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1. Introduction

Technological advancements in mobile-health (mHealth) have made it possible to deliver

personalized healthcare at scale. Mobile devices, such as smart phones, allow patients to

receive care if, where, and when it is needed, while wearables, such as continuous glucose

monitors and accelerometers, allow for efficient collection of rich patient-level data which

can be used to tailor and refine treatment decisions. Recent mHealth studies cover a wide

range of diseases and disorders including addiction (Carpenter et al., 2020), diet and exercise

planning for persons with type I diabetes (Luckett et al., 2019), supportive care for cancer

pain (Fisher et al., 2021), and HIV/STI prevention (Mustanski et al., 2022).

However, while it is increasingly recognized that mHealth holds immense potential for

scaling and democratizing healthcare (Hernández-Neuta et al., 2019), clinical trials targeting

the evaluation and optimization of personalized mHealth-based interventions largely remains

in the purview of a small number of specialists. A primary goal of this chapter is to provide

an accessible introduction to Thompson Sampling (TS Thompson, 1933; Russo et al., 2017)

as a framework for adaptive randomization in sequential decision problems with a long or

indefinite horizon when the goal is to maximize cumulative utility (e.g., patient benefit in

mHealth). TS is general and extensible. It applies with continuous, categorical, or time-to-

event data with censoring, under a Bayesian or frequentist paradigm, and with parametric,

semi-parametric, or non-parametric models. Thus, we believe TS makes an excellent starting

point for researchers designing an adaptive trial in mHealth and other settings with many

decision points.

We present TS from the perspective of precision medicine and clinical trial design though,

as anticipated by its generality, it is applicable much more broadly (see Russo et al. (2017),

Lattimore and Szepesvári (2020), and Slivkins et al. (2019)). TS was first proposed by

Thompson (1933) nearly a century ago for adaptive treatment allocation with binary treat-
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ments. This seminal paper was the antecedent to long and fruitful lines of work on multi-

arm bandits (Robbins, 1956), sequential designs (Wald, 1947; Robbins, 1952; Chernoff,

1959), and adaptive trials (Armitage, 1960). Furthermore, TS has been a central idea of

Bayesian adaptive design for decades (Berry and Fristedt, 1985) and has been applied

in multiple cancer clinical trials (see Trippa et al., 2012; Thall and Wathen, 2005, and

references therein). Nevertheless, rigorous theoretical and empirical study of TS in realistic

environments occurred only in the past 15 years or so. (Chapelle and Li, 2011; Agrawal

and Goyal, 2012, 2013). Distributional approximations and inferential procedures have been

developed even more recently (Zhang et al., 2020; Hadad et al., 2021; Bibaut et al., 2021;

Wager and Xu, 2021; Zhang et al., 2022). These recent innovations have been instrumental

in driving more widespread adoption of TS in sequential decision problems.

The remainder of this chapter is organized as follows. In Section 2, as means of building

intuition, we introduce TS using a simple adaptive trial with two treatments. In Section 3,

we present a general version of TS. In Section 4, we discuss some of the statistical properties

of TS including regret, power, inference and prior sensitivity. In Section 5, we discuss some

practical considerations with modern applications of TS. We close with a summary and brief

discussion of future research directions in Section 6.

2. Thompson Sampling in the simplest case

To introduce Thompson Sampling (TS), we begin with the original scenario considered by

Thompson (1933) in which a set of patients (all with the same ailment) arrive at the clinic

one-by-one and, upon arriving, are assigned one of two treatments the result of which is

either a success or a failure. In this simple setting, the outcome of the present patient

is observed before the next one arrives. Thus, the clinician has available the treatment

and outcome history of all prior patients to inform each treatment decision. The goal is to

allocate treatments in such a way that the expected number of successes (ENS) is maximized.
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It can be seen that traditional one-to-one randomization only maximizes ENS if there is no

difference in the success rate of the two treatments (in which case, any allocation of the

treatments is equally good). Conversely, greedy selection, i.e., always selecting the treatment

with the highest estimated probability of success (say, after a burn-in period of equal

allocation), need not optimize ENS as it can become stuck allocating the inferior treatment

by chance. An ENS-maximizing allocation strategy must balance optimization based on

current information with experimentation (choosing the estimated suboptimal treatment).

The need to strike this balance is known as the ‘exploration-exploitation’ dilemma, and is

at the heart of sequential decision making (Sutton and Barto, 2018). Intuitively, as evidence

accumulates that a given treatment is optimal, an optimal adaptive treatment allocation

strategy should become more likely to recommend that treatment. TS operationalizes this

intuition by setting the probability of treatment assignment at each time step equal to the

posterior probability that the treatment is optimal; for this reason, TS is sometimes called

posterior probability matching. Under TS, as the posterior becomes increasingly concentrated

on the true parameter values, the probability of assigning an optimal treatment will increase

to one.

To make these ideas concrete, consider a trial which will enroll a total of n subjects. Each

subject, t = 1, . . . , n, will be assigned a treatment At ∈ A = {0, 1} and their outcome,

success or failure, subsequently observed. The ‘complete’ set of outcomes are {(Y 0
t , Y

1
t )}nt=1

which comprise n i.i.d. copies of (Y 0, Y 1), where Y a is the potential outcome under treatment

a ∈ A. The observed outcome for subject t is Yt = AtY
1
t + (1 − At)Y

0
t , i.e., the observed

outcome is the potential outcome under the treatment actually given.

Let µa = P (Y a = 1) be the success probability under treatment a and let Na denote

the (random) number of subjects assigned to treatment a at the completion of the trial

so that n = N0 + N1. The ENS is thus En = E(N0)µ0 + E(N1)µ1. Application of classic,
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aka Bayesian, TS requires a prior p0(µ0, µ1) over the success probabilities. A natural choice

is to specify independent beta distributions for the success probabilities, i.e., p(µ0, µ1) =

ρ(µ0;α0,0, β0,0)ρ(µ1;α1,0, β1,0) with

ρ(µa;αa,0, βa,0) =
1

B(αa,0, βa,0)
µαa,0−1
a (1− µa)βa,0−1,

for µa ∈ [0, 1], where B(αa,0, βa,0) = Γ(αa,0)Γ(βa,0)/Γ(αa,0, βa,0) and αa,0, βa,0 > 0 are hyper-

parameters.

