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Thompson Sampling for mHealth and Precision Health Applications
1. Introduction

Technological advancements in mobile-health (mHealth) have made it possible to deliver
personalized healthcare at scale. Mobile devices, such as smart phones, allow patients to
receive care if, where, and when it is needed, while wearables, such as continuous glucose
monitors and accelerometers, allow for efficient collection of rich patient-level data which
can be used to tailor and refine treatment decisions. Recent mHealth studies cover a wide
range of diseases and disorders including addiction (Carpenter et al., 2020), diet and exercise
planning for persons with type I diabetes (Luckett et al., 2019), supportive care for cancer
pain (Fisher et al., 2021), and HIV/STI prevention (Mustanski et al., 2022).

However, while it is increasingly recognized that mHealth holds immense potential for
scaling and democratizing healthcare (Hernandez-Neuta et al., 2019), clinical trials targeting
the evaluation and optimization of personalized mHealth-based interventions largely remains
in the purview of a small number of specialists. A primary goal of this chapter is to provide
an accessible introduction to Thompson Sampling (TS Thompson, 1933; Russo et al., 2017)
as a framework for adaptive randomization in sequential decision problems with a long or
indefinite horizon when the goal is to maximize cumulative utility (e.g., patient benefit in
mHealth). TS is general and extensible. It applies with continuous, categorical, or time-to-
event data with censoring, under a Bayesian or frequentist paradigm, and with parametric,
semi-parametric, or non-parametric models. Thus, we believe TS makes an excellent starting
point for researchers designing an adaptive trial in mHealth and other settings with many
decision points.

We present TS from the perspective of precision medicine and clinical trial design though,
as anticipated by its generality, it is applicable much more broadly (see Russo et al. (2017),
Lattimore and Szepesvéri (2020), and Slivkins et al. (2019)). TS was first proposed by

Thompson (1933) nearly a century ago for adaptive treatment allocation with binary treat-



2 Biometrics, 000 0000

ments. This seminal paper was the antecedent to long and fruitful lines of work on multi-
arm bandits (Robbins, 1956), sequential designs (Wald, 1947; Robbins, 1952; Chernoff,
1959), and adaptive trials (Armitage, 1960). Furthermore, TS has been a central idea of
Bayesian adaptive design for decades (Berry and Fristedt, 1985) and has been applied
in multiple cancer clinical trials (see Trippa et al., 2012; Thall and Wathen, 2005, and
references therein). Nevertheless, rigorous theoretical and empirical study of TS in realistic
environments occurred only in the past 15 years or so. (Chapelle and Li, 2011; Agrawal
and Goyal, 2012, 2013). Distributional approximations and inferential procedures have been
developed even more recently (Zhang et al., 2020; Hadad et al., 2021; Bibaut et al., 2021;
Wager and Xu, 2021; Zhang et al., 2022). These recent innovations have been instrumental
in driving more widespread adoption of TS in sequential decision problems.

The remainder of this chapter is organized as follows. In Section 2, as means of building
intuition, we introduce TS using a simple adaptive trial with two treatments. In Section 3,
we present a general version of T'S. In Section 4, we discuss some of the statistical properties
of TS including regret, power, inference and prior sensitivity. In Section 5, we discuss some
practical considerations with modern applications of T'S. We close with a summary and brief

discussion of future research directions in Section 6.

2. Thompson Sampling in the simplest case

To introduce Thompson Sampling (TS), we begin with the original scenario considered by
Thompson (1933) in which a set of patients (all with the same ailment) arrive at the clinic
one-by-one and, upon arriving, are assigned one of two treatments the result of which is
either a success or a failure. In this simple setting, the outcome of the present patient
is observed before the next one arrives. Thus, the clinician has available the treatment
and outcome history of all prior patients to inform each treatment decision. The goal is to

allocate treatments in such a way that the expected number of successes (ENS) is maximized.
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It can be seen that traditional one-to-one randomization only maximizes ENS if there is no
difference in the success rate of the two treatments (in which case, any allocation of the
treatments is equally good). Conversely, greedy selection, i.e., always selecting the treatment
with the highest estimated probability of success (say, after a burn-in period of equal
allocation), need not optimize ENS as it can become stuck allocating the inferior treatment
by chance. An ENS-maximizing allocation strategy must balance optimization based on
current information with experimentation (choosing the estimated suboptimal treatment).
The need to strike this balance is known as the ‘exploration-exploitation’ dilemma, and is
at the heart of sequential decision making (Sutton and Barto, 2018). Intuitively, as evidence
accumulates that a given treatment is optimal, an optimal adaptive treatment allocation
strategy should become more likely to recommend that treatment. TS operationalizes this
intuition by setting the probability of treatment assignment at each time step equal to the
posterior probability that the treatment is optimal; for this reason, TS is sometimes called
posterior probability matching. Under TS, as the posterior becomes increasingly concentrated
on the true parameter values, the probability of assigning an optimal treatment will increase
to one.

To make these ideas concrete, consider a trial which will enroll a total of n subjects. Each
subject, t = 1,...,n, will be assigned a treatment A, € A = {0,1} and their outcome,
success or failure, subsequently observed. The ‘complete’ set of outcomes are {(V;>,V;')},
which comprise n i.i.d. copies of (Y?, Y1), where Y is the potential outcome under treatment
a € A. The observed outcome for subject t is V; = A, Y,! + (1 — A;)Y?, i.e., the observed
outcome is the potential outcome under the treatment actually given.

