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Metric and Path-Connectedness Properties of the Fréchet Distance for

Paths and Graphs
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Abstract

The Fréchet distance is often used to measure distances
between paths, with applications in areas ranging from
map matching to GPS trajectory analysis to hand-
writing recognition. More recently, the Fréchet distance
has been generalized to a distance between two copies
of the same graph embedded or immersed in a metric
space; this more general setting opens up a wide range
of more complex applications in graph analysis. In this
paper, we initiate a study of some of the fundamental
topological properties of spaces of paths and of graphs
mapped to Rn under the Fréchet distance, in an e�ort to
lay the theoretical groundwork for understanding how
these distances can be used in practice. In particular,
we prove whether or not these spaces, and the metric
balls therein, are path-connected.

1 Introduction

One-dimensional data in a Euclidean ambient space is
heavily studied in the computational geometry litera-
ture, and is central to applications in GPS trajectory
and road network analysis [2,11,13,24]. One widely used
distance measure on one-dimensional data is the Fréchet
distance, which accounts for both geometric closeness
as well as the connectivity of the paths or graphs being
compared [1,4–8,10–14,16–18,20–22]. We build a theo-
retical foundation for these application areas by investi-
gating spaces of paths and graphs in R

n, including their
metric and topological properties, under the Fréchet dis-
tance. The motivation for this work is simple: as practi-
cal approaches to compute the Fréchet distance between
paths [6,14] and between graphs [10,18,20] grow in pop-
ularity, it is natural to inquire about the fundamental
properties of such distances, in an e�ort to better un-
derstand exactly what they are capturing.
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We begin by de�ning the Fréchet distance between
paths and graphs. Using open balls under the Fréchet
distance to generate a topology, we study the metric and
topological properties of the induced spaces. In particu-
lar, we work with three classes of paths: the space �C of
all paths in R

n, the space �E of all paths in R
n that are

embeddings (i.e., maps that are homeomorphisms onto
the image), and the space �I of all paths in R

n that are
immersions (local embeddings). See Figure 1 for exam-
ples of paths in R

2. In addition, we study the three anal-
ogous spaces of graphs: the sets GC , GI , and GE of con-
tinuous maps, immersions, and embeddings of graphs,
respectively. This paper establishes the core metric and
topological properties of the Fréchet distance on graphs
and paths in Euclidean space.

(a) Continuous (b) Embedding (c) Immersion

Figure 1: Example of paths continuously mapped, em-
bedded, and immersed in R

2. The space of continuous
maps allows arbitrary self-intersection on a path includ-
ing backtracking (which occurs at the two red points);
embeddings must induce homeomorphisms onto their
image; and immersions are locally embeddings.

2 Background

In this section, we establish the de�nitions and nota-
tion from geometry and topology used throughout. We
assume basic knowledge of concepts in topology. For
common de�nitions central to this paper, we refer read-
ers to Appendix A, or for greater detail, to [9, 19].

De�nition 1 (Types of Maps) Let X and Y be topo-
logical spaces. A map � : X � Y is called continuous if
for each open set U � Y, ��1(U) is open in X. We
call � an embedding if � is injective. Equivalently, an
embedding is a continuous map that is homeomorphic
onto its image. If � is locally an embedding, then we
say that � is an immersion.

In particular, a continuous map � : [0, 1] � R
n is

called a path in R
n. We call a path � : [0, 1] � R

n
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recti�able if � has �nite length (see De�nition 32 in Ap-
pendix A.3). Moreover, we call a graph G recti�able if
there exists a �nite cover of G such that every element
in the cover is a recti�able path.

Paths in R
n Letting ��C denote the set of all recti�able

paths in R
n, we now de�ne the path Fréchet distance.

De�nition 2 (The Path Fréchet Distance [4])

The Fréchet distance dFP : ��C × ��C � R̄�0 be-

tween �1, �2 � ��C is de�ned as:

dFP (�1, �2) := inf
r : [0,1]�[0,1]

max
t�[0,1]

||�1(t)� �2(r(t))||2,

where r ranges over all homeomorphisms such
that r(0) = 0, and || · ||2 denotes the Euclidean norm.

Graphs Mapped to R
n We de�ne a graph G = (V,E)

as a �nite set of vertices V and a �nite set of edges E.
Self-loops and multiple edges between a pair of vertices
are allowed.1 We topologize a graph by thinking of it
as a CW complex; see Appendix A.1. If � : G � R

d

is a map, then we call (G,�) a graph-map pair. We
extend the path Fréchet distance to the Fréchet distance
between graphs continuously mapped into R

n:

De�nition 3 (Graph Fréchet Distance)
Let (G,�), (H,�) be continuous, recti�able graph-map
pairs. We de�ne the Fréchet distance between (G,�)
and (H,�) by minimizing over all homeomorphisms:2

dFG ((G,�), (H,�)) :=

�
infh ||�� � � h||� G �= H.

