
Understanding Dynamic Human Intentions to Enhance 
Collaboration Performance for Human-Robot Partnerships 

Abstract—Human-robot collaboration is being implemented 
into manufacturing processes at a higher rate than ever before. 
However, many areas within human-robot collaboration still 
need development in order for robots to understand and work 
with humans in a human-human collaborative manner. Further 
investigation will allow for increased safety and comfortability 
for human workers as well as higher quality for complex, varying 
tasks. In this study, we propose a dynamic human intention 
understanding model based on the optical flow algorithm for 
human-robot teams to improve their collaboration performance. 
Our approach allows the robot to evaluate and follow its human 
partner’s operation intentions dynamically during collaborative 
tasks. The proposed model is experimentally implemented by 
different human participants in real-world human-robot 
collaborative contexts with accuracy and stability. Future work 
for alleviating the limitations of the developed approach is also 
discussed.   

Keywords—Robotics, human-robot collaboration, human intention 
understanding, smart manufacturing. 

I. INTRODUCTION 

Today, robots are everywhere. From cleaning and surveilling 
to food delivery, they have become a vital part of how society 
and the economy function. However, robots are often utilized 
as tools towards a specified outcome rather than being viewed 
as partners collaborating with human workers with the aim of 
achieving a common goal [1]. Even in factories, they are fenced 
off from human-occupied spaces for safety reasons [2]. Recently, 
though, human-robot collaboration (HRC) has become more 
frequent in use as development continuously demonstrates its 
many advantages with complex, varying tasks [3, 4].  

With the rise of Industry 4.0, HRC is being implemented 
into many manufacturing processes [5]. This large-scale 
implementation has arisen from the distinctive change 
occurring in the manufacturing industry- from mass production 
to mass customization of products [6]. This shift, from strict, 
repetitive tasks that could be optimized using only robots, to 
more flexible, variable tasks, has necessitated a cognitively 
accustomed and adaptive partner- the human brain [7]. Thus, 
there is a great need for investigation into HRC in order for 
production line robots to be able to adapt to new tasks and 
differing human partners [8].  

To further development in these areas, the robot should be 
able to work dynamically and safely by processing the human 
partner’s intentions as fast and efficiently as possible during a 
collaborative task. This active participation will allow for a 

larger flexibility of motion and success during the 
collaboration, rather than adhering to a set plan of movements 
for the task execution to proceed without error. However, 
dynamic manufacturing has been met with many obstacles, as 
until recently, robots did not share workspaces with human 
workers [2]. As HRC becomes more prevalent, new 
occupational risks arise due to the setting of shared areas which 
allow for more physical contact between humans and robots 
[9]. Therefore, understanding human intentions in the dynamic 
collaboration process will enhance not only the quality and 
efficiency of tasks but also the safety of human-robot 
partnerships.  

With the ability to anticipate human intentions, assigned 
manufacturing tasks could be completed at a faster pace than 
by methodically following a set number of steps [10]. There 
have been several studies on interpreting human intention in 
the context of robots. For instance, [11] utilized active 
impedance control through a force-sensing handle on the robot 
to estimate human intention and thus reduce effort and fatigue 
risk. Robots could also learn about human intention through 
prior demonstration. Using natural multi-modal human 
demonstrations of hand-overs, a robot could learn and then be 
programmed based on a particular human partner’s intentions 
to assist in tasks [12]. These approaches demonstrate the 
individuality of the human based on preferences, muscular 
ability, and reaction, all of which play a role in the overall 
human intention recognition process. Different from the above 
studies, in this work, we propose a dynamic human intention 
understanding model based on the optical flow algorithm for 
human-robot teams to improve their collaboration performance. 

II. METHODOLOGY 

A. Optical Flow Algorithm 

For the robot within this partnership to understand the 
human’s dynamic intentions, an effective vision-based solution 
for live-video processing to characterize the human’s operation 
actions in real-time will be chosen. The primary approach 
developed for human intention understanding in this study is 
based on optical flow algorithms, specifically the Lucas-
Kanade method [13]. Optical flow is a technique used to track 
movements over a sequence of image or video frames. This 
algorithm works based on three assumptions: (a) brightness 
constancy between frames, (b) spatial consistency, and (c) 
temporal persistence [14]. The first assumption states that, 
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between two separate frames, any given pixel remains at an 
equal brightness intensity. The second assumption, spatial 
consistency, states that neighboring pixels have the same 
motion as each other. For the Lucas-Kanade method, this 
means pixels within a 3 x 3 pixel area around the chosen point. 
Finally, the third assumption, exclusively for the Lucas-Kanade 
method, states that between frames, only small movements can 
be made for accuracy in object tracking [15].  