Let u, = P(Y* = 1) be the success probability under treatment a and let N, denote
the (random) number of subjects assigned to treatment a at the completion of the trial

so that n = Ny + Nj. The ENS is thus &, = E(Ny)uo + E(Ny)pi. Application of classic,
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aka Bayesian, TS requires a prior po(po, pt1) over the success probabilities. A natural choice
is to specify independent beta distributions for the success probabilities, i.e., p(ug, p1) =

p(to; 0,0, Boo) p(H1; 10, Pr,0) With

Qagq,0—1

1

/Baofl
M L= pg)™ ™,
B(aa0, Ba0) ( )

for p, € [0, 1], where B(aw,0, Ba0) = I'(a,0)I (Ba0) /I (a0, Bao) and g0, Bao = 0 are hyper-

p(La; a0, Bap) =

parameters.
Under this model, the posterior for u, after processing the outcome for the ¢th subject

follows a beta distribution with parameters

Qgt = Qg1 + YtlAt:a
Ba,t - Ba,t—l + (]- - n)lAt:m

where 1, is an indicator that the clause u is true. Use an overline to denote history so
that A, = (Ay,...,A:) and Y, = (Yi,...,Y;). Thus, when the tth subject enters the
trial, the information available to the clinician is H? ; = (A;_1, Y;_1), where H} = 0 (the
superscript ‘b’ is a mnemonic for bandit). Under TS, when the ¢th subject enters the trial,
they are assigned treatment a with probability P(j, > p1_a|H? ;) (we assume the posterior
probability that p, = p11_, is zero, if not, one can use random tie-breaking). Thus, one could
compute 0y, = P(uo > pa|H?_;) and then draw A; ~ Bernoulli(1 —6p;). An implementation
that is simpler, especially in more complex settings, is to draw a sample from the posterior,
say fat ~ P(la; Qat—1, Pat—1) for each a € A, and then to select treatment so as to optimize
the mean outcome if the sampled parameters were correct, e.g., A; = arg max, ji, ;. Algorithm

1 provides a schematic for using TS in an adaptive trial with n subjects.

2.1 Simple TS with clipping

The preceding version of T'S does not place guardrails on the treatment assignment probabil-

ities, i.e., the probability of assigning one treatment may converge to zero or one. In clinical
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Algorithm 1: Beta-Bernoulli TS adaptive trial with two treatments

Input: Hyperparameters (ayg0, 80,0, 01,0, B1,0), trial size n
for Subjectst =1,...,n do

for Treatments a = 0,1 do
L Sample ﬂa,t ~ P(Ma, Qg t—1, Ba,t—l)

Assign treatment A, = arg max, flo
Observe outcome Y;
Update posterior parameters

Qg = Qg —1 + }/;flAt:a

6a,t - Ba,t—l + (]— - )/t)lAt:a

settings in which there are a multiple secondary analyses of interest, this behavior may not
be desirable as we might not have sufficient power for these analyses. A common remedy is
to truncate (i.e., clip) the probabilities to the interval [cy, ¢;] where 0 < ¢y < ¢; < 1 (Zhang

et al., 2020). Clipped-TS will select action @ with probability
P(A; = a|H} ) = max [co,min {cl, P (a = arg mz}xua/ﬁ{i’,l) }] :

Thus, under clipped-TS, the expected number of subjects assigned to treatment a is bounded
below by con and above by c¢in.

Because Clipped-TS, as described, requires explicitly computing the probabilities of each
action, rather than simply computing a draw from the posterior, it can be burdensome to
execute in more complex settings. One sampling-based approach that ensures each treatment
is selected with some minimal probability is e-TS (Li et al., 2022). In - TS, for a pre-specified
value € € (0,1), when subject t enters the trial they are assigned treatment according to TS
with probability (1 —¢€) and they are assigned treatment uniformly at random with probality
¢€. Thus, under e-TS with two treatments, the probability of assigning treatment a at time ¢ is

always bounded below by €/2. This strategy of mixing uniform random treatment assignment
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with TS can be applied much more broadly, e.g., with continuous treatments or treatment

sets which depend on the decision context (see Section 3).

2.2 Simple TS in basket trials

To illustrate how TS can be easily extended to more complex trial designs, we consider a
hypothetical basket trial of cancer therapeutic agents. This hypothetical trial begins with
two agents, say Ay = {0,1}, but after (say) the 76th subject is processed, a new agent
becomes available so that our set of allowable agents becomes 4; = {0, 1,2}. Further suppose
that at the time the new agent is introduced, there have been 39 successes and 9 failures
under agent 0, and 17 successes and 11 failures under agent 1. Assuming uniform priors
for all three agents, the posterior distributions for the success probabilities, ug, w1, po, are
Beta(40, 10), Beta(18,10), and Beta(1,1) respectively. When the 77th subject enters the
trial, the treatment assignment probabilities for each arm are approximately 78%, 2%, and
20% for treatments 0,1, and 2 respectively. The estimated mean for treatment 1 is 0.6 while
the estimated mean for treatment 2 is 0.5, yet treatment 3 is ten times more likely to be
selected. This illustrates the dependence of Thompson Sampling on both the estimated mean

and uncertainty around this estimated mean.

[Figure 1 about here.]

3. Beyond the simplest case: contextual bandits

In the preceding section, we considered a one-size-fits-all approach to treatment selection,
i.e., the goal was to identify a single treatment which was best (on average) for the entire
population. We now consider the setting in which treatment is tailored to individual patient
characteristics. As in the preceding section, we consider a trial in which a total of n subjects
will be enrolled. However, we now assume that the data generated by the trial will be of

the form {(X;, A;,Y;)},_,, where X; € X C RP are characteristics for the tth subject,
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A; € A ={0,1} is their assigned intervention, and Y; € R is their outcome, coded so that
higher values are preferred.