� otherwise.

For simplicity of exposition, when G �= H, we write the
LHS of this equation as dFG(�,�). Furthermore, de�n-
ing the in�mum over an emptyset to be �, the graph
Fréchet distance is given by the following equation:

dFG ((G,�), (H,�)) := inf
h

||�� � � h||�,

where the in�mum is taken over all homeomor-
phisms h : G � H.

Note that if G = H and � is a reparameterization
of �, then dFG(�,�) = 0.

Observation 1 (Paths as Graphs) If G = [0, 1]
and �,� : [0, 1] � R

n are paths, then the relationship
between path and graph Fréchet distances is as follows:

dFG (�,�) = min
�
dFP (�,�), dFP (�,�

�1)
�
,

where ��1 : I � R
n is de�ned by ��1(t) = �(1� t).

1Some references would call this a multi-graph, but for sim-
plicity, we just use the term graph.

2Other generalizations of the Fréchet distance minimize over
all “orientation-preserving” homeomorphisms, which can be de-
�ned in several ways for strati�ed spaces, and sometimes adding
an orientation is not natural. Thus, we drop this requirement in
our de�nition.

3 Metric Properties

We now address the question: Is this distance a metric?
If not, can it be metrized? A well-known known prop-
erty of the path Fréchet distance is that it is a pseudo-
metric [4, 21]. That is, it satis�es all metric properties
except for separability. We proof this property for dFG.

Theorem 4 (Metric Properties of dFG) dFG is an
extended pseudo-metric that does not satisfy separa-
bility. When restricted to a homeomorphism class of
graphs, dFG is a pseudo-metric.

Proof. We �rst prove that dFG is an extended pseudo-
metric (see De�nition 27 in Appendix A.3).

Identity: Taking h to be the identity map in De�ni-
tion 3, we �nd dFG((G,�1), (G,�1)) = 0.

Symmetry: Consider dFG(�1,�2). If G ��= H , then
no homeomorphism h : G � H exists. Likewise, no
homeomorphism h� : H � G exists. And, so,

dFG((G,�1), (H,�2))) = � = dFG((H,�2), (G,�1))).

Otherwise, since h is a homeomorphism, it is invertible.
Thus, we can rewrite this as:

dFG(�1,�2) = inf
h�1

||�1 � h
�1 � �2||� = dFG(�2,�1).

Subadditivity (the triangle inequality): Con-
sider dFG((G1,�1), (G2,�2)) + dFG((G2,�2), (G3,�3)).
If G1 ��= G2, then dFG((G1,�1), (G2,�2)) = �, and we
are done. A symmetric argument follows for G2 ��= G3.
Thus, we assume G1

�= G2
�= G3. Using the de�nition of

Fréchet distance and the fact that the in�mum is taken
over homeomorphisms, we obtain:

dFG(�1,�2) + dFG(�2,�3)

= inf
h�

||�1 � �2 � h
�||� + inf

h��

||�2 � �3 � h
��||�.

	 inf
h�

||�1 � �2 � h
�||� + inf

h,h�

||�2 � h
� � �3 � h||�

= inf
h,h�

||�1 + (�2 � h
� � �2 � h

�)� �3 � h||�

= inf
h

||�1 � �3 � h||�

= dFG(�1,�3).

And so, we conclude that dFG satis�es subadditivity.
Noting that if G ��= H that dFG ((G,�), (H,�)) = �,

we conclude that dFG is an extended pseudo-metric.
However, the graph Fréchet distance between homeo-
morphic graphs is at most the Hausdor� distance be-
tween the images of the two maps. Thus, when re-
stricted to a homeomorphism class of graphs, dFG is
a pseudo-metric. �

The only metric property not satis�ed is separabil-
ity. In order to metrize this pseudo-metric, we de-
�ne GC(G) to be the the set of equivalence classes of con-
tinuous, recti�able maps G � R

n, where two maps, �1
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and �2, are equivalent if and only if dFG(�1,�2) =
0. We write [�i] to denote the equivalence class
of maps containing �i. We de�ne two subspaces
of GC(G): those representing immersions and embed-
dings, denoted GI(G) and GE(G), respectively. Note
that GE(G) � GI(G) � GC(G). Let GC denote the
induced set of equivalence classes of all graph-map
pairs (G, [�]) such that [�] � GC(G). Similiarly, we de-
�ne GI and GE , and note GE � GI � GC . Hence,

Corollary 5 (Metric Extension for Graphs) For
every graph G, the graph Fréchet distance is a metric
on the quotient spaces GC(G), GI(G), and GE(G).
Moreover, the graph Fréchet distance is an extended
metric on GC, GI , and GE .

