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Abstract— Temporal logic specifications have been used to
express complex tasks for control systems. Discretization-free
approaches, which do not require discretizing the state and
input spaces of the system, have been proposed for control
synthesis under temporal logic specifications. Among these
approaches, control barrier certificate (CBC)-based solutions
have attracted increasing attention. The existing CBC-based
approaches, however, have no guarantee on always finding
control laws to satisfy the specification, and hence are sound
but not complete. In this paper, we derive the necessary and
sufficient conditions for a control law to satisfy a temporal logic
specification over finite traces using CBCs. By leveraging the
equivalence between satisfying the specification and violating
the negated specification, we first negate the specification
and construct the deterministic finite automaton (DFA) as a
representation. We then decompose the DFA into a set of safety
problems, where each decomposed problem corresponds to a
transition in the DFA. We derive the necessary and sufficient
conditions for a control law to solve each safety problem
via CBC-based approach. We further develop the necessary
and sufficient conditions to verify whether the control laws
associated with different safety problems are composable or not.
The composability captures whether a sequence of transitions
in the DFA can be realized by the system or not. If the set
of composable control laws does not render an accepting run
on the DFA, then the system can satisfy the specification. We
illustrate the proposed approach using a numerical case study
on a multi-agent system.

I. INTRODUCTION

Temporal logics [1] have been widely used to specify
complex tasks across various application domains including
robotics [2], [3] and traffic network control [4]. As a con-
sequence, verification and control synthesis under temporal
logic properties have gained increasing attention.

Verification and control synthesis under temporal logic
constraints can be achieved using off-the-shelf model check-
ing algorithms [1]. These algorithms construct a finite ab-
straction via discretization to model the original system
[2], [5]-[8]. When the discretization granularity is suffi-
ciently small, (approximately) equivalent abstractions can be
generated, rendering discretization-based control synthesis
to be sound and complete [9], at the expenses of inten-
sive computational complexity. Recently, researchers have
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proposed compositional abstraction of large-scale systems
to mitigate the curse of dimensionality, including small-
gain type conditions [10], dissipativity approaches [11], and
dynamic Bayesian networks [12].

An alternative way to mitigate the computational challenge
incurred by the discretization-based approaches is through
discretization-free approaches [13]-[16], which focus on the
continuous state space without discretization. Recently, con-
trol barrier certificates (CBCs) and control barrier functions
(CBFs) have been used to satisfy temporal logic properties
[13]-[20]. CBC- and CBF-based approaches decompose the
temporal logic specification into a sequence of safety and/or
reachability problems, where each decomposed problem
corresponds to a transition in the automaton representing
the temporal logic formula. These approaches derive a
control law to satisfy each decomposed specification. The
aforementioned CBC- and CBF-based approaches, however,
only provide sufficient conditions without any complete-
ness guarantee. Consequently, there may exist control laws
that allow the system to satisfy the given temporal logic
specification, but cannot be found by the CBC- and CBF-
based approaches. One reason of such incompleteness is
that the existing CBC- and CBF-based approaches treat
each transition in the automaton independently. However,
such an independence assumption is not valid due to the
underlying system dynamics [21], [22]. At present, necessary
and sufficient conditions for discretization-free approaches to
satisfy a temporal logic specification have been less studied.

In this paper, we consider a continuous-time control-affine
system subject to a linear temporal logic (LTL) specification.
We consider a fragment of LTL formula, namely LTL over
finite traces. Our objective is to derive the necessary and
sufficient conditions for a CBC-based approach to satisfy
the given LTL specification. We observe that satisfying the
specification is equivalent to violating its negation. We then
negate the specification and construct an equivalent finite
automaton to represent the negated specification. We con-
struct a set of safety verification problems, with each problem
corresponding to a transition in the automaton. We then solve
each decomposed safety verification problem using CBCs.
We finally develop a set of conditions to compose the result
from each individual safety verification problem. We make
the following contributions in this paper.

o We derive the necessary and sufficient conditions for

a control law to guarantee the satisfaction of each de-
composed safety verification problem using CBCs. We
propose a labeling procedure to label each transition in
the automaton to indicate the result of the corresponding



safety verification problem.