Let Y,* denote the potential outcome for the tth subject under treatment a € A. Under the
contextual bandit model, the set of contexts and all potential outcomes {(X;, Y,?, Y;!)};_, are
assumed to be independent copies of (X,Y? Y1). We assume the following standard causal
conditions hold: (i) no unmeasured confounders, (Y°,Y) L A|X; (i) consistency, ¥ = Y*;
and (iii) positivity, there exists ¢ > 0 such that P(A = a|X = x) > € for all a € A and
x € X. In addition, we assume there is no interference nor are there multiple versions of
treatment (Hernan and Robins, 2020).

For simplicity, we assume that subjects enroll one-by-one so that the outcome for one sub-
ject is observed before the next one is assigned their treatment. As previously, use an overline
to denote history so that X, = (Xi,...,X;), Ay = (A1,...,4;),and Y, = (Y1,...,Y}). Define

¢ = (X1,A;1, Y, 1) to be the information collected through the first (¢ — 1) subjects
with H§ = 0 (the superscript ‘c’ is a mnemonic for contextual bandit). The information
available to a clinician in selecting treatment for the tth subject is thus H;™ = (Hy_;, X4¢).

To illustrate TS in this setting, we assume a linear model for the outcome of the form
Yi = 9(Xy, Ap)™y + €,

where (X, A;) € R? is a feature vector constructed from X; and A;, vy € ' C R? is a
vector of unknown coefficients, and ¢; is an independent error term with mean zero and
finite variance. We assume that €, ..., ¢, are drawn ¢.:.d. from a distribution with density
f(e;m) which is indexed by unknown parametersn € N’ C R Set § = (y7,77)T € © =T'x N.
To apply TS, we specify a prior p(@) over ©. When the tth subject arrives, presenting with

context Xy, treatment a is selected with probability
P(Ay=alH;)=P {a = arg max ¢(Xy, a’)T0|Hff} :

For example, we might assume normal errors so that ¢; ~ Normal(0,77!) and assume an
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improper prior of the form p(@) oc 77!. In this case, the posterior distribution for 7 given
H;~ follows a multivarite t-distribution with ¢ — 1 — ¢ degrees of freedom, centered at the

OLS estimator

|

Fo1 = {Z w<XU,Av>w<XU,Av>T} S (X, AV, (3.1)

and with variance equal to

t—1 -1
it—l = 8371 {Z¢(XU7AU)¢(XU7A’U)T} )

v=1
where 52 | = (t—1—¢)' S202% {Y}, — h(Xy, A)T0,_; }2, is the usual estimator of the residual
variance.

In practice, under the above prior, v does not have a proper posterior distribution until
sufficient data have been collected. Thus, in early stages of the trial, one may follow simple
1:1 randomization or some other (possibly stratified) randomization scheme. If at time
t the posterior distribution of 74 is proper, one can compute the TS treatment assign-
ment by first drawing 74, ~ Multivariate—t (ﬁt_l,flt,l,t —1- q) and then setting A; =

arg maxqea ¥ (Xe, @)™y,

3.1 Frequentist TS for contextual bandits

The fully Bayesian approach to TS for contextual bandits requires significant modeling
and can become computationally burdensome if one does not use conjugate priors. As an
alternative, one can use the (estimated) sampling distribution in place of the posterior to
obtain a frequentist version of TS that requires fewer modeling assumptions and is often
much more computationally tractable.

Consider again the linear model Y; = (Xy, A;)™y + €, where 4 € T' is an unknown
parameter vector and the error ¢, satisfies E(e|H;™) = 0 and Var(e|H;™) = of where

0 < 02 < C for some constant C' and all t. The ordinary least squares estimator 4, ; of
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based on Hf~ is given in (3.1). Of course, 4,_; also solves the normal equations

t—1
> (Yo = (X, A7} (X, Ay) = 0.
v=1

We can approximate the sampling distribution of 4,_; using a normal approximation (e.g.,

Heyde, 1997, see), however, we prefer to use a generalized bootstrap instead as it is trivial to

implement and avoids cumbersome derivations (Chatterjee and Bose, 2005). For each ¢, let

At1y -+ At ~iia Exp(1) and let '7,@1 denote the solution to the bootstrap normal equations
t—1
D Ao {Ye = (X, A) Ty} (X, Ay) =0, (3.2)
v=1

then 'Aygli)l is a draw from the generalized bootstrap estimator of the sampling distribution of

7,_1- Under bootstrap TS, the action at time ¢ is A, = arg max, (X, a)Tfy\@l.

Frequentist TS with the bootstrap is semi-parametric as it only requires specification of
the mean structure and regularity conditions needed for bootstrap consistency (Chatterjee
and Bose, 2005). In addition, it avoids specification of a prior and potentially expensive
computation (e.g., MCMC). If there is historical data or scientific evidence that can be used
to construct an informative prior, this information can be incorporated into frequentist TS via
data augmentation (DA). We illustrate using a simple version of DA; other more sophisticated
approaches are possible. Suppose we wish to use an informative prior p on I'. We posit a
working prior model for the error €y, €5, ... ~iiq. Fe. Let M € Z, be a positive integer which
reflects the number of ‘prior samples’ we wish to generate. Let Dy = (3, at time ¢ = 1, upon
observing X; we then draw 4; ~ p(v) and set A, = arg max, (X1, a)™; and subsequently
observe Y;. In addition, draw a second sample as follows. Set X; = X, draw 3~ p(y),
€1 ~ F. and Ay~ Uniform(.A), and set Y, = w(fil, A})Wf +¢;. We continue to generate data
m

in this way so that after m steps we have data D,, = {(XZ, ALY, ()~(Z, gi, ENQ)} . Once m

=1

is sufficiently large so that 7,, is well-defined from D,,, at iterations t = m + 1,m + 2,...

we proceed as follows. We observe X;, compute the bootstrap estimator '7,@1, set Ay =
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arg max, (X, a)T'/y\gli)l and observe Y;. If t < M, we construct a second sample in which we
set X, = Xy, draw & ~ F, 3, ~ p(7), and A; ~ Uniform(A), and set Y, = w(f(t, A + &

The preceding algorithm generates a set of M artificial samples from the ‘prior.” Each
sample was generated at an observed context value and, in this way, avoided having to posit
a model for the contexts. However, if one were willing to posit a context model, it would
have been possible to simply generate these M samples before collecting any data. This
idea of simulating artificial data from a prior is general and applies to more general decision

problems, e.g., Markov decision processes.