Similarly, we consider paths in R
n: in particu-

lar, �C is the set of equivalences classes of ��C up
to orientation-preserving reparameterization. Equiv-
alently, for �1, �2 � ��C , �1 is equivalent to �2
i� dFP (�1, �2) = 0. Likewise, �E and �I are the sub-
spaces of embeddings and immersions. Note that �E �

�I � �C . We topologize these spaces using the open
ball topology (Appendix A.3). Again, by construction,
we obtain:

Corollary 6 (Metric Properties of dFP ) The path
Fréchet distance is a metric on �C ,�I and �E .

4 Path-Connectedness Property

We now examine path-connectedness properties. See
De�nition 30 and De�nition 31 of Appendix A.4 for def-
initions of path-connectivity.

4.1 Continuous Mappings

We start with the most general spaces of paths and
graphs: the continuous, recti�able maps into R

n. In
Euclidean spaces, linear interpolation is a useful tool be-
cause it de�nes the shortest paths between two points.
In function spaces, linear interpolation is also nice:

De�nition 7 (Linear Interpolation) Let G be a
graph and �0,�1 : G � R

n be continuous, recti�-
able maps. The linear interpolation from �0 to �1

is the map � : [0, 1] � GC(G) sending t � [0, 1]
to (G,�t), where:

�t := (1� t)�0 + t(�1 � h�). (1)

For ease of notation, we sometimes write �t := �(t).

Note that (1� t)�0+ t�1 is a linear combination of �0

and �1 (using c0 = 1 � t and c1 = t in De�nition 34).
Thus, � is a continuous family of linear combinations
of the maps �0 and �1; we show � is continuous in

Lemma 35. in Appendix B.1. If G = [0, 1], the linear
interpolation between graphs is simply linear interpola-
tion between paths. For an example of linear interpola-
tion between graphs, see Figure 4 in Appendix B.1.

However, linear interpolation is not well-de�ned
in GC , as we could have �1,�2 � [�] � GC(G). In
fact, �(t;�1,�2) = �(t;�1,�3) if and only if �1 = �2.

De�nition 8 (Family of Interpolations) Let G be
a graph and [�0], [�1] � GC(G). We de�ne C([�0], [�1])
to be the set of all linear interpolations between elements
of [�0] and of [�1].

We now demonstrate the existence of a family of
interpolations between any two equivalence classes
within (GC(G), dFG), proving path-connectivity.

Theorem 9 (Continuous Maps of Graphs) For
every graph G, the extended metric space (GC(G), dFG)
is path-connected. Moreover, the connected components
of (GC , dFG) are in one-to-one correspondence with the
homeomorphism classes of graphs.

Proof. Let [�0], [�1] � GC(G). Let � � C([�0], [�1]).
By Lemma 35 in Appendix B.1, � is continuous, and
so (GC(G), dFG) is path-connected.

Moreover, suppose (G, [�0]), (H, [�1]) � GC for
the graphs G,H which are not homeomorphic.
Then, dFG((G, [�0]), (H, [�1])) = �, and connected
components of the extended metric space GC are vac-
uously in one-to-one correspondence with homeomor-
phism classes of graphs. �

Setting G = [0, 1], an identical proof holds for paths.

Corollary 10 (Continuous Maps of Paths) The
space �C is path-connected.

We now demonstrate the stricter property of the
path-connectivity of open distance balls:

Lemma 11 (Metric Balls in (GC , dFP )) Metric
balls with �nite radius in (GC , dFP ) are path-connected.

Proof. Let � � R such that � > 0. Let (G, [�0]) � GC .

Consider the metric ball B := BdFG
([�0], �) in GC .

Let [�1], [�2] � B. We wish to �nd a path from [�1]
to [�2]. We �rst �nd a path in BdFG

([�0], �) from [�0]
to [�2], as follows. Set

� = � � dFG([�0], [�2]).

By Lemma 25, we know that there exists a homeomor-
phism h� : G � G such that the following inequality
holds: ||�0 � �2 � h�||� < dFG([�0], [�2]) + �/2.



35th Canadian Conference on Computational Geometry, 2022

Let � � C([�0], [�2]). Then, for all t � (0, 1),

dFG(�t,�0)

= inf
h

||((1� t)�0 + t(�2 � h�))� �0 � h||�


 ||((1� t)�0 + t(�2 � h�))� �0 � h�||�

< dFG([�0], [�2]) + �/2

< �.

Thus, �t � BdFG
([�1], �), which means there exists a

path from �0 to �2. Similarly, we �nd a path �
� from �1

to �0. Concatentating the two paths, ��#� we have a
path in BdFG

([�0], �) from [�1] to [�2]. Hence, metric
balls with �nite radius in GC are path-connected. �

Setting G = [0, 1], we obtain:

Corollary 12 (Metric Balls in (�C , dFP )) Balls in
the extended metric space (�C , dFP ) are path-connected.

4.2 Immersions

An immersion is a map that is locally injectivite. Thus,
self-intersections are allowed, but a map pausing or
backtracking is not. Next, we de�ne these notions, and
give examples in Figure 2.