There are several reasons for the utilization of the Lucas-
Kanade method in this work. First, this method, as compared to 
others, is cost-effective and efficient in that it requires a lower 
computational load [16]. This is especially significant in this 
study, as we attempt to make the robot’s movements as real-
time and dynamic as possible while retaining locational and 
interactive accuracy. Second, given that the camera’s location 
is on the end-effector of the robot, the field of view is 
restrictive. The object can only be moved with a small 
magnitude in order to remain in the frame and, thus, have 
calculable displacement vectors. 

During human-robot collaborative tasks, such as product 
co-assemblies or tool handovers, suppose the human partner is 
moving the shared object along the x-y plane, which is parallel 
to the floor of the collaborative workspace. The optical flow 
algorithm works to find the difference between frames, at times 
t and t + ∆t, of the movement of a chosen pixel. Let the 
brightness intensity at this point be I(x, y, t) and the point move 
by ∆x, ∆y, over time ∆t. For the first assumption, brightness 
constancy, the following equation is found: 

𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡)  =  𝐼𝐼(𝑥𝑥 +  ∆𝑥𝑥, 𝑦𝑦 +  ∆𝑦𝑦, 𝑡𝑡 +  ∆𝑡𝑡)       (1) 

For the third assumption, temporal persistence, and by 
using Taylor series expansion, we can derive the next equation: 

𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡) + 𝜕𝜕𝜕𝜕 
𝜕𝜕𝜕𝜕
∆𝑥𝑥 +  𝜕𝜕𝜕𝜕 

𝜕𝜕𝜕𝜕
∆𝑦𝑦 + 𝜕𝜕𝜕𝜕 

𝜕𝜕𝜕𝜕
∆𝑡𝑡 = 𝐼𝐼(𝑥𝑥 +  ∆𝑥𝑥, 𝑦𝑦 +

      ∆𝑦𝑦, 𝑡𝑡 +  ∆𝑡𝑡)     (2) 

After simplification: 

𝐼𝐼𝑥𝑥  𝑉𝑉𝑥𝑥 +  𝐼𝐼𝑦𝑦  𝑉𝑉𝑦𝑦 +  𝐼𝐼𝑡𝑡  =  0                      (3) 

where 𝐼𝐼𝑥𝑥 and 𝐼𝐼𝑦𝑦  represent the image gradients, and 𝐼𝐼𝑡𝑡 represents 
the gradient over time. 𝑉𝑉𝑥𝑥  and 𝑉𝑉𝑦𝑦 , in this case, represent 
components of the output vector of object movement, x and y, 
respectively [10]. So, if the image and time gradients are 
known, the vector of movement will be evaluated as well.  

The second assumption, specifically the 3 x 3 grid of 
chosen points used in the Lucas-Kanade method, creates a 
system of equations of vectors all with the same movement. 
This system can then be converted into matrix notation as such 
[14]:  

𝑉𝑉 = �
𝑉𝑉𝑥𝑥
𝑉𝑉𝑦𝑦
� =  �
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2 ∑ 𝐼𝐼𝑥𝑥𝑖𝑖𝐼𝐼𝑦𝑦𝑖𝑖𝑖𝑖

∑ 𝐼𝐼𝑥𝑥𝑖𝑖𝐼𝐼𝑦𝑦𝑖𝑖𝑖𝑖 ∑ 𝐼𝐼𝑦𝑦𝑖𝑖𝑖𝑖
2 �

−1

�
−∑ 𝐼𝐼𝑥𝑥𝑖𝑖𝐼𝐼𝑦𝑦𝑖𝑖𝑖𝑖

−∑ 𝐼𝐼𝑥𝑥𝑖𝑖𝐼𝐼𝑦𝑦𝑖𝑖𝑖𝑖
�      (4) 

Thus, we are left with an equation that takes the image and 
time gradients of a chosen point and outputs a vector of 
movement.  

