19]. The planned waypoint for
each motion of the robot, following a human intention
operation on the object, is created such that the end-effector of
the robot has the same x and y coordinates of the calculated
real-world coordinates. For the z-dimension, the program adds
0.25 meters in the positive vertical direction to the given d
such that the area of vision for the camera is large enough to
make object movements without collision or exiting the frame.
The robot then moves to the planned waypoint, and the human
once again may make a small movement, creating an iterative
cycle of movement that alternates between the object and the
robot. Thus, human intention movement is detected,

evaluated, and followed by the robot.

@)

Fig. 4. One of the participant’s verification process.
B. Real-world Human-robot Collaboration

The human intention understanding is validated with an
online real-world HRC task, in which the robot accurately
follows the movements of a car model held by its human
partner. Fig. 4 shows one of the participant’s verification
processes. Following the initialization of Movelt! and the
vision system, the robot first calibrates itself by moving from
the ready state to a location over the object. This takes
between one and three movements, in which the object
remains stationary and the robot adjusts, often moving
upwards to increase the area of the frame view to detect the
object (Fig. 4(a)). Calibration has concluded and human
intention processing is ready to initialize when the robot is
centered over the object (Fig. 4(b)). Then, the human picks up
the object and begins to move it based on their personal

intentions (Fig 4(c)). In the dynamic intention understanding
verification process, the human partner moves the object in all
three dimensions throughout the shared workspace, including
movements that have non-linear paths. The robot continues to
follow the object successfully over multiple iterations of
movement (Fig. 4(d)-(f)).

Additionally, the real-world HRC demonstrated that this
understanding is error-resistant and safe, in that if the vision
system fails to detect the object within the frame during the
task, the robot will simply attempt to recalibrate, again
moving the end-effector in the upwards z-direction to increase
the detection area rather than failing and shutting down. This
can be seen in another participant’s verification process in Fig.
5 and Fig. 6, where, following a human movement, the camera
loses the point which has been tracked by optical flow. The
camera is then moved upward, increasing the offset between
the end-effector and the object depth to about 0.4 meters, as
seen in the inconsistency in Fig. 7 around index 25. Safety for
both the robot and the human is demonstrated, as errors are
corrected by the robot moving away from the object, and
therefore the human, thus never coming close to a collision.
Overall, this approach shows promise in the future
development of HRC tasks.

Fig. 5. The camera loses the tracked point and lengthens the z-axis offset.

|

Fig. 6. The camera redetects the object and continues to the correct offset of
0.25m.

C. Evaluations and Analysis

Fig. 7 and Fig. 8 present the differences in location
between the end-effector of the robot and the tracked point of



the object operated by the human for x (green), y (blue), and z
(red) dimensions. Differences remained fairly consistent
throughout both trials. x and y differences remained around
zero meters and location differences in z remained around
0.25 meters, the default offset. Large inconsistencies, shown
as “spikes”, correspond to points that were -collected
incorrectly due to depth sensing errors, which will be
discussed in section IV. Consistency can be evaluated and
analyzed by the standard deviation (std) in Table I, where a
small standard deviation signifies that the data is not
significantly dispersed from the mean, indicating that the
human intention understanding approach is stable. For all
three dimensions in both trials, the standard deviations are less
than 0.1. The standard deviation for z is greater than the
standard deviations of x and y for both trials, highlighting the
presence of errors in the depth sensing of the vision system.
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Fig. 7. Differences between robot and object location for three dimensions
(Trial 1).
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Fig. 8. Differences between robot and object location for three dimensions
(Trial 2).

TABLE 1. STANDARD DEVIATIONS OF THE DIFFERENCES IN
LOCATION IN THREE DIMENSIONS

stdy stdy std:
Trial 1 0.015024 0.015024 0.066844
Trial 2 0.016132 0.024015 0.078579

Additionally, as displayed in Fig. 9 and Fig. 10, the three-
dimensional trajectories were collected to show the
movements the robot and the human took over time in the
shared workspace. The red path, denoting the robot end-
effector, is offset from the green path, denoting the object
operated by the human, by 0.25 meters. This offset
demonstrates that the robot motion planning successfully and
accurately followed the object during both trials. Another
characteristic of note is the quality of the line when comparing
the human movements and the robot movements. The robot,
having motions pre-planned, has a smooth characteristic to its
path. In contrast, the human, who, during the movement, must
make split-second decisions about their next object
positioning, creates a path with less consistency and more
erratic movement. Depth sensing errors are again present. In
this case, these errors are included in the path for the human
movement, highlighted in the large, upward “spikes”.
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Fig. 9. Trajectories of the robot end-effector and the object operated by the
human (Trial 1).
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Fig. 10. Trajectories of the robot end-effector and the object operated by the
human (Trial 2).

IV. CONCLUSIONS AND FUTURE WORK

To enhance the quality of HRC tasks through the
understanding of human intentions, we have developed and
tested an approach which enabled the robot to dynamically
detect and track an object operated by a human in a shared
workspace. This approach combines the components of the
optical flow algorithm, depth sensing, and coordinate
deprojection in order to have the robot accurately follow the
object in near real-time. Real-world experimental results and
evaluations suggested the accuracy and safety of the proposed
approach for human-robot partnerships.

An opportunity for future research presents itself when
considering the occurrence of depth sensing errors due to the
limitations of using one camera attached to the end-effector of
the robot. As pointed out in Fig. 11, there are several locations
in the camera’s field of view which are blind spots, shown in
the color black. They occur from infrared light not being
refracted back into the lens due to a surface being too small or
at an angle such that light is unable to be refracted back. These
blind spots are particularly potent in the depth sensing step of
the algorithm, creating instances where the camera believes



that the object is level with the camera rather than below it.
Thus, future work may include mitigating these errors through
the incorporation of additional cameras in different locations,
such that all points in the workspace can be sensed by at least
one camera.

Fig. 11. Infrared demonstration of camera blind spots.

Finally, we acknowledge that this research is limited in that
the robot “understands” human intention through evaluation
rather than prediction. Future work may include collecting data
with our developed algorithm and then feeding this data into a
model that may predict the human’s future intentions, rather
than only evaluating their current intentions. This future work
could optimize time usage and cognitive effort during HRC.
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