4. Thompson Sampling in more general settings

We have thus far discussed TS for a simple two-arm clinical trial and for a linear contextual
bandit. We now illustrate how TS can be applied in multi-stage (possibly non-Markov) de-
cision problems (Tsiatis et al., 2019) and infinite horizon Markov decision processes (MDPs;

Puterman, 2014).

4.1 TS for multi-stage decision problems

We consider an adaptive sequential multiple assignment randomized trial (SMART, Lavori
and Dawson, 2004; Murphy, 2005a) with 7" treatment stages and a planned enrollment size
of n subjects. We assume that subjects arrive in cohorts of size k and that n = km so that
there are a total of m cohorts. To simplify notation, we assume that one cohort finishes the
trial before the next one begins (for a treatment of the more general setting with overlapping
and random cohort sizes, see Manschot et al., 2022).

The observed data after the fth cohort completes the trial is

Dé - {(Xl,ia Al,i) Yi,i? X2,i7 A2,i7 }/2,7:7 I XT,i) AT,i7 YT,i)}Zk

i=17
which comprises ¢k trajectories, one per subject, where X;; € RP is baseline information

for subject i, A;; € A = {1,..., K} is the intervention assigned to subject ¢ at time ¢,
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X4, € RP contains interim information collected on subject ¢ during the course of treatment
Aiqfort =2,...,T, and Y;; € Y C R is an immediate (momentary) outcome measured
on subject 7 after treatment A;,. The trajectories need not be independent across subjects
as accumulated data on past subjects is used in treatment selection. We omit a subscript ¢
when discussing a generic subject, i.e., (Xy, A1, Y1, Xo, Ao, Yo, ..., Xp, A, Y7).

Let H; = X; and H, = (H;_1, A;_1,Y;1,X;) for t > 2. Thus, H,; represents the available
information to inform treatment selection for a subject in the trial at time ¢. In many
contexts, the set of allowable treatments depends on a subject’s health status (van der Laan
and Petersen, 2007), e.g., in the context of schizophrenia, one cannot prescribe a type I anti-
psychotic to a subject with tardive dyskinesia (Lieberman et al., 2005). We operationalize
such constraints as a sequence of functions { = {Q}thl with ¢ : domH; — 24 so that
(i(hy) C A is the set of allowable treatments for a subject with history H; = hy.

A treatment regime, in this context is a sequence of decision rules T = (m,m2,...,7r)
such that m, : H; — A and m(hy) € ((hy) for all h, € domH,, t = 1,2,...,7. An
optimal treatment regime maximizes the expectation of the cumulative outcome, Zthl Y;,
if applied to select treatments in the target population. The optimal regime is formalized
using potential outcomes. As in previous sections, write @, = (ay, ..., a;). Let HX"! be the
potential history at time ¢ under treatment sequence a;_; and Y;* the potential outcome
at time ¢ under treatment sequence a; for convenience, we define H* = H;. The potential

outcome at time ¢ under sequence of decision rules 7, = (7, ..., m) is
t
= Yy I e () =)
at v=1

The value of a regime 7 is V(w) = E (Zfil Yf”), and the optimal regime, w°P* satisfies
V(m°P*) > V() for all feasible regimes .

To identify 7°P* from the data-generating model, we make the following standard assump-

11
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tions. Define

_ _ _ T
W = {(H:‘H,Ytaf) ca € A a, € GHP V<0< t}

t=1

to be the set of realizable (feasible) potential outcomes. We assume the following conditions
hold: (C1) strong ignorability, W L A;|H; for all ¢t = 1,...,T; (C2) positivity, there exists
e > 0 such that P(A; = a|H" = h;) > e for all h; € domHy, a € (;(hy),and t =1,...,T; and
(C3) consistency, H; = Hth‘l and Y; = tht forall t =1,...,T, i.e., the observed history
and outcomes are the potential history and outcomes under treatment actually assigned. We
also assume that there are not multiple versions of treatment or interference among subjects
(Tsiatis et al., 2019). In the context of a SMART, (C1) and (C2) can be guaranteed by
design. In practice, the (approximate) validity of the other conditions must be argued on
the basis of the underlying science and implementation of the trial (see Tsiatis et al., 2019;
Hernan and Robins, 2020, and references therein). Hereafter, we implicitly assume these
conditions hold.

We characterize the optimal regime, 7°P*) using dynamic programming (Bellman, 1952).

Define the Q-function at stage-T" as

Qr(hr,ar) =E (Yr|Hy = hy, Ay = ar) |

and recursively for t =T — 1,7 — 2,...,1 define

Qi(ht,a;) = E {Yt + max Qip1(Hyyy, at+1)|Ht =hy, Ay = at} .

aty1€Ce+1(Heqr)

It follows that an optimal regime is given by m™(h;) = argmaxa,cc,n,) @:(hs, a;) (see
Murphy, 2005b; Schulte et al., 2014). Thus, given data after ¢ cohorts, one can construct an
estimator of 7°P* by constructing estimators QM of Q; for t = 1,...,T, and subsequently
mee(hy) = arg mMaXy,e¢, (hy) @M(ht, a;). We illustrate this approach using parametric models
for the @-functions, though more flexible non-parametric models are possible (Ernst et al.,
2005).

For each t we posit a working model Q;(hy, a;; 6;) indexed by 8, € ©, C R%. We assume that
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Q:(hy, a.;0,) is defined and continuously differentiable for all 8, in an open set that contains

©,. Define /éT,g as the solution to the so-called conditional least-squares score equation
tk

Z {YT,i - QT(HT,i> AT,i§0T)} VGTQT(HT,Z'> AT,i;aT) =0, (4-1)

=1

and similarly, for t =T —1,T — 2,...,1 define b\t,f as the solution to

tk
Z {Y;fz + max Qi1 (Hit14, @13 0:110) — Qe (Hyy, At,i§0t)} Vo, Qi(Hy i, A i3 0,) = 0. (4.2)

- a1
=1

The estimated optimal regime using data from the first ¢ cohorts is thus 7 ,(h;) =
argmaXg, ¢, (hy) Qi(hy, ay; /a\t,z)-

We use the preceding estimating equations with the multiplier bootstrap to implement a
frequentist version of T'S. However, in early cohorts, the estimating equations will not have
unique solutions so one needs a base strategy to begin. One natural approach is to use uniform
randomization at each stage for fixed number of cohorts, say L, so that for any subject ¢ in
cohort ¢ < L with history H;; will be assigned treatment A;; ~ Uniform {(;(H;;)}. For a
subject ¢ in cohort £ = L+ 1,...,m draw A;1,..., A; e—1)k ~iid. Exp(1), compute 5%_“ as

the solution to

(t=1)k
> Ny {Yr; — Qr(Hry, Arj;01)} Vo, Qr(Hr, A j;67) =0,
j=1
~(b
and, recursively, compute 0572_1#. fort=T —1,...,1 as the solution to

-1k
~(b)
Z /\i,j {Y%,j + I}g?f( Qt+1(Ht+1,j7 at+1;0t+1,£fl,i) - Qt(Ht,ja At,j;ot)} VOtQt(Ht,j7 At,j;ot) = 0.

j=1
Thus, a subject 7 in cohort £ = L+1,...,m with history H,; at time ¢, is assigned treatment
At,i = argmaXe, ¢, (Hy,;) Qt(Ht,i7 at;gfg)_l,i)-

The version of T'S for multi-stage decision problems we describe uses the estimated sam-
pling distribution of parameters indexing the )-functions in place of a proper posterior
distribution. To see this, let _ﬁtj denote the estimated sampling distribution of §t75_1 based

on the multiplier bootstrap applied to data from the first £ — 1 cohorts. For a subject with

history H; = h; in cohort ¢ and any a € (;(h;) the event A; = a is equivalent to the event
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(b
a = argmaxy, ec,(n,) Q¢ (hy, as; 0;2_1) which occurs with probability

/1 {a =arg max @Q(hy, at;O)} dﬁw_l(ﬂ).

at €t (hy)

In a fully-Bayesian approach, ﬁw_l would be replaced by the posterior distribution over 6,
given data on the first £ — 1 cohorts.

In some settings, one may wish to incorporate prior information into frequentist TS for
multi-stage decision problems. One way to do this is to posit a prior for the joint trajectory
distribution, (Xi, Ay,Y1,Xo, Ag, Ys, ..., Xp, A7, Yr) and then to simulate data from this
prior to augment the observed data; i.e., one can simulate J i.i.d. trajectories under the
prior as a kind of zeroth cohort. This can be an effective strategy for folding in domain

knowledge or historical data when it is available at the trajectory level.

REMARK 1: We did not use partial information of subjects within a cohort; e.g., if the
enrollment and/or completion times of the stages vary across subjects within a cohort, it
is possible to use data from subjects who have advanced further in the trial to inform the
treatment decisions for subjects at earlier stages. This can increase efficiency though at the

expense of more complex bookkeeping. See Norwood et al. (2022) for details.

4.2 TS for MDPs

In decision problems with a long or indefinite time horizon one needs to impose more structure
on the data-generating model than in the preceding section to facilitate extrapolation in
time. Most commonly, one assumes that the data are from a stationary and homogeneous
MDP (Sutton, 1997). We present a frequentist version of TS in this setting. However, we
first discuss the construction of a homogeneous and stationary MDP from raw (possibly
non-Markov) data. This is a critically important issue in application but has received little
attention in the precision medicine literature (see Wang et al., 2017; Ma et al., 2023, for

references).
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4.2.1 Pre-processing and the Markov assumption. Asin the preceding section, we consider
longitudinal data on n subjects in a sequential randomized trial.! However, we now assume
that subjects enroll in a single cohort and that the treatment decisions are aligned in time

for all subjects in the cohort. At any time ¢, the raw observed data are of the form

{(Xl,i7 Al,i7 E,i? X2,i7 A2,i7 }/2,7;7 ceey Xt,i; At,i; }/;f,z)}n (43)

i=1"
which comprises n trajectories of the form (Xy, Ay, Y7, Xo, As, Ya, ..., Xy, Ay, Y;), where X €
R? are baseline measurements, A; € A = {1,2,..., K} is the assigned intervention at time
t, X; € X are interim measurements taken during the course of A;, and Y; € Y C [0, 1] are
outcomes coded so that higher values are better. Let the history H; be defined as in the
preceding section and let II denote the class of feasible regimes. We write Y," to denote the
potential outcome at time t under w € II.

For any w € Il an t > 1 write w, = (7, m441, - - .). Given history H; = h, and & € II, define

the state-value function at time ¢ as

Vi(m, hy) = Vi(m,, hy) = E (Z VY, | H = ht) ;

v=>0

where v € (0,1) is a discount factor. The optimal feasible regime, w°P* € II, satisfies
Vi(m°P* hy) > Vi(m,hy) for all @ € I and h; € dom Hy. It is clear that without additional
structure, one cannot recover w°P* from n trajectories of length ¢ as in (4.3) even as n — oo
(as one will have no information about 7_r§’£t1) The most common approach to estimating mw°P*
in practice is to assume that, after some suitable transformation, the observed data can be
represented as a homogeneous MDP; we now describe how such a transformation might be
constructed.