De�nition 13 (Pausing) We say that a path � pauses
in an interval I � [0, 1] if �(x) = �(y) for every x, y � I.
In this case, [�] �� �I .

Another possible violation of local injectivity is back-
tracking on a path.

De�nition 14 (Backtracking) We say that a path �

is backtracking at a point x � [0, 1] if there exists � > 0
such that for every � � (0, �), either �|(x��,x) � �(x,x+�)

or �|(x,x+�) � �|(x��,x).

To show the path-connectivity of spaces of immer-
sions, the proof in Theorem 9 for continuous mappings
is almost su�cient, but these added violations must be
addressed. Thus, we introduce additional maneuvers to
avoid pauses and backtracking.

Lemma 15 (Rerouting Pauses) Let �0, �1 � ��I ,

and let � : [0, 1] � ��C be a path in ��C from �0 to �1.
Suppose there exists an interval [t1, t2] such that for
all t � [0, 1] \ (t1, t2), �t is an immersion. But, for
all t � (0, 1), �t has a single pause. Then, there exists
a di�erent path �

� : [0, 1] � �I that avoids the pause.

Proof. Let t � [t1, t2]. Let the pause in �t be over the
interval (at, bt) � [0, 1]. Let �t := min(t2 � t, t � t1).
We stretch the paused interval (at, bt) in �t by de�ning

a map �
�
t : [0, 1] � ��I as follows:

• �
�
t (��, at] is an oriented reparameterization

of �t(��, at � �t].

(a) Forced Backtracking (b) Constant Map

Figure 2: Examples of paths in �C but not �I . Fig-
ure 2a demonstrates a path with necessary backtrack-
ing at the red point. Figure 2b demonstrates a constant
path which (vacuously) must pause. For a nontrivial
example of a path with pauses, consider any parameter-
ization of a path sending an open interval to a point.

• �
�
t (at, bt) is an oriented reparameterization

of �t(at � �t, at]#�t[bt, bt + �)

• �
�
t [bt,�) is an oriented reparameterization

of �t[bt + �t,�)].

By construction, ��
t has removed the pause between at

and bt; hence, �s � ��I . Putting these maps together,
we obtain a map �

� : [0, 1] � ��C , where

�(t) :=

�
�t if t �� (t1, t2)

�
�
t if t � (t1, t2).

(2)

Moreover, � is continuous in �I . �

Direct linear interpolation can also yield degeneracies
by creating a singleton in speci�c circumstances, or by
creating a backtracking point. Each are addressed in
the following theorem, and a path is constructed.

Theorem 16 (Path Immersions) The extended
metric space (�I , dFP ) of paths immersed in R

n is
path-connected i� n > 1.

Proof. If n = 1, it is easy to see that �I is not path-
connected by examining intervals with reversed orien-
tation which trivially degenerate to a point when con-
structing a path, violating local injectivity.

Now, consider n > 1. Let [�0], [�1] � �I . Using Def-
inition 7, let � : [0, 1] � �C be the linear interpolation
from �0 to �1. This interpolation is in �C , not �I ,
so we explain how to edit � so that it stays in �I .
If �(t) � ��I for each t � [0, 1], we are done. Other-
wise, let T � I be the set of times that introduce a non-
immersion (i.e., t � T i� �(t) �� ��I , but �(t � �) � ��I

for all � small enough). There are two things that might
have happened at t: either an interval collapsed to a
point (a pause) or backtracking was introduced in �(t).

1. Suppose there exists t � T where an interval pauses
as in De�nition 13 and Figure 2b. Note that a
pausing event occurs either if an interval of �t

becomes degenerate, or �t collapses to a point.
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If pausing occurs only on an open interval (a, b) �
[0, 1] of �t � �t, it can be avoided using Lemma 15.
If pausing occurs on a closed interval [a, b] � [0, 1],
we convert it to the open set (a � �, b + �) for
small �, and use Lemma 15. If either a = 0 or b = 1,
we simply rede�ne �t to start at b or to end at a,
respectively, using Lemma 37. The pausing event
is guaranteed to conclude at some t + � for � 	 0
since [�1] � �I , and � must attain �1 � [�1].

If a pausing event stems from a full collapse to a
singleton (i.e. interpolation occurs between two co-
linear segments with reverse orientation, and con-
sequently degenerate to a point), the collapse can
be circumvented by rotating the path de�ning �t,
which is done in Lemma 38.

2. Alternatively, suppose there exists t � T which cor-
responds to backtracking at a point in a path �t

according to De�nition 14 and Figure 2a. Here, �t

can remain in ��I by in�ating a ball of radius �

for su�ciently small � > 0 about the backtrack-
ing point before it is created. This is included in
Lemma 39, and shown in Figure 6b.