B. Data Collection 

To enhance the quality of human-robot collaborative tasks, 
the robot should have the ability to process and respond to 
human movement by understanding human intentions. With 
this understanding, the robot then moves accordingly to work 
with its human partner. As shown in Fig. 1, in the human-
robot collaboration process, the movement of the object, as 
enacted by the human, is captured through a vision system 
configured on the end-effector of the robot. The live video 
feed is processed in real-time by a workstation using the 
Lucas-Kanade optical flow algorithm, resulting in a vector of 
displacement showing the change in position of the object. 
This information is further employed to evaluate the human’s 
operation intentions in the collaborative task using the 
proposed human intention understanding model. Then the 
evaluated human intentions will be utilized to control the 
robot during the collaboration with its human partner.  

 
Fig. 1. Human intention acquisition and processing. 

To accurately collect the object movement and location 
data, the vision system movement was also considered. Since 
the vision system is attached to the end-effector, it will 
visualize its own movement towards the now stationary 
object’s location as a second movement of the object [17]. In 
other words, as the robot moves towards the object, it interprets 
the changing pixels in its view as a movement of the object, as 
if the vision system was stationary throughout the task. To 
prevent this error, the data collection alternates between the 
movement of the object and the movement of the robot. When 
the robot moves, data collection of the object is paused, and 
vice versa. Thus, the movement vectors of the object and end-
effector of the robot will be accurately processed in order to 
ascertain the success of the collaborative task. 

C. Human Intention Understanding 

In this study, we define the “understanding” of human 
intentions of the robot as the accurate evaluation of unknown, 
uncertain, and unplanned human operation movements of a 
chosen object in a shared workspace in human-robot 
collaboration. To be able to have the robot accurately 
understand dynamic human intentions in the collaboration 
process, as shown in Eq. 5, a human intention understanding 
model was developed. In this model, H signifies human 
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intention, (x, y, d) represents the dynamic location of the 
object’s center point in three-dimensional space (where d is 
the depth distance between the robot vision system and the 
object operated by the human), and F is an iterating whole 
number representing the current frame, starting at the first 
frame, F = 1. This model is recursive, in which the intention-
evaluation function, f(…), uses the previous status of human 
intention to determine the human’s intention at the current 
status.  

   𝐻𝐻(𝑥𝑥𝐹𝐹 ,𝑦𝑦𝐹𝐹 ,𝑑𝑑𝐹𝐹) =  𝑓𝑓(𝐻𝐻( 𝑥𝑥𝐹𝐹−1,𝑦𝑦𝐹𝐹−1,𝑑𝑑𝐹𝐹−1))   (5) 

The construction of the intention-evaluation function, 
f(…), is characterized in Fig. 2. There are three main steps in 
this function: (1) optical flow calculations, (2) depth sensing, 
and (3) deprojection. The inputs for this function are the 
following: (a) the current frame, denoted by F, (b) the 
previous frame, denoted by F-1, and (c) the previous location 
of the object in pixel coordinates. The first step, optical flow 
calculations as elaborated on in section II.A, takes the 
previous (x, y) coordinates of the object and uses a function 
from the OpenCV library to calculate a displacement vector, 
which is also written in terms of (x, y).  

 
Fig. 2. The construction of the intention-evaluation function. 

However, one limitation of optical flow is that its 
capabilities are restricted to two dimensions. To fully evaluate 

human intentions, a third dimension is added, such that the 
robot understands object movement in the same fashion that a 
human comprehends it. Thus, the second step, depth sensing, is 
created. An Intel Realsense™ depth camera D435i [18] is used 
to develop our robot vision system. Using the vision system 
and a function from the pyrealsense2 library, a depth, d, is 
measured in meters of the object’s z-distance from the vision 
system in the current frame. This data point, since it is given in 
meters, is located in real-world coordinates, denoted by r, 
rather than in pixel coordinates, denoted by p. 