Assume that there exists a sequence of summary functions {¢t}t;1 with ¢, : domH; —

S C R? and we call S; = ¢4(H;) the state of the system at time ¢. For example, the state

1We omit a discussion of the necessary causal assumptions in this section delaying a formal statement of these assumptions

to the the next section.
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might be constructed by concatenating interim measurements, treatments, and outcomes over
fixed look-back period (Ma et al., 2023), taking a weighted average over past measurements
(Laber and Staicu, 2018), or using data-driven feature selection, e.g., using recurrent neural
networks (Wang et al., 2018). We assume that the summary function induces a homogeneous

MDP so that
St+1 1L (Ht_lyAt—layvt—lﬂ(St;At),

and the conditional distribution of S;y; given (S;, A;) does not depend on time ¢. We also
assume that the summary is such that Y; = u(S¢, Ay, Sy41) for some fixed and known function
u:Sx AxS — Y, and that there exists function v : S — 24 such that v {1;(h;)} = ¢ (hy)
for all hy € domH; and all ¢t. Let I, denote the set of maps, @w : S — A, such that
w(s) € v(s) for all s € S. Let Y,* denote the potential outcome under w € Il . For each ¢,

h, € dom H;, and a; € (;(h;) define

v=0

?pt(ht, ap) = SHII_I)E {ZVUYZH;’Ht =h, A = Clt} )
S

then it follows (e.g., see Puterman, 2014; Bertsekas, 2012) that

?pt(ht, at) =supE {Ytﬂ + v max )Q?Etl(HtH, at-&-l)}Ht =h;, A = at} )

well at+1€C(Hepr

and an optimal decision strategy based on the raw data, say 7Pt is given by 7" (h,) =
arg ma‘XatECt(ht) Q(t)pt(hta at)‘ If {(}/t-i-la maxat+1€Ct+1(Ht+1) Q(t)itl (Ht+17 at+1)} 1 Ht’(sta At)7 then
it follows that Q¢**(hy,a;) depends on h, only through s, = ¢,(h;) and therefore 7™ (h,)

depends on h; only through v;(h;) (Wang et al., 2017). Furthermore, the optimal value
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starting from H; = h, satisfies

Vtopt(ht> = Opt{ht, Opt ht)}
= {Z 'YUY;T;t ht}
= E {Z VYS! = ¢t(ht)}

v=0
= sup {Zv”YﬁvlSt Wy ht}
well$y
= sup {Zvvmlst " ht} (1.4)
well

where II%; is the space of sequences in Il and the last equality follows from the fact that
the best treatment in a state S' = s does not depend on ¢ (see Puterman, 2014, for additional

details). Let " attain the sup in (4.4). It follows that the reduced process

{(S10, Avi, Y14, S0, Aoy Yais -+ Sty Aviy Yia) Yy (4.5)
comprises trajectories from a homogeneous MDP and that 7{*"(h;) = @ {t4(h;)} is
optimal; i.e., V;(m°P* h;) > Vi(m, h;) for all # € II and h; € dom H;. Furthermore, w°*
can be estimated using only the data from the reduced process (4.5) as we describe in the
next section. Constructing a suitable reduced process that is parsimonious, homogeneous,
Markov, and has the same optimal regime as the original process is not trivial. While data-
driven methods for constructing the maps ¢, exist (Wang et al., 2017; Ma et al., 2023), this

is more often done using ad hoc transformations and justified using clinical theory.

4.2.2 Q-learning in MDPs. We assume that the observed data (possibly after transfor-
mation) are of the form

{(Sl,i7 Al,i7 SQ,i,? AQ,i? .. St K3 At K3 St+1 7')}2 17

which comprise n trajectories, one for each subject, of the form (Sy, A1, Sa, As, ..., Sy, As, Sev1),

where: S; € § C R? is a summary of the subject’s health status at time ¢t and A; € A =
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{1,2,..., K} is the treatment assigned at time ¢. In the context of MDPs, the term action
is often used in place of treatment; we shall use the terms interchangeably. We assume that
there exists a fixed function u : S x A x § — R, so that the outcome Y; = u(S;, Ay, Syy1)
captures the utility associated with the state-treatment-next state triple (S;, A, S¢11)-

We assume that the data-generating model is a homogeneous MDP so that for any mea-

St; At)

We assume that there exists a set-valued function v : & — 24 so that v(s) C A is the set

surable set B C S and time ¢

P(St+1 GB‘Sl,...,St,Al,...,At) :P(St+1

with probability one, and the probability does not depend on t.

of allowable treatments for a subject in state s; we assume v(s) is non-empty for alls € S. A
treatment regime in this context is a map 7 : S — A that satisfies 7(s) € v(s) for all s € A.
Let IT denote the set of all treatment regimes. Under a regime 7 € II, a subject with S; = s
at time ¢t will be recommended treatment 7(s). An optimal treatment regime maximizes
expected discounted cumulative utility if used to select treatments for patients in the target
population. As in previous sections, we formalize this definition using potential outcomes.
Let S¥' denote the potential state under treatment sequence a,_; = (a1,...,a;_1); for
convenience, we follow the notational convention that S = S;. The potential outcome
under treatment sequence a; is thus
Y= (ST ST )
and the potential outcome at time ¢ under a regime 7 is

t—1
Y = ZYtﬁt H L{m(S3 ") =a,}.
a v=1

For any s € § and regime 7 define the state-value function

V(n,s)=FE <Z VY] |S: = s) ,

v=0

where v € (0,1) is a discount factor. The optimal regime, 7°P*, satisfies V(7P s) > V (7, s)

for all s € S and 7 € II. To identify 7°P" in terms of the data-generating model we make use
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of the following causal assumptions which mirror those made in previous sections. Let

W = {(sf“,Yff) ca, €A a, ev(ST)VI < v < t}

’
t>1

we assume: (C1) strong ignorability, W L A;|(S;, A;_1), for all t > 1; (C2) positivity, there
exists € > 0 such that P(A;, = a|S;, A,_;) > ¢ for all a € v(S;) with probability one; and
(C3) consistency, S; = Stxt’1 for all ¢. In addition, we assume that there is no interference
nor are there multiple versions of treatment. We note that because Y; = u(Sy, Ay, Syyq) it
follows from (C3) that Y; = Y;*. For any s € S and a € v(s), define the optimal Q-function

as

Q(s,a) =supE (Z VUY;«TMSt =s,A = a) )

well v>0

then it follows (see Ertefaie and Strawderman, 2018) under (C1)-(C3) that

at+1€v(Sey1)

Q(s,a) =E {Y; +v  max  Q(Siy, at+1)|st =s, A = @} ) (4.6)

where, critically, the expectation is taken with respect to the data-generating model rather

than a counterfactual distribution. Let 7 : S x A — R? be an arbitrary function of state. It

StaAt}

- 0 =E {K + 7 maXatHeu(StH) Q(StJrl? atJrl) - Q(Sta At)

follows that

Q(Stv At) =K {Y;f +7 MaXg, 1 ev(Sit1) Q(St-i-l? at-l-l)

StaAt}

= 0 =E [{Y;t + Y MaXq, v (Sit1) Q(St11, art1) — Q(Se, At)} ¥ (S, At)} ’

where the last equality follows from multiplying the second equality through by #(S;, A;) and
taking an expectation. Q-learning uses this last equality to construct an estimating function
for the Q-function. We illustrate this idea using a linear model for the Q)-function of the form
Q(s,a) = ¢(s,a)@ where ¢ : S x A — R? is a feature vector and # € © C R? is a vector
of unknown coefficients. We take ¢(s,a) = VoQ(s, a;0) = ¢(s,a), and construct @7” as the

solution to

n t

0 - Z Z {Yzﬂ + Y max ¢(St+1,i7 (lt+1>T0 - (b(St,i, AM)TB} (b(st,i? Atﬁ'), (47)

at+1€v(S i
Pr— t+1€V(S¢t1,i)

19



20 Biometrics, 000 0000

so that the estimated optimal regime is 7, (s) = arg max,e,(s) @(s, a;@t,n).
To implement TS in this context we again use the estimated sampling distribution of @,n,
(based on an asymtptotic approximation in which n grows large). To select a treatment at

time ¢t + 1, we draw Ay, ..., Apn ~iia Exp(1l), compute 5t,n as the solution to

n t
0= Z Nin Z {Ym +7  max  G(Spr1 a1)70 — A(Se, At,i)Ta} ¢(Stis Ari),
i=1 1

— at+1€v(Sey1,)
v=
and assign treatments at time point ¢+1 according to the regime 7,(s) = arg maxqe,(s) Q(S, a; bvt’n);
Le., Ay = arg maXaep(S;41,4) ¢(St+1,i, At+1,i)T0t,n> fori=1,...,n.
The preceding version of TS uses a single bootstrap resample at each time point. An

alternative is to compute a separate resample for each subject, i.e., for subject 7, we draw

Monjs - s Annj ~iid Exp(l), compute b}}w as the solution to

n t
0= Z Ain,j Z {Ym +7 max )¢(St+1,u ar+1)70 — &(Sei, Am)m} O(St,is Ari),
i=1 1

- at+1€V(Stt1,i
and set Ayy1; = argmaXaey(s,,,.,) ¢(St+1,jva)T5t7n,j' This approach, while computationally

more expensive, often provides better balance in terms of treatment allocation across subject

states.

4.3 Inference for TS in MDPs

Statistical inference under adaptive sampling, i.e., when accumulated are used to select
interventions, is markedly more complex than non-adaptive sampling (Lai and Wei, 1982;
Zhan et al., 2021; Zhang et al., 2020, 2022). Intuitively, a key challenge is ensuring sufficient
information generation across the entire state-action (state-treatment) space S x A. An
adaptive algorithm attempting to maximize cumulative reward may quickly become concen-
trated around an optimal regime so that little data is available for estimation and inference
about the performance of other regimes of interest (say business-as-usual, or a less intensive

regime, etc.). In this section, we introduce some basic technical tools that are often useful for
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analyzing TS in MDPs (as well as in other settings such as bandits or partially observable
MDPs).

We treat the number of subjects, n, as fixed and consider asymptotic approximations as
the number of time points, ¢, grows large. As in the preceding section, to simplify notation,
we assume that subjects are aligned in time. Let F; denote the o-algebra generated by

{(Su, Al,i» SQ,i,7 AQ,i7 ceey St—l,u At—l,i; St,i)}?:p and for any 6 define
u(0) = Z {Y}z + ymax ¢(Sei1,i, ar41)70 — H(Se;, At,i)Ta} P(Stis Ari)-

- a1
=1

The Q-learning estimating equations (4.7) can thus be written as U;(8) = 0, where

t
U(0) =D u(0).
v=1
Suppose that the model is correctly specified so that (s, a) = ¢(s, a)70* for some 6* € © and

all (s,a) € § x A. Then it follows that U (8*) is a Martingale with respect to the filtration

{]:t}t>1 as

E {14,6")

Fep = E{w(0")|Fe} +U-1(67)

at+1

= K Z {Y;E,i + v max ¢(St+1,i> at+1)T‘9* - ¢(St,i, At,i)To*} ¢(St,i7 At,i)‘Ft]
L i=1
+ U_1(07)

n

= E Z {Yt,z' + 7%%¥Q<St+l,i7 at+1) — Q (St At,i)} ¢(Stsi, At,i)‘f;‘,]

Li=1

+ U1(67)

n

= K Z {Y;t,i + ’YI(JQ%?(Q(Sth air1) — Q(Sey, At,i)} ®(Se, At,i)‘sta Ay

Li=1

+ U_1(6%)

= U, (6").