For all t � T , the described moves can be used to
subvert lapses in local injectivity along �. Hence, we
construct a path � by interpolating from �0 to �1, and
applying the required move at each t � T to handle
pauses or backtracking. By the arbitrariness of �, we
have given a class of continuous paths from any ele-
ment �0 � [�0] to any �1 � [�1]. �

Theorem 17 (Metric Balls in (�I , dFP )) If n > 1,
then balls in the extended metric space (�I , dFP ) are
path-connected.

Proof. Let [�0], [�1] � �I , and let � > 0. Let � � �I be
the map � in the proof of Theorem 16. By Lemma 11,
linear interpolation does not increase the Fréchet dis-
tance. By design, avoiding singleton degeneracies by
way of Lemma 38 also does not increase the Fréchet
distance. Moreover, by construction, the map �

� of
Lemma 15 preserves the Fréchet distance. The maneu-
ver in Lemma 39 could potentially increase dFP (�t, �1)
at some time t � [0, 1], but in this case any critical
backtracking points can be perturbed slightly in order
to no longer de�ne the dFP (�t, �1). Hence, these moves
need not result in dFP (�t, �1) > �, meaning that �t �

BdFP
(�1, �), and balls in �I are path-connected. �

We use the same maneuvers from Theorem 16 in the
context for graphs under dFG.

Theorem 18 (Graph Immersions) For every
graph G, the extended metric space (GI(G), dFG) is
path-connected. Connected components of the extended
metric space (GI , dFG) are in one-to-one correspon-
dence with the homeomorphism classes of graphs.

Proof. We construct � identically to Theorem 16, but
interpolation occurs among each edge of G in GI(G)
rather than between individual segments. As in Theo-
rem 16, local injectivity can only be violated by pauses
and backtracking on edges, which are handled using
Lemma 15, Lemma 38, and Lemma 39 on each edge.
If (G, [�0]), (H, [�1]) � GI for G,H which are not home-
omorphic, then dFG((G, [�0]), (H, [�1])) = �. �

Similarly, we can adopt Theorem 17 for each edge in
a graph to show path-connectivity of balls in GI .

Theorem 19 (Metric Balls in (GI(G), dFG)) For
every graph G, the balls in the extended metric
space (GI(G), dFG) are path-connected.

Proof. Let [�] � GI , and let � > 0. Let B be the inter-
section BdFG

(�, �)�GI(G). Let [�0], [�1] � B. Construct
the path � : [0, 1] � B from [�0] to [�1] in the same way
as Theorem 18. Just as in Theorem 17, linear inter-
polation and the moves in Lemma 38, Lemma 39, and
Lemma 15 mandate that �(t) � B for every t � (0, 1)
identically to the path Fréchet distance. �

4.3 Embeddings

Lastly, we examine the path-connectedness property of
the analogous spaces of embeddings.

Theorem 20 (Path Embeddings) The extended
metric space (�E , dFP ) is path-connected in R

n if and
only if n > 1.

Proof. If n = 1, two paths with reverse orientations
are not path-connected.

Now, let n > 1, and let [�0], [�1] � �E . By Alexan-
der’s trick,3 there exists s0 � [0, 1] such that ��

0 :=
�0|[s,1] and s1 � [0, 1] such that ��

1 := �1|[s1,1], where s0
and s1 are nearly straight. Let � be the angle between
the segments ��

0 and ��
1. Let S : [ 14 ,

2
4 ] � �E be the map

rotating ��
0 by � to become parallel with ��

1. Finally,
let � be the interpolation from ��

0 � S to ��
1.

De�ne P : [0, 1] � �E as the resulting composition:

P (t) =

�
����
����

�0 |[(1�t)s,1], t � [0, 1
4 ]

S(t), t � [ 14 ,
2
4 ]

�(t) t � [ 24 ,
3
4 ]

�1 |[(1�t)s,1], t � [ 34 , 1].

The steps attaining ��
0 and ��

1, as nothing else than
a restriction of �0 and �1, are continuous. Moreover, S
is continuous as the rotation of ��

0, and � is continuous
by Lemma 35. By the arbitrariness of the constructed
path and �0, �1, there is a family of continuous paths for
any �0 � [�0], �1 � [�1], and �E is path-connected. �
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Figure 3: Two embedded paths �0, �1 in R
2 and R

3 re-
spectively, for which constructing a path � : [0, 1] �
�E ,�(0) = �0,�(1) = �1 is not possible without hav-
ing �(t) �� BdFP

(�1, dFP (�0, �1)) for some t � [0, 1].

Moreover, in high dimensions we can construct a path
in �E not increasing the Fréchet distance.

Theorem 21 (Metric Balls in (�E , dFP )) If n 	 4,
then balls with �nite radius in the extended metric
space (�E , dFP ) are path-connected in R

n.

Proof. If n 	 4, the same map � given in Theorem 16
is su�cient, except that self-crossings must be avoided.
At each s � [0, 1] where a self-crossing would occur,
we perturb � by a su�ciently small amount in order
to avoid a self-crossing without increasing the Fréchet
distance using the maneuver in Lemma 41. �

A simple examination shows that metric balls are not
path-connected in low dimensions.