Although depth is given in the function as a real-world 
coordinate, x and y are not. It is necessary to convert the 
object’s location to real-world coordinates as the local robot 
controller must communicate with the robot using locations in 
terms of real-world coordinates for the robot to move to the 
real-world location of the object at the current time. Thus, the 
last step in the intention-evaluation function is to deproject the 
two-dimensional output of the optical flow algorithm to a 
three-dimensional point in the real world. To do this, a depth is 
paired with the pixel (x, y) coordinates and passed into a 
function from the pyrealsense2 library. The output of the 
function f is a three-dimensional point in real-world 
coordinates which is accurate to the actual location of the 
object operated by the human in the shared workspace. 

 
Fig. 3. Experimental Platform. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Setup 

The experiment platform consists of a collaborative robot, a 
vision system (developed by the Intel Realsense D435i), a 
workstation (Thinkstation P520), a shared workspace, and the 
target object (in this case, a blue car model). The Franka Emika 
Panda, a 7-DoF collaborative robot with a robotic arm, two-
finger parallel gripper, pilot user interface, and Franka-Control-
Interface (FCI) controller, is employed in this work [10]. The 
experimental platform is shown in Fig. 3. The experiment was 
carried out in two separate trials, by two different people, each 
possessing their own intentions. In each trial, the participant 
begins moving the object after the robot calibrates itself, by 
moving from the ready state to a position above the stationary 
blue car. Then, the participant picks up the car and makes a set 
of stochastic movements in three-dimensional space. This 
movement is identified by the vision system and converted into 
locational data.  



After the collected data is fed to the workstation and the 
human intention understanding model, the robot system 
controller receives the intention understanding results via a 
Robot Operating System (ROS), an open-source framework 
that enables large-scale cross-platform maneuvering and 
communication [10]. Additionally, MoveIt!, a package that 
facilitates dynamic robot manipulation and motion planning, is 
implemented for robot control [19]. The planned waypoint for 
each motion of the robot, following a human intention 
operation on the object, is created such that the end-effector of 
the robot has the same x and y coordinates of the calculated 
real-world coordinates. For the z-dimension, the program adds 
0.25 meters in the positive vertical direction to the given d 
such that the area of vision for the camera is large enough to 
make object movements without collision or exiting the frame. 
The robot then moves to the planned waypoint, and the human 
once again may make a small movement, creating an iterative 
cycle of movement that alternates between the object and the 
robot. Thus, human intention movement is detected, 
evaluated, and followed by the robot.  

 
Fig. 4. One of the participant’s verification process. 

B. Real-world Human-robot Collaboration 

The human intention understanding is validated with an 
online real-world HRC task, in which the robot accurately 
follows the movements of a car model held by its human 
partner. Fig. 4 shows one of the participant’s verification 
processes. Following the initialization of MoveIt! and the 
vision system, the robot first calibrates itself by moving from 
the ready state to a location over the object. This takes 
between one and three movements, in which the object 
remains stationary and the robot adjusts, often moving 
upwards to increase the area of the frame view to detect the 
object (Fig. 4(a)). Calibration has concluded and human 
intention processing is ready to initialize when the robot is 
centered over the object (Fig. 4(b)). Then, the human picks up 
the object and begins to move it based on their personal 

intentions (Fig 4(c)). In the dynamic intention understanding 
verification process, the human partner moves the object in all 
three dimensions throughout the shared workspace, including 
movements that have non-linear paths. The robot continues to 
follow the object successfully over multiple iterations of 
movement (Fig. 4(d)-(f)).  

Additionally, the real-world HRC demonstrated that this 
understanding is error-resistant and safe, in that if the vision 
system fails to detect the object within the frame during the 
task, the robot will simply attempt to recalibrate, again 
moving the end-effector in the upwards z-direction to increase 
the detection area rather than failing and shutting down. This 
can be seen in another participant’s verification process in Fig. 
5 and Fig. 6, where, following a human movement, the camera 
loses the point which has been tracked by optical flow. The 
camera is then moved upward, increasing the offset between 
the end-effector and the object depth to about 0.4 meters, as 
seen in the inconsistency in Fig. 7 around index 25. Safety for 
both the robot and the human is demonstrated, as errors are 
corrected by the robot moving away from the object, and 
therefore the human, thus never coming close to a collision. 
Overall, this approach shows promise in the future 
development of HRC tasks.  