Under this model, the posterior for µa after processing the outcome for the tth subject

follows a beta distribution with parameters

αa,t = αa,t−1 + Yt1At=a

βa,t = βa,t−1 + (1− Yt)1At=a,

where 1u is an indicator that the clause u is true. Use an overline to denote history so

that At = (A1, . . . , At) and Yt = (Y1, . . . , Yt). Thus, when the tth subject enters the

trial, the information available to the clinician is Hb
t−1 = (At−1,Yt−1), where Hb

0 = ∅ (the

superscript ‘b’ is a mnemonic for bandit). Under TS, when the tth subject enters the trial,

they are assigned treatment a with probability P (µa > µ1−a|Hb
t−1) (we assume the posterior

probability that µa = µ1−a is zero, if not, one can use random tie-breaking). Thus, one could

compute θ0,t = P (µ0 > µ1|Hb
t−1) and then draw At ∼ Bernoulli(1− θ0,t). An implementation

that is simpler, especially in more complex settings, is to draw a sample from the posterior,

say µ̃a,t ∼ ρ(µa;αa,t−1, βa,t−1) for each a ∈ A, and then to select treatment so as to optimize

the mean outcome if the sampled parameters were correct, e.g., At = arg maxa µ̃a,t. Algorithm

1 provides a schematic for using TS in an adaptive trial with n subjects.

2.1 Simple TS with clipping

The preceding version of TS does not place guardrails on the treatment assignment probabil-

ities, i.e., the probability of assigning one treatment may converge to zero or one. In clinical
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Algorithm 1: Beta-Bernoulli TS adaptive trial with two treatments

Input: Hyperparameters (α0,0, β0,0, α1,0, β1,0), trial size n

for Subjects t = 1, . . . , n do

for Treatments a = 0, 1 do

Sample µ̃a,t ∼ ρ(µa;αa,t−1, βa,t−1)

Assign treatment At = arg maxa µ̃a,t

Observe outcome Yt

Update posterior parameters

αa,t = αa,t−1 + Yt1At=a

βa,t = βa,t−1 + (1− Yt)1At=a

settings in which there are a multiple secondary analyses of interest, this behavior may not

be desirable as we might not have sufficient power for these analyses. A common remedy is

to truncate (i.e., clip) the probabilities to the interval [c0, c1] where 0 < c0 < c1 < 1 (Zhang

et al., 2020). Clipped-TS will select action a with probability

P (At = a|Hb
t−1) = max

[
c0,min

{
c1, P

(
a = arg max

a′
µa′ |Hb

t−1

)}]
.

Thus, under clipped-TS, the expected number of subjects assigned to treatment a is bounded

below by c0n and above by c1n.

Because Clipped-TS, as described, requires explicitly computing the probabilities of each

action, rather than simply computing a draw from the posterior, it can be burdensome to

execute in more complex settings. One sampling-based approach that ensures each treatment

is selected with some minimal probability is ε-TS (Li et al., 2022). In ε-TS, for a pre-specified

value ε ∈ (0, 1), when subject t enters the trial they are assigned treatment according to TS

with probability (1− ε) and they are assigned treatment uniformly at random with probality

ε. Thus, under ε-TS with two treatments, the probability of assigning treatment a at time t is

always bounded below by ε/2. This strategy of mixing uniform random treatment assignment
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with TS can be applied much more broadly, e.g., with continuous treatments or treatment

sets which depend on the decision context (see Section 3).

2.2 Simple TS in basket trials

To illustrate how TS can be easily extended to more complex trial designs, we consider a

hypothetical basket trial of cancer therapeutic agents. This hypothetical trial begins with

two agents, say A0 = {0, 1}, but after (say) the 76th subject is processed, a new agent

becomes available so that our set of allowable agents becomes A1 = {0, 1, 2}. Further suppose

that at the time the new agent is introduced, there have been 39 successes and 9 failures

under agent 0, and 17 successes and 11 failures under agent 1. Assuming uniform priors

for all three agents, the posterior distributions for the success probabilities, µ0, µ1, µ2, are

Beta(40, 10), Beta(18, 10), and Beta(1, 1) respectively. When the 77th subject enters the

trial, the treatment assignment probabilities for each arm are approximately 78%, 2%, and

20% for treatments 0,1, and 2 respectively. The estimated mean for treatment 1 is 0.6 while

the estimated mean for treatment 2 is 0.5, yet treatment 3 is ten times more likely to be

selected. This illustrates the dependence of Thompson Sampling on both the estimated mean

and uncertainty around this estimated mean.

[Figure 1 about here.]

3. Beyond the simplest case: contextual bandits

In the preceding section, we considered a one-size-fits-all approach to treatment selection,

i.e., the goal was to identify a single treatment which was best (on average) for the entire

population. We now consider the setting in which treatment is tailored to individual patient

characteristics. As in the preceding section, we consider a trial in which a total of n subjects

will be enrolled. However, we now assume that the data generated by the trial will be of

the form {(Xt, At, Yt)}nt=1, where Xt ∈ X ⊆ Rp are characteristics for the tth subject,
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At ∈ A = {0, 1} is their assigned intervention, and Yt ∈ R is their outcome, coded so that

higher values are preferred.

Let Y a
t denote the potential outcome for the tth subject under treatment a ∈ A. Under the

contextual bandit model, the set of contexts and all potential outcomes {(Xt, Y
0
t , Y

1
t )}nt=1 are

assumed to be independent copies of (X, Y 0, Y 1). We assume the following standard causal

conditions hold: (i) no unmeasured confounders, (Y 0, Y 1) ⊥ A
∣∣X; (ii) consistency, Y = Y A;

and (iii) positivity, there exists ε > 0 such that P (A = a|X = x) > ε for all a ∈ A and

x ∈ X . In addition, we assume there is no interference nor are there multiple versions of

treatment (Hernan and Robins, 2020).

For simplicity, we assume that subjects enroll one-by-one so that the outcome for one sub-

ject is observed before the next one is assigned their treatment. As previously, use an overline

to denote history so that Xt = (X1, . . . ,Xt), At = (A1, . . . , At), and Yt = (Y1, . . . , Yt). Define

Hc
t−1 = (Xt−1,At−1,Yt−1) to be the information collected through the first (t− 1) subjects

with Hc
0 = ∅ (the superscript ‘c’ is a mnemonic for contextual bandit). The information

available to a clinician in selecting treatment for the tth subject is thus Hc−
t = (Hc

t−1,Xt).

To illustrate TS in this setting, we assume a linear model for the outcome of the form

Yt = ψ(Xt, At)
ᵀγγγ + εt,

where ψ(Xt, At) ∈ Rq is a feature vector constructed from Xt and At, γγγ ∈ ΓΓΓ ⊆ Rq is a

vector of unknown coefficients, and εt is an independent error term with mean zero and

finite variance. We assume that ε1, . . . , εn are drawn i.i.d. from a distribution with density

f(ε;ηηη) which is indexed by unknown parameters ηηη ∈ N ⊆ Rd. Set θθθ = (γγγᵀ, ηηηᵀ)ᵀ ∈ ΘΘΘ = ΓΓΓ×N .

To apply TS, we specify a prior ρ(θθθ) over ΘΘΘ. When the tth subject arrives, presenting with

context Xt, treatment a is selected with probability

P (At = a|Hc−
t ) = P

{
a = arg max

a′
ψ(Xt, a

′)ᵀθθθ
∣∣Hc−

t

}
.

For example, we might assume normal errors so that εt ∼ Normal(0, τ−1) and assume an
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improper prior of the form ρ(θθθ) ∝ τ−1. In this case, the posterior distribution for γγγ given

Hc−
t follows a multivarite t-distribution with t − 1 − q degrees of freedom, centered at the

OLS estimator

γ̂γγt−1 =

{
t−1∑
v=1

ψ(Xv, Av)ψ(Xv, Av)
ᵀ

}−1 t−1∑
v=1

ψ(Xv, Av)Yv, (3.1)

and with variance equal to

Σ̂t−1 = σ̂2
t−1

{
t−1∑
v=1

ψ(Xv, Av)ψ(Xv, Av)
ᵀ

}−1

,

where σ̂2
t−1 = (t−1−q)−1

∑t−1
v=1

{
Yv − ψ(Xv, Av)

ᵀθ̂θθt−1

}2

, is the usual estimator of the residual

variance.

In practice, under the above prior, γγγ does not have a proper posterior distribution until

sufficient data have been collected. Thus, in early stages of the trial, one may follow simple

1:1 randomization or some other (possibly stratified) randomization scheme. If at time

t the posterior distribution of γγγ is proper, one can compute the TS treatment assign-

ment by first drawing γ̃γγt ∼ Multivariate–t
(
γ̂γγt−1, Σ̂ΣΣt−1, t− 1− q

)
and then setting At =

arg maxa∈A ψ(Xt, a)ᵀγ̃γγt.

3.1 Frequentist TS for contextual bandits

The fully Bayesian approach to TS for contextual bandits requires significant modeling

and can become computationally burdensome if one does not use conjugate priors. As an

alternative, one can use the (estimated) sampling distribution in place of the posterior to

obtain a frequentist version of TS that requires fewer modeling assumptions and is often

much more computationally tractable.

Consider again the linear model Yt = ψ(Xt, At)
ᵀγγγ + εt, where γγγ ∈ ΓΓΓ is an unknown

parameter vector and the error εt satisfies E(εt|Hc−
t ) = 0 and Var(εt|Hc−

t ) = σ2
t where

0 < σ2
t < C for some constant C and all t. The ordinary least squares estimator γ̂γγt−1 of γγγ
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based on Hc−
t is given in (3.1). Of course, γ̂γγt−1 also solves the normal equations

t−1∑
v=1

{Yv − ψ(Xv, Av)
ᵀγγγ}ψ(Xv, Av) = 0.

We can approximate the sampling distribution of γ̂γγt−1 using a normal approximation (e.g.,

Heyde, 1997, see), however, we prefer to use a generalized bootstrap instead as it is trivial to

implement and avoids cumbersome derivations (Chatterjee and Bose, 2005). For each t, let

λt,1, . . . , λt,t ∼i.i.d. Exp(1) and let γ̂γγ
(b)
t−1 denote the solution to the bootstrap normal equations

t−1∑
v=1

λt,v {Yv − ψ(Xv, Av)
ᵀγγγ}ψ(Xv, Av) = 0, (3.2)

then γ̂γγ
(b)
t−1 is a draw from the generalized bootstrap estimator of the sampling distribution of

γ̂γγt−1. Under bootstrap TS, the action at time t is At = arg maxa ψ(Xt, a)ᵀγ̂γγ
(b)
t−1.

Frequentist TS with the bootstrap is semi-parametric as it only requires specification of

the mean structure and regularity conditions needed for bootstrap consistency (Chatterjee

and Bose, 2005). In addition, it avoids specification of a prior and potentially expensive

computation (e.g., MCMC). If there is historical data or scientific evidence that can be used

to construct an informative prior, this information can be incorporated into frequentist TS via

data augmentation (DA). We illustrate using a simple version of DA; other more sophisticated

approaches are possible. Suppose we wish to use an informative prior ρ on ΓΓΓ. We posit a

working prior model for the error ε1, ε2, . . . ∼i.i.d. Fε. Let M ∈ Z+ be a positive integer which

reflects the number of ‘prior samples’ we wish to generate. Let D0 = ∅, at time t = 1, upon

observing X1 we then draw γ̃γγ1
1 ∼ ρ(γγγ) and set A1 = arg maxa ψ(X1, a)ᵀγ̃γγ1

1 and subsequently

observe Y1. In addition, draw a second sample as follows. Set X̃1 = X1, draw γ̃γγ2
1 ∼ ρ(γγγ),

ε̃1 ∼ Fε, and Ã1 ∼ Uniform(A), and set Ỹ1 = ψ(X̃1, Ã1)ᵀγ̃γγ2
1+ε̃1. We continue to generate data

in this way so that after m steps we have data Dm =
{

(Xi, Ai, Yi), (X̃i, Ãi, Ỹi)
}m
i=1

. Once m

is sufficiently large so that γ̂γγm is well-defined from Dm, at iterations t = m + 1,m + 2, . . .

we proceed as follows. We observe Xt, compute the bootstrap estimator γ̂γγ
(b)
t−1, set At =
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arg maxa ψ(Xt, a)ᵀγ̂γγ
(b)
t−1 and observe Yt. If t 6M , we construct a second sample in which we

set X̃t = Xt, draw ε̃t ∼ Fε, γ̃t ∼ ρ(γγγ), and At ∼ Uniform(A), and set Ỹt = ψ(X̃t, At)
ᵀγ̃t + ε̃t.

The preceding algorithm generates a set of M artificial samples from the ‘prior.’ Each

sample was generated at an observed context value and, in this way, avoided having to posit

a model for the contexts. However, if one were willing to posit a context model, it would

have been possible to simply generate these M samples before collecting any data. This

idea of simulating artificial data from a prior is general and applies to more general decision

problems, e.g., Markov decision processes.