Theorem 22 (Metric Balls in (�E , dFP )) If n �

{1, 2, 3}, then balls with �nite radius in the extended
metric space (�E , dFP ) are not path-connected in R

n.

Proof. For n = 1, let [�] � �E . Let ��1 := �(1 � t),
and note that ��1 � �E . If n = 2, consider two paths
within a �xed Fréchet ball that are much wider than
their Fréchet distance. If n = 3, consider two paths
with small Fréchet distance that form a loop, with one
section passing under the other. If these loops have
reversed orientation between the two paths, the Fréchet
distance must increase. See Figure 3 for examples. �

In the setting for graphs, the path-connectedness
property reduces to a knot theory problem if n 
 3,
and is not maintained. For n 	 4, we use the existence
of a sequence of Reidemeister moves [25] from any tame
knot to another to construct paths in GE .

Theorem 23 (Path-Connectivity of (GE , dFG), n 	 4)
For all graphs G and n 	 4, the extended met-
ric space (GE(G), dFG) is path-connected. More-
over, connected components of the extended metric
space (GE , dFG) are in one-to-one correspondence with
homeomorphism classes of graphs.

3Two embeddings of the n-ball are isotopic, �rst proven by
Alexander [3]; see also [15, §4].

Proof. Let G be a graph, and �0,�1 � GE(G). If n 	 4,
any tame knot can be unwound by a sequence of Reide-
meister moves into the unknot. Construct � : [0, 1] �
GE(G) by linear interpolating until some t � (0, 1)
causes �t to self-intersect. At t, there exists a Rei-
demeister move allowing the crossing event to occur.
Hence, any sequence of knots and free edges compris-
ing �0 and �1 can be unwound to a sequence of un-
knots and straight edges, and then interpolated accord-
ingly. Consequently, there exists a path from �0 to �1

in (GE(G), dFG). Note that we require �0,�1 are recti-
�able in Section 2. �

In dimension 4 or higher, the path-connectivity of
balls in GE(G) is shown in the same way as for paths.

Theorem 24 (Metric Balls in (GE(G), dFG))
For all graphs G and n 	 4, metric balls in the
space (GE(G), dFG) are path-connected.

Proof. The proof is identical to that in Lemma 41, but
Reidemeister moves are used for each edge in a graph
rather than a single segment. �

5 Conclusion

In this paper, we studied some fundamental topolog-
ical properties of spaces of paths and graphs in Eu-
clidean space under the Fréchet distance. In partic-
ular, we investigated metric properties of the Fréchet
distance on paths and graphs, as well as studying the
path-connectedness of metric balls in the space of such
graphs. While this work is theoretical and mathemat-
ical in nature, we feel that establishing the underlying
properties of the topological spaces it can de�ne pro-
vides an important theoretical backdrop, which is espe-
cially critical due to the widespread popularity of the
Fréchet distance in computational geometry, and the
growing popularity of its extension for graphs. Our
contribution begins a careful study of the Fréchet dis-
tance and its topological properties. Extensions to this
work abound, and include examining core topological
properties of other distance measures in computational
geometry, as well as other important properties of the
Fréchet distance.
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A Distances and Topology

Let R̄ denote the extended real line: R̄ = R �±�. We
now provide the basic de�nitions relating to distances
and topology used throughout this paper.

A.1 Graphs

Graphs are a central object studied in this paper.
Throughout this paper, we use the term graph to

mean a multi-graph. A multi-graph G = (V,E) is a
�nite set of vertices V and edges E. Self-loops and mul-
tiple edges between two vertices are allowed in this set-
ting. A graph is an example of a more general structure
called a CW complex, which we topologize as follows:
(1) the topology on G restricted to V is the discrete
topology; (2) for a edge e, the open sets restricted to
is closure ē are those induced by the subspace topology
on [0, 1] � R and a homeomorphism [0, 1] � ē; (3) we
take the quotient topology on (�v�V ) � (�e�E ē).

A.2 Fréchet Distance

We de�ned the path and graph Fréchet distances in Sec-
tion 2. The path Fréchet distance is well-studied [1, 4–
8, 10–14, 16–18, 20–22]. The graph Fréchet distance has
been less studied, but many results for paths transfer to
graphs.

The proof of the following lemma follows from the
de�nition of Fréchet distance and the de�nition of in�-
mum.

Lemma 25 (Approximator) For all graphs G,
if [�0], [�1] � �C(G), then for every � > 0, there exists
a homeomorphism h� : G � G such that

||�0 � �1 � h||� < dFG(�0,�1) + �.

Proof. By De�nition 3,

dFG([�1], [�2]) = inf
h

||�1 � �2 � h||�.