Thus, U,(0) is a Martingale estimating function (MEF; Godambe, 1991; Heyde, 1997; Hwang
and Basawa, 2014), and the operating characteristics of b\t,n can be derived through properties

of the functions 8 +— U;(#). Our focus will be on conditions under which ¥, 1z (6%) {ﬁtn - 0*} ~
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N(0, 1) as t — oo, where ¥, ,,(6%) is a (possibly random) scaling matrix. The conditions we
provide are standard in MEF-theory. While these conditions are seemingly mild, they can
be difficult to verify in practice.

Let ||J||r = \/trace(JTJ) denote the Frobenius norm. Define & (8*) £ Var {u,(8*)|F;} =
E {u,(0)u,(0)T|F, }. We assume (C1) that ||&(6*)|| — oo almost surely, as t — co. Condition
(C1) is a regularity condition which ensures sufficient information is generated across the

state-action space. To see this, write

Var{ut ‘th} Z]E{5 ‘9* |St17At1}¢ StwAt1>¢(St,i7At,i)T7

where 0,,(0) = Y, + ymax,,,, Q(Si1,i, ar41) — Q(Se4, Ars) is the temporal difference error.
If we assume that ]E{(5 (6%) ]S“,A“} is bounded below by some constant ¢ > 0 with
probability one, then a sufficient condition for (C1) is that the mininum eigenvalue of
22:1 S A(Suis Api)P(Sui, Ayi)T diverges to oo, a condition that appears commonly in
asymnptotics for time-series and other stochastic regression settings (Lai and Wei, 1982).
The second condition we require is (C2) that the MEF is regular, i.e., 8* is an interior
point of ©, U, (@) is continuously differentiable almost everywhere in a neighborhood *, and

for any sequence @, converging in probability to 8* as t — oo, we have

&0 { Valhi(8) — Vah(0") } & 07| =, 0,

as t — oco. Condition (C2) is a smoothness condition that rules out the possibility of multiple
optimal treatments in any state (at such points, the max operator is not differentiable). It is
possible to weaken this condition but at the expense of more complex asymptotic arguments
(see Laber et al., 2014).

The third condition we require is (C3) that there exists a constant (non-stochastic) matrix

Q € R¥4 guch that

& 20" Valdi(07)E,2(67) —, Q,
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as t — 0o0. Condition (C3) is a regularity condition that can typically be verified using strong
laws for dependent data (Prakasa Rao, 1987).

Finally, we require (C4) that —{&(0*)} *14,(*) ~» N(0,1,). This condition can be
established using a Martingale central limit theorem (Hall and Heyde, 2014).

Under (C1)-(C4) and mild moment conditions, it can be shown (Hwang, 2015) that
953/2(0*) (gt - 0*) ~> N(0, 1), which is the desired result with E;}Lﬂ(ﬂ*) = Q¢*(6%). This
shows that @,n = O,(||& Y ?(6%)]]), which in turn can be used to derive the (asymptotic)
rate of the cumulative regret. To use this result to construct a confidence set for 8* we can
use a projection interval as follows. Suppose that if * were known, one could construct a
/2(

~—1 B
consistent estimator 33, " (6*) of ztﬁ/z(o*). Let x7,_, be the upper (1—a) x100% percentile

of a chi-squared distribution with d-degrees of freedom and define

o~

Tinia={0€0:5,%0) (81, —0) <x3iaf-
It follows that P{0* € I';,1-o} = 1 —a+op(1). The set I';,, 14 is thus a valid (asymptotic)
confidence region for * which in turn can be used to construct projection sets for other

functions of 6%, e.g., the value of the optimal regime (see also Zhang et al., 2022).

5. Open problems and ongoing work

Our goal in this chapter was to introduce TS as a flexible and extensible methodology for
adaptive clinical trials especially in the context of mobile- and tele-health. However, despite a
long history of empirical and theoretical study, there are a number of pressing open problems
associated with TS. One such problem is statistical efficiency. The estimating equations we
described are used widely in practice but they need not lead to the smallest asymptotic
variance among the class of regular MEFs. Furthermore, if the posited class of models for
the Q-function is misspecified, the solution to the MEF need not recover the projection

of the true Q-function on the model class (see Baird, 1995; Leete and Laber, 2022). An

23
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important open question is how to construct the estimating equations to obtain efficiency
and the projection property. In principle, the efficient weights for the estimating equations
can be obtained using the theory of optimal MEFs (Hwang and Basawa, 2011). However,
the efficient weights depend on the unknown system dynamics and the cost of estimating
the optimal weights risks further misspecifiction and/or inflated variance (Leete and Laber,
2022).

Another important open problem is interim analysis and optimal stopping for adaptive
experiments under TS. In theory, one could obtain (approximate) joint asymptotic normality
for the estimated parameters at multiple pre-specified analysis points and subsequently
derive stopping boundaries (Jennison and Turnbull, 1999). However, the derivations of these
boundaries are likely to be intricate.

Lastly, we note that T'S may fail to perform well if the underlying system is non-stationary.
One ad hoc approach is to limit the look-back period and only use estimating equations
constructed from recent data. An important problem is how to adaptively choose the look-

back period to optimally balance bias and variance.
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Figure 1.

Beta distribution densities for hypothetical basket trial.
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