4. Thompson Sampling in more general settings

We have thus far discussed TS for a simple two-arm clinical trial and for a linear contextual

bandit. We now illustrate how TS can be applied in multi-stage (possibly non-Markov) de-

cision problems (Tsiatis et al., 2019) and infinite horizon Markov decision processes (MDPs;

Puterman, 2014).

4.1 TS for multi-stage decision problems

We consider an adaptive sequential multiple assignment randomized trial (SMART, Lavori

and Dawson, 2004; Murphy, 2005a) with T treatment stages and a planned enrollment size

of n subjects. We assume that subjects arrive in cohorts of size k and that n = km so that

there are a total of m cohorts. To simplify notation, we assume that one cohort finishes the

trial before the next one begins (for a treatment of the more general setting with overlapping

and random cohort sizes, see Manschot et al., 2022).

The observed data after the `th cohort completes the trial is

D` = {(X1,i, A1,i, Y1,i,X2,i, A2,i, Y2,i, . . . ,XT,i, AT,i, YT,i)}`ki=1 ,

which comprises `k trajectories, one per subject, where X1,i ∈ Rp is baseline information

for subject i, At,i ∈ A = {1, . . . , K} is the intervention assigned to subject i at time t,
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Xt,i ∈ Rp contains interim information collected on subject i during the course of treatment

At−1,i for t = 2, . . . , T , and Yt,i ∈ Y ⊆ R is an immediate (momentary) outcome measured

on subject i after treatment At,i. The trajectories need not be independent across subjects

as accumulated data on past subjects is used in treatment selection. We omit a subscript i

when discussing a generic subject, i.e., (X1, A1, Y1,X2, A2, Y2, . . . ,XT , AT , YT ).

Let H1 = X1 and Ht = (Ht−1, At−1, Yt−1,Xt) for t > 2. Thus, Ht represents the available

information to inform treatment selection for a subject in the trial at time t. In many

contexts, the set of allowable treatments depends on a subject’s health status (van der Laan

and Petersen, 2007), e.g., in the context of schizophrenia, one cannot prescribe a type I anti-

psychotic to a subject with tardive dyskinesia (Lieberman et al., 2005). We operationalize

such constraints as a sequence of functions ζζζ = {ζt}Tt=1 with ζt : domHt → 2A so that

ζt(ht) ⊆ A is the set of allowable treatments for a subject with history Ht = ht.

A treatment regime, in this context is a sequence of decision rules πππ = (π1, π2, . . . , πT )

such that πt : Ht → A and πt(ht) ∈ ζt(ht) for all ht ∈ domHt, t = 1, 2, . . . , T . An

optimal treatment regime maximizes the expectation of the cumulative outcome,
∑T

t=1 Yt,

if applied to select treatments in the target population. The optimal regime is formalized

using potential outcomes. As in previous sections, write at = (a1, . . . , at). Let H
at−1

t be the

potential history at time t under treatment sequence at−1 and Y at
t the potential outcome

at time t under treatment sequence at; for convenience, we define Ha0
1 ≡ H1. The potential

outcome at time t under sequence of decision rules πππt = (π1, . . . , πt) is

Y πππt
t =

∑
at

Y at
t

t∏
v=1

1
{
πv
(
Hav−1
v

)
= av

}
.

The value of a regime πππ is V (πππ) = E
(∑T

v=1 Y
πππv
v

)
, and the optimal regime, πππopt, satisfies

V (πππopt) > V (πππ) for all feasible regimes πππ.

To identify πππopt from the data-generating model, we make the following standard assump-
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tions. Define

W =
{(

H
at−1

t , Y at
t

)
: at ∈ At, av ∈ ζv(Hav−1

v ) ∀ 1 6 v 6 t
}T
t=1

to be the set of realizable (feasible) potential outcomes. We assume the following conditions

hold: (C1) strong ignorability, W ⊥ At|Ht for all t = 1, . . . , T ; (C2) positivity, there exists

ε > 0 such that P (At = a|Ht = ht) > ε for all ht ∈ domHt, a ∈ ζt(ht), and t = 1, . . . , T ; and

(C3) consistency, Ht = H
At−1

t and Yt = Y At
t for all t = 1, . . . , T , i.e., the observed history

and outcomes are the potential history and outcomes under treatment actually assigned. We

also assume that there are not multiple versions of treatment or interference among subjects

(Tsiatis et al., 2019). In the context of a SMART, (C1) and (C2) can be guaranteed by

design. In practice, the (approximate) validity of the other conditions must be argued on

the basis of the underlying science and implementation of the trial (see Tsiatis et al., 2019;

Hernan and Robins, 2020, and references therein). Hereafter, we implicitly assume these

conditions hold.

We characterize the optimal regime, πππopt, using dynamic programming (Bellman, 1952).

Define the Q-function at stage-T as

QT (hT , aT ) = E
(
YT
∣∣HT = hT , AT = aT

)
,

and recursively for t = T − 1, T − 2, . . . , 1 define

Qt(ht, at) = E
{
Yt + max

at+1∈ζt+1(Ht+1)
Qt+1(Ht+1, at+1)

∣∣Ht = ht, At = at

}
.

It follows that an optimal regime is given by πopt
t (ht) = arg maxat∈ζt(ht) Qt(ht, at) (see

Murphy, 2005b; Schulte et al., 2014). Thus, given data after ` cohorts, one can construct an

estimator of πππopt by constructing estimators Q̂t,` of Qt for t = 1, . . . , T , and subsequently

π̂t,`(ht) = arg maxat∈ζt(ht) Q̂t,`(ht, at). We illustrate this approach using parametric models

for the Q-functions, though more flexible non-parametric models are possible (Ernst et al.,

2005).

For each t we posit a working model Qt(ht, at;θθθt) indexed by θθθt ∈ ΘΘΘt ⊆ Rqt . We assume that
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Qt(ht, at;θθθt) is defined and continuously differentiable for all θθθt in an open set that contains

ΘΘΘt. Define θ̂θθT,` as the solution to the so-called conditional least-squares score equation

`k∑
i=1

{YT,i −QT (HT,i, AT,i;θθθT )}∇θθθTQT (HT,i, AT,i;θθθT ) = 0, (4.1)

and similarly, for t = T − 1, T − 2, . . . , 1 define θ̂θθt,` as the solution to

`k∑
i=1

{
Yt,i + max

at+1

Qt+1(Ht+1,i, at+1; θ̂θθt+1,`)−Qt(Ht,i, At,i;θθθt)

}
∇θθθtQt(Ht,i, At,i;θθθt) = 0. (4.2)

The estimated optimal regime using data from the first ` cohorts is thus π̂t,`(ht) =

arg maxat∈ζt(ht) Qt(ht, at; θ̂θθt,`).

We use the preceding estimating equations with the multiplier bootstrap to implement a

frequentist version of TS. However, in early cohorts, the estimating equations will not have

unique solutions so one needs a base strategy to begin. One natural approach is to use uniform

randomization at each stage for fixed number of cohorts, say L, so that for any subject i in

cohort ` 6 L with history Ht,i will be assigned treatment At,i ∼ Uniform {ζt(Ht,i)}. For a

subject i in cohort ` = L+ 1, . . . ,m draw λi,1, . . . , λi,(`−1)k ∼i.i.d. Exp(1), compute θ̂θθ
(b)

T,`−1,i as

the solution to

(`−1)k∑
j=1

λi,j {YT,j −QT (HT,j, AT,j;θθθT )}∇θθθTQT (HT,j, AT,j;θθθT ) = 0,

and, recursively, compute θ̂θθ
(b)

t,`−1,i for t = T − 1, . . . , 1 as the solution to

(`−1)k∑
j=1

λi,j

{
Yt,j + max

at+1

Qt+1(Ht+1,j, at+1; θ̂θθ
(b)

t+1,`−1,i)−Qt(Ht,j, At,j;θθθt)

}
∇θθθtQt(Ht,j, At,j;θθθt) = 0.

Thus, a subject i in cohort ` = L+1, . . . ,m with history Ht,i at time t, is assigned treatment

At,i = arg maxat∈ζt(Ht,i) Qt(Ht,i, at; θ̂θθ
(b)

t,`−1,i).

The version of TS for multi-stage decision problems we describe uses the estimated sam-

pling distribution of parameters indexing the Q-functions in place of a proper posterior

distribution. To see this, let P̂t,` denote the estimated sampling distribution of θ̂θθt,`−1 based

on the multiplier bootstrap applied to data from the first ` − 1 cohorts. For a subject with

history Ht = ht in cohort ` and any a ∈ ζt(ht) the event At = a is equivalent to the event
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a = arg maxat∈ζt(ht) Qt(ht, at; θ̂θθ
(b)

t,`−1) which occurs with probability∫
1

{
a = arg max

at∈ζt(ht)
Qt(ht, at;θθθ)

}
dP̂t,`−1(θθθ).

In a fully-Bayesian approach, P̂t,`−1 would be replaced by the posterior distribution over θθθt

given data on the first `− 1 cohorts.

In some settings, one may wish to incorporate prior information into frequentist TS for

multi-stage decision problems. One way to do this is to posit a prior for the joint trajectory

distribution, (X1, A1, Y1,X2, A2, Y2, . . . ,XT , AT , YT ) and then to simulate data from this

prior to augment the observed data; i.e., one can simulate J i.i.d. trajectories under the

prior as a kind of zeroth cohort. This can be an effective strategy for folding in domain

knowledge or historical data when it is available at the trajectory level.

Remark 1: We did not use partial information of subjects within a cohort; e.g., if the

enrollment and/or completion times of the stages vary across subjects within a cohort, it

is possible to use data from subjects who have advanced further in the trial to inform the

treatment decisions for subjects at earlier stages. This can increase efficiency though at the

expense of more complex bookkeeping. See Norwood et al. (2022) for details.

4.2 TS for MDPs

In decision problems with a long or indefinite time horizon one needs to impose more structure

on the data-generating model than in the preceding section to facilitate extrapolation in

time. Most commonly, one assumes that the data are from a stationary and homogeneous

MDP (Sutton, 1997). We present a frequentist version of TS in this setting. However, we

first discuss the construction of a homogeneous and stationary MDP from raw (possibly

non-Markov) data. This is a critically important issue in application but has received little

attention in the precision medicine literature (see Wang et al., 2017; Ma et al., 2023, for

references).
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4.2.1 Pre-processing and the Markov assumption. As in the preceding section, we consider

longitudinal data on n subjects in a sequential randomized trial.1 However, we now assume

that subjects enroll in a single cohort and that the treatment decisions are aligned in time

for all subjects in the cohort. At any time t, the raw observed data are of the form

{(X1,i, A1,i, Y1,i,X2,i, A2,i, Y2,i, . . . ,Xt,i, At,i, Yt,i)}ni=1 , (4.3)

which comprises n trajectories of the form (X1, A1, Y1,X2, A2, Y2, . . . ,Xt, At, Yt), where X1 ∈

Rp are baseline measurements, At ∈ A = {1, 2, . . . , K} is the assigned intervention at time

t, Xt ∈ X are interim measurements taken during the course of At, and Yt ∈ Y ⊆ [0, 1] are

outcomes coded so that higher values are better. Let the history Ht be defined as in the

preceding section and let ΠΠΠ denote the class of feasible regimes. We write Y πππ
t to denote the

potential outcome at time t under πππ ∈ ΠΠΠ.

For any πππ ∈ ΠΠΠ an t > 1 write πππt = (πt, πt+1, . . .). Given history Ht = ht and πππ ∈ ΠΠΠ, define

the state-value function at time t as

Vt(πππ,ht) = Vt(πππt,ht) = E

(∑
v>0

γvY πππ
t+v

∣∣Ht = ht

)
,

where γ ∈ (0, 1) is a discount factor. The optimal feasible regime, πππopt ∈ ΠΠΠ, satisfies

Vt(πππ
opt,ht) > Vt(πππ,ht) for all πππ ∈ ΠΠΠ and ht ∈ domHt. It is clear that without additional

structure, one cannot recover πππopt from n trajectories of length t as in (4.3) even as n→∞

(as one will have no information about πππopt
t+1). The most common approach to estimating πππopt

in practice is to assume that, after some suitable transformation, the observed data can be

represented as a homogeneous MDP; we now describe how such a transformation might be

constructed.