« We explicitly consider the dependencies among transi-
tion by investigating the composability of the control
laws associated with the safety verification problems.
We derive the necessary and sufficient conditions for
the control laws to be composable. The composability
result together with the safety verification result yield
the necessary and sufficient conditions for falsifying the
existence of an accepting run on the automaton, and
hence the satisfaction of the given specification.

o We demonstrate the proposed approach using a multi-
agent system. We show that the controller obtained
using the derived conditions guarantees the agents to
satisfy the given specification.

The remainder of this paper is organized as follows.
Section II presents preliminary background on LTL over
finite traces. We formulate the problem in Section III. The
necessary and sufficient conditions to satisfy LTL specifica-
tion are derived in Section IV. We present a numerical case
study in Section V. We conclude the paper in Section VI.

II. PRELIMINARY BACKGROUND

In this section, we present preliminary background on
linear temporal logic (LTL) over finite traces, denoted as
LTL  [23]. We also introduce deterministic finite automaton
which can be used to express the LTLy formula.

Let II be a set of atomic propositions. An LTLr formula
is constructed using the atomic proposition set II, and is
defined inductively as [23]

e=T|m|~¢|ei N2 |p1Va|piUps | O | Oy,

where U, ¢, and O are until, eventually, and globally
operators, respectively, m € Il. Since we will work in the
continuous time domain, we omit the next operator of LTL .

Let 3 be a sequence of assignments of truth values to
atomic propositions 7 € II. We let the length of 5 be |3].
Then the semantics of an LTLy formula is defined over .
Let the set of atomic propositions that are true at ¢-th position
of 8 be 5(i). Then the satisfaction of LTLy formula ¢ at
the position i, denoted as 3,7 |= ¢, is recursively defined as

o B,i = miff T € B(4);

° ﬁ,l ': -y 1ffﬁ7l Fé ©;

o ByilE 1 Ao iff B =1 and B,i = po;

o ByilE 1 Vo iff B,i =1 or B = o

e (3,1 = 1 Ups iff there exists some position ¢ < j < |3

such that 0,5 |= 9 and 8,k | ¢ for all i < k < j;

e 3,1 = Oy iff there exists some position i < j < |f|

such that 0,5 = ¢;

e (3,1 | Oy iff for all positions ¢ < j < |3] we have that

0,7 = ¢ holds.

Given an LTL» formula, we can construct a deterministic
finite automaton (DFA) as an equivalent representation [23].
The DFA will accept all and only words over II that satisfy
. A DFA is defined as follows.

Definition 1 (Deterministic Finite Automaton (DFA) [1]). A
DFA is a tuple A = (Q,%, 9, qo, F), where Q is a finite set

of states, ¥ = 25 is the finite set of alphabet, § : Q x 3 — Q
is a finite set of transitions, qo € Q is the initial state, and
F' is a finite set of accepting states.

Given a state ¢ € ), we define the set of neighbor states
of ¢ as N(q) = Uzé(q,a) \ {q}. i.e., a state ¢ # q is
a neighbor state o? Eq if there exists some transition § such
that the DFA can transition from g to ¢’. A finite word on
DFA A is a finite sequence of symbols in ¥, defined as
o = 00,01,...,0n_1. Given a word o, a run 7 on A is a
finite sequence of states 17 = qo, 1, - - ., ¢n such that g; 41 =
d(gj,05), where j =0,1,...,n—1. A run 7 is an accepting
run if it intersects with the accepting states F'.

III. PROBLEM FORMULATION

We consider a continuous-time control-affine system

#(t) = f(x(t) + g(x())u(?), ey

where z(t) € X C R™ is the system state at time ¢, and
u(t) € U C R™ is the control input. The initial state at
time ¢ = 0 is denoted as x(0). The vector fields f and g are
locally Lipschitz continuous. Given the current system state
z(t), a feedback control law is a function p: X x M — U
specifying the control input at each time ¢ > 0, where M
is a finite set representing the memory. As we will detail
in Section IV, set M can be chosen as M = @ to track
the state evolution on automaton .A. Given the initial system
state 2(0) and a control law p, we define the trajectory of
system (1) as x : R>g — &', which specifies the system
states x(t; 2:(0), u) achieved by applying control law p at
each time ¢ > 0 when the system starts from z(0).