Then, by the de�nition of in�mum, for every � > 0,
there exists h� : G � G such that

||�1 � �2 � h�||� < inf
h

||�1 � �2 � h||� + �/2

= dFG([�1], [�2]) + �/2,

as was to be shown. �

A.3 De�ning Spaces from Distances and Metrics

Given a set X and a d : X× X � R̄�0, we topologize X

as follows:

De�nition 26 (The Open Ball Topology)
Let X be a set and d : X × X � R̄�0 a dis-
tance function. For each r > 0 and x � X,
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let Bd(x, r) := {y � X | d(x, y) < r}. The open
ball topology on X with respect to d is the topology
generated by {Bd(x, r) | x � X, r > 0}. We call (X, d) a
distance space.

In words, Bd(x, r) denotes the open ball of radius r
centered at x with respect to d. We use these open balls
to generate a topology on X, allowing x to range over X
and r to range over all positive real numbers.

We are particularly interested in distance functions
that are either a pseudo-metric or a metric. These are
de�ned as follows.

De�nition 27 (Pseudo-Metric) Let X be a set and
let d : X×X � R̄�0 be a distance function. We call d a
pseudo-metric on X if d satis�es the following:

• Finiteness: d(x, y) < � for all x, y � X.

• Identity: d(x, x) = 0 for all x � X.

• Symmetry: d(x, y) = d(y, x) for all x, y � X.

• Subadditivity (the triangle inequality): d(x, z) 


d(x, y) + d(y, z) for all x, y, z � X

If d satis�es everything except �niteness, then we call d
an extended pseudo-metric.

In order to be a metric, d must ful�ll stricter criteria:

De�nition 28 (Metric) Let X be a set and let the
function d : X × X � R̄�0 be a pseudo-metric. We say
that d is a metric if d also satis�es:

• Seperability: for any x, y � X, if x �= y,
then d(x, y) > 0.

Often, if (X, d) is a pseudo-metric space, a standard
procedure is to de�ne an equivalence class for x, y � X

where x � y if d(x, y) = 0. Then, the quotient
space X /� is a metric space.

Common examples of metrics on function spaces are
those induced by Lp-norms. For example, let (Y, dY)
be distance space, let X be any topological space, and
let f, g : X � Y. Then, the distance induced by the L�-
norm between f and g is:

||f � g||� = max
x�X

dY(f(x), f(y)).

A.4 Paths and Maps

With the basic de�nitions from topology in hand, we are
equipped to de�ne a property of fundamental interest in
topology: path-connectedness.

De�nition 29 (Path) A path in a topological space X

between two elements a, b � X, is de�ned to be a contin-
uous map � : [0, 1] � X where �(0) = a, and �(1) = b.

Given two paths �1, �2 : [0, 1] � X such that �1(1) =
�2(0), we combine them by taking both at double-speed.
This is called the concatenation of paths. In particular,
�1#�2 : [0, 1] � R

n is de�ned by:

�1#�2(t) :=

�
�1(2t) t � [0, 0.5].

�2(2t� 1) otherwise.

Given one path � : [0, 1] � X and an interval [a, b] 

[0, 1], the restriction of � to [a, b] is also a path, given by:

�|[a,b](t) := �(a+ t(b� a)).

With the de�nition of paths, we de�ne a primary
property of interest in this paper: path-connectivity.

De�nition 30 (Path-Connectivity) A topological
space X is called path-connected if there exists a path
between any two elements in X.

We also de�ne the path-connectedness property
speci�cally for distance balls:

De�nition 31 (Path-Connectivity of Balls)
Let (X, d) be a topological space, let x � X. We say that
the distance balls in (X, d) are path-connected if for
every x � X and r � R�0, the distance ball Bd(y, r) is
path-connected.

And, the length of a path in a distance space is
given by:

De�nition 32 (Length) Let (X, d) be a distance space
and let � be a path in (X, d). Let P be the set of all �nite
subsets P = {ti} of [0, 1] such that such that 0 = t0 <
t1 < . . . < tn = 1. The length Ld(�) of � is:

Ld(�) := sup
P�P

n	

i=1

d(�(ti), �(xi�1)).

Additionally, it is often useful in our setting to repa-
rameterize paths, both to de�ne the Fréchet distance
and to maintain properties such as injectivity in a map.

De�nition 33 (Reparameterization) Let X,Y be a
topological spaces, � : X � Y, and h : X � X is a home-
omorphism. Then, we call � � h a reparameterization
of �. In the setting where X = [0, 1] and h(0) = 0, we
call � � h an orientation-preserving reparameterization.

B Omitted Details for Path-Connectivity

In this appendix, we provide additional context for the
proofs of path-connectivity in Section 4.
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pauses with the newly de�ned �
�
t . And so, we de�ne a

new map �
� : [0, 1] � �C as follows:

�
�(t) :=

�
�t if t �� (t� �, t+ �)

�
�
t if t � (t� �, t+ �)

(4)

Indeed, it is easy to verify that each �
�
t preserves local

injectivity so �
�
t � �I . Moreover, �� is continuous. �

We now examine the case when linear interpolation
results in a singleton, which causes a degeneracy in
spaces of immersions. We give a maneuver to subvert
this for paths.