Assume that there exists a sequence of summary functions {ψt}t>1 with ψt : domHt →

S ⊆ Rq and we call St = ψt(Ht) the state of the system at time t. For example, the state

1We omit a discussion of the necessary causal assumptions in this section delaying a formal statement of these assumptions

to the the next section.
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might be constructed by concatenating interim measurements, treatments, and outcomes over

fixed look-back period (Ma et al., 2023), taking a weighted average over past measurements

(Laber and Staicu, 2018), or using data-driven feature selection, e.g., using recurrent neural

networks (Wang et al., 2018). We assume that the summary function induces a homogeneous

MDP so that

St+1 ⊥ (Ht−1, At−1, Yt−1)
∣∣(St, At),

and the conditional distribution of St+1 given (St, At) does not depend on time t. We also

assume that the summary is such that Yt = u(St, At,St+1) for some fixed and known function

u : S ×A×S → Y , and that there exists function υ : S → 2A such that υ {ψt(ht)} = ζt(ht)

for all ht ∈ domHt and all t. Let ΠΠΠM denote the set of maps, $ : S → A, such that

$(s) ∈ υ(s) for all s ∈ S. Let Y $
t denote the potential outcome under $ ∈ ΠΠΠM. For each t,

ht ∈ domHt, and at ∈ ζt(ht) define

Qopt
t (ht, at) = sup

πππ∈ΠΠΠ

E

{
∞∑
v=0

γvY πππ
t+v

∣∣Ht = ht, At = at

}
,

then it follows (e.g., see Puterman, 2014; Bertsekas, 2012) that

Qopt
t (ht, at) = sup

πππ∈ΠΠΠ

E
{
Y πππ
t + γ max

at+1∈ζt(Ht+1)
Qopt
t+1(Ht+1, at+1)

∣∣Ht = ht, At = at

}
,

and an optimal decision strategy based on the raw data, say πππopt, is given by πopt
t (ht) =

arg maxat∈ζt(ht) Q
opt
t (ht, at). If

{
(Yt+1,maxat+1∈ζt+1(Ht+1) Q

opt
t+1(Ht+1, at+1)

}
⊥ Ht|(St, At), then

it follows that Qopt
t (ht, at) depends on ht only through st = ψt(ht) and therefore πopt

t (ht)

depends on ht only through ψt(ht) (Wang et al., 2017). Furthermore, the optimal value
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starting from Ht = ht satisfies

V opt
t (ht) = Qopt

t

{
ht, π

opt
t (ht)

}
= E

{
∞∑
v=0

γvY πππopt

t+v

∣∣Ht = ht

}

= E

{
∞∑
v=0

γvY πππopt

t+v

∣∣St = ψt(ht)

}

= sup
$$$∈ΠΠΠ∞M

E

{
∞∑
v=0

γvY $$$
t+v

∣∣St = ψt(ht)

}

= sup
$∈ΠΠΠM

E

{
∞∑
v=0

γvY $
t+v

∣∣St = ψt(ht)

}
(4.4)

where ΠΠΠ∞M is the space of sequences in ΠΠΠM and the last equality follows from the fact that

the best treatment in a state St = s does not depend on t (see Puterman, 2014, for additional

details). Let $opt attain the sup in (4.4). It follows that the reduced process

{(S1,i, A1,i, Y1,i,S2,i, A2,i, Y2,i, . . . ,St,i, At,i, Yt,i)}ni=1 (4.5)

comprises trajectories from a homogeneous MDP and that πopt
t (ht) = $opt {ψt(ht)} is

optimal; i.e., Vt(πππ
opt,ht) > Vt(πππ,ht) for all πππ ∈ ΠΠΠ and ht ∈ domHt. Furthermore, πππopt

can be estimated using only the data from the reduced process (4.5) as we describe in the

next section. Constructing a suitable reduced process that is parsimonious, homogeneous,

Markov, and has the same optimal regime as the original process is not trivial. While data-

driven methods for constructing the maps ψt exist (Wang et al., 2017; Ma et al., 2023), this

is more often done using ad hoc transformations and justified using clinical theory.

4.2.2 Q-learning in MDPs. We assume that the observed data (possibly after transfor-

mation) are of the form

{(S1,i, A1,i,S2,i,, A2,i, . . . ,St,i, At,i,St+1,i)}ni=1 ,

which comprise n trajectories, one for each subject, of the form (S1, A1,S2, A2, . . . ,St, At,St+1),

where: St ∈ S ⊆ Rq is a summary of the subject’s health status at time t and At ∈ A =
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{1, 2, . . . , K} is the treatment assigned at time t. In the context of MDPs, the term action

is often used in place of treatment; we shall use the terms interchangeably. We assume that

there exists a fixed function u : S × A × S → R, so that the outcome Yt = u(St, At,St+1)

captures the utility associated with the state-treatment-next state triple (St, At,St+1).

We assume that the data-generating model is a homogeneous MDP so that for any mea-

surable set B ⊆ S and time t

P

(
St+1 ∈ B

∣∣∣∣S1, . . . ,St, A1, . . . , At

)
= P

(
St+1

∣∣∣∣St, At)
with probability one, and the probability does not depend on t.

We assume that there exists a set-valued function ν : S → 2A so that ν(s) ⊆ A is the set

of allowable treatments for a subject in state s; we assume ν(s) is non-empty for all s ∈ S. A

treatment regime in this context is a map π : S → A that satisfies π(s) ∈ ν(s) for all s ∈ A.

Let ΠΠΠ denote the set of all treatment regimes. Under a regime π ∈ ΠΠΠ, a subject with St = s

at time t will be recommended treatment π(s). An optimal treatment regime maximizes

expected discounted cumulative utility if used to select treatments for patients in the target

population. As in previous sections, we formalize this definition using potential outcomes.

Let S
at−1

t denote the potential state under treatment sequence at−1 = (a1, . . . , at−1); for

convenience, we follow the notational convention that Sa0
1 ≡ S1. The potential outcome

under treatment sequence at is thus

Y at
t = u

(
S
at−1

t , at,S
at
t+1

)
,

and the potential outcome at time t under a regime π is

Y π
t =

∑
at

Y at
t

t−1∏
v=1

1
{
π(Sav−1

v ) = av
}
.

For any s ∈ S and regime π define the state-value function

V (π, s) = E

(∑
v>0

γvY π
t+v

∣∣St = s

)
,

where γ ∈ (0, 1) is a discount factor. The optimal regime, πopt, satisfies V (πopt, s) > V (π, s)

for all s ∈ S and π ∈ ΠΠΠ. To identify πopt in terms of the data-generating model we make use
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of the following causal assumptions which mirror those made in previous sections. Let

W =
{(

S
at−1

t , Y at
t

)
: at ∈ At, av ∈ ν(Sav−1

v ) ∀ 1 6 v 6 t
}
t>1

;

we assume: (C1) strong ignorability, W ⊥ At|(St,At−1), for all t > 1; (C2) positivity, there

exists ε > 0 such that P (At = a|St,At−1) > ε for all a ∈ ν(St) with probability one; and

(C3) consistency, St = S
At−1

t for all t. In addition, we assume that there is no interference

nor are there multiple versions of treatment. We note that because Yt = u(St, At,St+1) it

follows from (C3) that Yt = Y at
t . For any s ∈ S and a ∈ ν(s), define the optimal Q-function

as

Q(s, a) = sup
π∈ΠΠΠ

E

(∑
v>0

γvY π
t+v

∣∣St = s, At = a

)
,

then it follows (see Ertefaie and Strawderman, 2018) under (C1)-(C3) that

Q(s, a) = E
{
Yt + γ max

at+1∈ν(St+1)
Q(St+1, at+1)

∣∣St = s, At = a

}
, (4.6)

where, critically, the expectation is taken with respect to the data-generating model rather

than a counterfactual distribution. Let ψ : S ×A → Rd be an arbitrary function of state. It

follows that

Q(St, At) = E
{
Yt + γmaxat+1∈ν(St+1) Q(St+1, at+1)

∣∣∣∣St, At}
=⇒ 0 = E

{
Yt + γmaxat+1∈ν(St+1) Q(St+1, at+1)−Q(St, At)

∣∣∣∣St, At}
=⇒ 0 = E

[{
Yt + γmaxat+1∈ν(St+1) Q(St+1, at+1)−Q(St, At)

}
ψ(St, At)

]
,

where the last equality follows from multiplying the second equality through by ψ(St, At) and

taking an expectation. Q-learning uses this last equality to construct an estimating function

for the Q-function. We illustrate this idea using a linear model for the Q-function of the form

Q(s, a) = φ(s, a)ᵀθθθ where φ : S × A → Rd is a feature vector and θθθ ∈ ΘΘΘ ⊆ Rd is a vector

of unknown coefficients. We take ψ(s, a) = ∇θθθQ(s, a;θθθ) = φ(s, a), and construct θ̂θθt,n as the

solution to

0 =
n∑
i=1

t∑
v=1

{
Yt,i + γ max

at+1∈ν(St+1,i)
φ(St+1,i, at+1)ᵀθθθ − φ(St,i, At,i)

ᵀθθθ

}
φ(St,i, At,i), (4.7)
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so that the estimated optimal regime is π̂t,n(s) = arg maxa∈ν(s) Q(s, a; θ̂θθt,n).

To implement TS in this context we again use the estimated sampling distribution of θ̂θθt,n,

(based on an asymtptotic approximation in which n grows large). To select a treatment at

time t+ 1, we draw λ1,n, . . . , λn,n ∼i.i.d. Exp(1), compute θ̃θθt,n as the solution to

0 =
n∑
i=1

λi,n

t∑
v=1

{
Yt,i + γ max

at+1∈ν(St+1,i)
φ(St+1,i, at+1)ᵀθθθ − φ(St,i, At,i)

ᵀθθθ

}
φ(St,i, At,i),

and assign treatments at time point t+1 according to the regime π̃t(s) = arg maxa∈ν(s) Q(s, a; θ̃θθt,n);

i.e., At+1,i = arg maxa∈ν(St+1,i) ψ(St+1,i, At+1,i)
ᵀθ̃θθt,n, for i = 1, . . . , n.

The preceding version of TS uses a single bootstrap resample at each time point. An

alternative is to compute a separate resample for each subject, i.e., for subject j, we draw

λ1,n,j, . . . , λn,n,j ∼i.i.d. Exp(1), compute θ̃θθt,n,j as the solution to

0 =
n∑
i=1

λi,n,j

t∑
v=1

{
Yt,i + γ max

at+1∈ν(St+1,i)
φ(St+1,i, at+1)ᵀθθθ − φ(St,i, At,i)

ᵀθθθ

}
φ(St,i, At,i),

and set At+1,j = arg maxa∈ν(St+1,i) φ(St+1,j, a)ᵀθ̃θθt,n,j . This approach, while computationally

more expensive, often provides better balance in terms of treatment allocation across subject

states.

4.3 Inference for TS in MDPs

Statistical inference under adaptive sampling, i.e., when accumulated are used to select

interventions, is markedly more complex than non-adaptive sampling (Lai and Wei, 1982;

Zhan et al., 2021; Zhang et al., 2020, 2022). Intuitively, a key challenge is ensuring sufficient

information generation across the entire state-action (state-treatment) space S × A. An

adaptive algorithm attempting to maximize cumulative reward may quickly become concen-

trated around an optimal regime so that little data is available for estimation and inference

about the performance of other regimes of interest (say business-as-usual, or a less intensive

regime, etc.). In this section, we introduce some basic technical tools that are often useful for



Thompson Sampling for mHealth and Precision Health Applications 21

analyzing TS in MDPs (as well as in other settings such as bandits or partially observable

MDPs).

We treat the number of subjects, n, as fixed and consider asymptotic approximations as

the number of time points, t, grows large. As in the preceding section, to simplify notation,

we assume that subjects are aligned in time. Let Ft denote the σ-algebra generated by

{(S1,i, A1,i,S2,i,, A2,i, . . . ,St−1,i, At−1,i,St,i)}ni=1, and for any θθθ define

ut(θ) =
n∑
i=1

{
Yt,i + γmax

at+1

φ(St+1,i, at+1)ᵀθθθ − φ(St,i, At,i)
ᵀθθθ

}
φ(St,i, At,i).

The Q-learning estimating equations (4.7) can thus be written as Ut(θθθ) = 0, where

Ut(θθθ) =
t∑

v=1

uv(θθθ).

Suppose that the model is correctly specified so that Q(s, a) = φ(s, a)ᵀθθθ∗ for some θθθ∗ ∈ ΘΘΘ and

all (s, a) ∈ S × A. Then it follows that Ut(θθθ∗) is a Martingale with respect to the filtration

{Ft}t>1 as

E
{
Ut(θθθ∗)

∣∣Ft} = E
{
ut(θθθ

∗)
∣∣Ft}+ Ut−1(θθθ∗)

= E

[
n∑
i=1

{
Yt,i + γmax

at+1

φ(St+1,i, at+1)ᵀθθθ∗ − φ(St,i, At,i)
ᵀθθθ∗
}
φ(St,i, At,i)

∣∣Ft]
+ Ut−1(θθθ∗)

= E

[
n∑
i=1

{
Yt,i + γmax

at+1

Q(St+1,i, at+1)−Q(St,i, At,i)

}
φ(St,i, At,i)

∣∣Ft]
+ Ut−1(θθθ∗)

= E

[
n∑
i=1

{
Yt,i + γmax

at+1

Q(St+1,i, at+1)−Q(St,i, At,i)

}
φ(St,i, At,i)

∣∣St, At]
+ Ut−1(θθθ∗)

= Ut−1(θθθ∗).

Thus, Ut(θθθ) is a Martingale estimating function (MEF; Godambe, 1991; Heyde, 1997; Hwang

and Basawa, 2014), and the operating characteristics of θ̂θθt,n can be derived through properties

of the functions θθθ 7→ Ut(θθθ). Our focus will be on conditions under which Σ
−1/2
t,n (θθθ∗)

{
θ̂θθt,n − θθθ∗

}
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N(0, Id) as t→∞, where Σt,n(θθθ∗) is a (possibly random) scaling matrix. The conditions we

provide are standard in MEF-theory. While these conditions are seemingly mild, they can

be difficult to verify in practice.

Let ||J ||F =
√

trace(JᵀJ) denote the Frobenius norm. Define ξt(θθθ
∗) , Var {ut(θθθ∗)|Ft} =

E
{
ut(θθθ)ut(θθθ)

ᵀ
∣∣Ft}. We assume (C1) that ||ξt(θθθ∗)|| → ∞ almost surely, as t→∞. Condition

(C1) is a regularity condition which ensures sufficient information is generated across the

state-action space. To see this, write

Var {ut(θθθ∗)|Ft} =
n∑
i=1

E
{
δ2
t,i(θθθ

∗)|St,i, At,i
}
φ(St,i, At,i)φ(St,i, At,i)

ᵀ,

where δt,i(θθθ) = Yt,i + γmaxat+1 Q(St+1,i, at+1)−Q(St,i, At,i) is the temporal difference error.

If we assume that E
{
δ2
t,i(θθθ

∗)|St,i, At,i
}

is bounded below by some constant c > 0 with

probability one, then a sufficient condition for (C1) is that the mininum eigenvalue of∑t
v=1

∑n
i=1 φ(Sv,i, Av,i)φ(Sv,i, Av,i)

ᵀ diverges to ∞, a condition that appears commonly in

asymnptotics for time-series and other stochastic regression settings (Lai and Wei, 1982).

The second condition we require is (C2) that the MEF is regular, i.e., θθθ∗ is an interior

point of ΘΘΘ, Ut(θθθ) is continuously differentiable almost everywhere in a neighborhood θθθ∗, and

for any sequence θθθt converging in probability to θθθ∗ as t→∞, we have∣∣∣∣∣
∣∣∣∣∣ξ−1/2
t (θθθ∗)

{
∇θθθUt(θθθt)−∇θθθUt(θθθ∗)

}
ξ
−1/2
t (θθθ∗)

∣∣∣∣∣
∣∣∣∣∣→p 0,

as t→∞. Condition (C2) is a smoothness condition that rules out the possibility of multiple

optimal treatments in any state (at such points, the max operator is not differentiable). It is

possible to weaken this condition but at the expense of more complex asymptotic arguments

(see Laber et al., 2014).

The third condition we require is (C3) that there exists a constant (non-stochastic) matrix

ΩΩΩ ∈ Rd×d such that

ξ
−1/2
t (θθθ∗)∇θθθUt(θθθ∗)ξ−1/2

t (θθθ∗)→p ΩΩΩ,
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as t→∞. Condition (C3) is a regularity condition that can typically be verified using strong

laws for dependent data (Prakasa Rao, 1987).

Finally, we require (C4) that −{ξt(θθθ∗)}−1/2 Ut(θθθ∗)  N(0, Id). This condition can be

established using a Martingale central limit theorem (Hall and Heyde, 2014).

Under (C1)-(C4) and mild moment conditions, it can be shown (Hwang, 2015) that

ΩΩΩξ
1/2
t (θθθ∗)

(
θ̂θθt − θθθ∗

)
 N(0, Id), which is the desired result with Σ

−1/2
t,n (θθθ∗) = ΩΩΩξ

1/2
t (θθθ∗). This

shows that θ̂θθt,n = Op(||ξ−1/2
t (θθθ∗)||), which in turn can be used to derive the (asymptotic)

rate of the cumulative regret. To use this result to construct a confidence set for θθθ∗ we can

use a projection interval as follows. Suppose that if θθθ∗ were known, one could construct a

consistent estimator Σ̂ΣΣ
−1/2

t,n (θθθ∗) of ΣΣΣ
−1/2
t,n (θθθ∗). Let χ2

d,1−α be the upper (1−α)×100% percentile

of a chi-squared distribution with d-degrees of freedom and define

ΓΓΓt,n,1−α =
{

ΘΘΘ ∈ ΘΘΘ : Σ̂
−1/2
t,n (θθθ)

(
θ̂θθt,n − θθθ

)
6 χ2

d,1−α

}
.

It follows that P {θθθ∗ ∈ Γt,n,1−α} > 1−α+oP (1). The set Γt,n,1−α is thus a valid (asymptotic)

confidence region for θθθ∗ which in turn can be used to construct projection sets for other

functions of θθθ∗, e.g., the value of the optimal regime (see also Zhang et al., 2022).

5. Open problems and ongoing work

Our goal in this chapter was to introduce TS as a flexible and extensible methodology for

adaptive clinical trials especially in the context of mobile- and tele-health. However, despite a

long history of empirical and theoretical study, there are a number of pressing open problems

associated with TS. One such problem is statistical efficiency. The estimating equations we

described are used widely in practice but they need not lead to the smallest asymptotic

variance among the class of regular MEFs. Furthermore, if the posited class of models for

the Q-function is misspecified, the solution to the MEF need not recover the projection

of the true Q-function on the model class (see Baird, 1995; Leete and Laber, 2022). An
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important open question is how to construct the estimating equations to obtain efficiency

and the projection property. In principle, the efficient weights for the estimating equations

can be obtained using the theory of optimal MEFs (Hwang and Basawa, 2011). However,

the efficient weights depend on the unknown system dynamics and the cost of estimating

the optimal weights risks further misspecifiction and/or inflated variance (Leete and Laber,

2022).

Another important open problem is interim analysis and optimal stopping for adaptive

experiments under TS. In theory, one could obtain (approximate) joint asymptotic normality

for the estimated parameters at multiple pre-specified analysis points and subsequently

derive stopping boundaries (Jennison and Turnbull, 1999). However, the derivations of these

boundaries are likely to be intricate.

Lastly, we note that TS may fail to perform well if the underlying system is non-stationary.

One ad hoc approach is to limit the look-back period and only use estimating equations

constructed from recent data. An important problem is how to adaptively choose the look-

back period to optimally balance bias and variance.
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Figure 1. Beta distribution densities for hypothetical basket trial.