 
Fig. 5. The camera loses the tracked point and lengthens the z-axis offset.  

 

Fig. 6. The camera redetects the object and continues to the correct offset of 
0.25m.  

C. Evaluations and Analysis 

Fig. 7 and Fig. 8 present the differences in location 
between the end-effector of the robot and the tracked point of 



the object operated by the human for x (green), y (blue), and z 
(red) dimensions. Differences remained fairly consistent 
throughout both trials. x and y differences remained around 
zero meters and location differences in z remained around 
0.25 meters, the default offset. Large inconsistencies, shown 
as “spikes”, correspond to points that were collected 
incorrectly due to depth sensing errors, which will be 
discussed in section IV. Consistency can be evaluated and 
analyzed by the standard deviation (std) in Table I, where a 
small standard deviation signifies that the data is not 
significantly dispersed from the mean, indicating that the 
human intention understanding approach is stable. For all 
three dimensions in both trials, the standard deviations are less 
than 0.1. The standard deviation for z is greater than the 
standard deviations of x and y for both trials, highlighting the 
presence of errors in the depth sensing of the vision system.   

 
Fig. 7. Differences between robot and object location for three dimensions 

(Trial 1). 

 
Fig. 8. Differences between robot and object location for three dimensions 

(Trial 2). 

TABLE I. STANDARD DEVIATIONS OF THE DIFFERENCES IN 
LOCATION IN THREE DIMENSIONS 

 stdx stdy stdz 
Trial 1 0.015024 0.015024 0.066844 
Trial 2 0.016132 0.024015 0.078579 

Additionally, as displayed in Fig. 9 and Fig. 10, the three-
dimensional trajectories were collected to show the 
movements the robot and the human took over time in the 
shared workspace. The red path, denoting the robot end-
effector, is offset from the green path, denoting the object 
operated by the human, by 0.25 meters. This offset 
demonstrates that the robot motion planning successfully and 
accurately followed the object during both trials. Another 
characteristic of note is the quality of the line when comparing 
the human movements and the robot movements. The robot, 
having motions pre-planned, has a smooth characteristic to its 
path. In contrast, the human, who, during the movement, must 
make split-second decisions about their next object 
positioning, creates a path with less consistency and more 
erratic movement. Depth sensing errors are again present. In 
this case, these errors are included in the path for the human 
movement, highlighted in the large, upward “spikes”.  

 

Fig. 9. Trajectories of the robot end-effector and the object operated by the 
human (Trial 1). 

 

Fig. 10. Trajectories of the robot end-effector and the object operated by the 
human (Trial 2). 

IV. CONCLUSIONS AND FUTURE WORK 

To enhance the quality of HRC tasks through the 
understanding of human intentions, we have developed and 
tested an approach which enabled the robot to dynamically 
detect and track an object operated by a human in a shared 
workspace. This approach combines the components of the 
optical flow algorithm, depth sensing, and coordinate 
deprojection in order to have the robot accurately follow the 
object in near real-time. Real-world experimental results and 
evaluations suggested the accuracy and safety of the proposed 
approach for human-robot partnerships.  

An opportunity for future research presents itself when 
considering the occurrence of depth sensing errors due to the 
limitations of using one camera attached to the end-effector of 
the robot. As pointed out in Fig. 11, there are several locations 
in the camera’s field of view which are blind spots, shown in 
the color black. They occur from infrared light not being 
refracted back into the lens due to a surface being too small or 
at an angle such that light is unable to be refracted back. These 
blind spots are particularly potent in the depth sensing step of 
the algorithm, creating instances where the camera believes 



that the object is level with the camera rather than below it. 
Thus, future work may include mitigating these errors through 
the incorporation of additional cameras in different locations, 
such that all points in the workspace can be sensed by at least 
one camera.  

 
Fig. 11. Infrared demonstration of camera blind spots. 

Finally, we acknowledge that this research is limited in that 
the robot “understands” human intention through evaluation 
rather than prediction. Future work may include collecting data 
with our developed algorithm and then feeding this data into a 
model that may predict the human’s future intentions, rather 
than only evaluating their current intentions. This future work 
could optimize time usage and cognitive effort during HRC.  
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