Lemma 38 (Dodging Singletons) Let [�0], [�1] �

�I , and let � : [0, 1] � �C be a linear interpolation
from �0 to �1. Let t � [0, 1] such that �(t) is a con-
stant map, forcing �(t) �� �I . We can avoid this total
degeneracy by rotating �(t).

Proof. Linear interpolation of �0 to �1 produces a sin-
gleton if the two equivalence classes of paths are colinear
with reversed orientation. Hence, if �t degenerates to
a constant map, there exists su�ciently small � > 0
to continuously rotate �(t � �) by 	 without forcing
dFP (�(t), �1) > dFP (�0, �1). Thereby reversing the ori-
entation of �(t+ �), and avoiding the constant map for
any �t � �t. See Figure 5 for an example. �

We now consider the case of backtracking during lin-
ear interpolation, which violates local injectivity. We
introduce a maneuver to solve this potential degener-
acy in spaces of immersions.

Lemma 39 (The Q-Tip Maneuver) Let [�0], [�1] �
�I , and let � : [0, 1] � �C be a linear interpolation
from �0 to �1. Let t � [0, 1] such that �(t) creates back-
tracking for some �(t). In�ating a ball about the critical
backtracking point corrects this violation of injectivity.

Proof. In the scenario of a backtracking event, local
injectivity is only violated at the exact critical point
�t(x) for x � [0, 1] where backtracking occurs. For suf-
�ciently small �, � > 0, continuously in�ate a ball of
radius � about �t��(x) such that dFP ([�t� �], [�1]) re-
mains �xed, creating the path �

�
t with a ball replacing

the critical point, so that �
�
t � ��I . Then, replace any

backtracking �t with the corresponding �
�
t . For every

t � [0, 1] it holds that �t � �I , and by the continuity of
the in�ation, � remains continuous. For an example of
this maneuver, see Figure 6b. �

B.3 Balls of Path Embeddings in Greater Detail

In what follows, we elaborate on counterexamples for
the path-connectivity of balls in �E and GE . We begin
with a counterexample for path embeddings in R

2.
We continue with a brief description of counterexam-

ples for the path-connectivity of embedded paths in R
3.

(a) Paths with reversed orientation

(b) Interpolate

(c) Rotate when sufciently close

Figure 5: For colinear paths with opposing orientation,
rotating by 	 avoids degenerating to the constant map,
keeping � in �I . Moreover, rotation with su�ciently
small Fréchet distance maintains the path-connectivity
of balls.
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(a) Example path with backtracking

(b) In�ate the critical backtracking point

Figure 6: Reconcile forced backtracking along a path
by in�ating a ball about the critical backtracking point,
thereby maintaining local injectivity.

Lemma 40 (3d Balls in �E) If n = 3, metric balls
in the space (�E , dFP ) of embedded paths in R

n are not
path-connected.

Proof. Metric balls are not in general path-connected
in three dimensions. For a simple counterexample, sup-
pose �0 comprises a loop in R

3, where a segment crossed
on top of itself, avoiding self-intersection by some small
distance �, with long tails at either end of the crossing
of length 2�. Suppose also that �1 comprises the mirror
image of �0. Then, dFP = �, but it is not possible to
construct a path from �0 to �1 without increasing the
Fréchet distance between the two, since �0 must conduct
a self-crossing, which increases the Fréchet distance by
at least 2�. Again, see Figure 3 �

We conclude with additional details demonstrating
the path-connectivity of balls for embedded paths in R

4

or higher.

Lemma 41 (Balls in (�E , dFP ), n 	 4) If n 	 4,
balls in the metric space of embedded paths (�E , dFP )
in R

n are path-connected.

Proof. Let [�0], [�1], [�2] � �E in the ambient space
R

n, for n 	 4. Let � > 0, and B := BdFG
([�0], �) � �E .

Since all topological knots are represented equivalently
in only three dimensions, without loss of generality, we
consider the projections of every �0 � [�0], �1 � [�1], and
�2 � [�2] in R

3. Construct a continuous � : [0, 1] � �E

by the linear interpolation from �(0) = �1 to �(1) = �2.
By the recti�ability of the embeddings �1 and �2, the
interpolation must reduce dFP (�1, �2) by some � > 0
before a self-crossing is required in the image of �t at
some t � [0, 1].

At t, conduct a self-crossing by perturbing �t in the
fourth dimension by no more than �/2. This increases

dFP (�t, �2) by no more than �/2. Hence, dFP (�t, �2) is
either strictly decreasing as t � 1, or necessarily sat-
is�es dFP (�t, �2) 
 � � �/2 for � > 0. This is to say,
for all t � [0, 1], dFP (�t, �2) 
 �, and �t � B. Hence,
metric balls in the space are path-connected. �


