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Abstract

We develop a novel, general and computation-
ally efficient framework, called Divide and Con-
quer Dynamic Programming (DCDP), for local-
izing change points in time series data with high-
dimensional features. DCDP deploys a class of
greedy algorithms that are applicable to a broad
variety of high-dimensional statistical models and
can enjoy almost linear computational complexity.
We investigate the performance of DCDP in three
commonly studied change point settings in high
dimensions: the mean model, the Gaussian graph-
ical model, and the linear regression model. In
all three cases, we derive non-asymptotic bounds
for the accuracy of the DCDP change point es-
timators. We demonstrate that the DCDP proce-
dures consistently estimate the change points with
sharp, and in some cases, optimal rates while in-
curring significantly smaller computational costs
than the best available algorithms. Our findings
are supported by extensive numerical experiments
on both synthetic and real data.

1. Introduction

Change point analysis is a well-established topic in statistics
that is concerned with identifying abrupt changes in the data,
typically observed as a time series, that are due to structural
changes in the underlying distribution. Initially introduced
in the 1940s (Wald, 1945; Page, 1954), change point analy-
sis has been the subject of a rich statistical literature and has
produced a host of well-established methods for statistical
inference. Despite their popularity, most existing change
point methods available to practitioners are ill-suited or
computationally costly to handle high-dimensional complex
data. In this paper, we develop a general and flexible frame-
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work for high-dimensional change point analysis that enjoys
very favorable statistical and computational properties.

We adopt a standard offline change point analysis set-up,
whereby we observe a sequence {Z; };c[,) of independent
data points, where [n] := {1,...,n}. We assume that each
Z; follows a high-dimensional parametric distribution Pg-
specified by an unknown parameter 8, and that sequence of
parameters {0; };c[,] is piece-wise constant over time. For
example, in the mean change point model (see Section 3.1
below), E(Z;) = 6 € RP, where 6 is a vector in RP.
In the regression change point model (see Section 3.2),
Z; = (X;,y;) € R? x R satistying E(y;|X;) = X/ 6}
where 67 is a vector of regression parameters.

We postulate that there exists an unknown sub-sequence of
change points 1 =ng <m <1m2 < ... < nNg < Ng+1 =
n + 1 such that 87 # 67, if and only if i € {1k }re[x)-
For each k € [K] = {1,..., K}, define the local spacing
parameter and local jump size parameter as

(1.1

respectively, where || - || is some appropriate norm that is
problem specific. Throughout the paper, we will allow the
parameters of the data generating distributions, the spacing
and jump sizes to change with n, though we will require
K to be bounded. Our goal is to estimate the number and
locations of the change points sequence {7 }re[x]. We will
deem any estimator {7, }, €[R] of the change point sequence
consistent if, with probability tending to 1 as n — oo,

Ap=mp —nr—1 and Ky := (|0, —60;

K=K and e — M| = 0(Amin), 1.2
g%m | = o( ) (1.2)

where Ay = minge(x) A

Recent years have witnessed significant advances in the
fields of high-dimensional change point analysis, both in
terms of methodological developments and theoretical ad-
vances. Most change point estimators for high-dimensional
problems can be divided into two main categories: those
based on variants of the binary segmentation algorithm and
those relying on the penalized likelihood. See below for a
brief summary of the relevant literature.

In this paper, we aim to develop a comprehensive framework
for estimating change points in high-dimensional models
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using an {y-penalized likelihood approach. While ¢y-based
change point algorithms have demonstrated excellent — in
fact, often optimal — localization rates, their computational
costs remain a significant challenge. Indeed, optimizing the
{y-penalized objective function using a dynamic program-
ming (DP) approach requires quadratic time complexity
(Friedrich et al., 2008) and, therefore, is often impractical.

To overcome this computational bottleneck, we propose
a novel class of algorithms for high-dimensional multiple
change point estimation problems called divide and conquer
dynamic programming (DCDP) - see Algorithm 1. The
DCDP framework is very versatile and can be applied to a
wide range of high-dimensional change point problems. At
the same time, it yields a substantial reduction in compu-
tational complexity compared to the vanilla DP. In particu-
lar, when the minimal spacing A,;, between consecutive
change points is of order n, DCDP exhibits almost linear
time complexity.

Moreover, the DCDP algorithm retains a high degree of
statistical accuracy. Indeed, we show that DCDP delivers
minimax optimal localization error rates for change point
localization in the sparse high-dimensional mean model, the
Gaussian graphical model and the sparse linear regression
model. To the best of our knowledge, DCDP is the first near-
linear time procedure that can provide optimal statistical
guarantees in these three different models. See Remark 3
and Remark 4 for more detailed discussions on optimality.

Structure of the paper. Below we provide a selective re-
view of the recent relevant literature on high-dimensional
change point analysis. In Section 2, we describe the DCDP
framework. In Section 3, we provide detailed theoretical
studies to demonstrate that DCDP achieves minimax opti-
mal localization errors in the three models. In Section 4, we
conduct extensive numerical experiments on synthetic and
real data to illustrate the superior numerical performance of
DCDP compared to existing procedures.

Relevant litearture. Binary Segmentation(BS) is a greedy
iterative approach that breaks the multiple-change-point
problem down into a sequence of single change-point sub-
problems. Originally introduced by (Scott and Knott,
1974) to handle the case of one change point, the BS al-
gorithm was later shown by (Venkatraman, 1992) to be ef-
fective also in the multiple-change-point senerios. Modern
computationally efficient variants of the original BS algo-
rithms include wild-binary segmentation of (Fryzlewicz,
2014) and Seeded Binary Segmentation (SBS) algorithm of
(Kovdcs et al., 2020). Binary Segmentation procedures have
been designed for various change point problems, includ-
ing high-dimensional mean models (Eichinger and Kirch,
2018; Wang and Samworth, 2018), graphical models (Lond-
schien et al., 2021), covariance models (Wang et al., 2021b),
network models (Wang et al., 2021a), functional models

(Madrid Padilla et al., 2022) and many more.

Penalized likelihood-based approaches are also popular in
the change point literature. Broadly, these approaches seg-
ment the time series by maximizing a likelihood function
with an appropriate penalty to avoid over-segmentation.
(Yao and Au, 1989) showed that ¢y-penalized likelihood-
based methods yield consistent estimators of change points.
Relaxing the £y-penalty to the /1 -penalty results in the Fused
Lasso algorithm, whose theoretical and computational prop-
erties have been analyzed by many, including (Lin et al.,
2017) for the mean setting and by (Qian and Su, 2016)
for the linear regression setting. More recently, (Bai and
Safikhani, 2022) proposed a unified framework to analyze
Fused-Lasso-based change point estimators in linear mod-
els.

Few recent notable contributions in the literature have fo-
cused on designing unified methodological frameworks for
offline change point analysis. (Pilliat et al., 2020) developed
a general approach based on local two-sample tests to detect
changes in means, but their approach can only consistently
estimate the number of change points and the localization
accuracy of the estimators is unspecified. (Londschien et al.,
2022) proposed a novel multivariate nonparametric multi-
ple change point detection method based on the likelihood
ratio tests. (Bai and Safikhani, 2022) studied a general
framework based on the Fused Lasso to deal with change
points in mean and linear regression models, but their de-
tection boundary is sub-optimal and it is computationally
demanding to numerically optimize the Fused Lasso objec-
tive function for high-dimensional time series. Until now,
a unified framework for offline change point localization
with optimal statistical guarantees and low computational
complexity is still missing in the literature.

Notation. For n € Z*, denote [n] := {1,--- ,n}. Fora
vector v € RP, denote the ¢-th entry as v;, and similarly,
for a matrxi A € R™*", we use A;; to denote its element
at the ¢-th row and j-th column. We use Sﬁ_ to denote the
cone of positive semidefinite matrices in RP*P. For two real
numbers a, b, we denote a V b := max{a, b}.

I - ll1, || - ||2 refer to the ¢; and ¢5 norm of vectors, i.e.,
IVl = Suepy loil and (V]2 = (Xey 02)2. Fora
square matrix A € R" ", we use |A||r to denote its
Frobenius norm, Tr(A) = >, ¢, Aii to denote its trace,
and |A| to denote its determinant. For a random variable
X € R, we denote || X||, as the subgaussian norm (Ver-
shynin, 2018): [|X{|y, := inf{t > 0 : B¢y (|X]/t) < 1}
where () = et — 1.

For asymptotics, we denote x,, < y, or z, = O(y,) if
Vn, x, < c1y, for some universal constant ¢; > 0. a,, =
o(b,) means a,, /b, — 0asn — oo, and X,, = 0,(Y},) if
X,/Y, — 0in probability. We call a positive sequence
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{an}nez+ adiverging sequence if a,, — 0o as n — oo.

2. Methodology

In this section, we introduce the DCDP framework and
analyze its computational complexity. We assume that we
observe a time series of independent data {Z; } ;) sampled
from the unknown sequence of distributions {Pg- };¢(y,). For
a time interval Z C [1, n| comprised of integers, let 7 (0, 7)
denote the value of an appropriately chosen goodness-of-fit
function of the subset {Z; };c7, and for a fixed and common
value of the parameter 8. The choice of the goodness-of-fit
function is problem dependent.

Next, we use 51 to denote the penalized or unpenalized
maximum likelihood estimator of 8 within the interval 7.
Intuitively, F(0z,Z) can be considered a local statistic to
test for the existence of one or more change points in Z.

DCDP is a two-stage algorithm that entails a divide step and
an conquer step; see Algorithm 1 for details. In the divide
step, described in Algorithm 2, DCDP first computes pre-
liminary estimates of the change point locations by running
DDP, a dynamic programming algorithm over a uniformly-
spaced grid of time points {s; = i -n/(Q + 1)] }ie[g)-
(DDP can also take as input a random collection of time
points, but there are no computational or statistical advan-
tages in randomizing this choice). In the subsequent conquer
step, detailed in Algorithm 3, the localization accuracy of
the initial estimates is improved using a penalized local
refinement (PLR) methodology.

Computational complexity of DCDP. The DCDP proce-
dure achieves substantial computational gains by using a
coarse, regular grid of time points {s;};co C [n] during the
divide step. Additionally, the PLR procedure in the conquer
step is a local algorithm and is easily parallelizable. The
number of grid points Q to be given as input to DDP in the
divide step should be chosen to be of smaller order than the
length of the time course n, but large enough to identify the
number and the approximate positions of the true change
points.

Algorithm 1 Divide and Conquer Dynamic Programming.
DCDP ({Zi}icn)» 7,65 Q)

Input: Data {Z;}c[,,], tuning parameters -y, ¢, Q > 0.

Set grid points s; = [ g7 | fori € [Q].

(Divide Step) Compute the proxy estimators {7 }, c[R) Us
ing DDP ({Z; }ic[n), {5i }ic[), ) in Algorithm 2.

(Conquer Step) Compute the final estimators {7}, IR
using PLR({ﬁk}ke[fq ,¢) in Algorithm 3.

Output: The change point estimators {7 }, IR

Algorithm 2 Divided Dynamic Programming DDP
({Z:}icm)s {5i}icg), 7): the divide step.

Input: Data {Z;} ¢, ordered integers {s;};c[o) C (0,7),
tuning parameter y > 0.
SetP=0,p=(-1,...,—-1), B=(v,00,...

n n

,00).

for 7 in {s;};c[0) do
for [ in {Si}ie[Q]) Il <rdo

<+ [l,r]n{1,...,n}

compute 7 and .7-"(51,1) based on {Z; }iez ;
b« B +~v+ F(61,7);
if b < B, then

B, < b;
P 1.

To compute p € N, set k < n.

while £ > 1 do

h = prs

P+ P U {h}

L k<« h.

Qutput: The set of estimated change points P.

In detail, let C; (JZ], p) denote the time complexity of com-
puting the goodness-of-fit function F (51, 7). Naively, the
time complexity of Algorithm 2 is O(Q? - C;(n, p)), where
Q is the size of the grid {s;};c[g] in Algorithm 2. With
the memorization technique proposed in (Xu et al., 2022),
we show in Lemma B.1 that the complexity of the divide
step can be reduced to O(nQ - C3(p)), and in Lemma F.1
that the conquer step can be computed with time complexity
O(n - C2(p)), where Ca(p) is independent of n. Further-
more, as shown later in Section 3 and Appendix B, setting
Q =z~ log?(n) ensures consistency of Algorithm 2.
Therefore, the complexity of DCDP is

05 ogtn) - ).

When A, is of the same order as n, the complexity of
DCDP becomes O(nlog?(n) - C2(p)). To the best of our
knowledge, DCDP is the first multiple-change-point detec-
tion algorithm that can provably achieve near-linear time
complexity in the three models presented in Section 3.

Statistical accuracy. As we will show below, though the
DDP procedure in the divide step may already be sufficiently
accurate to deliver consistent estimates as defined in (1.2),
its error rate is suboptimal. Sharper, even optimal, local-
ization errors can be achieved through the PLR algorithm
in the conquer step (see Algorithm 3). The PLR procedure
takes as input the preliminary change points estimates from
the divide step', and provably reduces their localization er-

"More generally, it can be shown that the PLR procedure re-
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Algorithm 3 Penalized Local Refinement

PLR({7k } ¢ ) €): the conquer step.

Input: Data {Z;},c/,), estimated change points {7 }, IR
from Algorithm 2, tuning parameter ¢ > 0.
Let (7/7\07 ﬁ}?+1) — (Oa n)

fork=1,..., K do

(Sk,er) < (%ﬁkfl + %ﬁ/w %nk + %

(ﬁk7§(1),§(2)) < arg min {f(H(l), [sk,m))+
7,600,0(2)

F(O@),[n,ex)) + (RO, 0P, 1; 51, e1)}

iie < argmin { FOD, [sx,m)) + F(O, [n, ex) }
n

O:Itput: The refined estimators {7}, IR

rors — for some of the models considered in the next section,
down to the minimax optimal rates. The effectiveness of
local refinement methods to enhance the precision of initial
change point estimates has been well-documented in the
recent literature on change point analysis (Rinaldo et al.,
2021; Li et al., 2022). In Algorithm 3, the additional penalty
function R(8™), 0 n: s, e) in Algorithm 3 is introduced
to ensure numerical stability of the parameter estimates in
high dimensions and, possibly, to reproduce desired struc-
tural properties, such as sparsity. Its choice is, therefore,
problem specific. For example, in the sparse mean and lin-
ear change point model in Section 3.1, 8V, 8(2) € R and
we consider the group lasso penalty function

R() = 3"\ —$)0W)? + (e —m)(@@)2. @)

i€(p]

Remark 1 (Penalization). In Algorithm 2, v is a tuning
parameter to control the number of selected change points
and to avoid false discoveries. In Algorithm 3, the tuning
parameter ( is used to modulate the impact of the penalty
function R. We derive theoretically valid choices of tuning
parameters in Section 3, and provide practical guidance on
how to select them in a data-driven way in Section 4.

3. Main Results

We investigate the theoretical performance of DCDP in
three different high-dimensional change point models. For
each of the models examined, we first derive localization
rates for the DDP algorithm in the divide step and find
that, though they imply consistency, they are worse than the

mains effective as long as it is given as input any change point
estimates whose Hausdorff distance from the true change points is
bounded by Amin. Thus, the preliminary estimates need not even
be consistent.

corresponding rates afforded by the computationally costly
vanilla DP algorithm (Wang et al., 2020; Rinaldo et al.,
2021). This suboptimal performance reflects the trade-off
between computation efficiency and statistical accuracy and
should not come as a surprise. Next, we demonstrate that, by
using the PLR algorithm in the conquer step, the estimation
accuracy increases and the final localization rates become
comparable to the (often minimax) optimal rates.

Throughout the section, we will consider the following high-
dimensional offline change point analysis framework of
reference.

Assumption 3.1. We observe independent data points
{Z;}ic[n such that, for each 4, Z; is a draw from a para-
metric distribution Pg- specified by an unknown parameter
vector 8;. There exists an unknown collection of change
pointsl =y <m <M< ...<ng <nNg4+1 =n+1
such that 7 # 0;_, if and only if i € {7 }c[x]. For each
change point 7y, we will let rj, = [|0; —6; || be the size
of the corresponding change, where || - || is an appropriate
norm (to be specified, depending on the model). For simplic-
ity, we further assume that the magnitudes of the changes
are of the same order: there exists a £ > 0 such that Kk, < K
for all £ € [K]. We denote the spacing between 7, and
Nk—1 With Ag = n — n—1 and let Ay = mingcx) A
denote the minimal spacing. All the model parameters are
allowed to change with n, with the exception of K.

3.1. Changes in means

Change point detection and localization of a piece-wise
constant mean signal is arguably the most traditional and
well-studied change point model. Initially developed in
the 1940s for univariate data, the model has recently been
generalized under various high-dimensional settings and
thoroughly investigated: see, e.g., (Wang and Samworth,
2018; Chao, 2019; Pilliat et al., 2020; Bai and Safikhani,
2022). Below, we show that, for this model, DCDP achieves
the sharp detection boundary and delivers the minimax opti-
mal localization error rate.

Assumption 3.2 (Mean model). Suppose that for each i €
[n], Z; = X, satisfies the mean model X; = u} + €; € RP
and Assumption 3.1 holds with 87 = p and || - || = || - ||2.

(a) The measurement errors {ei}ie[n} are independent mean-
zero random vectors with independent subgaussian entries
such that 0 < o = Sup; ¢, SUPj¢p) l(€:) Iy, < 0.

(b) For each ¢ € [n], there exists a collection of subsets
S; C [p], such that (u}); = 0if j ¢ .S;. In addition, the
cardinality of the support satisfies |S;| < s.

Conditions (a) and (b) above are standard assumptions for
the high-dimensional linear regression time series models
(Basu and Michailidis, 2015; Bai and Safikhani, 2022). In
our first result, we establish consistency of the divide step.
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The proof of the following theorem is in Appendix C.
Theorem 3.3. Suppose that Assumption 3.2 holds and that

Apink? > Bnofs log(p V n), 3.1

for some slowly diverging sequence {By},cz+. For suffi-
ciently large constants C., and Cr, let {1} re(R) denote

the output of Algorithm 2 with Q = ﬁ log?(n),

.F(ﬁz,I) = {

0 otherwise,
and ~y = C’,YB;l/QAmian. Here

fiz = argmin | X; - pli + W2 el G2
HERP

with A\ = Cx+/log(p V n) and C) a sufficiently large con-
stant. Then, with probability 1 — n3, K = K and

= o?log(p Vv n) ~1/2
I?Gl[al)((] |77k 77k| S K2 + Bn Amin.
The signal-to-noise-ratio (SNR) condition (3.1) assumed in
Theorem 3.3 is frequently used in the change point detection
literature (Bai and Safikhani, 2022; Wang and Samworth,
2018). Recently, (Pilliat et al., 2020) showed that, if s <
/D condition (3.1) is indeed necessary, in the sense that if

Amin"$2

o2slog(p V n)

= o(1),

then there exists a setting for which no change point estima-
tor is consistent. The localization error of DCDP estimator
{M}y ¢ (k) returned by Algorithm 2 satisfies

ot log(p V n)
Amin "iQ

maxpe (] |k — k| _

Ami]ﬂ ~

with high probability. Thus, using (3.1), it follows that the
resulting estimator is consistent:

+ B, 12,

maxpe(k) [Nk — 7kl
AInin

Remark 2 (Grid size). In Theorem 3.3 and in all the results
of this section, we choose a value for the grid size Q that,
while coarse, ensures consistency. Any finer grid can yield
the same error rate, at an additional computational cost.

SB 4B =0,(1).

Compared to the localization error of the vanilla DP, the
localization error of Divided DP Algorithm 2 picks up an
additional term B3,, 1/ 2Amin. As remarked above, this is to
be expected, as Algorithm 2 only deploys a subset of the
data indices. Starting with the coarse (but still consistent)
preliminary estimators from the divide step Algorithm 2, the
local refinement algorithm Algorithm 3 further improves its
accuracy and, in fact, yields an optimal error rate.

ez IXi — fzll3 if|Z] > Crslog(p V n),

Theorem 3.4. Let {8, },cz+ be any slowly diverging se-
quence and suppose that Apink® > B,o2s? log® (p Vn).
Let {ﬁk}ke[f(] be the output of Algorithm 3 with ( =

Cey/log(pV n) for sufficiently large constant C¢ and
R(OW,03) n: s, ¢e) be specified in (2.1). Then under As-
sumption 3.2, for any o € (0, 1), with probability at least
1— (Vv n~Y) it holds that K = K and

2

o
;IGI?X] [ne — k| < /{2( +log(1/a)) (3.3)

The proof of Theorem 3.4 can be found in Appendix F.3.

Remark 3. The localization error bound (3.3) is the tightest
in the literature. It improves the existing bounds by (Wang
and Samworth, 2018) and (Bai and Safikhani, 2022) by a fac-
tor of s log(p). It also matches the lower bound established
in (Wang and Samworth, 2018), showing that O, (1/£?) is
the optimal error order and can not be further improved.

3.2. Changes in regression coefficients

We now consider the more complex high-dimensional re-
gression change point model in which the regression co-
efficients are sparse and change in a piecewise constant
manner. Recently, various approaches and methods have
been proposed to address this challenging scenario; see, in
particular, (Rinaldo et al., 2021; Wang et al., 2021c; Bai and
Safikhani, 2022; Xu et al., 2022). Below, we will show that
DCDP yields optimal localization errors also for this class
of change point models.

Assumption 3.5 (High-dimensional linear model). Let the
observed data {X,, yi}ie[n] C RP x R be such that y; =
X, 37 +e€; and let Assumption 3.1 hold with 87 = 3; € RP
and || - || = || - ||2- In addition,

(a) Suppose that {X;}ic[n ik N,(0,X) and that
the minimal and the maximal eigenvalues of ¥ satisfy
Amin(E) > ex and Apax(E) < Cx, with universal
constants c¢x,Cx € (0,00). In addition, suppose that
{Ei}ie[n] i N(0,02) and is independent of {Xi}ie[n]~
(b) For each i € [n], there exists a collection of indices
S; C [p], such that (37); = 0if j ¢ S;. In addition, the
cardinality of the support satisfies |S;| < s.

We note that Assumption 3.5 (a) and (b) are standard as-
sumptions for Lasso estimators. Similarly to the case of the
mean change point model, we first analyze the performance
of the divide step of DCDP and find it to be consistent, albeit
at a sub-optimal rate.

Theorem 3.6. Suppose Assumption 3.5 holds and that

Amink? > Bpo?slog(p vV n) (3.4)
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Sor some diverging sequence {B,},cz+. Let {ﬁk}ke[f(] be
the output of Algorithm 2 with Q = 4" log (n), v =
CAYB;1 QAminK& and

F(Br.T) = {OZ "
zGI

Sfor sufficiently large constants C., and Cr and BI given by

- X/ B8)% + \W[Z[ 181,

if |Z| < Crslog(p vV n);

X—r ,BI) otherwise,

,61 = arg min(y; 3.5)

BeRP

with A = Cx+/log(p V n), for Cy a sufficiently large con-
stant. Then, with probability 1 — n=3, K = K and that

o2slog(p V n)
2

maX |77k - 771«\ < + Bgl/zAmin

ke[K

The proof of Theorem 3.6 is deferred to Appendix D. It is
immediate to verify that, under the SNR condition (3.4) and
given the choice of v, estimators satisfy that maxy¢ () [7x —
M| = 0p(Amin) and are therefore consistent.

With a slightly stronger SNR condition than (3.4), statisti-
cally optimal change point estimators can be obtained in the
conquer step.

Theorem 3.7. Let {B,,},cz+ be any slowly diverging se-
quence and suppose that Ayink® > Bn0352 10g3(p V
n). Let {ﬁk}ke[f(] be the output of Algorithm 3 with

¢ = Cey/log(pV n) for sufficiently large constant C¢
and R(OW),0?) n) specified in (2.1) Then under Assump-
tion 3.5, for any a € (0, 1) with probability at least
1— (aVvn™l), it holds that K = K and

o2

max [y — 7| S (1+ *6 log®(1/a)).

(3.6)
ke[K]

The proof of Theorem 3.7 can be found in Appendix F.4.
Remark 4. The localization error (3.6) matches the existing
lower bound established in (Rinaldo et al., 2021) and, there-
fore, it is rate minimax optimal. To the best of our knowl-
edge, the only other existing change point algorithm that can
achieve optimal localization errors in the high-dimensional
linear regression setting is the one developed in (Xu et al.,
2022), which allows for dependent observations. However,
the approach by (Xu et al., 2022) requires quadratic time
complexity. It is worth mentioning that both (Rinaldo et al.,
2021) and (Xu et al., 2022) also assume the SNR condition
we use in Theorem 3.6 and Theorem 3.7.

3.3. Changes in precision matrices

For our third and final example, we specialize the general
change point framework of Assumption 3.1 to the case

of Gaussian graphical models, in which the distributional
changes are induced by a sequence of temporally piece-
wise constant precision matrices, with the magnitude of the
changes measured in Frobenius norm.

Assumption 3.8 (Gaussian graphical model). Suppose for
each i € [n], X; is a mean-zero Gaussian vector in RP with
covariance matrix X} = E[X;X/], and Assumption 3.1
holds with 87 = (27)~! with || - || = || - || . Assume that
for each i € [n], the minimal and maximal eigenvalues of
¥ satisfy Amin(27) > cx and Apax(2F) < Cx, with
universal constants c¢x, Cx € (0,00).

Several contributions in he recent literature address the prob-
lem of detecting change points in precision matrices; see,
e.g., (Gibberd and Roy, 2017; Gibberd and Nelson, 2017;
Bybee and Atchadé, 2018; Keshavarz et al., 2020; Lond-
schien et al., 2021; Liu et al., 2021; Bai and Safikhani,
2022). Most of these studies focus on estimating a single
change point. To the best of our knowledge, only (Bai and
Safikhani, 2022) has provided theoretical guarantees for the
multiple-change-point setting assuming sparse changes in
the precision matrices. Below, we show that the divide step
of the DCDP procedure is able to detect multiple change
points in the precision matrices in the dense regime.

Theorem 3.9. Suppose Assumption 3.8 holds and that

Amin"f2 > Bnp2 lOg(TL \ p) (37)

or some slowly diverging sequence {B, +. Let
fe y ging seq nez
Mk = be the output of Algorithm 2 with Q =
Ik S ke[R)

ﬂ log? (n),y= CVB;UQAmian and

0 if |Z| < Czplog(pV n);
F0z,1) = {Z T[Q] X, X]] -
i€l

for sufficiently large constants C., and Cr. Here Qs

Q7 = arg mlnz QXX -
QES

IZ|log |2, (3.8)

i€L

Then with probability at least 1 — n~3, K = K and that

1
max |7lk*77 |<p +Bn2Amin-

*log(p V n)
—_ 3.9
ke[K] K2 (3-9)

The proof of Theorem 3.9 is deferred to Appendix E.

Under the assumption of the theorem, the localization rate
(3.9) implies consistency, as defined in (1.2); indeed, it is
easy to see that maxye(x) [ — k| = 0p(Amin)-

An analogous condition to Condition (3.7) is used in (Bai
and Safikhani, 2022) under the slightly different settings of
sparse changes. More precisely, the authors there requires
that Apink? > Bydlog(n V p), where d is the maximal

Z| log |Qz| otherwise.
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number of nonzero entries in the precision matrices. When
applied to our dense settings, their SNR condition matches
3.7).

Under a slightly stronger SNR condition, we further obtain
that the local refinement algorithm in the conquer step im-
proves the localization rate to match the sharpest rate known
for this problem.

Theorem 3.10. Let B, be an arbitrary slowly diverg-
ing sequence and suppose Anink® > Bpp* 1og2(n vV
p). Let {ﬁk}ke[fq be the output of Algorithm 3 with
R(OW,02) 1) = 0. Then under Assumption 3.8, it holds
that with probability at least 1 — n~*

- 1
max |nx — k| < = log(n). (3.10)

ke[K]

The proof of Theorem 3.10 is in Appendix F.5. The local-
ization error bound obtained for DCDP in Theorem 3.10
matches the sharpest error bounds obtained for the preci-
sion matrices change point model (Liu et al., 2021; Bai and
Safikhani, 2022) and does not require the precision matrices
to be sparse. To the best of our knowledge, DCDP is the first
linear time algorithm that can optimally estimate multiple
change points in the precision matrices in high dimensions.

4. Numerical Experiments

We evaluate the numerical performance of DCDP through
examples of synthetic and real data. The tuning parameters
~ and ¢ of DCDP are chosen using cross-validation. The
implementations of our numerical experiments are available
online 2. More details, including the implementation for
cross-validation and additional numerical results, can be
found in Appendix A due to space constraints.

4.1. Time complexity and accuracy of DCDP

We generate i.i.d. Gaussian random variables {y; }ic[n) C R
with y; = pf + ¢ and o, = 1. We set n = 4A where
A will be specified in each setting. The three popula-
tion change points of {u }ic(, are set to be py = 0,
P, = 0, pip, = 0, up. = 4, where ni, = kA + ) with
8, ~ Unif[— A, 2 Al for k = 1,2,3. We use the Haus-
dorff distance H({ﬁk}ke[l?]’ {mk} ke K)) to quantify the dif-
ference between the estimators and the true change points.

In the first set of experiments, we set A = 5000, = 5 and
vary Q from 25 to 200, and summarize results in Figure 1.
The left plot of the figure shows that while the localization
errors of the divide step are sensitive to the choice of O, the
additional conquer step (Algorithm 3) greatly improves the
numerical accuracy of the final estimators of DCDP. The

2https ://github.com/MountLee/DCDP

200 —— DCDP 6
divide step
- 300

run time
~

~

25 50 75 100 125 150 175 200 25 50

0 75 100 125 150 175 200
# grid points

# grid points

Figure 1: Average localization error and average run time
versus the number of grid points Q over 100 trials. The
shaded area indicates the upper and lower 0.1 quantiles of
the corresponding quantities.

right plot of the figure demonstrates that the time complex-
ity of DCDP is quadratic in Q, which is in line with the
complexity analysis presented in Section 2.

In the second set of experiments, we fix @ = 100.0 = 5 and
let A range from 1000 to 6000. The results are summarized
in Figure 2. The left plot of the figure shows that while
the localization errors of the dive step change with A, the
accuracy of DCDP is consistently small for all the different
values of A. The right plot of the figure shows that the time
complexity is linear in n, and this observation matches the
findings presented in Section 2.
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100 divide step

80

error

40

5
qéA

60 53
c
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20 1
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Figure 2: Average localization error and average run time
v.s. A over 100 trials.
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Figure 3: Localization error when varying ¢, the magnitude
of nonzero signals.

Next, we fix @ = 100 and A € {500, 5000} and vary J, the
strength of signals, to illustrate the performance of DCDP
under different SNR levels. The results are summarized in
Figure 3. More discussions on the accuracy under small §
are included in Appendix A.2.
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4.2. Numerical performance of DCDP

Below we report the outcome of various simulation studies
in which we compare the numerical performance of DCDP
with that of several other state-of-the-art methods, for each
of the three models presented in Section 3.

In the following experiments, for each specific A we set
the total number of observations n = (K + 1)A and the
locations of true change points 1, = kA + Jy, where Jy, is
a random variable sampled from the uniform distribution
Unif[—3A, 2 Al. In each setting, we conduct 100 trials
and report the average execution time, the average Hausdorff
distance between true and estimated change points, and the

frequency of cases in which K = K, for each method.

The mean model
We set K = 3 and, fork =0,--- ,Kand ¢ € {1,5}, we
assume a population mean vector of the form

pi, =(0,...,0,6,...,6,0,...,0)" € R”.
—— —— —

5k 5 p—5k—>5

We compare DCDP with Change-Forest (CF) (Londschien
et al., 2022), Block-wise Fused Lasso (BFL) (Bai and

Safikhani, 2022), and Inspect (Wang and Samworth, 2018).

The results are summarized in Table 1. On average, DCDP
outputs the most accurate change point estimators while
remaining computationally efficient.

Method H(7),n) Time PIK = K]
n =200,p=100,K =3, =5

DCDP  0.00 (0.00)  0.6s (0.0) 1.00
Inspect  0.40 (3.50)  0.0s (0.0) 0.91
CF 1.84 (6.27)  0.8s(0.2) 0.90
BFL 47.84 (6.69) 1.4s(0.2) 0.00

n=200,p=100,K =3,0 =1

DCDP 0.83(0.87) 0.8s(0.2) 1.00
Inspect  2.65 (5.16) 0.0s (0.0) 0.86
CF 6.29 (9.57) 1.1s (0.3) 0.78
BFL 47.19 (6.48) 1.1s(0.2) 0.00

Table 1: Numerical comparison of different methods in the
high-dimensional mean shift models. The numbers in the
cells indicate the averages over 100 trials and the numbers
in the brackets indicate the corresponding standard errors.

The linear regression model

We set K = 3 and, for k =0, --- , K, assume population
regression coefficients of the form

B;, =(0,...,0,6,...,6,0,...,0)" €RP,
N N N —
5k 5 p—5k—5

where 6 € {1,5}.

We compare the numerical performance of DCDP with
Variance-Projected Wild Binary Segmentation (VPBS)
(Wang et al., 2021c) and vanilla Dynamic Programming
(DP) (Rinaldo et al., 2021). The results are summarized in
Table 2. On average, DCDP is the most efficient algorithm
with compelling numerical accuracy.

Method  H(n,m) Time PIK = K]
n=200,p=100,K =3,0 =5

DCDP  0.13 (0.39) 18.4s (1.1) 1.00

DP 0.01 (0.10) 220.35 (16.8) 0.98

VPWBS 1544 (17.99) 120.1s (13.1) 0.70
n=200p=100,K =3,0 =1

DCDP 1.45 (8.59) 8.85 (0.7) 0.98

DP 0.22 (2.00) 84.4s (5.7) 0.99

VPWBS 11.54(11.23) 120.4s (14.5) 0.65

Table 2: Numerical comparison of different methods in the
high-dimensional regression coefficient shift models.

The Gaussian graphical model
We set K = 3 and the population covariance matrix matrices
as ) =%, =Ipand X} =X where
61a i = j 5
(27,)ij = (27,)ij = | 02,
0, otherwise,

i —jl =1;

with §; = 5,9 = 0.3.

We compare the numerical performance of DCDP with
Change-Forest (CF) (Londschien et al., 2022) and Block-
wise Fused Lasso (BFL) (Bai and Safikhani, 2022). Note
that the BFL algorithm produces empty set in all trials, so
we only report DCDP and CF in Table 3. It can be seen that
on average DCDP outputs the most accurate change point
estimates and is highly computationally efficient.

Method H(7,n) Time PIK = K]
n=1400,p=10,K = 3,0, = 5,02 = 0.3
DCDP  0.42(0.64) 0.55(0.0) 1.00
CF 5.54 (14.71) 0.6s (0.1) 0.88
n=400,p=20,K = 3,0, = 5,05 = 0.3
DCDP  0.66 (4.37)  0.9s5(0.3) 1.00
CF 7.37 (18.76)  1.0s (0.0) 0.85

Table 3: Numerical comparison of different methods in the
precision matrix shift models.

4.3. Real data analysis

In this section, we apply DCDP to three popular real data
examples and compare it with state-of-the-art methods.

Bladder tumor micro-array data. This dataset contains
the micro-array records of 43 patients with bladder tumor,
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collected and studied by (Stransky et al., 2006). The result
is visualized in Figure 4, where we only show the data of
10 patients for the ease of presentation and reading. While
there is no accurate ground truth of locations of change
points, the 37 change points spotted by DCDP align well
with previous research (James and Matteson, 2015; Wang
and Samworth, 2018). Figure 4 provides virtual support for
the findings by DCDP.

patient number

loci

Figure 4: Estimated change points in the micro-array data.
The result is based on the data of all 43 patients, while only
the data of 10 patients is presented. The estimated change
points are indicated by dashed vertical lines.

Dow Jones industrial average index. We apply DCDP to
the weekly log return of the 29 companies composing the
Dow Jones Industrial Average(DJIA) from April, 1990 to
January, 2012, to detect changes in the covariance structure.
We use the version of the data provided in (James and Mat-
teson, 2015). Two change points at September 22, 2008 and
May 4, 2009 are detected, which correspond to the months
during which the market was impacted by the financial crisis
in 2008. The estimates by DCDP match well with previous
research (James and Matteson, 2015) on this data.

To give a virtual evaluation on estimated change points, in
Figure 5 we show the estimated precision matrices on the
three segments of the data split by the estimated change
points.

262422201816141210 8 6 4 2 0

0246 810121416182022242628 1 3 5 7 9 111315171921232527 0 2 4 6 8 10121416 182022242628

2

Figure 5: Estimated change points in the DJIA data.

FRED data. We also apply DCDP to Federal Reserve
Economic Database (FRED) data.> We use the subset of
monthly data spanning from January 2000 to December
2019, which consists of n = 240 samples. The original data

3The dataset is publicly available at nhttps://research.

stlouisfed.org/econ/mccracken/fred-databases.

has 128 features. We use the R package £bi(Yankang , Ben-
nie) to transform the raw data to be stationary and remove
outliers, as is suggested by the data collector (McCracken
and Ng, 2016). After preprocessing, there are 118 features,
including the date.

We use logarithm of the monthly growth rate of the US in-
dustrial production index (named as INDPRO in the FRED
data set) as the response variable, and other 116 macroeco-
nomic variables as predictors. Previous research (Wang and
Zhao, 2022; Xu et al., 2022) suggests that there exist change
points in the association between INDPRO and predictors.

DCDP spots a change point at January 2008, which is con-
sistent with previous research on this data (Wang and Zhao,
2022; Xu et al., 2022).

5. Discussion

In this paper, we propose a novel framework called DCDP
for offline change point detection that can efficiently lo-
calize multiple change points for a broad range of high-
dimensional models. DCDP improves the computational
efficiency of vanilla dynamic programming while preserv-
ing the accuracy of change point estimation. DCDP serves
as a unified methodology for a large family of change point
models and theoretical guarantees for the localization errors
of DCDP under three specific models are established. Ex-
tensive numerical experiments are conducted to compare
the performance of DCDP with other popular methods to
support our theoretical findings.

There are two main limitations in this paper. First, although
the methodology itself is model-agnostic, we only consider
linear-type models in the theoretical analysis. Thus, an
important future direction is to generalize the theoretical
analysis to other models like non-parametric families or ar-
tificial neural networks. Moreover, in our theoretical results,
the sharpest localization error rates require stronger SNR
conditions, as is discussed in Appendix F. Since there is no
existing work in the literature achieving the same error rate
with weaker assumptions, weakening the SNR conditions
for the sharp error rate will be another important direction
for future work.
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Appendix

The appendix contains seven parts. The first five parts present the proof of main results in Section 3 and the last two parts
show some additional results of experiments on synthetic and real data. In detail,

1. Appendix A contains supplementary materials to numerical experiments in Section 4.

2. Appendix B contains key properties that make the proof of DCDP different from that of the vanilla DP. The computation
complexity of the divide step is discussed in Lemma B.1.

3. Appendix C contains proof of Theorem 3.3 for the divide step under the mean model in Section 3.1.
4. Appendix D contains proof of Theorem 3.6 for the divide step under the linear model in Section 3.2.
5. Appendix E contains proof of Theorem 3.9 for the divide step under the Gaussian graphical model in Section 3.3.

6. Appendix F contains proof of Theorem 3.4, 3.7, 3.10 for the conquer step.

12
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A. Additional Experiments

This section serves as a supplement to Section 4. In Appendix A.1, we discuss the selection of 7. In Appendix A.3, we
present full results of numerical experiments in Section 4.2.

A.1. Selection of ~y

In the theory of DCDP, we need v = C, B, Y 2Aminn2, which involves unknown population parameter A, and 2. It is
common in the change point literature and even broader literature that theoretically best tuning parameters involve unknown
quantities, and a typical practical solution is to perform cross validation to select the best tuning parameter from a list of
candidates.

Suppose we have data {Z; };¢c[,) With Z; ~ Pg,. Without loss of generality, suppose n = 2m for some m € 7Z+. We split
the data by indices, such that data with odd indices {Z2;_1};c[m, is the training set and data with even indices {Z2; }ic[m)
is the test set. This is a common way to conduct cross validation in the change point literature. Given a set of candidate
parameters G' = {(vi, (i) }sep)» for each i € [I], the CV has three steps:

1. Run DCDP on {Zz;-1}iez, with (7:,G;) to get a segmentation P = {Ty.}, ¢z 1) of [1,m] where Ty = [fju—1, 7).
2. Calculate {é\k}ke[f(Jrl] from {{Zz2i—1 }iez, be (i 1) and
ke[K+1]
from {{Zzi}iezk}ke[z?+1]'

3. Select (74, Ci., ) with the index i, = arg min;c; R;.
A.2. Impact of SNR

In Section 4.1, we illustrate the performance of DCDP with varying SNR levels. As is shown in Figure 3, the localization
error gets larger when 9, the signal strength, becomes smaller. In this section, we show that the localization errors of DCDP
for small § are in fact reasonably good. The data generating mechanism is the same as in Section 4.1.

We set A = 500. In the left panel of Figure 6, we set n = 2A and allow the estimator to know that there is a single change
point, which is the simplest setting of change point detection. In this setting, the optimal estimator is to simply pick the
extreme point of the CUSUM statistic. It can be seen that with similar SNR, the localization error of DCDP under the (much
more difficult) multiple change point setting is only twice of the error of the most powerful method in the simplest case.
This demonstrate that DCDP performs well in low SNR scenarios.
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Figure 6: Left: localization error of the extreme point of the CUSUM statistic when n = 2A and it is known that there is
only one change point; right: localization error of DCDP when Q = n under n = 4A and ¢ € {0.50,0.75}.

In the right panel of Figure 6, we set n = 4A (i.e., there are 3 change points) and let Q@ = n, § € {0.50,0.75}. In this setting,
the "divide step" corresponds to the vanilla DP and "DCDP" corresponds to vanilla DP + local refinement. Theoretically,
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this would lead to more accurate estimates, but with a much higher computational price. However, comparing the resulted
errors with those in Figure 3, it can be seen that the improvement on the localization error against that of @ = 100 is fairly
small, while the actual run time is more than 200 times longer. This demonstrates that DCDP is efficient and accurate, even

when the SNR is low.
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A.3. More results on comparisons

In this section we present full results of comparisons between DCDP and other methods in Table 4, Table 5, and Table 6, as
a supplement to Section 4.2. Among all involved methods, DCDP is implemented in Python, ChangeForest is implemented
in Rust and provides Python API, Inspect, Variance-Projected WBS, vanilla DP, and Block-Fused-Lasso are implemented in
R based on Rcpp. For fair comparison, we first generate data in Python and then load the data in R for R-based methods.
All experiments for DCDP and ChangeForest are run on a virtual machine of Google Colab with Intel(R) Xeon(R) CPU of 2
cores 2.30 GHz and 12GB RAM (one setting at a time). All other experiments are run on a personal computer with Intel Core
i7 8850H CPU of 6 cores 2.60GHz and 64GB RAM (one setting at a time). Notice that programs implemented by Rcpp is
usually faster than Python, and the machine to run Rcpp-based methods has better parameters than the virtual machine to
run DCDP and ChangeForest, the comparison of execution time would not be unfair against Rcpp-based methods.

Table 4 shows full results of the comparison under the mean shift model.

Setting Method  H (), 1) Time K<K K=K K>K
DCDP  0.00 (0.00) 07s(02) 0 100 0
n=200,p=20,K =  Inspect 0.54(4.46) 0.0s (0.0) 0 96 4
3,6=5 CF 3.59(10.10)  0.3s(0.0) 0 84 16
BFL 42,56 (6.95)  3.55(0.6) 100 0 0
DCDP  0.51 (0.77) 07s(02) 0 100 0
n=200,p=20,K =  Inspect 3.13(5.50) 0.0s (0.0) 0 67 33
3,6=1 CF 438(10.13)  04s(0.1) 0 81 19
BFL 4330(8.25)  2.9s(0.6) 100 0 0
DCDP 830 (1290)  0.4s(0.0) 8 90 2
n=200,p=20,K =  Inspect 6.85(7.53) 0.0s (0.0) 0 78 22
3,6 =05 CF 7.15 (9.57) 04s(0.1) 1 78 21
BFL 5448 (20.98)  2.8s(1.1) 100 0 0
DCDP 0.0 (0.0) 0.6s(0.0) 0 100 0
n=200,p=100,K = Inspect 0.40 (3.50) 0.0s (0.0) 0 91 9
3,6=5 CF 2.85 (7.50) 0.85(0.2) 0 85 15
BFL 47.80(6.66)  1.5s(0.3) 100 0 0
DCDP  0.83 (0.87) 08502 O 100 0
n=200,p=100,K = Inspect 2.65(5.16) 0.0s (0.0) 0 86 14
3,6=1 CF 3.28 (7.01) 13s(0.1) 0 85 15
BFL 4759 (6.08)  1.1s(0.2) 100 0 0
DCDP 936 (29.96)  2.1s(0.3) 3 97 0
n=2800,p=100,K = Inspect 12.55(22.14) 0.1s(0.0) 0 77 23
3,6 =05 CF 14.73 (30.50)  5.55(0.3) 0 82 18
BFL 80.10 (137.33) 15.7s 3.8) 28 71 1

Table 4: Comparison of DCDP and other methods under the mean model with different simulation settings. 100 trials are
conducted in each setting. For the localization error and running time (in seconds), the average over 100 trials is shown with
standard error in the bracket. The three columns on the right record the number of trials in which K < K,K = K, and

K>K respectively.

Table 5 shows full results of the comparison under the linear regression coefficient shift model.
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Setting Method  H(7},7) Time K<K K=K K>K
DCDP _ 0.03(0.17) _ 5.1s (0.3) 0 100 0
n=200,p=20,K=  DP 0.04(020)  17.0s(0.5) 0 100 0
3,6=5 VPWBS 7.69 (15.53) 284s(3.5) 1 71 28
BFL 84.45 (15.33) 4.25(0.7) 100 0 0
DCDP 094 (5.17)  23s(0.2) 2 98 0
n=200,p=20,K=  DP 0.05(022)  12.85(0.5) 0 100 0
3,6=1 VPWBS 11.71 (19.82) 304s(2.2) 21 73 6
BFL 4331(8.82) 3.1s(0.8) 100 0 0
DCDP  0.13(039)  184s(l.1) 0 100 0
n =200,p=100,K = DP 0.01 (0.10) 220.35 (16.8) 0 98 2
3,0=5 VPWBS 1544 (17.99) 120.1s(13.1) 18 70 12
BFL 47.84(6.69) 1.4s(0.2) 100 0 0
DCDP 145 (8.59)  88s(0.7) 2 98 0
n=200,p=100,K = DP 0.22 (2.00) 84.4s (5.7) 0 99 1
3,0=1 VPWBS 11.54(11.23) 120.4s(14.5) 3 65 32
BFL 47.19(6.48)  1.1s(0.2) 100 0 0

Table 5: Comparison of DCDP and other methods under the linear model with different simulation settings. 100 trials are
conducted in each setting. For the localization error and running time (in seconds), the average over 100 trials is shown with
standard error in the bracket. The three columns on the right record the number of trials in which K<K s K=K , and
K>K respectively.

Table 6 shows full results of the comparison under the precision shift model. In Table 6, we didn’t present the results of BFL
because it produces empty set in all trials, for some unknown reason. We tried to fine tune the parameters in BFL, but didn’t
manage to produce nonempty sets, probably because the precision matrices under our setting are not sparse enough for BFL
to perform well.

Setting Method  H (7,7n) Time K<K K=K K>K
n=2000,p=5 K= _ DCDP 5.16(6.52) 0.7503) 0 100 0
3,0, =2,0, = 0.3 CF 58.25(151.74) 1.8s(0.3) 2 69 29
n=2000,p=10,K = DCDP  0.27 (0.49) 0.7s(0.1) 0 100 0
3,01 =5,02=0.3 CF 42.5(3792) 29s(0.2) O 84 16
n=2000,p=20,K = DCDP  0.03(0.17) 1.2s(0.2) 0 100 0
3,01 =5,02 =0.3 CF 27.68(97.20) 4.8s(04) 0 86 14
n—=400,p=10,K =  DCDP _ 0.42(0.64) 0.55(0.0) 0 100 0
3,0, = 5,05 = 0.3 CF 554 (1471)  0.6s(0.1) 0 88 12
n =400,p =20, K = DCDP  0.66 (4.37) 0.9s(0.3) 0 100 0
3,0, = 5,0, = 0.3 CF 737(1876)  1.0s(0.0) 0 85 15

Table 6: Comparison of DCDP and other methods under the covariance model with different simulation settings. 100 trials
are conducted in each setting. For the localization error and running time (in seconds), the average over 100 trials is shown
with standard error in the bracket. The three columns on the right record the number of trials in which K<K R K=K s
and K > K respectively.

16



DCDP: An Almost Linear Time Change Point Detection Methodology in High-dimensions

B. Fundamental lemma

In the proof of localization error of the vanilla dynamic programming, we frequently compare the goodness-of-fit function
F(0z,Z) over an interval Z = (s, e] with

‘F(Q(S,ni+1]7 (57 7h‘+1]) +eee ‘F(G(m+m,€]7 (ni-i-mv e]) + mry (B.1)

where {71} jcim)] = {Me}ee(x] N Z is the collection of true change points within interval 7 and + is the penalty tuning
parameter of the DP.

However, for DCDP, we only search over the rough grid {s; = Lﬁj }ie[g) that may or may not contain any true change
points. Therefore, we need to a) guarantee the existence of some reference points (contained in {s; };c[o)) that are close
enough to true change points, and b) quantify the deviation of the goodness-of-fit function evaluated at the reference points
compared to that evaluated at the true change points.

Reference points. The grid is given by points s, = | 75 ] for g € [Q]. Let {) }1e (k) be the collection of change points
and denote

£a(8) = {{sq}qe@] e — 6.1m] # w}, and Ry (3) = {{sq}qe[q Yo + 0] # w}.

Intuitively, if sq € [nx — 6, 7] and sy € g, M + J] , then s, s4 can serve as reference points of the true change point 7).
Denote

K K
L(6):= [ L(6) and R(5):= ) Re(6). (B.2)
k=1 k=1

Then it is straightforward to see that both events £(5) and R(5) will hold as long as min (g4 1] [sq — Sq—1| < &, which is
guaranteed if Q > 3%. For the proofs in Appendix C, Appendix D, and Appendix E, we require that £(B;,' Ap,) and
R(B;; 1 Amin) hold. Therefore, for the theoretical results in Section 3 to hold, Q should satisfy that

3n
Q> A B,.
Since in our paper, {B,,},,cz+ is a slowly diverging sequence, we can take it as 3,, = log(n) and then it suffices to take
Q = = log*(n).

m

Under the fixed- K setting of paper and when {Ay }¢[x) are of the same order, the existence of reference points will be
guaranteed as long as Q > 4log*(n).

Goodness-of-fit. The deviation of goodness-of-fit functions at reference points are different from the one that occurs in
the proof of the vanilla DP, because the fitted parameters would have some bias since reference points may not locate at
true change points. For different models, the deviation of the goodness-of-fit has different orders. We need to analyze each
model separately. The deviations are described in Lemma C.4, Lemma D.4, and Lemma E 4.

Complexity analysis. In Lemma B.1 we analyze the complexity of the divide step.

Lemma B.1 (Complexity of the divide step). Under all three models in Section 3, with a memorization technique, the
computation complexity of Algorithm 2 would be O(nQ - Co(p)).

Proof. For generality, suppose {s;};c|oj is an arbitrary grid of integers over (0,7),1i.e.,0 < s < 53 < --- < 59 < n, and
denote so = 0, sg+1 =n, 0; = s; — s;—1 fori € [Q + 1].

Under the three models in Section 3, calculating 51 only involves summations like Zz T XD ieT X; X ZT Y ieT X;y;. In
I-th step (I > 1) of the inner loop of Algorithm 2 at the right end point s, it suffices to remove J; terms from the summation.
Thus, the complexity for the inner loop at s, would be O(s,. - C2(p)), and the total complexity would be

3" O(s, - Ca(p) = O(nQ - Ca(p)).

relQ]
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C. Mean model

In this section we show the proof of Theorem 3.3. Throughout this section, for any generic interval Z C [1,n], denote
17 = 777 2iez Hi and
~ 1 A
fiz = argmin — » || X; — pl3 + —=llull1.
wezr || ; VA
Also, unless specially mentioned, in this section, we set the goodness-of-fit function F(Z) in Algorithm 1 to be

(C.1)

F(T) = >ier |1 Xi —fizll3,  when |Z| > Cragslog(n V p),
0, otherwise, '

where C'z is a universal constant.

Assumptions. For the ease of presentation, we combine the SNR condition we will use throughout this section and
Assumption 3.2 into a single assumption.

Assumption C.1 (Mean model). Suppose that Assumption 3.2 holds. In addition, suppose that A,i,52 > B,,slog(n V p)
as is assumed in Theorem 3.3.

Proof of Theorem 3.3. By Proposition C.2, K < |73| < 3K. This combined with Proposition C.3 completes the proof. [

Proposition C.2. Suppose Assumption C.1 holds. Let P denote the output of Algorithm 1. Then with probability at least
1 — Cn=3, the following conditions hold.

(i) For each interval T = (s, e] € P containing one and only one true change point ny, it must be the case that

. slog(n Vp)+ _
mln{nk - S,€e— Uk} 5 052 (g(ﬁgp)v) + Bn 1Amin~
k

(ii) For each interval T = (s, e] € P containing exactly two true change points, say ny, < NMi41, it must be the case that

—1/2 —1/2
N — S 5 Bn / Amin and e — MNk+1 f, Bn / Amin-

(iii) No interval T € ‘P contains strictly more than two true change points.

(iv) For all consecutive intervals T, and I, in P, the interval T, U Iy contains at least one true change point.

Proof. The four cases are proved in Lemma C.7, Lemma C.8, Lemma C.9, and Lemma C.10, respectively. O

Proposition C.3. Suppose Assumption C.1 holds. Let P be the output of Algorithm 1. Suppose v > C, KB ' Aink? for
sufficiently large constant C.,. Then with probability at least 1 — Cn=3, |P| = K.

Proof of Proposition C.3. Denote &5, = >_"" | || X; — pf||3. Given any collection {t1, ..., tm,}, where t; < --- < t,,, and
to =0, tm+1 = 1N, let

m
67l(t17 s 7t’m) = Z f(ﬁ(tk,tk+1]7 (tk7 tk+1])' (C2)
k=1

For any collection of time points, when defining (C.2), the time points are sorted in an increasing order.

Let {7} ,{,?:1 denote the change points induced by P. Suppose we can justify that

B 4+ Ky >8,(s1,...,5K) + Ky — C1(K + 1)o2slog(n V p) — Cy Z KB Amin (C.3)
ke[K]

>6, (71, ... 7z) + Ky — C1(K + 1)olslog(nVp) — C1 Y kiB, " Auin (C.4)
keE[K]
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>G, (M1, g, nk) + Ky — 2C1(K + 1)o2slog(nVp) — C1 Y w18y A (C.5)
kE[K]

and that
&5 — Gy sy k) < Co(K + K + 2)02slog(n V p). (C.6)
Then it must hold that |P| = K, as otherwise if K > K + 1, then

Co(K + K +2)02slog(nV p) > & — Gy oy Ty s - -5 1K)
> (K — K)y —2C1(K + 1)o2slog(n V p) — 2C4 Z KB Amin.

kE[K]
Therefore due to the assumption that |p] = K < 3K, it holds that
[C2(4K +2) +2C1 (K +1)]o2slog(n Vp) +2C1 Y KiBy Ain > (K — K)y > 7, (o)
ke[K]
Note that (C.7) contradicts the choice of .
Step 1. Note that (C.3) is implied by
|67 — Gn(s1, ..., 5x)| < C3(K + 1)oZslog(nVp) + Cs Y w2B, " Apin, (C.8)

ke[K]
which is an immediate consequence of Lemma C.4.
Step 2. Since {ﬁk}kf(:l are the change points induced by P, (C.4) holds because P is a minimizer.

Step 3. For every Z = (s, e] € p, by Proposition C.2, we know that Z contains at most two change points. We only show the
proof for the two-change-points case as the other case is easier. Denote

T = (5,10¢) U (1> Mg+1) U (Ng41,€] = T1 U T2 U T3, (C.9

where {14, ng+1} =Z N {ni ..

For each m = 1,2, 3, if | 7,,,| > Cro2slog(n V p), then by Lemma C.4, it holds that
> i =g, 3 < D My — pill5 + Colslog(n V p).
1€Tm 1€Tm

Thus, we have
F(fg, s Tm) < F(Wly , TIm) + Colslog(n V p). (C.10)

On the other hand, by Lemma C.6, we have
F(fiz, Tm) = F(ly, , Tm) — Colslog(n V p).

Therefore the last two inequalities above imply that

3
F(fiz, T) =Y F(iiz, Tm)

m=1
3
> Fliig, Jn) — 6Colslog(n V p). (C.11)
m=1
Note that (C.5) is an immediate consequence of (C.11).

Step 4. Finally, to show (C.6), let P denote the partition induced by {m,...,0g,m,...,nx}. Then |ﬁ| <K+K+2
and that p} is unchanged in every interval Z € P. So Equation (C.6) is an immediate consequence of Lemma C.4. O
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C.1. Fundamental lemmas

Lemma C.4 (Deviation, mean model). Let Z = (s, e] C (0, n] be any generic interval and

fiz = arg min 17 1X; = 3 + —==llulls-
1zl Z 2 V III

i€l

a. If I contains no change points, then it holds that
P{| S0 - el - 1 - il

= i€L
b. Suppose that the interval I contains one and only one change point 1. Denote

J = (s,m] and J' = (np,e€l.

> Co?slog(n \/p)) (nVvp)3.

Then it holds that
7

Proof. We show b as a immediately follows from b with | 7’| = 0. Denote

J=(s,m] and J' = (m,e].

MINS
1]

>2

oI =zl = Yo - I

K + CoZslog(n v p)> <(nvp) >
i€T €1

Denote fiz = 177 27 #; - The it holds that

Z 1X; — fizll3 — Z X — i 13

i€T i€l

= Az — pil3 2> € (iz — p)
€T 1€l

<2 iz — il +2) s — 13 -2 el (A —py) — 2> el (uh -
1€l €T €T €L

Observe that

P el > Con/Togu vV ol ) < (0 v)

i€L

Suppose this good event holds.

Step 1. By the event and Lemma C.5, we have
> iz — i3 < Colslog(n v p),
=

2> el (iz — 1) < TN Y illoolliz — w31l < CoZslog(n v p).
i€ €T

Step 2. Notice that

D oMz = i lP = 12 7] T — il

€T €T
T (W — py T (w7 — 1)
=>I |JI| ) 13+ > 1 TII L3
i€J ISVAS
—_— ! 2 .
iz " & IZ]

20



DCDP: An Almost Linear Time Change Point Detection Methodology in High-dimensions

Meanwhile, it holds that

Sz - = fm Ty

€T i€T
|| T Ll
= |I| Zei (MJ’ - |I| Z 'U’J 'u’j')
ieg g’
lA /
<Cho, ‘7&]7 |m% log(an) < |._7|Q‘|7| 2+ Co?log(nVp),

where the first inequality follows from the fact that the variance is upper bounded by

T TP T T2 . MAINS
062 |I|2 ||:u’j _/1’\7’”% + 062 |I|2 ||1U’J J ||2 ‘I| Jezﬁ’i'
ieJ ieJ’!

Lemma C.5. For any interval T C [1,n] with |Z| > Cyslog(n V p) that contains finitely many change points. Let

[i7 1= arg min

1
= 31X — pll + —==
were 1470 T \/|I|

for X\ = Cyoc+/log(n V p) for sufficiently large constant C. Then it holds with probability at least 1 — (n '\ p) = that
CoZslog(n V p)
z

log(n V p) (C.12)
IZ]

| (z = 17) se It < 3| (fiz — p7)s 1,

iz — pill3 <

liz = pzlly < Coes

where p% = % D ier M-
Proof. By definition, we have L(fiz,Z) < L(uz,Z), that is

D oIYe = azllz + AT azlh < Y 1Y = wzll3 + AT zlh

€T i€
=3 — 1) (2 — iz — i) + AT gl — [zl > 0
i€L
=(fiz — p7) " O e) + 20z — pp) T (s — wr) — 120 iz — pil3 + AT ezl = lAzl] >
€L €T €T
=iz — wzl1102 " €illoe + MWzl = IAzll] > |20 iz — w33 (C.13)
i€L €L

)

By a union bound, we know that for some universal constant C' > 0, with probability at least 1 — (n V p)~>

A
1D €illoo < Coev/IZlog(nV p) < TV,

i€L
as long as C)y is sufficiently large. Therefore, based on the sparsity assumption in Assumption C.1, it holds that
A o~ * * ~
slaz = pzlls + Allazlly = llazl:] =2 0
A ~
=5z = pzlls + All(uz)slly = [[(B2)s]l1] 2 Ml (Az) se [l
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A ~ * * ~ * -~
=>5||uz —pzlli + M(pz = Bz)sllh > M(pz — fiz) s [l
=3||(uz — iz)sllt > I(p7 — fiz)sell1-

Now from Equation (C.13) we can get

. . 3\ . .
1 ZlllAz = pzll3 <= VIZH Iz = 2l

ST\/ﬁH(ﬁI = p7)slh
<6MVs/1Z11I(fiz — 1y) sl
<6Ms V/IZ[ iz — p3l2,

which implies that

iz — 3ll2 < 6Cha,y [ 2BV
|Z]
The other inequality follows accordingly. O
C.2. Technical lemmas
Throughout this section, let P denote the output of Algorithm 1.
Lemma C.6 (No change point). LetZ C [1,...,n] be any interval that contains no change point. Then for any interval

J D I, it holds with probability at least 1 — (n \V/ p)~° that
F(p7,T) < F(fig,I) + Colslog(n V p).

Proof. Case 1. If [Z| < Cro.slog(nV p), then by definition, we have F(u3, Z) = F(ji%;, Z) = 0 and the inequality holds.
Case 2. If |Z| > Croeslog(n V p), then take difference and we can get

S OIXi = pills =D IXi - Agl

i€L €T
=2y —pp)" Y e — Tl — sl
i€L
~ * -~ * * -~ 2
<2|[(fg — wp)sln + (g = #7)se )Y eilloo = 12Nt - s 13

i€l

= N log(n Vp .~
<erllfiy — w0 /ATTOBmV ) + cavesy | ELVPY oo Tiogn v p) — |l — A3

IZ|
<1I * 2 2221 21 T * 2
<5\ Tlluz = Ballz +2¢i0¢slog(n V p) + cooeslog(n V p) — [Zlllnz — fig 2
<Co?slog(n V p),
where in the second inequality we use the definition of the index set S and Lemma C.5. O

Lemma C.7 (Single change point). Suppose the good events L(B;* Apin) and R(B;, ' Amin) defined in Equation (B.2)
hold. Let T = (s, e| € P be such that T contains exactly one change point 1. Then with probability at least 1 — (n V p)~3,
it holds that
slog(nVp)+~
2
K

min{n; — s,e — g} SU?( ) +BglAmin.

Proof. 1If either gy, — s < B, ' Apmin or € — 0 < B, 1 Apin, then there is nothing to show. So assume that
N — S > B;lAmin and e—np > B;lAmm.

22



DCDP: An Almost Linear Time Change Point Detection Methodology in High-dimensions

By event R(B;, } Awin), there exists s,, € {sq}qQ:l such that

0 < Su — Mk < BglAmin~
So
M < sy < e

Denote
Ty = (s,84) and Ty = (84,€].

Since s, ¢, 5, € {5,}<,, it follows that

q=1
Z 1X; — fiz )3 < Z 1Xi — fiz, |15 + Z 1 X: — Az, I3 + v
i€L 1€T, i€Zo
<Y X = pfll3 + Cu(o?slog(n V p) + (su — m)K3)
€Ty
+ > X — ;|13 + CroZslog(nV p) +
i€y
= X — pf1l3 + Co(02slog(n V p) + (su — m)s7) +7
€T
<D X = pf )13 + Co(02slog(n V p) + B, Amink}) + 7, (C.14)
€L

where the first inequality follows from the fact that 7 = (s, €] € P and so it is the local minimizer, the second inequality
follows from Lemma C.4 a and b and the observation that

-1
nk*5>8n Amin>5u*7]k

Denote
jl :(57"716} and j2:(nkae]'
Equation (C.14) gives

SN -zl I - Al < 1K - B 31X — w3 Co (028 los(n v p) + By Auar?) + 7,
€1 i€J2 €Ty i€J2

which leads to

> Bz = w3+ D Az — w13

i€J1 ISP
<23 (ir —wy) +2 Y o (iz — w) + Ca(0?slog(nV p) + k2B, Amin) +7

€Ty i€J2
<20¢ Y iz — 1, 21/ 1751 log(n V p) + Ca(0?slog(n V p) + k7B, Amin) +

7j=1,2
<1 AT — % 112 C 2 1 2871A .
<5 2 WilllAz = u7, 13 + Cs(o?slog(n v p) + iB, " Auin) +7,
Jj=1,2

where the second inequality holds because the Orlicz norm |- ||, of Y-, ;. €' (uz — %, ) is upper bounded by | 71|02 ||z —
w7, 13-
It follows that

|\ Tulll iz — w7, |15+ 1 PalllFiz =115 = D iz = 3+ Y iz —pi |15 < Ca(oZslog(nVp)+ B, Aminki ) +27.
€1 1€J2
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Note that
VAV N

inf |71lla — w3 + | Tella — w7, |I* = i ] 2 - min{[ 71, [T2]}-

This leads to

2
K . _
7’“ min{| 71|, | 72|} < Cy(oZslog(n V p) + B, ' Aminki +7),
which is
. o2slog(n VvV p) +
min(3 61y < Ca (B 4 i)

k

O

Lemma C.8 (Two change points). Suppose the good events L(B; ' Awin) and R(B;, ! Awin) defined in Equation (B.2)
hold. Let T = (s, €] € P be an interval that contains exactly two change points ny, ni11. Suppose in addition that

Apink? > CB, /2 (o2slog(n V p) + ) (C.15)
for sufficiently large constant C. Then with probability at least 1 — (n V p)~3, it holds that

Ne — S S 67:1/2Amin and € — Nk+1 ,S B;1/2Amin-

Proof. Since the events £(B;; Ay ) and R(B;, ! Apin) hold, let s, s, be such that n, < s, < s, < 7+1 and that

0 S Su — Mk S BglAmina 0 S NMe+1 — So S BglAmiIr

( b |
\ i |
S Nk Su Sy Mk+1 e

Denote
Ty = (8,8u)y, Zo= (84,8 and Iz = (sy,€].

In addition, denote

E+1 — Nk k41 — Nk
Ji=(s,mk], T2 = (e, e + %L Tz = (mk + %,nkﬂ] and  J1 = (1, €].
Since s, e, Sy, Sy € {sq}qg:l, then it follows from the definition of P that
Z 1Xi — fiz 13
icT
<N NX =z B+ DX — Az 13+ Y 1X: — Azl + 27
1€1y i€Zo i€Z3
w2 2 |T1l(su — )~ 5 w2 2
<Y UIX = pl3 + C1( oZslog(n v p) + ki )+ > IXi = i3 + Cro?slog(n V p)
i€Ty |«71| + (Su — 77k) icT,
#31X— i+ O (stogn )+ T2 g ) gy
= |Ta] + (41 — s0)
Jil(su — nr) | Ta| (et 1 — 50)
< X — i3+ (062510 nVvp)+ | K2 K2 +2 (C.16)
;” H H2 1 g( ) |J1|+(su_nk) k ‘\.74|+(77k+1_5v) k+1 Y

where the first inequality follows from the fact that Z = (s, e] € P, the second inequality follows from Lemma C.4 a and b.
Equation (C.16) gives

DX = Azl + D0 X = AzllE + D IXe —AzllE + D X - Azll3

i€J1 i€J2 1€J3 i€J4
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< Z 1Xi — 7, 115 + Z 1Xi — 7, 15 + Z 1Xi = w7, 115 + Z 1Xi — |15

i€J1 i€J2 €T3 1€J4

Til(sa =) 5, |Tal(es — 50) )
2 C.17
Til+ (o= T+ s = sy 1) 27 (17

+C1 <0€25 log(n V p) +

Note that for £ € {1, 2, 3,4},

ST a3 = Yo% - w5 13- iz — 1,13

i€Je 1€Tp i€Je

=2 Z 'qu

€T
> — Coclliiz — 1, |2/ Te| log(n V p)

1 ~ *
> = 5| Tillliz = 17,5 — C'olslog(n v p).

which gives

~ * 1 ~ *
DX = BzlE = Y X = 3> 5 D Nz — w, |3 — Caolslog(n v p). (C.18)
€T i€Jy i€y

Equation (C.17) and Equation (C.18) together implies that

[il(su =) o 1TalOlkrr = 50)

4
TGz — us ) < C (03510 nvp)+t i —F—~
Z| (i — p7,) 3 g(nVp) |T1| + (S0 — M) k | Tal + (M1 — S0

) k+1>+47. (C.19)

Note that
. \71”‘.72‘ 2
inf |7il(a — 1% )2 + | Tol(a — u* 2=|71<;. C.20
aE]Rl 1|( :u"_'71) | 2|( /1’]2) |‘71|+“_72| k ( )
Similarly
. NAINA
inf |Js](a — 1) + |Tul(a — p )2 = =022l k2 C.21
aeRl 3|( Mjg) | 4|( M._74) |j3|+|j4‘ Ki+1 ( )
Equation (C.19) together with Equation (C.20) and Equation (C.21) leads to
Al T2l o |TlTal 5 ( 2 \Jl(su =) o [ Tal(r1 — 50) )
K% + K < Cs| ocslog(nVp)+ + 4
T+ 170 1T+ [7a] T =8 BV D) L lor = ) % Tl + (mgs — o)1) T4
(C.22)
Note that

0 S Su — Mk S BEIAmin and 0 S Nk+1 — So S BglAminy
and so there are four possible cases.

case a. If
‘jll S Bgl/zAmin and |\74| S B;1/2Amina

then the desired result follows immediately.

case b. | 71| > B;lﬂAmin and | Jy| < Bﬁl/QAmin. Then since |J2| > Amin/2, it holds that

J1|| T 1
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In addition,

| 71| ($u — k) 1 | T4 (o1 — 50) 1
_ <85, — < B> "Apin and < — Sy < B, Anin-
T+ (50 —mpe) % =T [Tal + (i —s0) — FHE T 0=
So Equation (C.22) leads to
L2 A it + AT 2 o ((2alog(n v p) + By Aii? + B Auiardy ) + 4 (C.23)
9=n min’vk |._73‘ ¥ |,_74|Hk+1 S GglocsloginVvp n minF n minFg41 - .

Since ki < k and K41 < K, Equation (C.23) gives
1
5‘8;1/2Amin’§2 <Oy (0525 IOg(n \ p) + BglAmin"'@2 + ByzlAminK?) + 4.

Since B,, is a diverging sequence, the above display gives
Amink® < C5B,'/2(log(n V p) + 7).
This contradicts Equation (C.15).

case c. | 71| < Bn L *Apmin and |Ja| > Bn 1/ ?Amin. Then the same argument as that in case b leads to the same
contradiction.

case d. | 71| > B "/?Amin and | 73] > Br/? Amin. Then since | 72| > Amin/2, | Ja] > Amin/2. it holds that

el L Ls1/2 FAFA. oy
L2 > S min{| A, | Jel} > 2B Amie and 22 > Cmin{| 7|, | T4} > 2B Y 2 Amin
AT+ 17 = 2 Mkl 2 T > 2 Mg >

In addition,
|‘~74|(77k+1 - Sv)
|Tal + (Ms1 — S0)

So Equation (C.22) leads to

|t71|(5u - 7714:)

<M1 — 80 < BglAmin m
u

-1
S Su — Nk S Bn Amin-

1 1
58;1/2Aminni + 58;1/2Aminﬁi+1 < Cq (st log(n V p) + B, ' Aminks + B;lAminmiH) + 4. (C.24)

Note that B,, is a diverging sequence. So the above display gives
Amin (K] + K34q) < CoB, 2 (02slog(n V p) + )
Since ki < k and K41 < K. This contradicts Equation (C.15). O

Lemma C.9 (Three or more change points). Suppose the good events L(B;, ' Amin) and R(B;, ' Amin) defined in Equa-
tion (B.2) hold. Suppose in addition that

Ar? > C(oZslog(nVp) +7) (C.25)

for sufficiently large constant C. Then with probability at least 1 — (n V p)~3, there is no interval P containing three or
more true change points.

Proof. For contradiction, suppose Z = (s, €] € P be such that {1y, ...,n} C Z with M > 3. Throughout the proof, M
is assumed to be a parameter that can potentially change with n. Since the events £(B;; ' Apin) and R(B;, 1 A, ) hold, by
relabeling {sq}qQ:l if necessary, let {s,, }22_, be such that

OSSm—nm,S[j’;lAmin for ISmSM—l

and that
0 <nar — s < By Apin.

Note that these choices ensure that {s,, }*_, C Z.
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V4 b |
\ d
S m si T2 S2 83 13 e

Step 1. Denote
Il = (8,81], Im = (Sm_l,Sm} for 2 <m< M and IM+1 = (S]\/],e].

Then since s, ¢, {sm }2_; C {54} ;. it follows that
> OIXi - fizl3

i€l
M+1

<> D IXi-9r,

m=11€Z,,

e
gznxi—uz‘§+01(azslog(nvp>+ (m = 5)(s: ”%)
€Ty S1—8

5+ M~y

M-1
m — Sm— Sm — NIlm
5 I il + O (stogn v 4 Ui =Sl Zn) )

Sm — Sm—1

m=2 i€ZL,,
+Cyo2slog(n V p)
—su)(e —
Yl O stogtn v + TSI 2 ) g,
1€Ln41

(C.26)

(C.27)

(C.28)

(C.29)

where Equations (C.26), (C.27) (C.28) and (C.29) follow from Lemma C.4 and in particular, Equation (C.28) corresponds

to the interval Zp; = (spr—1, Sar] which by assumption containing no change points. Note that

(m = )(s1 = m) < sy —m < B A,

§1— S8
(77m — Sm—l)(Sm _ nm) < Sm—Mm < B;lAmina and
Sm — Sm—1
M — sm)e — M n
(n (e = ) < = sm < By Amin
€e—Sm

and that K, < k forall 1 < k£ < K. Therefore
SOIXi = fizl3 <D 1Xi = pill3 + Ca <Ma€25 log(n V p) + MB; ' Apink® + MV),
ieT i€z

where C5 is some large constant independent of M.

Step 2. Let
Jr=(s,m)s Tm = (m—1,1m] for 2 <m < M, Ty1 = (€]

Note that z2# is unchanged in any of {7, }2/%3. Sofor 1 <m < M + 1,

SOIX = azl3 = Y X — w15 - D iz — w3, 13

i€Tm i€Tm i€Tm
=2 > ¢ (uy, — fiz)
i€ Tm

> = Codliiz — 17, l2v/|Tm|log(n V p)
1 —~
> — Cs0%slog(n VvV p) — §|~7m|||HI -, 3
which gives

2 — Cs0%slog(n V p).

~ * 1 ~ *
SOIX =zl = Y 1Xi =, 13 = 3 > iz — w3y,

€T m 1€Tm 1€Tm
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Therefore

M+1 M+1

S N Tmllliz = w3, 13 =D iz — p,
m=1

m=1i€Jm

2<ouM (035 log(n V p) + B, ' Amink? + 7), (C.32)

M+1
m=0"

where the equality follows from the fact that p} is unchanged in any of {7,,}
Equation (C.30) and Equation (C.31).

and the inequality follows from

Step 3. For any m € {2,..., M}, it holds that

) ‘jm—1||t7m| 2
inf |Tm—1llla — p* 5 Tmllla — uf, 13 =7 hm 2
St 11l = i, [ + 1l =1, s =7 2R e

where the last inequality follows from the assumptions that ny — 7,_1 > Apin and k < kforall 1 < k£ < K. So

1
§Amin"£2a (C33)

M
2> | Twllliiz — w3, |13

m=1

M
>3 (Jm_lnmz B+ Tl u*jmn%)
m=2

1 M
Z(M - 1)§Amin"€2 Z ZAminKQa (C34)

where the second inequality follows from Equation (C.33) and the last inequality follows from M > 3. Equation (C.32) and
Equation (C.34) together imply that

M
ZAmmKQ <204M (0525 log(n V p) + B;lAmin/ig + 7). (C.35)

Since B,, — oo, it follows that for sufficiently large n, Equation (C.35) gives
Amink® < Cs(02slog(n V p) + ),
which contradicts Equation (C.25). L]

Lemma C.10 (Two consecutive intervals). Suppose v > C, KB, 'Ayink? for sufficiently large constant C.. With

probability at least 1 — (n/ p) =3, there are no two consecutive intervals Ty = (s,t] € P, Ty = (t, €] € P such that T, UL,
contains no change points.

Proof. For contradiction, suppose that
T:=T UL

contains no change points. Since s,t, e € {sq}qQ:l, it follows that

SN - n P+ S X = Al 4y < ST IXG - Azl
i€Zy i€Zo €T

By Lemma C.4, it follows that

> NIXi = pill3 < CroZslog(nvp) + > || X — fiz, II3,

i€y i€l

DX = uill3 < Crolslog(n V) + Y |1X: — iz, |13
1€y i€lo

D NIXi —fizll3 < CroZslog(n Vv p) + > [1X: — i 5
i€ i€T
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So

D OIX = ill3+ D NIX: — w3 — 2C102slog(n Vv p) + v < > | Xs — pi |15 + Crolslog(n V p).
i€y i€1o €L

Since p; is unchanged when ¢ € Z, it follows that
v < 3C10%slog(n Vv p).

This is a contradiction when C., > 3C;.
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D. Linear model

In this section we show the proof of Theorem 3.6. Throughout this section, for any generic interval Z C [1,n], denote
B = & Y er 7 and

~ 1 A
Bz = argmin 7] Z(yz ~- X B+ —=

BERP ieT V |I|

Also, unless specified otherwise, for the output of Algorithm 1, we always set the goodness-of-fit function F (-, -) to be

1811

Siez(wi — X' B)? if |I] > Crslog(n V p),

. D.1)
0 otherwise,

F(B,1) ::{

where C'r is a universal constant which is larger than C', the constant in sample size in Lemma D.5 and Lemma D.16.

Assumptions. For the ease of presentation, we combine the SNR condition we will use throughout this section and
Assumption 3.5 into a single assumption.

Assumption D.1 (Linear model). Suppose that Assumption 3.5 holds. In addition, suppose that A ,i,x% > By,slog(n V p)
as is assumed in Theorem 3.6.

Proof of Theorem 3.6. By Proposition D.2, K < |73| < 3K. This combined with Proposition D.3 completes the proof. [J

Proposition D.2. Suppose Assumption D.1 holds. Let P denote the output of Algorithm 1 with v = Co KB, Apnin®. Then
with probability at least 1 — n™3, the following properties hold.

(i) For each interval T = (s, e] € P containing one and only one true change point ny, it must be the case that

US\/I

mln{nk - S5,€— nk} S K'/2 (5 log(n \/p) + V) + BwleInin-

(ii) For each interval T = (s, e] € P containing exactly two true change points, say n, < NMi41, it must be the case that

2

V1 2
m—s =< (7€K2<5log(n\/p)+fy> + B ' Apinande — gy < C

ozV1

e <5 log(n Vp) + ’y) + B, Ain-

(iii) No interval T € ‘P contains strictly more than two true change points; and

(iv) For all consecutive intervals T, and Iy in P, the interval I, U Iy contains at least one true change point.

Proof. The four cases are proved in Lemma D.7, Lemma D.§, Lemma D.9, and Lemma D.10 respectively. O

Proposition D.3. Suppose Assumption D.1 holds. Let P denote the output of Algorithm 1. Suppose v > C, KB, A mink?

for sufficiently large constant C.,. Then with probability at least 1 — Cn=3, 73| =K.

n

Proof of Proposition D.3. Denote &}, = >, (y; — X' 87)2. Given any collection {t1,...,t;}, where t; < -+ < t,,,
andty =0, t;,+1 = n, let
m  tr41

Gultiseetm) = Y FBupnsr)s (b tisr)- (D.2)

k=1i=tr+1

For any collection of time points, when defining (D.2), the time points are sorted in an increasing order.

Let {ﬁk}kf(:l denote the change points induced by P. Suppose we can justify that

&+ Ky >&,(s1,...,8x) + Ky — C1(K + 1)slog(n Vv p) — Cy Z miB;lAmin (D.3)
ke[K]
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>6, (71, 7iz) + Ky — C1(K + 1)slog(n Vp) — C1 Y By A (D.4)
ke[K]
>G, (N1, Mg,k ) + IA(W —C1(K 4+ 1)slog(nVp) — C Z KBy Amin (D.5)
ke[K]
and that
B — G, sy i) < Co( K + K + 2)slog(n V p). (D.6)

Then it must hold that |p] = K, as otherwise if K > K + 1, then

02(K+I?+2)510g(nvp) > 6:7, - an(ﬁla"wﬁj?anlv"wnlf)
> (K = K)y—Ci(K +1)slog(nVp) = C1 > 5B, Amin.

ke[K]

Therefore due to the assumption that |p| = K < 3K, it holds that

C2(4K + 2)slog(n Vp) + C1(K + 1)slog(n V p) + Cy Z KB Amin > (K — K)y > 7, D.7)

k€E[K]
Note that (D.7) contradicts the choice of ~.
Step 1. Note that (D.3) is implied by
|65, = Gp(s1,.. ., 56)| < Cs(K+ DN +Cs > kB, Amin, (D.8)
ke[K]

which is an immediate consequence of Lemma D.4.
Step 2. Since {ﬁk}§:1 are the change points induced by P, (D.4) holds because 7 is a minimizer.

Step 3. For every Z = (s,e] € P, by Proposition D.2, we know that with probability at least 1 — (n V p)~°, T
contains at most two change points. We only show the proof for the two-change-point case as the other case is easier. Denote

T = (8,mg] U (g, Ng+1] U (Ng41, €] = T1 U T2 U T3, (D.9)

where {1, Ng+1} =Z N {nk}ff:l.
For each m € {1, 2,3}, by Lemma D.4, it holds that

S wi—XB7,)P< Y (i — X B)? + Colslog(n V p). (D.10)
1€ETm €T m
By Lemma D.6, we have
ST wi— X8> Y (wi - X[ B)? — Co?slog(nV p). (D.11)
1€ETm 1€Tm

Therefore the above inequality implies that

3
Swi— X782 =Y D (wi— X[ Bg,)? — Co?slog(n V p). (D.12)
TIm

= m=1i€e
Note that (D.5) is an immediate consequence of (D.12).

Step 4. Finally, to show (D.6), let P denote the partition induced by {71, .. ., Mgy M- -k }- Then P|<K+K+2
and that 3 is unchanged in every interval Z € P. So Equation (D.6) is an immediate consequence of Lemma D.4. O
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D.1. Fundamental lemmas

Lemma D.4. Let T = (s, €] be any generic interval.
a. If T contains no change points and that |Z| > Csslog(n V p) where Cs is the universal constant in Lemma D.5. Then it

holds that
]p< S - XTBr)? = 3 - X pr)?

ieT i€z
b. Suppose that the interval T = (s, e| contains one and only change point ny, and that |Z| > Cgslog(n V p). Denote

_ 1 .
v mZiezyz and

> Cslog(n \/p)) <n %

J = (s,mk] and J = (ni,el.
Then it holds that

“

Proof. We show b as a immediatelly follows from b with | 7’| = 0. Denote

Z(yi - XiTBI)Q - Z(yi - X;' B)?

€T i€L

> C{ ~7||I‘|7 2 © + slog(n \/p)}) <n 4

J = (s,m] and J" = (n,e].

Denote 7 = 177 >, ;- Note that

i — XTBr)? = (i — X, B;)?

i€l i€L

=D AXT(Br - 8D} 23X (Br - 57)

€L i€T

<23 (X7 (B - 83)}° (D.13)
€L

+2) (x5 - 8)) (D.14)

i€L

> eX] (Br - B7)

i€l

21) X, (87 - B

i€l

+2 (D.15)

(D.16)

Suppose all the good events in Lemma D.5 holds.
Step 1. By Lemma D.5, BI — [3; satisfies the cone condition that

L < 30|(Bz — B3)sh-

1Bz — B3)se

It follows from Lemma D.14 that with probability at least 1 — n =5,

1 —~ y ~ . slog(nVp) - .
7 2o (X e =80 = (B = DTS - 67)| < &y m)llﬁz—ﬁz||§~
ieT
The above display gives
~ . slog(nVp) - N
’|IZ{ Tﬁz—ﬁz} <|IZllopllBz = BZ 3 + C1 |(I)|5I—5I||§
i€l
<ClBr — B33+ On | BN VD) g, gy
=P iz ! Ce¢slog(n V p) Lo iz
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Csyslog(n V p)
- IZ|

where the second inequality follows from the assumption that |Z| > C¢slog(n V p) and the last inequality follows from
Equation (D.17) in Lemma D.5. This gives

STUXT (Br - 85)}| < 2Caslog(n v p).

€T

Step 2. Observe that X, (85 — ;) is Gaussian with mean 0 and variance

wi = (B — B;) ' 2(B% — B;).
Since
g — \T 8% +1T'18%
7 — |I| )

it follows that

T
"|(B% —B* "(B* —B* 12,2
(IJ l(ﬁ\% ﬁy/)) E<j l(ﬁé\ ﬁj,)> < |‘7|I|‘2ﬁ’c wheni € 7,

.
1B =87)\ 5 (191685 =B5)
7] 7]

Consequently, { X" (8% — 3;7)}? is sub-Exponential with parameter w?. By standard sub-Exponential tail bounds, it follows
> XS (B = BDY —EY_{X (81 - 8))F

that
P(
i€z i€l

<o (—emn { Tt
<exp| — cmin ;
Dierw; maxier w?
<e p( c’min{ r T })
X - B}
- ZieZ w? max;e7 |w;|
Il IZ| _
<ex —c”min{72< | K 2),7,% 1))
- p( \TNT| " max{|J|, 7’|} "

where the second inequality follows from the observation that

2:
2, 2
|‘ﬁ|'§’“ when i € 7.

IN

2 C3T)

w? < kplwi| < Cklwy| foralli € Z,

and the last inequality follows from the observation that

12,2 2,2 /
2 NS VA R VAV Y
28 S Gl Bt + T g = G
1€L
So there exists a sufficiently large constant Cy such that with probability at least 1 — n =2,
D AXT (61 - DY —EY_{X[ (81 - B))Y
i€l ieT
! ‘ !
§C4{ NI gy -+ 10g(m) 22X 1T l}ﬁk}
IZ] IZ]
!/ !/
IZ] |Z]
!/
<ca{ 200 rogn |
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where k), < k& < C, is used in the last inequality. Since EY", .- { X, (85 — 81)}2 = Y1 w? < G, ‘~7 272, it follows

that )
% 71T

IZ|
Step 3. For Equation (D.15), it follows that with probability at least 1 — 2n~*

> {x(Br - B)Y

€T

ki + Cs log(n)> >1-n""°,

slog(n V p)

log(nVp) 5 .
1zl Ze@ —P1) < Cs el Vp) 16z — Bzl < C7 7

i€L |I‘

where the first inequality is a consequence of Equation (D.61), the second inequality follows from Equation (D.19) in
Lemma D.5.

Step 4. From Step 2, we have that X, (35 — ;) is Gaussian with mean 0 and variance
T (BB ! J' (858
<| (O j/>) 2( (O j,>> <\ 7P whenic g,

.
*k ok ! L1 2 2
<|J|<,@|JI, 6g>> Z(J(Bl%/ 5g>> <P whenie 7

Consequently, €; X 1T (85 — B}) is centered sub-Exponential with parameter w;o.. By standard sub-Exponential tail bounds,
it follows that

P(| e (5 - 0
i€l

<exp| —cmin ,
Ziel’ %2 max;ez |wi|
. Il - 7| -
<ex — ¢ min 7'2< | K 2)77'/1 ! ,
- p( { (TN ) max{( 71T

where the last inequality follows from the observation that

> CgT)

12,2 2.2 /
St < g TP L o TP W
2 = G g O g = G g

So there exists a sufficiently large constant Cy such that with probability at least 1 — n =5

> eX](Br - B)

bl

i€T
! ‘ /!
<cof [ toutmyet + togtm ™
1] 1]
J'NII max{|J], |J"[}
SC’{ | +log(n) + log(n) ———=———rx
LIzl i 1]
/
<Co{ 1Tt + ()}
IZ|
where ki < k < Cy is used in the last inequality. O

Lemma D.5. Suppose Assumption D.1 holds. Let

~

Br = argmln |I|Z XTﬁ )+ AlBlh
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with A = Cy(o. V 1)y/log(n V p) for some sufficiently large constant C. There exists a sufficiently large constant Cj
such that for all T C (0, n] such that |Z| > Cgslog(n V p), it holds with probability at least 1 — (n \/ p)~3 that

C(o2 V 1)slog(nVp)

18z — B33 < o ; (D.17)
~ 1

|8z — B7lli £ C(oe vV 1)s og(r;'v;)) ; (D.18)

1Bz — B3)sell < 31I(Bz — B2)s]h- (D.19)

where 55 = ﬁ D ier B
Proof. Denote S = Ule Spe+1. Since K < oo, \S | < s. It follows from the definition of BI that

tEI

This gives

i T (B - )Y +|I|Z - XX (81~ \/|T||ﬁz||1_\/|THﬁz||1,

1€ €L

and therefore

\I| S XT Br-p) \/‘TH/BIHl

1€EL
Zel (Br — B5) +2(Br — 825)T ZXXT B; — B3) + ——||83 I, (D.21)
‘I| i€ |I| i€l \% ‘I
To bound ||Zi€I X X8 - ﬁf)“oo , note that for any j € {1,...,p}, the j-th entry of

ez Xi X, (B3 — i) satisfies

{ZX ()X (8% — } > E{Xi()X HB: - By =B{X1() X[ }D {B: - B =0.

€T i€T i€l

So E{} ez XiX;' (B3 — B;)} = 0 € RP. By Lemma D.16b,

1
61 07 g ST B~ )] <O g, 17— 51 15— i
1
<Cy Og(|n|vp)||ﬁz—ﬁz||1
1Bz - B3

MW

where the second inequality follows from Lemma D.18 and the last inequality follows from A = C\o.+/log(n V p) with
sufficiently large constant C'y. In addition by Lemma D.16a,

log(n V p)

X, (Br — o B — a1
mée (Br - B7) < 7| 1Bz — B3l < m”ﬁz Bzl
So (D.21) gives
X (B gt
|I|§{ D} + TI 182, < 5 T 1Bz = B2l + —= m
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Let© = :B\I — B7. The above inequality implies

1 2 A ~ 3\ ~
= (xe) + I1(Bz)sellh <——=ll(Bz — B3)sll1, (D.22)
1] ; 2,/|Z] 2\/|Z]
which also implies that
A A A, - 3\
§||@Sc\|1 = 5\\(&)50 1 < 7”(51 = B1)sllh = 7”@3”1-

The above inequality and Lemma D.14 imply that with probability at least 1 — n=2,

slog(n V p)

éZ(XZT@)Q ~075,0>0'50 - C4 T

i€l

Cx
115 > 19113,

where the last inequality follows from the assumption that |Z| > Csslog(n V p) for sufficiently large Cs. Therefore
Equation (D.22) gives

3\ 30/

A —~
813 + = l(Bz — B7)slh < —=Osl < =[Ol (D.23)
2V/1Z| 2V/1Z| 2v/|Z]
and so /5
CA\/s
102 < —=-
VIZ|
The above display gives
Chs
10s]l1 < V5052 < —=.
VIZ|
Since ||©g¢||1 < 3||Og||1, it also holds that

4C\s
01l = 5] + 151 < 4lOs]x < —7=.

D.2. Technical lemmas

Throughout this section, let P denote the output of Algorithm 1.

Lemma D.6 (No change point). Let Z C [1,T] be any interval that contains no change point. Then under Assumption D.]1,
for any interval J D Z, it holds with probability at least 1 — (n '\ p) = that

F(85,T) < F(Bs,T) + C(02 V 1)slog(n V p).

Proof. Case 1. If |Z| < Czslog(np), then by the definition of F(3,7), we have F(55,7) = F(B7,T) = 0 and the
inequality holds automatically.

Case 2. If
IZ| > Crslog(np), (D.24)

then letting 7 = 55 — 3 7 and consider the high-probability event given in Lemma D.15, we have

> (X[62)? = V1T Ioz]l2 — ey v/og(p) 16zl

tel

=) VIZ| |0zll2 — c5v/1og(p) [1(61)s]l1 — ch/log(p) [|(0z7)s-
>c1VIZ] 10zll2 — ¢hv/slog(p) 10z]l2 — cxv/1og(p) [(02) <1
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, ~ A
VIZII9zlle = e2v/1og(p) |(Br)sellv = 1 /|21 [0z ]2 — e2/log(p) ﬁ (D.25)

where the last inequality follows from Lemma D.5 and the assumption that (8;); = 0, for all ¢ € [T'] and 7 € S°. Then by
the fact that (a — b)? > 2a? — b? for all a, b € R, it holds that

o~

c
>

0|

c3A*s” log(p)

D.26
7] (D.26)

2

C
S (X0 = Dizacl} -
tel

Notice that

D= X8 =Y (- X Br)? =2 eX[or =Y (X 01)?

tel tel tel tel
<2 " Xeetlloo (VEI@2)sllz + 1B )selln) = Do (X[Toz)2,
tel teZ

Since for each ¢, ¢, is subgaussian with ||e;||y, < o and for each i € [p], (X;); is subgaussian with [|(X;);|y, < Cq, We
know that (X}),e, is subexponential with ||(X;);€:||y, < Cyzoe. Therefore, by Bernstein’s inequality (see, e.g., Theorem
2.8.1 in (Vershynin, 2018)) and a union bound, for Vu > 0 it holds that

’LL2 u

P(]l ZthtHoo >u) < 2pexp(—cmin{m, W})

teT
Take u = cCro.+/|Z|log(n V p), then by the fact that |Z| > Crslog(n V p), it follows that with probability at least
1—(nvp)™,
| ZXtetHOO < CCroc/|Tlog(nVp) < MI|Z|,
teT
where we use the fact that A = C (o V 1)y/log(n V p) . Therefore, we have

Z(Z/t - X;ﬂ%f - Z(yt - X;BJ)Z

tel tel

pY: 2z 2226210
<2AV/1Z[s 16212 + 20121 - _al |||5I||§ + \°s” log(p)

vzl 2 IZ]

21T 2X\2s2 1o
<2\/[Z]s |16z ]2 + 2A%s — g |“6I”§+2|I|g(m

4 C2 02 02 /\252 1Og(p)
<= A% + L|T[|62]|3 + 2725 — |7 )|07)12 + 2o
<z s+ 4| 16z]l3 +2A%s 2| Il I||2+Cf510g(n\/p)

5A%5° log(p)

< )\2 2A2 82—
SC3ATS 5_|_C}-5log(n\/]9)

§C4>\25.

where the third inequality follows from 2ab < a? + b2.
O
Lemma D.7 (Single change point). Suppose the good events L(B;, ' Amin) and R(B;, ' Amin) defined in Equation (B.2)

hold. Let T = (s, €] € P be such that I contains exactly one true change point ny. Suppose v > C, KB, ' Aink?. Then
with probability at least 1 — n=3, it holds that

2
V1
min{ng — s,e — e} S Ze - 3 <5 log(n V p) + 7) + B, Ain-
K
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Proof. If either n, — s < Crslog(n V p) ore — ni < Crslog(n V p), then

min{n, — s,e — ni} < Crslog(nV p)

and there is nothing to show. So assume that

n, — s > Crslog(nVp) and e —n, > Crslog(nVp).

By event R(B;, } Awin), there exists s,, € {sq}qQ:l such that

0 § Su — Nk S Bylemin-

~
o bl

S Tk Su

Step 1. Denote
Ty = (s,s,) and Zo = (sy,e€].
Since n, — s > Cxslog(n V p), it follows that |Z| > Czslog(n V p) and |Z;]| > Crslog(n V p). Thus
F@) =3 (wi—XBr)* and F(T) = (yi— X Pr)*
i€ €T

Since 7 € ’ﬁ, it holds that

F(I) < F(Th) + F(I2) + - (D.27)
Case a. Suppose |Z2| < Cxslog(n V p). It follows from Equation (D.27) that

> i - X Br)? < > (i ~ X Br,)? + 0+~

i€l €Ly

<Z — X;'B7)? + C1((su — M)kt +slog(n vV p)) +
€Ly

< Z — X;'B7)? + C1 (B, Aminki + slog(n V p)) + 7
€Ty

<Z — X;'B;)? + C1 (B, Aminki + slog(n V p)) + 7, (D.28)
€T

where the first inequality follows from the fact that F(Z>) = 0 when |Z3| < Crslog(n V p), the second inequality follows
from Lemma D.4 b, the third inequality follows from the assumption that (s, — 1) < B;, 1 Apin, and the inequality holds
because Ziezg (yi — X, B7)?

Case b. Suppose |Z;| > Crslog(n V p). It follows from Equation (D.27) that

Y- X Br)? <D (i — X[ Br)? + > (v — X[ Br,)’ +

el €T, i€y
< Z — X" B5)? + C1((su — mi) K} + slog(n V p))
€Ty
+Z — X, 8)2 + Cislog(n V p) + 2y
1€Lo
< Z — X, B2+ Cy (B, ' Aminki + slog(n V p)) + 7, (D.29)
€T

where the second inequality follows from Lemma D.4 a and b, and the third inequality follows from the assumption that
(84 — M) < B ' Apin. Combing two cases leads to

Z( — X, Br)? < Z — X, B7)? + C2(B,  Aminkiz + slog(n V p)) + 1. (D.30)
i€ i€l

38



DCDP: An Almost Linear Time Change Point Detection Methodology in High-dimensions

Step 2. Denote
Jiv=(s,nk] and  Jo = (1, e€].

Equation (C.14) gives
Doy — X B0+ Y (v — X Br)’

€T i€J2
< (i = X877+ Y (i — X[ B5,) + Co (B, Awinkf + 5log(n V p)) + 7 (D31)
€T 1€J2

The above display leads to

S AN (B - B+ D {X (B -85}

1€T1 1€J2
<23 X (Br—B5)+2 Y eX] (Br — BY,) + Co (B, Aminki + slog(n V p)) +7
€Ty i€J2
Cs\/log(n V p)| 1| 1|z — B3, I + C3y/log(n V p)| T 1Bz — B, 1 + C2(By, ' Aminkz + slog(n V p)) + v

(D.32)

where the last inequality follows from Lemma D.16 and that | 71| > C'rslog(n V p) and | J2| > Crslog(n V p). Note that

R i =R =N . ~ . log(nVp
13z — 855 = 1 Br)sels = 1Bz — sl < 31z - B3)slh < ooy [P
where the last two inequalities follows from Lemma D.5. So
n * o * ) * n * 1og(n \/p)
18z = B, lh = 1Bz — B5,)slli + |(Bz — B, )sellh < V1B — B, |2 + Css - (D.33)
Therefore Equation (D.32) gives
~ « 212 ~ % A2
Z (X" Bz -85} + Z {X;" (B - B%,)}
1€J1 i€J2
~ N log(n Vv
gV I (VB 13z — 8, + Caog |22 )
2 o log(n V p)
log(n V p)|Ja| | Vs Bz — 87, |2 + Css —a +2v
CI j Cyg \7
L1823+ =223, — 3,13+ Chston(n v )
+Cy (Bn "Aminks + 5 log(n Vp)) + 27, (D.34)

|J1] < |Z|,|J2] < |Z| are used in the last inequality.
Step 3. Since | J1| > Crslog(n V p) and | J2| > Crslog(n V p), for £ = 1,2, it holds that

S A{XT(Br - 85,)Y
icJe
Cwluﬁ'

1Bz = 87,115 = Cs log(p)|IBz — 83,11}

G jz ~ ) s2log(p) log(n V p)
I | HﬁI - 5.74”2 Cgslog(p)||fr — 5@”% - C§ ( )|I|

39



DCDP: An Almost Linear Time Change Point Detection Methodology in High-dimensions

Co| Tt
32

> 1Bz — 8%, 12 — Crslog(n V p), (D.35)

where the first inequality follows from Lemma D.15, the second inequality follows from Equation (D.33) and the last
inequality follows from the observation that

1Z| > |Je| > Crslog(n V p).
Equation (D.34) and Equation (D.35) together lead to

\ T8z — B, 113+ |7l l1Br — 8,112 < Cs(slog(n V p) + Byt Aminks + 7).

Observe that
. * * |j1||\72| HZ .
8 18— 535,13 + 16018 — 83,8 = s "7 = 5 mind| i, 1751}

This leads to
2
KY . _
—2’“ min{|J1|,|J2|} < Cs(slog(n V p) + B, A in + 7).

Since ki, =< k, it follows that

1
min{| 7|, |J|} < Cy (50g(n\;p)—|—’y

+ BglAmin) .
O

Lemma D.8 (Two change points). Suppose the good events L(B;; 1 Apin) and R(B;, Awin) in Equation (B.2) hold. Let
T = (s, e] € P be such that T contains exactly two change points Ny, ni+1. Suppose in addition that

Apink? > C(afs log(n V p)+7) (D.36)

for sufficiently large constant C and that v > C, B, Ayin®. Then with probability at least 1 — n™3, it holds that

alvi1 o?vi
N — 8 S ;72 (510g(n V p) +’y) + B Apin and e —mpi1 S 6n2 (510g(n Vp)+ 7) + B, Awins

where Cy > 1 is some sufficiently large constant.

Proof. By symmetry, it suffices to show that 7, — s < Ui\;l <5 log(n V p) + fy) + B YA . If
e — s < Crslog(n Vp),

then the desired result follows immediately. So it suffices to assume that
Nk — s > Crslog(n V p).

Since the events £(B;, ' Apnin) and R(B;, 1 Anin) hold, let s, s, be such that gy < s, < s, < Mg+ 1 and that

0 é Su — Nk S BglAmina 0 é Nk+1 — Sou S BglAmin'

~
-

d
S Nk Su Sy Mk+1 e
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Step 1. Denote
Ty = (8,8u)y, Zo= (84,8 and Iz = (sy,,€].

Since |Z| > ng4+1 — nr > Crslog(n V p),
F(I) = Z(yi - X;' B1)*.
i€
Since |Z1| > mi, — s > Crslog(n V p), it follows that
F(T) =Y (yi — X, Br,)%
i€Zy
In addition since |Z;| > C'rslog(n V p), then

F(T) =Y (v — X, Br,)?

i€Zy

<Z — X, B7)? {((nk—S)(su—nk))m2+510g(n\/p)}

M — ) + (50— 1

<> i - X8+ cl{<su — m)? + slog(n vp>}

€Ty

< Z XTﬂ + Ol{BnlAminKJQ +510g(n\/p)},

€Ty
where the first inequality follows from Lemma D.4 and that x5, < x. Similarly, since |Za| > Apin/2 > Crslog(n V p), it
follows that R
F(T)=> (v — X, Br,)*.
i€Ts
Since |Zz| > Crslog(n V p) and Z, contains no change points, by Lemma D.4,

F(To) <> (yi — X, B7)* + Cislog(n V p).

1€Lo

Step 2. If |Z5| > C'rslog(n V p), then
F(Ts) =Y (v — X Br.)’

1€Z3

< Y- XT 007+ O IS st )

i€T5 Mt1 — Su) + (€ = Ny1)

< Z - X' 87 +C1{(77k+1 — 5,)K% + slog(n \/p)}

i€l3

< Z XTﬂ —|—C'1{Bn1Aminli2+510g(n\/p)},

1€Z3

where the first inequality follows from Lemma D.4b and that k11 =< k. If |Z3| < Crslog(n V p), then F(Z3) = 0. So
both cases imply that

F(I3) < Z (yi — X, B7)2 + 4 {B;lAminlii + slog(n Vv p)}.

1€Z13
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Step 3. Since 7 € ﬁ we have
F(I) < F(1h) + F(Iz) + F(I3) + 2v. (D.37)

The above display and the calculations in Step 1 and Step 2 implies that

S — X Br)? <> (i — X[ B+ 301{B;1Aminn2 + slog(n \/p)} +27. (D.38)
i€l €T
Denote
Ji=(s;m), T2 = (M, + 1] and - Tz = (41, €.
Equation (D.38) gives

3
SN i - X< (i — X8, + 301{B;1Aminl<&2 + slog(n \/p)} + 2y (D.39)

{=1i€J, =1ieJ,

Step 4. Note that for ¢ € {1, 2,3},

5 g 3 5 o 5 _ log(n V p)
1Bz — B%,)s<llr = [|(Bz)s<llr = I[(Bz — BT)selly < 3]|(Bz — B7)sll1 < Cas —a
where the last two inequalities follows from Lemma D.5. So
" 3 oe log(n V p)
1Bz = B, Il = 1Bz — 8,)sll + (Bz — B,)se 1 < V& |18z — B, ll2 + Cas —a (D.40)
Note that by assumptions,
|J1| > Crslog(nVp) and |J2| > Crslog(nV p).
So for ¢ € {1, 2}, it holds that
~ * 2
> X (B - B3}
€T
CalTel 2 e 3 os
> 1Bz = B, 112 = Cs log(®)|1Bz — B3, 17
cz|Te| 5 " 5log log(n V p
>tz — 5,13 - Chlog(o)Bz — 531§ - € "B YD)
Ce J o *
>3 — 3,3 - Custog(n v p), Da41)

where the first inequality follows from Lemma D.15, the second inequality follows from Equation (D.40) and the last
inequality follows from the observation that

|Z| > |Te| > Cyslog(nV p).

So for £ € {1,2},

S - X780 =Y i - X852 =Y (X (Br - 850} -2 X (Br - 8%,)

i€Je €Ty €T i€Je
o * 2 o *
> S (X7 Br-85)) =2 Y X oollBr — B3,
i€Je i€Je
~ . ~ . log(n v
> 35 X Bz = 85)" = Co/logtn v oG (V&TIBz = 65, o + Casy |2 )

i€Je

42



DCDP: An Almost Linear Time Change Point Detection Methodology in High-dimensions

. P log(n V
>3, — 3,2~ Cuslos(n v p) — G/ Iog(n V P11 (ﬁlﬁz—ﬁg1|2+025 g(%p))

Cy j
1Bz — B, 113 — | d 1Bz — 8,113 — Coslog(n V p) = 1Bz — 8,113 — Coslog(n V p),

where the second inequality follows from the standard sub-Exponential tail bound and Equation (D.40), the third inequality
follows from Equation (D.41), and the fourth inequality follows from 7, C Z and so |Z| > | J¢|.

So for £ € {1,2},

™ * CZ \7 e *
Z(yz - X' 1) - Z(yz _X;rﬂjg)Q > éj'”ﬁz—ﬁﬂﬂg — Cgslog(n V p). (D.42)
i€Je i€Jy

Step 5. For J3, if | 75| > Crslog(n V p), following the same calculations as in Step 4,

- XA~ Y (- X7 8507 > B3, g 2 Cuslog(n V) > ~Coslog(n v p).

1€J3 €T3

If | J3| < Crslog(n V p), then

STwi—XTBr) =Y i - X[ B85 =D AXTBr -85} -2 eX[ (Br - B,)
€T3 1€ET3 €T3 1€J3
> SN Br - )Y g S AXT B 53)Y 43 €
i€J3 1€ET3 i€J3
>0 S KT (- 55,)) ¢ (\/v log(n) +log(n) + 7)
€T3
>3 3 (X7 (e - 03,01 - €4 1ogtn) +4)
iEJs
> Z (X[ (Br — B85,)}" — Cs(slog(n V p) +7) > —Cs(slog(n V p) +7) (D.43)
1€J3

where the second inequality follows from the standard sub-exponential deviation bound.

Step 6. Putting Equation (D.39), (D.42) and (D.43) together, it follows that

2
| el 2 . )
> ST — 81 < Colslog(n v ) + By Awiur® + 7).

This leads to . R
\TlIBz = B5,15 + | 72/l1Bz — 83,153 < Colslog(n V p) + By Amink” 4 7).
Observe that

VAN, K3
ﬁlnﬂ{p |18 — ﬁm”z + | Jo| |18 — BJZHQ |\|7 |141 2| >k 5 Emin{|71|, | J2|} > —mln{|j1| | T2}
Thus
#?min{| 7], | 72|} < Cro(slog(n V p) + B, " Amink® +7),
which is

slog(nVp)+~
12

min{] 73 . |7/} <c5< +Bn1Amm+:2>‘
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Since | J2| > Amin > M for sufficiently large constant C, it follows that

‘j2| > Apin > Cs (510g(n\;p)+7 + B;lAmin + ’);)
K K

So it holds that

slog(nVyp)+~
2

|j1| S CB( +Bn1Amin>~

O

Lemma D.9 (Three or more change points). Suppose the good events L(B;, ' Amin) and R(B,; ' Amin) defined in Equa-
tion (B.2) hold. Suppose in addition that

Apink® > C(slog(n V p) +7) (D.44)

for sufficiently large constant C. Then with probability at least 1 — n™3, there is no intervals in P containing three or more
true change points.

Proof. For contradiction, suppose Z = (s, e] € P be such that {n;, ..., na} C T with M > 3.

Since the events £(B,'Anin) and R(B,,!Amin) hold, by relabeling {sq}qul if necessary, let {s,,}M_, be such
that
Ogsm_nmSBglAmin for ISTTLSM—l

and that
0 S M — SMm S B;IAmin~

Note that these choices ensure that {s,, }*._, C Z.

~
ol

S m s1 T2 S2 SM MM

Step 1. Denote
T =(s,51)y, Zm = (Sm-1,8m]for2<m <M and Zny1 = (Sn, el

Then since |Z| > Apin > Csslog(n V p), it follows that Since |Z| > g1 — i > Csslog(n V p),

F(I) = Z(yi - X;EI)Q'

i€L

Since |Z,,,| > Amin/2 > Csslog(n V p) for all 2 < m < M, it follows from the same argument as Step 1 in the proof of
Lemma D.8 that

FZn)=> wi—XBr, )<Y (i — X8+ Cl{BnlAmin’f2 + slog(n Vp)} forall 2 < m < M.
€L €L

Step 2. It follows from the same argument as Step 2 in the proof of Lemma D.8 that

F(T) <> (wi— X 87)° + Cl{BglAmmfeQ +slog(n \/p)}, and
€Ty
FTu) < D, (wi— X8+ cl{BnlAmmn? + slog(n Vv p)}

1€ M 41

44



DCDP: An Almost Linear Time Change Point Detection Methodology in High-dimensions

Step 3. Since 7 € ﬁ we have

M+1
Z F(Zpn) + M.

The above display and the calculations in Step 1 and Step 2 implies that

Z(i‘/z - X Br)* < Z(i‘/z - X8+ (M + 1)Cl{B;1AminK32 +5log(n\/p)} + M.
i€ i€z
Denote
Ji = (ssmly T = m—1,1m]  for 2<m < M, Tyi1 = (nu, el
Equation (D.46) gives
M+1 M+1
SN w-XB02 <> (i - X8y )+ (M + 1)01{Bn1Aminn2 +slog(n vp)} + My
m=1i€T,, m=1iET,,

Step 4. Using the same argument as in the Step 4 in the proof of Lemma D.8, it follows that

Z (yi *X,;TBI)2 - Z (i 7Xi—r5\*7m)2 > Cz|jm|

1€Tm 1€Tm

1Bz — B% |13 — Caslog(n Vv p) forall2 <m < M.

Step 5. Using the same argument as in the Step 4 in the proof of Lemma D.8, it follows that

Sy = X B0)? = Y (wi — X[ B,)? > —Cs(slog(n V p) +7) and
ISV i€J1

S wi-X 8= > (wi— X[ B%,.,)? > —Cs(slog(nVp) +7)
1€TM+1 1€TM+1

Step 6. Putting Equation (D.47), (D.48), (D.49) and (D.50), it follows that

5 “nlyg 5,1

m=2

< 04 (510g(n \/p)—i—B 1Amm"£ +7>

For any m € {2,..., M}, it holds that

where the last inequality follows from the assumptions that 7, — 7x—1 > Ann and k; < kforall 1 < k < K. So

1
Anf | Tm-1lll8 = B3, N2+ 1Tl = 87,117 = K 2 5 Bmink”,

M
2> |TwlllBr - 87,113
m=1

M
> S (19mslBe = 55, 18-+ 19ml1Bz - 55, 18)

m=2

1 M
>(M = 1) 5 Amink® 2 = Amink?,

(D.45)

(D.46)

(D.47)

(D.48)

(D.49)

(D.50)

(D.51)

(D.52)

(D.53)

where the second inequality follows from Equation (D.52) and the last inequality follows from M > 3. Equation (D.51) and

Equation (D.53) together imply that
M
7 Amink” < 2C5M<5 log(n V p) + B, Amink? + 7).
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Since B,, — oo, it follows that for sufficiently large n, Equation (D.54) gives
Amin"<62 < CS (5 log(n \ p) + ’7)7
which contradicts Equation (D.44).

O

Lemma D.10 (Two consecutive intervals). Suppose v > C.slog(n V p) for sufficiently large constant C.,.. With probability

at least 1 — n=3, there are no two consecutive intervals Ty = (s,t] € P, Iy = (t,e] € P such that T, U I, contains no
change points.

Proof. For contradiction, suppose that
1:=T1U1y
contains no change points. For Z;, note that if |Z;| > C¢slog(n V p), then by Lemma D.4 a, it follows that

S wi— X Bn)? =Y (i — X))

i€l i€y

< Cyslog(n V p).

FE) - X - XT 6| -

1€y

If |Z;] < C¢slog(n V p), then

=> ¢

1€Zq

> i - X[ Bp)?

€Ty

FT) - X - XT B -

1€y

<|Ti|B(e]) + Cav/[Zi|log(n) +log(n) < Cyslog(n V p).

So
F@) - 3 - X787 < Caston(n v
€T,
Similarly,
’.7:(1'2) — Z(yl — X,'B87)?| < Csslog(n Vp), and
€T,
F@) = - X787 < Castontn v,
i€
So

D= X8+ Y (v — X[ B)? = 2Cuslog(n V) +v <D (v — X B;)* + Cislog(n V p).

i€l i€y i€l

Since 3} is unchanged when ¢ € Z, it follows that
v < 3Cislog(n V p).
This is a contradiction when C, > 3C;. O

Lemma D.11. Let S be any linear subspace in R™ and N 4 be a 1/4-net of S N B(0, 1), where B(0, 1) is the unit ball in
R™. For any u € R", it holds that

sup  (v,u) <2 sup (v,u), (D.55)
vESNB(0,1) vEN /4

where (-, -) denotes the inner product in R™.
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Proof. Due to the definition of N} 4, it holds that for any v € SN B(0, 1), there exists a v, € N4, such that ||v — v |2 <
1/4. Therefore,

Lt ) + (v, ),

(v,u) = (Vv — Vg + vk, u) = (xg, u) + (v, u) < i(v,u) + 1

where the inequality follows from 2 = v — vi, = (g, v)v + (z, v )vL. Then we have

3 1,

Z(v,u) < Z<U ,u) + (vg, u). (D.56)
It follows from the same argument that

3 1

Z(v yuy < Z(v,u) + (v, u), (D.57)

where v; € N7 /4 satisfies [[v — v;||2 < 1/4. Combining the previous two equation displays yields

(v,u) <2 sup (v, u), (D.58)
UGN1/4

and the final claims holds. O
Lemma D.12 is an adaptation of Lemma 3 in (Wang et al., 2021c).

Lemma D.12. Given any interval I = (s,¢] C {1,...,n}. Let R, := {v € RE=9)|||v]|y = 1, Zf;f_l 1{v, £ vit1} =
m}. Then for data generated from Assumption D.1, it holds that for any § > 0,4 € {1,...,p},

52 1
mqgm-+1 :
]P){Usel?l?lin >Amin} SC(G*S*].) 9 + exp{cmln{w%, MO}} (D59)
e—s—1

Proof. For any v € R(¢~%) satisfying Soiot 1{v; # vip1} = m, itis determined by a vector in R and a choice of m
out of (¢ — s — 1) points. Therefore we have,

€

Z UtEt(Xt)i

t=s+1

Ut€t(Xt)i
t=s+1

P sup
veERC™) luf|=1
€

> Amin
ST H{viAvi b=m
Z Utﬁt(Xt)i

51
§((e 5 )>9m+1 sup P >0/2
m vEN1 /4 t=s+1

(e S 1) m+1 . 52 )
<
( m 9 Cexpq —cmin —403%, 720:;”“\

52 0
mqm+1 i
<C(e—s—1)"9m+ exp{—cmm{zlcg’ M}o}}

D.3. Additional Technical Results

Lemma D.13. Suppose {X;}1<i<n 5 N,(0,%). Denote Cs := {v : RP : |lvge|1 < 3|lvgll1}, where |S| < s. Then

there exists constants c and C' such that for all n < 1,

P < sup ‘UT(i - E)v‘ > C’nAmaX(E)> < 2exp(—cnn?® + 2slog(p)). (D.60)

vECs,||v[l2=1

Proof. This is a well known restricted eigenvalue property for Gaussian design. The proof can be found in (Basu and
Michailidis, 2015) or (Loh and Wainwright, 2012). O]
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Lemma D.14. Suppose {X;}1<i<n gk N,(0,%). Denote Cs := {v : RP : |juge|l1 < 3|lvsl|l1}, where |S| < s. With

probability at least 1 — n™5, it holds that

slog(n Vp)

A
v EI—EU‘SC

lvll3

forallv € Cs and all T C (0,n] such that |Z| > Csslog(n V p), where Cs is the constant in Lemma D.16 which is
independent of n, p.

Proof. Forany Z C (0, n] such that |Z| > Csslog(n V p), by Lemma D.13, it holds that

P ( sup ”UT(EI — Z)v‘ > CnAmax(Z)> < 2exp(—c|Z|n* + 2slog(p)).

vECg,||v]2=1

Letn = C, % for sufficiently large constant C. Note that n < 1 if |Z| > C%slog(n V p). Then with probability

at least (n Vv p)~7,

sup ‘UT(EA]I - E)v‘ > Cy
vECs,||lvll2=1

Since there are at most n2 many different choices of Z C (0, n], the desired result follows from a union bound argument. [

Lemma D.15. Under Assumption D.1, it holds that

2|2 _
P(Z(XtTv)2 > ¢ é|1 | |v||2 — Cylog(n V p)|lv||? Yo € RP and ¥|Z| > Cyslog(n \/p)> <n7?
tez

where Cy > 0 is an absolute constant only depending on C.

Proof. By the well known restricted eigenvalue condition, for any Z, it holds that

c|Z
P02 = Sl - Calogtn vl w0 € R ) < Coexp(-calZ),
tel

Since |Z| > Cyslog(n V p),

T
P01l - Calogtnvaul} wo e R?) <7t
tel

Since there are at most n? many subinterval Z C (0, n], it follows from a union bound argument that

2|2 -
IP’(E:(XtTv)2 > %Hv”% — Cylog(n V p)|lv||? Yo € RP and V|Z| > Cyslog(n \/p)) <n 72
teT

O

Lemma D.16. Suppose Assumption D.1 holds. There exists a sufficient large constant C's such that the following conditions
holds.

a. With probability at least 1 — n™3, it holds that

% YoaX's

i€l

log(n V p)

<Co.
Z|

18111 (D.61)

uniformly for all 8 € RP and all T C (0,n] such that |Z| > Cyslog(n V p),
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b. Let {u;}"; C RP be a collection of deterministic vectors. Then with probability at least 1 — n=3, it holds
that

1 1 log(nVp
1 ZUIXiXZTB | ZuiTZﬂ <C (fgia}n ||Ui|2> g(m) [18]11 (D.62)

i€l i€l

uniformly for all € RP and all T C (0, n] such that |Z| > Csslog(n V p).

Proof. The justification of the (D.61) is similar and simpler than the justification of (D.62). For conciseness, only the
justification of (D.62) is presented.

For any Z C (0,n] such that |Z| > Cysslog(n V p), it holds that

1 T T 1 T
S XX 8- =Y s
€T €L
1 1
| | 1€L | | €T
1 . 1 —
<max—§uinXi'——§uiE, .
—1<;<p |I| g % 5J |I| g ( .]) Hﬁ”l

Note that E(u; X;X; ;) = u] X(, j) and in addition,
u] X; ~ N(0,u Su;)  and X, ; ~ N(0,%(4,5)).
So u; X;X; j is a sub-exponential random variable such that
ul XiXi; ~ SE(u] Su;$(4,5)).

As aresult, for v < 1 and every 7,

d

1 .
7] ZUIXiXi,j —u' %(,5)

c 1<i<n
i€L

> 7\/ max (uiTEui)E(j,j)> < exp(—cy?[Z)).

Since
u] uX(5,§) < Colluil2,

by union bound,

1<s

mzuz XiXij— m Z% (,7)
€T €L

> , < —cy?|Z)).
P <lriljaé(p > ~C, <m<Xn||uz||2>> < pexp(—cy|Z])

Lety = 34/ % . Note that v < 1if |Z| > Csslog(n V p) for sufficiently large C. Therefore

> log(n v p) (max |uz||2>> < pexp(—9log(n V p)).

|Z| 1<i<n

1 1 .
mzquiXi,j - m ZU:E(J)
icT

P < max
1<5<
=I=P i€T

Since there are at most n? many intervals Z C (0,n], it follows that

I
> oy, [l ve) ( max ||ui2) | > csslogmvp))

1 . 1 —
m ;uz szz,j - m Zui 2(7.7) |I| 1<i<n

P ( max
1<5<
ISP ieT

<pn? exp(—9log(n V p)) <n~>.

This immediately gives (D.62). O
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Lemma D.17. Uder Assumption D.1, for any interval T C (0, n], for any
A > A = Choey/log(np) (D.63)

where Cy > 0 is a large enough absolute constant, it holds with probability at least 1 — n~° that

| Z € Xilloo < A/max{|Z], log(np)} /8, (D.64)
i€z

where c3 > 0 is an absolute constant depending only on the distributions of covariants {X;} and {e; }.

Proof. Since ¢;’s are sub-Gaussian random variables and X;’s are sub-Gaussian random vectors, we have that ¢; X;’s are
sub-Exponential random vectors with ||e; X;||y, < Cyoe (see e.g. Lemma 2.7.7 in Vershynin, 2018). It then follows from
Bernstein’s inequality (see e.g. Theorem 2.8.1 in Vershynin, 2018) that for any ¢ > 0,

, ¢ ¢
i€L rTe TrTeE

Taking

t = O\Cy /4o c\/log(np) /max{|Z], log(np)} (D.66)

yields the conclusion. O

Lemma D.18. Suppose Assumption D.1 holds. Let T C [1,n]. Denote k = mingeyy,... xy ki, where {ki Y| are defined
in Assumption D.1. Then for any i € [T,
167 = Bill2 < Ck < CC,

for some absolute constant C' independent of n.

Proof. Tt suffices to consider Z = [1,n] and 8 = 57 as the general case is similar. Observe that
188, = Billz == > 87 = Billa = 1I- D> AwByn — — > Awbilo
i=1 k=0 k=0

1 & 1 K
<= ARG = 8D, < - D AR(K + D < (K + s,
k=0 k=0

By Assumption D.1, both x and K bounded above. O

Lemma D.19. Lett € T = (s,e] C [1,n]. Denote kmax = Maxye(1, .k} ki, where {ki}1, are defined in Assump-

tion D.1. Then

,,,,,

sup (|8l — Bolls < Cx < CC..

0<s<t<e<n

for some absolute constant C' independent of n.

Proof. 1Tt suffices to consider (s, e] = (0, n], as the general case is similar. Suppose that 1, < ¢ < 77,41. Observe that

||/6(*1,t] - Bikt7n]||2

;;ﬁi ——— DB

i=t+1

2

| =

q—1 K
* * 1 * *
(Z ApB, 41+ (E— TIq)ﬁan) R Z ApBy 1+ (Mg41 — t)ﬁnq“
k=0

k=q+1 9

50



DCDP: An Almost Linear Time Change Point Detection Methodology in High-dimensions

S

K
* * 1 * * *
(Z Ag(B nk+1 ﬁnq+1)> + 5nq+1 T n—t Z Ak(ﬁm«+1 - Bnqﬂ) - Bnqﬂ

k=q+1 9

Q

-1 K
* 1 * *
( Ak (B — 5nq+1)> Cn—t Z Ak(Bype1 — ﬁnqﬂ)

0 k=q+1

=~
I

2

—1
1 1
; E AkKKJ—‘ri E ALKk < 2Kk.
k=0 k q+1
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E. Gaussian graphical model

In this section, we will present the proof of Theorem 3.9. Throughout this section, we use X for covariance matrices and §2

for precision matrices. For any generic interval Z C [1,n], denote Q% = ﬁ Y iz 2 and

Q7 = argmin » _ Tr[Q" X, X, — |Z|log Q.
Qest ez

Also, unless specially mentioned, in this section, we set the goodness-of-fit function F(Z) in Algorithm 1 to be

0 if |Z| < Crplog(p V n);

~ ~ E.1
>ier THQT X, X — |Z|log Q| otherwise. ED

F(Qr,T) = {
where C'z is a universal constant.

Additional notations. Before presenting more details on Gaussian graphical model, we introduce some additional
notations while reviewing some notations we used in the main text. We use S to denote the cone of positive semidefinite

matrices in RP*P. For a matrix A € R™*", we use [[Allr := /> icim 2 jem) A?; to denote its Forbenius norm,

[Allop = sup,eps [|[Av|2/[[v]|2 as its operator norm, and Tr(A) = 3, (., Aii to denote its trace. For a square matrix

A € R™*" denote its determinant by | A|. For two matrices A, B € RP*P, A < B means that B — A € Sﬂ. For a random
vector X € RP, we denote gx as the subgaussian norm (Vershynin, 2018): gx := sup{||v" X ||y, : v € RP,|[v]l2 = 1}.

Assumptions. For the ease of presentation, we combine the SNR condition we will use throughout this section and
Assumption 3.8 into a single assumption. Besides, we would like to point out that although we assume that {X;};cp
are Gaussian vectors in Assumption 3.8, it is actually only compulsory for the proof of the conquer step. Throughout
this section for the divide step, it suffices to assume that { X;}c[, are subgaussian vectors with bounded Orlicz norm
SUD;cn) I X5y, < gx < oo where gx is some absolute constant. Thus, we keep gx in all results in this section, although
when {X; };¢c[, are Gaussian it holds that gx = Cx.

Assumption E.1 (Gaussian graphical model). Suppose that Assumption E.1 holds. In addition, suppose that A, x? >
B,.p?log?(n V p) as is assumed in Theorem 3.9.

Proposition E.2. Suppose Assumption E.1 holds. Let P denote the output of Algorithm 2. Then with probability at least
1 — Cn =3, the following conditions hold.

(i) For each interval T = (s,e] € P containing one and only one true change point ny, it must be the case that

, C% p?log(nVp cS%
min{i — 5,¢ — i} S Cygly S P IBIVP) | gt Chppap
Cx R Cx

(ii) For each interval T = (s, €] € P containing exactly two true change points, say Ny, < Ng.y1, it must be the case that

M — S S B;l/QAmin and e — g1 S B;l/QAmin.

(iii) No interval I € ‘P contains strictly more than two true change points; and

(iv) For all consecutive intervals I, and I, in P, the interval T, U Iy contains at least one true change point.

Proof. The four cases are proved in Lemma E.8, Lemma E.9, Lemma E.10, and Lemma E.11, respectively. O

Proposition E.3. Suppose Assumption E.1 holds. Let P be the output of Algorithm 2. Suppose y > C KB, ' Apink? for
sufficiently large constant C.,. Then with probability at least 1 — Cn=3, |P| = K.
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Proof of Proposition E.3. Denote &7 = > [Tr[(2) " X; X,"] — log |Q}|]. Given any collection {t1,...,t,,}, where
t) < <tm,andtg =0, t;,41 = n, let

Gultr, .. otm) =Y FQtp ) (s tiga])- (E.2)

For any collection of time points, when defining (E.2), the time points are sorted in an increasing order.

Let {ﬁk}kf(:l denote the change points induced by P. Suppose we can justify that

% p*log(n Vv
& + Kry zc’in(517...,sK)+K770(K+1)QTX%;LP) —C Y KB A (E.3)
CX K
ke[K]
. ~ = / g% p*log(n V p) / 215—1
26 (1, ig) + Ky = C{K + 1) 5 =—=0——= = (] > KBy Amin (E.4)
X kE[K]

~ ~ =~ 2 p*log(n Vv _
zesn(m,...mfom,...,nK)+Kv—cl(1r(+1)‘2%”’7%52 D0, Y w8 A (ES)
X ke[K)

and that
G —Gn(N1, .., 05,01, -, 0K) < Co( K + K + 2)67)(]92 log(n V p). (E.6)
X
Then it must hold that \ﬁ| = K, as otherwise if K > K + 1, then
Co(K + K +2)75-p*log(n V p) > & = Gu(ij1, . lig: M, - 1)
X

R 4
> (K — K)y— Ci(K + 1)%%2 log(n V p).
X

Therefore due to the assumption that |[P| = K < 3K, it holds that

4
[Co(4K +2) + Ci(K + D)5 p log(n v p) > (K — K)y > 7. (E7)
X
Note that (E.7) contradicts the choice of . Therefore, it remains to show Equation (E.3) to Equation (E.6).
Step 1. Equation (E.3) holds because Q7 is (one of) the minimizer of F (Q,Z) for any interval Z.
Step 2. Equation (E.4) is guaranteed by the definition of P.

Step 3. Forevery Z = (s, ¢| € 73, by Proposition E.2, we know that 7 contains at most two change points. We only show
the proof for the two-change-points case as the other case is easier. Denote

T = (5,1g) U (g, Mg+1] U (Ng41,€] = T1 U T2 U T3, (E.8)

where {1, 7g+1} =Z N {nk}szr
For each m = 1, 2, 3, by definition it holds that

‘F(ﬁjm,? jm) < ]:(Qi},,ﬂ jm) (E.9)

On the other hand, by Lemma E.7, we have

. 1
F(Qz, Tm) > F(7,, TIm) — CiTXpQ log(n V p).
X
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Therefore the last two inequalities above imply that

3
N FQ D) =Y Y F 1, T0)
icT m=1iCTp,
3
>3 N FQg, T - C“’Xﬁ log(n V p). (E.10)
m=1i€T, Cx

Then (E.5) is an immediate consequence of (E.10).

Step 4. Finally, to show (E.6), let P denote the partition induced by {m,....%%,m,....,nx}. Then \ﬁ| <K+K+2
and that {27 is unchanged in every interval Z € P. So Equation (E.6) is an immediate consequence of Lemma E.6. O
E.1. Fundamental lemmas

Lemma E.4 (Deviation, Gaussian graphical model). Let Z = (s,e] be any generic interval, and define the loss
function F(Q,T) = Y, Tr[QT(X;X,")] — |Z|log|]. Define Qz = argmingeg, L(Q,Z) and F*(Q*,I) =
DiezTr((Q) T (X X)) — log [

a. If I contains no change points. Then it holds that
]P’<|]-'(§I,I) — FHQ,T)| > ch % log(n v p)) < (nvp)7S
b. Suppose that the interval T = (s, €] contains one and only one change point . Denote

J = (s;m] and T’ = (ie€].

Then it holds that

P(f(ﬁz,:f>—f*<z>|> GV o, 055 1og<nvp>) (nvp)~2.
Cx |Z| X

Proof. We show b as a immediately follows from b with | 7’| = 0. Denote
J = (s,mx] and J' = (ni,e].

Let Qf = (Ifl\ > iez X7)~'. Then by Taylor expansion and Lemma E.5, we have
|JT:(§I’I) _F(§I7I)‘

o 2 I
<|Tr[(Qz — Q)7 ZXXT |I|Qzl)}|+7x\z|||QI_QI||%
€L
O O $ O-1 0)2( 0O 0112
<INz = Q|| pl|1 2z — Q7 HF+7|I|HQI—QIHF

2 2
<CgXp log(n V p) JrC'gXCX p?log(n V p) < cIXZX C X p?log(n V p). (E.11)
k x

On the other hand, it holds that
\F(Q1,7) - F(Q", 1)

Sy O e
<ITe[(Qr - 927) (Y XX — 1719701 + 5511107 — Qs
ieJ

_ 2 ~
+HT[(Qz — Q)T (D XX, - |J’|Qj})]\+7X|J’|||QI—QJ,||%. (E.12)
eJ!
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To bound ||§~21 — Q7| F and ||§~ZI — Q|| 7, notice that for two positive definite matrices X1, X5 € S and two positive
numbers wy, ws such that wy + we = 1, we have
[(wi%1 + wsXo) ™t = 27|

SVP (w1 S1 + weBe) ™t = 57 op

=P [(wi 1 4+ waXo) T [E1 = (w1 X1 + waB2)| ST op

<VP I (w1S1 4+ weBa) " Hlopl|T1 = (w1 E1 +w2Zs) [lopl T lop

<[ (wiZ1 +w2Z2) " opl =T lop - VP w21 = Sallop

<[ (wiZ1 +w2Z2) " opl| =T lopIZnllop[E2llop - VP w2l ETH = 5 lop

Therefore, under Assumption E.1, it holds that

~ Cc%|J’ J
16z 17l < ST 16z - 2 < G E13)

where in the second inequality we use the fact that 2ab < a? + b%. As a consequence, Equation (E.12) can be bounded as

|[F(Qz,T) - F(Q, D)

1 V / i o) 12 / 2
<o /Pl (U1 171 | G g |TITE | TS
%Cx’ IZ| IZ| 2cx IZ]? Z?
4 21 6 !
Cx |7
Combine Equation (E.11) and Equation (E.14) and we can get
F(Qz,7) = FH(Q", T)| <|F(Qz,T) — F(Qr, D) + | F(Q2,T) - F*(D)|
ng Ckp |TNIT'] -
<CZE X p?log + K-
X (Vo) S g
O
Remark 5. Tt can be seen later that the p factor in the signal term X E |‘7|HI“7 ;2 i will require an additional p factor in the
X

number of points in the grid for DCDP, leading to an additional p? factor in the computation time.

This factor is hard to remove because it is rooted in the approximation error
-1 -1
||(’U)121 +w222) _El HF

We can try another slightly neater way of bounding this term. As is mentioned in (Zeljko Kereta and Klock, 2021), for two
matrices G, H € R% %9 it holds that

Bt - G| < min {11, |GT (B - G| .. |G, BT (H - G, |
if rank(G) = rank(H) = min {d;, d2}. Therefore, we have
(w11 4+ wa¥e) ™" = ST F <[(wiB1 + waS2) ™ Hlopl| ST (w151 + waXs — 1)l F
<[(wi S+ waS) " loplS1 w2 B2 = Sillp-
However, to relate |y — X1 || to |25 — X7 || -, we need to proceed in the following way:

132 = Z1llp <VPIIE2 — Zilfop
§H21||op||22|‘op : \/17”22_1 - El_lHop
<Z1lloplZ2llop - VP IS = 217 IF,

which leads to the same bound in Lemma E 4.
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Lemma E.S. Let {X;}ic[n) be a sequence of subgaussian vectors in RP with Orlicz norm upper bounded by gx < oo.
Suppose E[X;] = 0 and E[X;X,"| = 5, for i € [n]. Consider the change point setting in Assumption E.I and consider
a generic interval T C [1,n). Let S = ﬁ Sier Xi X" and 1 = |71‘ > icr Zi- Then for any u > 0, it holds with
probability at least 1 — exp(—u) that

~ +u p+u
S — Sl < g2 (4 /B2y Py E.15
As a result, when n > Cyplog(n V p) for some universal constant Cs > 0, it holds with probability at least 1 — (n V p)~7
that
= plog(nVp
182 = Szllop < C% gfﬂ) (E16)

where C' is some universal constant that does not depend on n,p, gx, and Cs. In addition let fAZI = argmingcg, L(Q,7)

and Q7 = (\%I Siez S5 L U |Z] = Caplog(n V p)gy [k for sufficiently large constant Cs > 0, then it holds with

probability at least 1 — (n\V p)~7 that

9% [plog(nVp)
2

Qr — Qsll,, < C
” z IHP— 2 |I|

, (E.17)

Proof. 1f there is no change point in Z, then the two inequalities (E.15) and (E.16) are well-known results in the literature,
see, e.g., (Zeljko Kereta and Klock, 2021). Otherwise, suppose Z is split by change points into ¢ subintervals 7, - - - , Z,.
By Assumption E.1, we know that ¢ < C' for some constant C' < oo. Thus with probability at least 1 — exp(—u),

- 1 -
X7 — Zzlop < ||m > ITl(Sz = S1)llop
kelq]

+
<IN VTV (b +u)

|Z| o
q]

Vpt+u
|Z|

»+u maxye(q | Z| D+ u 5 p+u' pt+u
< Cag%y/ ( % ) < Cag%( V).
XV z| |Z| |Z| Nzl |Z|

It is then straightforward to see that Equation (E.16) holds with probability at least 1 — (n V p)~7 when n > Csplog(n V p)
for some sufficiently large constant Cs > 0.

< Cog% max Ze| V (p + )

For Equation (E.17), first vanish the gradient of the loss function L(2,Z) and we get

~

Q7 = (S
Then Equation (E.17) is implied by Equation (E.16) and the well-known property that

op? op”

[H' — G| < Cmax {||GFZ,. [H|7,} [H -G
for two matrices G, H € RP*P, O

E.2. Technical lemmas

Lemma E.6 (No change point). For interval I containing no change point, it holds with probability at least 1 — n~5 that

F(Q7,T) — FQ . T) > —gtp?1 Y, Q|2 . E.18
( Z ) ( ) )— 9xp Og(n p)ken[llgfl] || nk”op ( )
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Proof. T < C; %p log(n V p), then ]—'((AZI,I) = F(Q*,Z) = 0 and the conclusion holds automatically. If Z >
X
Cs %p log(n V p), then by Lemma E.5, it holds with probability at least 1 — n~" that
X

A 3 = c|Z .
F(O7,7) - F@ 1) 2[TT[(@r - 0) (S — 5] + QKL*'Q 10z — 97 3 (E19)
— 7|10z - Q*||F|IZz — *||F (E.20)
> — |ZlplIQz — Q*[|op||Zz — E*|lop (E21)
> — gxp*log(n Vv p)[|Q*]|2,. (E.22)

O

Lemma E.7. Let T C [1,T] be any interval that contains no change point. Then for any interval J D Z, it holds with
probability at least 1 — (n V p)~° that

F(Q.T) < F(Qr.T) + ogXp log(n V p).
X

Proof. The conclusion is guaranteed by Lemma E.6 Q7 is the minimizer of F (Q,7). O

Lemma E.8 (Single change point). Suppose the good events L(B,, ' Amin) and R(B,, ' Amin) defined in Equation (B.2)
hold. Let T = (s, e| € P be such that T contains exactly one change point 1. Then with probability at least 1 — (n V p)~3,
it holds that

CG

2 2
1
4 Ox plog(nVp) CX B A i, (E.23)
Cx

min{n, — s,e — e} < CCLox—5- 3 +Cox
x K

Proof. Ifeitherni, — s < B, YApinore — g < B, LA hin, then there is nothing to show. So assume that
N — 8> B;lAmin and e—n > B;lAmm.
By event R(p~' B, ' Amin)., there exists s, € {54}, such that
0<sy—m < p_lBglAmin.

So
M < Sy S e
Denote

Ty = (s,84) and Ty = (sy,€],

and F*(J) = 3, 7 [Tr((Q) T X: X, ) —log |7 ). Since s, €, 5, € {54}
it holds that

g=1> by the definition of Pand ﬁ, and Lemma E 4,

F(QI,I) S}—(ﬁzl ,Il) + f(§1'27.z-2> + v
e}’ c%
<7 (@) + B (o, — it + O R log(n v ) + F(T) +

X ck
. 0)6( —1A,2 gXCX 2
<F*(I)+ A B, Akj + 0704 p*log(nV p) + 7, (E.24)
X X

where the last inequality is due to s, — 1, < B, LA, Let

_ 06 402
3 =—B,'Ax k+CgX4Xp210g(n\/p)+7.
X Cx

57



DCDP: An Almost Linear Time Change Point Detection Methodology in High-dimensions

Then by Taylor expansion and Lemma E.5 we have

197 - 1% <7+ Y ITIT[(QF, — Q)T (Sz, — 3,)]
maxpe k) || 7. 15p ; " 12,;1 n
k
<F+ ) [TlIEz - Sl - 03, | F
i=k—1
<7+ Cigiplog? (nV p) [ > VITl 9z - 9, IIF]
i=k—1
§W+Clg§(plog (nVp) ZHQI_Q*HF (E.25)
teT
The inequality above implies that
A * 2 *
S 10z — 07 I < = max 92, I3, [7 + max |05, 12, X4,5% log(n v )] (E26)
tez
On the other hand,
1Zr—1[1Zw]
D 10z - 97l = =110, - Qal, (E27)
teT
which implies that
: 4 C% p?log(nV p) 4 X 1
mln{lkall, |Ik|} S CQCryg TT + C X B Amln (E28)
x k

Recall that we assume for i € [n], cx I, < 3; = CxI, for some universal constants cy > 0,Cx < cc.

Lemma E.9 (Two change points). Suppose the good events L(B; ' Anin) and R(B;; ' Awmin) defined in Equation (B.2)
hold. Let T = (s,e] € P be an interval that contains exactly two change points Ny, Ni+1. Suppose in addition that
v > C, gX 2log(n V p), and

Apmink? > Bn a p 2log(n V p), (E.29)
Cx

then with probability at least 1 — n™ it holds that

max{ne — s,e — N1} < B2 Amin. (E.30)

Proof. Since the events £(B;, *Anin) and R(B;, ' Amin) hold, let s, s, be such that n, < s, < s, < 741 and that
0 S Su — Nk S BglAmina 0 é Nk+1 — Svu S BglAmin~

rd |
\ i |
S Nk Su Sy Mk+1 e

Denote
Ty = (8,8u)y, Zo=(Su,8y] and Iz = (sy,€].

In addition, denote

Nk+1 — Uk}’ Tz = (s + Nk+1 — Nk

Ji=(s,mk),  Jo= (e, + 5 5

yMet1] and  Ji = (M1, €]
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Since s, €, 5y, 5y € {5412, by the event £L(p~ B, Apin) and R(p~ ' B;, ' Apin), it holds with probability at least 1 —n 3

that

q=1

0<su—1 <P "By Amin, 0 < g1 — 50 < p~ "B Amin.
Denote
Ty = (s,m), T2 = (ks Me+1), Zs = (k1 €.
By the definition of DP and SAII, it holds that

F(Qr,I) < Z}" (Qz,,T;) + 27 (E.31)
ol 6 4 2
P |J1l(8u — k) o Cxp | T4l (M1 — 50) o 9xCx -
< F(Qr ., L) +2v+ Cx K kr + C=-2p"log(n VvV
Z T ! |s71|+5u_7]k k 04)1( ‘j4|+77k+1_51) k C%( b g( p)
(E32)
> C !JXC)Z(
<> F(Q:,T) + 27 + —B YAminks + CZ2XZX 2 log(n V p). (E.33)
=1 %
Let 06 02
7 =2-2B,"Ax k—l—CgX X p?log(n V p) + 27.
5% Cx

Then by Taylor expansion and Lemma E.5 we have

3
ok Y N0z — Q3 <F+ DT, — On) T (S, — =7,)]
tel =1

3
<7+ Cgxplog?(nV p) lz VI — Qf[|p

i=1

<F+Cokplog? (nVyp) | 107 — % (E.34)
tel

The inequality above implies that

~ . . 1
S 6 -z < & [w 2||X|i2p2log<nvp>]. (E35)
el Cx Cx
By the choice of +, it holds that
~ i} c\C
> 19z = QflF < =X, log(n v p). (E.36)
teZ1UT, X
On the other hand,
~ T1||Z- 1 . * *
S o> Do one s Lz mpien, - ol (E37)
teZ1 ULy |I‘ 2

Suppose |Z1| > |Zz|, then the inequality above leads to
c.C
Amin"ﬂz2 S 1 — ||X||w2p log(n \ p)
x
which is contradictory to the assumption on A. Therefore, |Z;| < |Z3| and we have
gk
% — %%

s—ne = 11| < CC, >p°log(n V p). (E.38)
The bound for e — 11 can be proved similarly. O
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Lemma E.10 (Three or more change points). Suppose the assumptions in Assumption E.1 hold. Then with probability at
least 1 — (n '\ p)~3, there is no intervals in P containing three or more true change points.

Proof. We prove by contradiction. Suppose Z = (s, ¢] € P be such that {m,...,nm} C Z with M > 3. Throughout the
proof, M is assumed to be a parameter that can potentially change with n. Since the events £(B;, ! Anin) and R(B;, ' Ain)
hold, by relabeling {sq}qQ:1 if necessary, let {s,, }*_, be such that
0< 8m—Nm <B'Apin for 1<m<M-—1
and that
0 < M — SMm < BglAmin-
Note that these choices ensure that {s,, }*._, C Z.

V4
\
S m si n2 S2 S3 1M3 e

[ =% ]

Step 1. Denote
T =(s,51)y, Zm = (Sm-1,8m]for2<m <M and Zny1 = (Sn, el

Then since s, e, {s,, }}1_; C {s,}2,, it follows that

=1
Suppose Z = (s, €] € P and there are M > 3 true change points {Nq+i}iern inside Z, and denote
Il = (Saanrl]u Im = (nq+m71777q+m]7 IJW+1 = (nq+M76]~

Then by the definition of P and €7, . it holds that

M+1 M+1
QIa Z]:Qfa +M7<Z]:QI7 )+M77
i=1

which implies that

> Te(Q7 (X:X,1)) - |Z]log | Q]|

tel
M+1 M+1

<D0 (@) (X X)) = D [Tillog 93, + M. (E.39)
=1 teZ; =1

By Taylor expansion and Lemma E.5 we have

M+1
Y119z = QfF < My+ Y T2, - Q)T (S, - 57,)]
tel i=1

M+1
< M~y + Cg%kplog? (nV p) [Z VI 19z = Q|

< My + Cgiplog?(nvp) |3 [0 — Q1% (E.40)
tel

S0 - 03 < [Mw 1 xpe logmvp)} (E41)
tel

The inequality above implies that

On the other hand, for each ¢ € [M], we have

= Iz Iz
S -y > BlEalee o

Z] nq+7+1 Nq+i
teT;UTit1

2. (E.42)
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In addition, for each i € {2,--- , M}, by definition, it holds that min{|Z;|, |Z;+1|} > Amin. Therefore, we have
5 Oy 1 4 2
(M - 2)Amin"£ < N Mry + THX”zpzp lOg(TL \/p) .
Cx Cx

Since M /(M — 2) < 3 for any M > 3, it holds that

4
9x 2
Apin < CC * - p~log(n V p), (E.43)
Rt (Vo)

which is contradictory to the assumption on A, and the proof is complete. O

Lemma E.11 (Two consecutive intervals). Under Assumption E.I and the choice that

4

g

v > C, % p* log(n V p),
Cx

with probability at least 1 — (n \V p) 3, there are no two consecutive intervals T, = (s,t] € P I, = (t,e] € P such that
Ty UZy contains no change points.

Proof. We prove by contradiction. Suppose that 71,75 € P and
T:= Il U IQ
contains no change points. By the definition of P and SA)I, it holds that
F(Or,. T) + F(Qz,. T) +7 < F(Q2,T) < F(1.T)
By Lemma E.6, it follows that
F(¥,.T1) <F (@, ) + O p? log(n v p),
X
4
F(Q71,,12) <F(Q1,, L) + CiTsz log(n V p)
X

So
4
F(%,,T)) + F(Q5,, To) — ZCzTXpQ log(n V p) ++ < F(Q,T).
X

Since Z does not contain any change points, Q7 = Q7 = Q7, and it follows that
gt
v <2C%plog(n V p).
X

This is a contradiction when C., is sufficiently large. O
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F. Penalized local refinement

In this section, we prove consistency results in Section 3 for penalized local refinement, or the conquer step. We also provide
more details on the computational complexity of local refinement using memorization technique which is summarized in
Section 2. In particular,

1. In Appendix F.1, we analyze the complexity of the local refinement step and show that it is linear in terms of n, as is
mentioned in Section 2.

2. Appendix F.2 presents some fundamental lemmas to prove other results.

3. Appendix F.3 prove results for the mean model, i.e., Theorem 3.4.

4. Appendix F.4 prove results for the linear regression model, i.e., Theorem 3.7.

5. Appendix E.5 prove results for the Gaussian graphical model, i.e., Theorem 3.10.

F.1. Complexity analysis

We show in Lemma F.1 that the complexity of the conquer step (Algorithm 3) can be as low as O(n - C2(p)).

Lemma F.1 (Complexity of the conquer step). For all three models we discussed in Section 3, with a memorization technique,
the complexity of Algorithm 3 would be O(n - Co(p)).

Proof. In Algorithm 3, for each k € [[A(], we search over the interval of length %(ﬁkq + ﬁk) where A, := Mk+1 — Nk
Without any algorithmic optimization, the complexity would be O((Ax_1 + Ag)C1(Ak—1 + Ak, p)) where C1(m, p) is the
complexity of calculating 67 and F(6z,Z) for an interval of length m,

Under the three models in Section 3, calculating HAI involves the calculation of some sufficient statistics or gradients and a
gradient descent or coordinate descent procedure which is independent of |Z|. Therefore, C; (|Z],p) = O(|Z]) + O(Ca(p)).
For instance, solving Lasso only takes O(p) time once »_,c(, X;X;" and > _ic[n) Xiyi are known. In the conquer step,

each time we only update the two summations (Zie[n] XX, Zie[n] X,;y;) by one term, so we can use memorization

trick to reduce C1 (Ag_1 + Ay, p) to O(1) + O(Ca(p)). Consequently, the complexity at the k — th step of Algorithm 3 can
be reduced to O((Agx—1 + Aj)C2(p)). Taking summation over k € [K] and considering the fact that P is a segmentation of
[1, n], the total complexity of the conquer step would be

3" O((Bk-1 + Ap) - C2(p) = O(n - Ca(p)).

ke[K]

F.2. Fundamental lemma

As is introduced in Section 1, the sub-gaussian norm of a random variable is defined as (Vershynin, 2018): || X||y, =
inf{t > 0: Eoo(|X|/t) < 1} where tho(t) = t” — 1.

Similarly, for sub-exponential random variables, one can define its Orlicz norm as || X||,, := inf{t > 0 : E¢)1 (| X|/t) < 2}
where 1 (t) = €.

Lemma F.2. Suppose {z;};-, is a collection of independent centered sub-exponential random variables with 0 <
SUP1<icoo 2illy, < 1. Then for any integer d > 0, > 0 and any x > 0

ko 2
P max izt % >z | <exp {x} + exp 7\/dﬁx .
keld,(1+a)d] k' 2(1 + ) 2

n . C
Proof. Denote Sy, =} ;" z;. Let ¢ = sup;<;< ||zill,, - For any two integers m < n and any ¢ <

E (exp (t (Sp, — Sm))) < E (exp (tz;)) < H E (C7t*/2) =E [(n — m)Cit?/2] .
1=m-+1 i=m-+1
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Let Fj, denote the sigma-algebra generated by (z1, . .., z;). Without loss of generality, assume that C; = 1. Since Sy, is
independent of S,, — Sk, this implies that when ¢ > 1/¢

o exn fisu -2} 1) o o5t 25 (et - 501 - 29 o s, - )

Therefore exp {tS — —} is a super-Martingale. Let = be given and
=inf{n>d,S, >n'z}.

Then Sy > Az > +/dz. Thus fort > 1/¢,

E(exp{tﬁm— t?}) SE(eXp{tSA—tZA}) SE(exp{tSl —t;}) <1

By definition of A,

Zl‘C—l “i
P 1= > <P(A < (14 a)d).
(ke[;,r(l?fa)d} vk ze | sPAs( a)d)

Since u — exp (sf T — 7) is decreasing, it follows that

ke(d,(1+a)d]

IP’( [max Z 12‘ ) exp tfl—tzA/Q}>exp{tfm—t2(1+a)d/2})
t>

Markov’s inequality implies that when ¢ %

Y 2 )
P 1= > < —tVd t°(1 d/2
(ke[ﬂ?fam N eXp{ v+ &1+ a)d/ }

Set
.
=ming -, ————
C(1+a)Vd
1 T _ T

If z > ro)Va Thent = o)V and therefore

Va2 -

—tvVd t“(1 df2=———
r+t°(1+a)d/ 20t a)
So
Zl'c—l Zi z?
P 1= > < - .
(ke[f(l?fa)d] VE T v) =P 21+ a)
1 1
Ifz < (1+§)ﬁ Then t = z < (1+(f)\/07 and so
—Vdz 1 x (1+a)d —Vdz
—tVdr + 121+ a)d/2 < + = - .
( )/ ¢ Cl+a)d 2 2¢

So

k

1 % d d

P max 21212 >x | <exp —Q < exp _fx ,
keld,(1+a)d] k| 2¢ 2

where ¢ < 1 is used in the last inequality. Putting the two cases together leads the desired result. O
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Lemma F.3. Suppose {Zz}fi1 is a collection of independent centered sub-exponential random variable with 0 <
SUP1<jco |2illy, < 1. Letv > 0 be given. For any x > 0, it holds that

P <Z 2 < 4y/r{loglog(4vr) + z + 1} + 4v/rv'{loglog(4vr) + = + 1} for all v > 1/1/) >1—2exp(—ax).

=1

Proof. Lets € Ztand T, = [2“"/u7 23+1/1/]. By Lemma F.2, for all z > 0,

PsuphZI gexp—m—2 + exp 7@ gexp—w—2 +eprx.
(s 72 e) oo pron VT s o {57}

reTs T 4 2 2\/17‘

Therefore by a union bound,

P <3s ezt : sgg Z\;TLZ > 2y/loglog((s + 1)(s + 2)) + = + 2v/v {loglog((s + 1)(s + 2)) + x}>

exp(~ = 2exp(—a). (E.1)

s—|—1 s—|—2)

M8

For any r > 2° /v, s < log(rv)/log(2), and therefore

(5 + 1)(s +2) < a2 loaly) (10g<4w> ) ?

log?(2) log(2)
Thus
log(4rv)

log((s +1)(s +2)) < 2log ( oe(2)

) < 2loglog(4rv) + 1

The above display together with (F.1) gives

P < sup Z:’\;LZ? > 2¢/2rloglog(4rv) + = + 1 4 2/rv {loglog(4rv) + = + 1}) < 2exp(—z).
r>1/v r

Next we present two analogous lemmas for sub-gaussian random variables.

Lemma F.4. Suppose {zz}fil is a collection of independent centered sub-gaussian random variables with 0 <
SUP1<jcoc ||%illy, < 0. Then for any integer d > 0,0 > 0 and any x > 0

Sk x?
P max ==L > gexp{}.
keld,(1+e)d]  k 2(1 + a)o?

Proof. Denote Sy, = Y " 2. Let ¢ = sup; ;< ||z, For any two integers m < n,

E (exp (t (Sp — Sm))) < H E (exp (tz;)) < H E (§2t2/2) =E [(n — m)§2t2/2] .

i=m-+1 i=m-+1
Let F}, denote the sigma-algebra generated by (21, . .., 2 ). Since Sy, is independent of S,, — Sk, this implies that
2t2 2t2k 2t2 —k
E (eXp {tSn — < 5 n} | ]-"k> = exp {tSk - ¢ 5 }]E (exp{t (S, — Sk)} — C(Z))
212k
§exp{tSk ¢ 5 }
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Therefore exp {tSn — @} is a super-martingale. Let « be given and
A=inf{n>4d,S, >nz}.
Then S, > VA x > v/d'z. Thus for ¢ > 0,

E (exp {t\/ch - CQt;A}> <E <exp {tSA - CQI;QA}) <E (exp {tSl - sz}> <1

By definition of A,

Zl'c—l “i
P = > < P(A < (1+a)d).
(ke[ﬂ?fa)d} N/ v <PA<+a)d)

2,2
Since u — exp (5\/5 T — “T“) is decreasing, it follows that

eld,(1+e)d]  k

Markov’s inequality implies that,

P (k [max h > a:) <P (exp {t\/(T;l: - (2t2A/2} > exp {t\/ch -1+ a)d/2}> .

Zk—yzi 2,2
P 1= > < —tVd t°(1 d/2
<ke[ﬂﬁfa)d] 2 2| <ep {0+ (P14 a)d)2)

— X
Sett = IS then

—tVdz+ (1 + a)d/2 = e

P iy % >z | < { z? }
max e X ex i E——— .
keld,(1+a)d) k= = OXp 2(1 + a)¢?

So

O

Lemma FE.S5. Suppose {zl}fil is a collection of independent centered sub-gaussian random variable with 0 <
SUP << oo ||,zi||w2 < 0. Let v > 0 be given. For any x > 0, it holds that

P (Z 2z < 4o/r{loglog(4vr) + x + 1} forall r > 1/1/) >1—2exp(—zx).

=1

Proof. Let s € Z*and T, = [2°/v,2°7! /v]. By Lemma F4, for all z > 0,

Dz i a?
P sup &=L > 1) <expq ——— b
(re% v oY) P T

(EISEZ+ : sup iz % > 20v/loglog(( s+1)(s+2))+x>
r€Ts \/_‘

= 2exp(—x). (F2)

Therefore by a union bound,

exp(—
5+1 5+2)

Mg

s=0

For any r > 2° /v, s < log(rv)/log(2), and therefore

log(2rv) log(4rv) log(4rv)\”
log?(2) = < log(2) )
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Thus
log(4rv)

log((s +1)(s +2)) < 2log ( log(2)

) < 2loglog(4rv) + 1.

The above display together with (F.2) gives

P ( sup @ > 20\/27"10g10g(47“l/) +x+ 1,> < 2exp(—z).

r>1/v r
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F.3. Local Refinement in the mean model

For the ease of notations, we re-index the observations in the k-th interval by [no] : {1, -+ ,no} (though the sample size of
the problem is still n), and denote the k-th jump size as x and the minimal spacing between consecutive change points as A
(instead of A, in the main text).

By Assumption C.1 and the setting of the local refinement algorithm, we have for some o*, 5* € RP that

~_Ja*+e  wheni€ (0,7]
vi B* +¢€  wheni € (n,ng]

where {¢;} is an i.i.d sequence of subgaussian variables such that ||¢;||, = oe < co. In addition, there exists & € (0, 1)
such that n = |nf] and that ||a* — 5*||2 = k < co. By Assumption C.1, it holds that ||a*||o < s, ||8*|lo < s and

52 log?(n V p)

o 0 (F3)

By Lemma F.7, with probability at least 1 — n~2, there exist & and B such that

||a_a*||§gcwand”a_a*”1gcﬁ W;
~ slog(n Vv ~ log(n Vv
18- 313 < TP g 15 e < 0y [LBEVE).

In fact, Lemma F.7 shows that we are able to remove the extra 5, v ZAmin term in the localization error in Theorem 3.3
under the same SNR condition. In Lemma F.6, we show that with slightly stronger SNR condition, the localization error can
be further reduced as is concluded in Theorem 3.4.

Let
. k no R k no
Ok) = llyi—allz+ > llvi—Bl3 and Q (k)= llyi— a5+ Y lly:— 85
i=1 1=1

i=k+1 i=k+1

Lemma F.6 (Refinement for the mean model). Let

n+r = argmaxQ(k).
ke(0,n0]

Then under the assumptions above, for any given o € (0, 1), it holds with probability 1 — (o V n™=1) that
9 1
k°r < Clog —.
o)
Proof. Without loss of generality, suppose > 0. Since 17 + r is the minimizer, it follows that

O(n+r) < O(n).

Ifr < 712, then there is nothing to show. So for the rest of the argument, for contradiction, assume that

S 1
)
Observe that
o~ —~ /'7+T‘ "]+T o~
Qn+r) —Qm= > lw—al3— Y lvi—58l3
i=n-+1 1=n+1
n+r n+r
Qm+r)—Q )= > llyi—a’l5— > llvi— B3
i=n+1 i=n+1
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Step 1. It follows that

ntr ntr

Z llyi — a||§ - Z lyi — OZ*||§
i=n+1 i=n+1
n+r n+r
=> lla-e3+2@-a)" Y (w-a)
i=n+1 i=n+1
it it
=Y Ja-aB+2r@-o”) (B -a)+2@-a")" Y «
i=n+1 i=n+1
By assumptions, we have
ax} slog(p)
Z @ —a*||3 < Cir .
. A
i=n+1
Similarly
N N 1
F@—a") (8"~ a") <rld - o o8° - %l < Curmy TEE)

where the second equality follows from ||8* — a*||2 = &, and the last equality follows from (F.3). In addition,

n+r n+r
@-a")" Y a<la-a’lhl Y el
i=n+1 i=n+1

1 /
=C! og rlog(p) = Caslog(p % .

= PR L4 . ﬁlog( ) slog(p) r
S l—ali— Y lw— o'l < iR | 0y [£E0) L oaog, [

Therefore

i=n+1 i=n+1
25log(p) 5 [slog(p) rK2
< Cirk A2 Cirk A + Caslog(p) A2
1
< Cyri221osp) (F4)

VARK?

Step 2. Using the same argument as in the previous step, it follows that

lly: — B3 — ly: — B*[I5 < Carr? :
i=n+1 i=n-+1 Ar?
Therefore
25 log(p)

|0 +7) = Q) —{Q"(n+1) - @'} < Curn (E5)

VAK?
Notice that @(77 +7)— @(n) < 0, so our goal is to find a regime where Q*(n + ) — Q*(n) > 0, in order to get rid of the
|- .

Step 3. Observe that

ntr ntr
Qm+r)—Qm=> llvi—a 53— > llvi—83
i=n+1 i=n+1
n+r
=rla* =B 3-2 > (y (a* =87
1=n+1
n+r
=rlla” = B |3 - 200 - 5)T Y @
i=n+1
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Let .
w; nel (o = %)

Then {w;};>, are subgaussian random variables with bounded > norm. Therefore by Lemma F.5, uniformly for all
r > 1/k2, with probability at least 1 — ar/2,

. 4
Zwi < 4\/7‘ {1og log (k%r) + log S + 1}
i=1

1

It follows that
n+r 1 .
D el (@ =57 <4y [rw? {loglog(ﬁ'??“) +log — + 1} .
i=n+1 «
Therefore

1

Q*(n+r)—9"(n) > re? — 4\/7%2 {loglog (k2r) 4+ log% + 1}

(F.6)
, 4
> ri? — 4y/r&2{1 Vloglog (k2r)} — 44/rk2log — — 4V/rk?
«a
Since 1%; — loglog(z) > 0 for all z > 0, when rx? > max{144log £, 144}, we have Q*(n+ 1) — Q*(n) > 0.
Step 4. Equation (F.5) and Equation (F.6) together give, uniformly for all » such that 72 > 144(1 V log %),
1
4 slog(p)
0<rr?—44/rx2 {lo log (k27) 4 log — + 1} < Carr?2=—=2L
\/ glog (k?r) +log — v
Since we assume that % — 0, this either leads to a contradiction or implies that re? < Cy(1V log é) O

Lemma F.7 (Local refinement step 1). The output 1} of step 1 of the local refinement satisfies that with probability at least
1—n73
CoZslog(n V p)
max | — < —— =7 E7
max [ — nie| < e (E7)
Proof of Lemma F.7. Foreach k € [K], let iy = ,E(l)Nif sp <t <7, and fi; = [i®) otherwise, and 11} be the true parameter
at time point ¢. First we show that under conditions K = K and max¢[x7 [7x — 1| < A/5, there is only one true change
point 7y, in (sg, ex). It suffices to show that

N 2, N 5 1, . ~
|7k — 1i| < g(nk—i-l — k), and |71 — Mry1| < g(ﬁkﬂ — k) (F.8)

Denote R = maxye[x] |7r — 7/, then
Mol — Tk = Tt 1 — Mot 1 + N1 — N + Nk — Tk
= (M1 — M) + (k1 — Mer1) + (0 — k) € M1 — M6 — 2R, ey — i + 2R].

Therefore, Equation (F.8) is guaranteed as long as

R < =(A-2R),

wl| =

which is equivalent to R < A/5.
Now without loss of generality, assume that s, < 7y < 7jx < eg. Denote Z, = {sx. + 1, - , ex }. Consider two cases:

Case 1If
i — nr < max{CoZslog(n V p), Co’slog(nV p)/k*},
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then the proof is done.

Case 2 If
M — M > max{CU?s log(n V p), CU?S log(n Vv p)//ig},

then we proceed to prove that |1 — ;| < Co?slog(n V p)/k? with probability at least 1 — (7'n) 3. Then we either prove
the result or get an contradiction, and complete the proof in either case.

By definition, we have

ZHyt Mt||2+CZ Z ZHyt Mt||2+CZ Zﬂt )i s
tel = i€l tel = i€l
which implies that
> lluy - mllﬁ(Z ST(@07 <2 e — )" (e — 1) +<Z > (g

tel i=1 i€ tel i=1 i€Z

Denote ¢; = fiy — u}. Notice that

D[ E =3 D (B

i€[p] | €L i€lp] \ i€T
IR DN IALED DN
i€lp] | €T €S\ i€ ieSe \| i€
=S DN DN OB
i€S |\ i€T i€Sc \| i€

Now we check the cross term. Notice that the variance of >, 7 (€:)i(6;); is Y. ,c7(6;)7, so with probability at least
1—(nVp)>,

Z( ) " (e — ) <Cae\/mz Z %Z Z

tel i€lp] || teET i€lp] || teZ

since ¢ = Ccocv/log(n V p) with sufficiently large constant Cc. Combining inequalities above, we can get

SlalE+ s> [0z (62
teT ’LESL tEI 165 fGI

g?’?—C\/E S 160sl3

teT
3¢
<TVE [ a3,
teT
which implies that
9
> l6e3 < 1542 < Cso?log(n V p). (F9)

tel

Without loss of generality, assume that 77 > 7 and denote

T = [sk,0K), T2 = [0k, k), T3 = [k €x),

and p1) = Fo—1> p? = f,.- Then Equation (F.9) is equivalent to
Tua® = @13 + Bl 5 — 1?3+ Tll7® — p®3 < Cso?log(n v p).
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Since | J1| = nix — sk > coA with some constant ¢ under Assumption C.1, we have
Al = pM3 < o Al|AY — p VI3 < CoZslog(n v p) < c2AK?, (F.10)
with some constant ¢y € (0, 1/4), where the last inequality is due to the fact that B,, — co. Thus we have

7Y = 13 < ean®.

Triangle inequality gives
30— s > [0 s — |30 — 4Dl > w/2.
Therefore, x2|J2|/4 < | Jo| |7 — pP) |3 < Co?slog(n V p) and

Co?slog(n V p)
12

e — | = [J2| <
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F.4. Local refinement in the regression model

For the ease of notations, we re-index the observations in the k-th interval by [no] : {1, -+ ,no} (though the sample size of
the problem is still n), and denote the k-th jump size as x and the minimal spacing between consecutive change points as A
(instead of A, in the main text).

By Assumption D.1 and the setting of the local refinement algorithm, we have

4 X" a* +¢ wheni€ (0,1
Yi = XTﬁ* +¢ wheni € (n,no]

In addition, there exists 6 € (0, 1) such that n = |ngd] and that ||a* — 8*||2 = k < co. By Assumption D.1, it holds that
lle*llg < s, 18*]ly < s, and
s2log®(n V p)
Ag?
By Lemma F.9, with probability at least 1 — n~2, the output of the first step of the PLR algorithm (Algorithm 3) @ and B\
satisfies that

—0. (F11)

& - a3 < 0BV g & — o)y < 0/ EEVE),
(F.12)
slog(n ~ N log(n Vv
18- 71 < OFBUVE) g 13— gy < 0y 1ERVE).

In fact, Lemma F.9 shows that we are able to remove the extra 3,, Y 2Amin term in the localization error in Theorem 3.6
under the same SNR condition. In Lemma F.8, we show that with slightly stronger SNR condition, the localization error can
be further reduced as is concluded in Theorem 3.7.

Let

k k ng
S pea e § o) e 0= § T

i=1 i=k+1 i=1 i=k+1

Lemma F.8 (Refinement for regression). Let

n+r=arg max@(k).
ke(0,n0]

Then under the assumptions above, it holds with probability at least 1 — (o V n™1t) that
2 2 1
re* < Clog” —.
«@
where C' is a universal constant that only depends on C\., Ay, Oc.

Proof. For the brevity of notations, we denote p,, := n V p throughout the proof. Without loss of generality, suppose r > 0.
Since 1 + r is the minimizer, it follows that

O(n+r) < On).

Ifr < 2 , then there is nothing to show. So for the rest of the argument, for contradiction, assume that

1
r Z E
Observe that
R N n+r ) n+r N2
A -QAm =Y w-XTa)- Y (u-x5)
i=n+1 i=n+1
n+r 5 n+tr 9
QM- = >, (wi—Xa) = > (vi—X/8)
i=n+1 i=n+1
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Step 1. It follows that

n+r 5 n+r 5
Yo wi-Xa) = Y (- Xa)
i=n+1 i=n+1
n+r n+r
=Y (a-XxTa) r2@-a)' X Y (v X[ o)
i=n+1 i=n+1
_n+r T~ T x _ T * ~ *\ 1 = .
—Z (X, Xia) +2(@—-a” ZXX —a")+2(@—a") ZXlel
i=n+1 i=n+1

By Lemma F.10, uniformly for all r,

1 T
- ;XZXZT -

Therefore
n+r n+r
Y (xa-xa")’=Y @ Z{XXT SY@-a*)+r@—a*) $@-a*)
i=n-+1 i=n-+1
< lla = oI} ZXiXiT = 3|+ Amaxrl@ - 7|3
i=1 0o
2] 1
<cC 5 og \/rlog Pn) + log(pn)) +Clr5 og( )
21 3/2 21 1
< C \/_‘ Og ( ) _"_015 OgA(pn) —|—C17"5 OgA(pn)
where the second inequality follows from Lemma F.10. Similarly
TZXiX;'—(ﬂ*foz) (a—a” Z{XXT 2B o) +r@—a*) (B —a¥)
i=1

< ll@—a*[l1]| (8" — a” {ZXXT }||oo+Amaxr||@—a*||2llﬁ*—a*||2
1 /51 n
< Css Ogé (k/1rlog(pn) + klog(pn)) + Cark 2 ogA(p )

log® (pn 10g(pn
< Coolog(pa)y | &+ Casiy [ BB 4 (i [S108Pn).

where the second equality follows from ||3* — a*||2 = x and Lemma F.11. In addition,

n+r n+r
@-a)" Y X< la-a'lull Y Xieil
1=n-+1 i=n-+1
log Dn) T 10g3 (Pn)
<(Css (v/rlog(pn) + log(pn)) < Csslog(pn) x + Css —Ax -
where the second equality follows from Lemma F.10. Therefore
= s X 2
> (=X Y (X
i=n+1 i=n+1
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51 n
<Cy(k+1)s log(pn) — +Cu(k+1) F arr? %

52 log? (pn, s2log®/?(p
+Cy OgA(p )y oyyriioe " (pn) Og
2log® (pn 2log* (pa s*log™”(p,
s og(p)+c4(ﬁz+ﬁ) s ogp + Cun/rrz 108 2(p)
Ak
2] 2 . 2] 3 . 2] 3 n
<Ca(s+ Vra2g T8 Pn) 4 o1 4 Vi) | T8 P) 02 4y 2108 (Pa)
Ak?2 Ak?
where we use the assumption that Ax2 > B,,52 log?(py), & < Cy, and rx2 > 1.
Step 2. Using the same argument as in the previous step, it follows that
n+r 2 ntr 213
TS T ox\2 2 o [5%1og”(pn)
Z (yi_Xi 5) —42 (yi — Xi'B*)" < Cs5(C2+ 1)rw A2
i=n+1 i=n+1
Therefore
A N * * 2 2 52 10g3(pn)
O +7) = Q) —{Q" (n+1) = ()} < C5(C2 + Dr?y | T2 (E13)
Step 3. Observe that
Q' (m+r)—Q(n)
n+r 9 n+r 9
=Y (w—-X[a") = > (vi—Xp")
i=n-+1 i=n+1
n+r n+r
=Y (o -XT5) -2 Y (- X 8) (X o" - X[ 57)
1=n+1 1=n+1
n+r . - n+r
=) (@ -8 {X/Xi—3} (0" = B)+r(a =) D@ -p) -2 > (X[ o - X5)
i=n+1 i=n+1
Note that )
2= (0"~ XX, — ) (af — )

is a sub-exponential random variable with bounded +; norm. Therefore by Lemma F.3, uniformly for all » > 1/ k2, with
probability at least 1 — «/2,

1

- 4 4
Zzi <4 <\/r {loglog (k2r) —|—loga + 1} + Vre? {loglog (k%) —|—loga + 1}) .

i=1
It follows that

n+r

Yo (=) XX - B} (o - B7)

i=n-+1
9 4
<4 [ r%y/r<loglog (k?r) +log — +1
!

1

4
+ &3 {loglog (HQT) + log — + 1}) .
o

Similarly, let
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Then {w; };’il are sub-exponential random variables with bounded 1)1 norm. Therefore by Lemma F.3, uniformly for all
r>1/k%

1
r 4 4
E w; < 4 <\/r {loglog (k%r) +log — + 1} + Vrk? {loglog (K*r) +log — + 1})
o «
i=1

It follows that

n+r

> (X - X5

i=n+1
4
<4 <\/7‘/£2 {loglog (k2r) + log S + 1}

Q*(n+r)—9"(n) >Aminrk2 — 4(k + 1)\/7%2 {log log (k21) + logg + 1}

1

4
+ K2 {loglog (k?r) +loga + 1}) )

Therefore

1

4
— 4(K> 2 {logl 2 log — +1
(k% + K)VTK {og og (k*r) + og — + } (F.14)

4

>Aminrs® = 16v/752 (57 V 1)(1 + log po {1V loglog(rx?)})
4

> Aminr? — 16767 (C2V 1)(1+ log = + {1V loglog(rx?)}).
«

2 2
where A, is the minimal eigenvalue of . By Lemma F.12, for 712 > 485\027\/1) Vv e2e, %rnz > Vrk? loglog(rk?).
Y min
Thus, when rx? > (45;5\0277\/1) log® ) V %, we have Q*(n + 1) — Q*(n)) >
2 2
48(/\(327“) log? 4yyee,

min

Step 4. Equation (F.13) and Equation (F.13) together give that, uniformly for all  such that rx? > (
with probability at least 1 — (o V n~1)

2 / 2 4 2 2 5, [5° log® (pn)
Apintr” — 16V re? (CZ V 1)(1 4 log — + {1 Vloglog(rk=)}) < C5(CL + D)k A2
@ K
which either leads to a contradiction or implies the conclusion. O

In what follows, we first show that the first step in the local refinement gives estimators &, B that satisfies Equation (F.12),
and then prove some relevant lemmas.

Lemma F.9 (Local refinement step 1). For each k € (K], let 7, B(l), 3(2) be the output of step 1 of the local refinement
algorithm for linear regression, with

ROW, 62 ;s,¢) = ¢ 3 1/ (n— )62 + (e — m)(6)2

i€lp]

and ¢ = C¢+\/log(n V p). Then with probability at least 1 — n=3, it holds that

. slog(nVp
max |7 — k| < Cig(2 ), (F.15)
ke[K] K
Proof of Lemma F.9. For each k € [K], let By = BWifs, <t < 7 and B; = B otherwise. Let B be the true
parameter at time point ¢, and §(!) = = pB,, and R = Bp.+1- First we show that under conditions K = K and
maxe(k] |k — k| < A/5, there is only one true change point 7y in (s, ex). It suffices to show that
. . 1 -
|7k — 1| < (77k+1 i), and |1 = 1] < 5 (ks = 7e)- (F.16)
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Denote R = maxye[x] |7k — 7/, then

Te+1 — Tk = Mk+1 — Mh+1 + Me+1 — Nk + Mk — Tk
= (M1 — M) + (k1 — Mer1) + 0 — k) € M1 — M6 — 2R, ey1 — e + 2R].

Therefore, Equation (F.16) is guaranteed as long as

R < (A—2R),

Wl =

which is equivalent to R < A/5.
Now without loss of generality, assume that s, < 7y < 7 < eg. Denote Z, = {sx. + 1,--- , ex }. Consider two cases:

Case 1. If
e — N < InaX{CS(U? V 1)slog(n V p), CS(UE V 1)slog(n \/p)/fo},

then the proof is done.

Case 2. If
Mk — M = max{Cy (o2 V 1)slog(n V p), Cs(o? V 1)slog(n V p)/K?},

then we proceed to prove that |7, — ;| < C(02 V 1)slog(n V p)/k? with probability at least 1 — (n V p)~°. Then we
either prove the result or get an contradiction, and complete the proof in either case. The first step is to prove that with
probability at least 1 — (n V p) =5,

€k

7 1B - Br1I3 < Cisc?. (F.17)

t=sr+1

By definition, it holds that

(F.18)

t=sr+1

Let §; = B; — B It holds that Zfi;jﬂ 1{6; # 0141} = 2. Then Equation (F.18) implies that

p €k
e — X800 X+ ¢ | ST (8. F19)

i=1

Note that

=1 t=sr+1 1=1 t=sr+1

Il
]
—
N

[\v]

I
gk
Py

=)
o

€S t=sr+1 €S t=sr+1
ek ) ek )
S ey S e 520
€S t=sr+1 1€8¢ t=sr+1

We then examine the cross term, with probability at least 1 — (n V p)~°, which satisfies the following

€k

Z (yt — Xt—rﬁ;k)‘sg—Xt

t=sp+1

ek

Z Et(StTXt

t=sp+1

_ zp: it g1 € (00)i(Xe)s
i=1 Z:isk—‘rl(at)zz
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€
< sup Ditsy i1l Z 2 < (¢/4) Z (F21)
=Lp tksA+1(6t) 1=1 1=1
where the second inequality follows from Lemma D.12.
Combining (F.18), (F.19), (F.20) and (F.21) yields
€k T < C €k 9
SRCEIES SIS SRCIE-S SN (D S 3:8 )
t=sr+1 ZESC t=sr+1 €S t=sr+1
Now we are to explore the restricted eigenvalue inequality. Let
i = (skymels Zo= (s Tk)s Iz = (ks ek (F.23)
Then for Z4, it holds that
2 1.
g, =1 — =7, — =
Nk k= Tk 377k 3771c
2 2 2 -
=3 0 = M=) + 5 (0 — k) = 3 (k-1 = 1—1) + (e — 7lk)
2 1 1
>—A—-A=-A, (F.24)
3 3 3

where the inequality follows from Assumption D.1 and Equation (F.16).

For Z3, by the design of the local refinement algorithm in Algorithm 3, we have |Z3| > Csslog(n V p). Since
min{|Z;|, |Zs|} > Csslog(n V p), by Lemma D.15, it holds with probability at least 1 — (n V p)~ that,

>N lloz Xl

i=1,3 teT;

2
> 3 (AVIET 167,12 = e2v/10g() o 1)

i=1,3

2
> 3 (VAT |z - eav/logl) 6z)se )
i=1,3

where the last inequality follows from [|(d7)s||1 < v/s|dz||2 and the fact that min{|Z; |, |Z3|} > Csslog(n V p). Similarly,
since |Zz| > A > Csslog(n V p), we have

> (0,X1)?2 = et/ || 10z, |2 — c2+/1og(p) 1162, (S%) 1. (F.25)

teZs

Denote ng = Csslog(n V p). We first bound the terms with || - ||;. Note that

SN 162 < VB

i=1 jeSe

V3 Z\I| (3 16z

jeS*e
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Therefore,

ek

> I3 -

t=sr+1

C1

c2
V1og(n Vp)

3 €k €k
2
<) aldnle — —F——= 1513 < V3 (0] X¢)?

1/4
S3VC L1/ ) st/ e
< —_—
f E 164112 S T T

t=sr+1

ek

> lal3

t=sr+1

where the third inequality follows from (F.22) and the fact that Y7, ¢ /> 0%, 1(0:)7 < /5'\/>¢5, 1 [16:]|3 . The
inequality above implies that

c k 9¢st/2
= >0 a3 < ic (F.26)
t=sr+1 1
Therefore,
ek
D> B = Bi1l5 < 81¢%s /¢t (F27)
t=sr+1

Recall that 3(V) = By, and B3 = 1~ We have that

23

S 1B = BilE = 1L11BD — BY3 + 1 1]18® — BY|3 + |15]18® — B3, (F.28)

t=sk+1
Since n, — Sk > %A as is shown in Equation (F.24). we have that

C1C2AKJ

M2 < “KolB, < c3AR?, (F.29)

Al = BW3/3 < |L|)IBY ~

where 1/4 > ¢35 > 0 is an arbitrarily small positive constant. Therefore we have

18P = B2 < ek, (F.30)
In addition we have
182 = BW 2 > (|8 = Bl — 8D = By > k/2. (E31)
Therefore, it holds that
w¥|Io| /4 < | L8P = BV < Casc?, (F32)
which implies that
e — me| < 402§C2, (F.33)
which gives the bound we want. O
Lemma F.10. Suppose {X;}._ ‘N, »(0,%) and {€;};_, N (0,02). Then it holds that

1 ¢ log(p V log(p V
P <|r E:XZ-X;r — Y| > C1 ( Og(i n) + og(}; m) foralll <r < n) <(nVvp)
i=1

1o 1 1
P<|TZX161||OO ZC’g( og(pr\/n) + og(p\/n)> Sforall 1 SrSn) <(nVp)?

: r
=1
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Proof. Proof. For the first probability bound, observe that for any j,k € [1,...,p], X; X — £, is subexponential random
variable. Therefore for any r > 0,

"

1 T
- Z Xij Xik — Zjk
=1

1 T
- Z Xij Xik — Xjk

=1

> x} < exp (—rclx2) + exp (—rcax)

So

|
This gives, for sufficiently large C; > 0,
§
By a union bound,

g

The desired result follows from the assumption that p > n®. The second probability bound follows from the same argument
and therefore is omitted for brevity. O

> a:} < pexp (—’I“Cll‘Q) +pexp (—regx) .
o

r r

1 — lo vVn lo Vn _
;ZXinik_Ejk > C ( g(p v n) + e(p )>} <(nvp)>
i=1 o

r r

1< log(p V log(p V
,E Xij Xk — Dk ZC1< og(p V1) + o8(p n)) for all 1 grgn} < (nVvp)?
T

i=1 oo

Lemma F.11. Suppose {X;}._, b N,(0,%) and u € R? is a deterministic vector such that |u|y = 1. Then it holds that

1 1 1
P <|uT {r X:XiXiT - E} loo > C4 < og(p V) + og(i\/ n)) Sforalll <r < n) <(nvp)
i=1

r

Proof. Forfixed j € [1,...,p), let
Zi; = UTXiXZ‘j — UTZ.j,

where X.; denote the j-th column of ¥. Note that z; is a sub-exponential random variable with bounded v); norm. The
desired result follows from the same argument as Lemma F.10. O

Lemma F.12. Given a fixed constant ¢ > 0, for x > 2V €2, it holds that
z > c(loglog x)?.

Proof. Let f(x) = x —c(loglog x)? for z > 1. We have f'(z) = 1— %. Therefore, when z > (2¢) Ve©, f/(x) > 0.
Let o = % V e2¢, and then
f(zo) > ce® — clogloge*® = c[e® —log?2 — 1] > 0,

and thus f(z) > 0 forz > x¢ = % V e2¢. O
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F.5. Local refinement in the Gaussian graphical model

For the ease of notations, we re-index the observations in the k-th interval by [no] : {1, -+ ,no} (though the sample size of
the problem is still n), and denote the k-th jump size as x and the minimal spacing between consecutive change points as A
(instead of A, in the main text).

By Assumption 3.8 and the setting of the local refinement algorithm, we have for some G*, H* € Sﬁ_ that

G* wheni € (0,7)

. .—l— =
E[XlX’L ] { H* when i € (777”0] .

In addition, there exists # € (0,1) such that n = |n¢f] and that ||G* — H*||p = kp < co. By Assumption 3.8, it holds
thatcx Iy <X G* <X Cxly, cxIy = H* < Cx1y, and

4 2 5 3
p” log (pn) p° log (pn)
0 0 F.34
v i (F34)
By Lemma F.16, there exist @, H such that
~ I \Y, PN 1 \Y,
(F.35)
~ 1 Vi ~ 1 \Y
18— 1y < O\ 2B ang |7 b < Oy

In fact, Lemma F.16 shows that we are able to remove the extra I3,, 1/ QAmin term in the localization error in Theorem 3.9
under the same SNR condition. In Lemma F.13, we show that with slightly stronger SNR condition, the localization error
can be further reduced as is concluded in Theorem 3.10.

Let

N k R no N k no

Qk) =Y XX —CGla+ Y I1XXT —H|p and Q" (k) =) XX G |7+ Y 1X:X — H"[.
i=1 i=k+1 i=1 i=k+1

Through out this section, we use kp = ||G* — H*||r to measure the signal.

Lemma F.13 (Refinement for covariance model). Let

n+r=arg max@(k).
ke(0,n0]

Then under the assumptions above, it holds that
k%1 = Op(log(n)).

Proof. For the brevity of notations, we denote n \V p as p,, throughout the proof. Without loss of generality, suppose r > 0.
Since 1 + r is the minimizer, it follows that

O(n+r) < O(n).

Ifr<cC 105#, then there is nothing to show. So for the rest of the argument, for contradiction, assume that
F

r> Ologgn)
K
Observe that

o~ o~ /r]+/’, o~ "]+T o~

Q) - Q) = > IXX -Gz — > IXX - H|%
1=n+1 1=n+1
n+r n+r

QM) —-Q (= > IXX —GF— > XX —H|;

i=n+1 i=n+1
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Step 1. It follows that

n+r R n+r
dSIXXT -GlE - Y IxXX - 6llE
i=n+1 i=n+1
ntro ot
=Y IG-G|}+2 <G* -G, Y (xx - G*)>
i=n+1 i=n+1

ntr
—r||G — G*|[% + 2r <G* G H — G*> 2 <G* -G, Y (XX - H*)>

1=n+1

By assumptions, we have

2
~ log(py,
PG - G} < Oy 7108w,
A
Similarly
~ P log(pn,
r (G =G H = G") <G = Gllp|lH* ~ G|l < Cornpp gg’ )

where the second equality follows from ||G* — H*||p = K, and the last equality follows from (F.34). In addition,

ntr n+r
<G*—G, > (XiXiT—H*)> <|G*=Glrll Y (XX —HY)|r

i=n+1 i=n+1
log(pn r plog® (pn
<Csp i ) (p/r1og(pn) + p*/?log(pn)) < Csp? log(pn)y/ 5+ Csp™\ %~
Therefore
n+r R n+r
Soxx -GlE - 0 IXX -6l
i=n+1 i=n+1

1 n
§C1p210g(pn) + Cork ( n) + Csp? log(pn \/ + Csp \/p 8" (p)
410g2(p/) 5log (pn)
<C 2 [P n n
StariE ArZ

Step 2. Using the same argument as in the previous step, it follows that

A, T 5 X T 410%( 510% (Pn)
SNoxx —Hlp - Y IXX] - H|[} < Carsy o +C .
; K

i=n+1 i=n+1

~ ~ 4 5
|0+ 7) = Q) —{Q"(n+7) — @ (m}] < C4mFW / log (Pn) (F36)
KE

Step 3. Observe that

Therefore

n+r n+r
Qtr) - =Y IXX -GF- DY I1XX -H|:
i=n+1 i=n+1
n+r
=r||G* — H*||%Z -2 <H -G ) (xax] - H*)>
i=n+1
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Denote D* = H* — G*, then we can write the noise term as
(H* - G*, X;X;'! — H*) = X' D*X; - E[X,' D" Xj].
Since X;’s are Gaussian, denote 33; = E[X; X" | = U," A;U;, then
n+r ~ ~
<H* -G ) (xx] - H*)> =272'Dz" —E[Z"DZzT,
i=n+1
where Z € R™¢ is a standard Gaussian vector and
D = diag{U, D*U, ,U,D*Uy , - - ,UTD*UT}.
log

Since ||15|| r = rk%, by Hanson-Wright inequality, with probability at least 1 — n 3, it holds uniformly for all r > C 25"
that

n+r
|<H* -G Y (Xz-X,T—H*)> | < Csl| X3, Vr ke log(rsg).

i=n+1
Therefore, by Hanson-Wright inequality, uniformly for all » > C 105# it holds that
Q*(n+r) = Q" (n) 2 reg — C5|| X[,V kr log(rri), (E.37)

and thus when r > C(|| X[y, V 1)1055"), Q* (n+r)—Q*(n) >0

Step 4. Equation (F.36) and Equation (F.37) together give, uniformly for all r > C'log(n)/x%,

410 n 510 n
rig — Cs|| X |5, v/ kplog(re}) < Carkt g p \/T

4 2 5 3
which either leads to a contradiction or proves the conclusion since we assume that %ﬁz(p") — 0 and %@") —0. O
F

Lemma F.14. Let {X;};c(,) be a sequence of subgaussian vectors in R® with orlitz norm upper bounded || X ||, < co.
Suppose E[X;] = 0 and E[X;X,;'| = ¥ fori € [n]. Let S, =1 w Dic(n) X X,T. Then for any u > 0, it holds with

probability at least 1 — exp(—u) that
a [d+u d+u
||Zn - E||0p A<J ”XH?/;Z( n \ n ) (F-38)

Proof. This is the same as Lemma E.5. O
Lemma F.15 (Hanson-Wright inequality). Let X = (X1,...,X,) € R™ be a random vector with independent, mean zero,
sub-gaussian coordinates. Let A be an n x n matrix. Then, for every t > 0, we have
t2 t
P{XTAX —EXTAX| >t} <2exp {—cmin( , )}7
{ =1} K4A|% K[| Allop

where K = max; || X[,

Proof. See (Vershynin, 2018) for a proof and (Adamczak, 2015) for a generalization to random vectors with dependence. [
Lemma F.16 (Local refinement step 1). Under Assumption 3.8, let {1}, elR) be a set of time points satisfying

e — < A/5. F.39
]?elaf((h?k | <A/ (F.39)

Let {7y}, c[R be the change point estimators generated from step 1 of the local refinement algorithm with {1}, c[R) 45
inputs and the penalty function R(-) = 0. Then with probability at least 1 — Cn =3, K = K and that

1X113, p?log(n V p)
— el < 2 . F.40
o 7k — M| S o 2 (F.40)
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Proof. Denote T = (s, ei) as the input interval in the local refinement algorithm. Without loss of generality, assume that

T=T1UZLyUTI3 = [s,M) U [k, k) U [Tk, Meg1)-
For 75, there are two cases.

Case 1. If

|Z2| < max{Csplog(n V p), Csplog(n VvV p)/mQ},
then the proof is complete.
Case 2. If

|Z| > max{C’gp log(n V p), Csplog(n V p)/k*},

Then we proceed to prove that |7 — 1| < C H

least 1 — (n V p)~°.

“2 2 Jog(n V p)/k? for some universal constant C' > 0 with probability at

Fort € 7, let ﬁt be the estimator at index ¢. By definition, we have

ST X X[) = log Q] <) Tr((2) T X X,T) = > log |9 (F41)
tez tez teT ter
Due to the property that
P * A *\ T T * 1 O* 2

equation (F.41) implies that

3

|Il| A *
Y =0, - 1 II%
P Hﬂz 12,
<012\I\Tr v —07) Sz, - 3%)]
<ci Z Iz 195, — Qg
3 | | A 3 N
Z 1Oz, — Q53+ 2D ITISz, — 55,113 2 (F43)

2(|3, 112,

i=1
where we denote Q7, = Qz, = Q, 5.5, Q15 = Uiy Q}l = Q;*]rl, and Qi = Q}s = Qj;k

By the setting of local refinement, we have min{|Z; |, |Z3|} > Csplog(n V p). Therefore, by Lemma F.14, for i = 1,2, 3, it
holds with probability at least 1 — (n \V p)~7 that

a a 1 \Y
Iz, - 85 < plS, - 23,15, < x|, YD)
Consequently, we have
S TG on 12 < o SO0 2 2
Z W”QL A Z 197, 15, 1 X NI, p” log(n V p). (F44)
i=1 Z;llop =

In particular, Ax? > B, ””’2 p?log(n V p), we have

Zull1Qz, — Q7 1F <e2l1Q 115, Z 197, 12,1 X 113, p° log(n v p)
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X105 1.,
2?]) log(nVp) < EAK ,

<3c

for sufficiently large n because B, — oo as n — oo. Since |Z;| > %A, it follows from the inequality above that
92z, — Q7 [[r < % and thus,

A * A * * * K
19z, = O, |IF 2 192, = O, lr + 197, = Qz,]F 2 5
Plug this back into Equation (F.44) and we can get
K Ryl
Tl < eam— 2y log(n v p), (F45)
X
which completes the proof. ]
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