The system presented in Eqn. (1) is given a specification
modeled by LTL . The objective of the system is to satisfy
the given LTLy specification. We let II be the finite set
of atomic propositions. We define a labeling function L :
X — 2 that maps any state *+ € X to a subset of
atomic propositions that hold true at state . For each atomic
proposition 7 € II, we define define [7] = {z : # € L(x)}
to be the set of states that satisfies the atomic proposition
7 € II. With a slight abuse of the notation [-], for a subset
of atomic propositions A € 2!, we define

4] = {X\U,Ten[[ﬂ]], fA=0,

Nrealr]\ UweH\A[[ﬂ], otherwise.

That is, [A] is the subset of system states X’ that satisfy all
and only the propositions in A [24]. For an LTLy formula
o = m < o obtained using Boolean connectives, we define
[o] recursively as

] = {M Mo, if b=

[7] U [o1], if <=V

where o1 is an LTLp formula involving only Boolean
connectives. In the following, we define the satisfaction of a
given LTL specification by system (1) using the trace of a
system trajectory x given as follows.



Definition 2 (Trace of Trajectory [24]). Let tg, 1, ..
a time sequence such that

e D=ty <t1 <...<tpn,
o Lx(t2(0), ) = L(x(tisa(0), ) for all ¢ €
[tk,trt1) where k=0,..., N,
o lim. g L(x(tr,—€;2(0), 1)) # L(x(tx; x(0), 1)) for all
k=0,... N.
We then say the sequence Trace(x) = Ag, A1,..., AN is
the trace of trajectory x, where Ay, = L(x(t;x(0), 1))

.,tN be

The trace given in Definition 2 describes the sequence
of the atomic propositions that is satisfied by the system
trajectory. Following the semantics of LTLp, one can ver-
ify whether a given specification ¢ is satisfied or not. If
Trace(x) = ¢, we say system (1) satisfies the specification
o under control law p, or control law g satisfies . We
summarize the problem studied in this paper as follows.

Problem 1. Given the initial system state 2(0) for system (1),
derive the necessary and sufficient conditions for a control
law p so that system (1) satisfies the given LTL specification
o belonging to LTLp.

IV. SOLUTION APPROACH

In this section, we present our proposed solution approach
to Problem 1. Given the LTLf specification ¢, we first take
the negation of ¢, denoted as —p. Taking the negation allows
us to convert the problem of reaching the accepting states of
the DFA representing ¢ to an equivalent safety problem. We
then construct the corresponding DFA A = (Q, X, 4§, qo, F)
of = as given in Definition 1. For each transition of A, we
verify whether system (1) can realize the transition or not. If
the transition can be realized by the system under any control
law, then we say the transition is feasible. The verification
is achieved by searching for a control barrier certificate
(CBC), whose existence is equivalent to the infeasibility of
the transition. We label each transition of A based on the
verification result to indicate if the transition is feasible or
not. We finally verify if there exists an accepting run on DFA
A starting from the initial state g such that each transition
of the accepting run is feasible. If no such accepting run
exists, then system (1) violates —p, and thus satisfies ¢. If
an accepting run exists after we label the automaton, then for
each accepting run, we verify the composability of the con-
trol laws associated with the transitions along the accepting
run. If the control laws are composable, then specification ¢
cannot be satisfied. A summary of our proposed approach
is presented in Algorithm 1. We detail each step of our
proposed solution approach in the remainder of this section.

A. Verifying the Feasibility of Transitions in the Automaton

In this subsection, we present how to verify the feasibility
of each transition in the DFA A corresponding to the negated
formula —¢, as needed in line 4 of Algorithm 1.

Given the DFA A of the negated formula —, we construct
the following sets corresponding to the transition from state

q to ¢’ € N(q) under input symbol o:
O = [al, A7 = [6,]0 0], Q7 =QfUQLT, (3)

where ¢, € X is the input symbol leading to the transition
8(q, ¢q) = q. Here state set Q7 C X is the set of states such
that L(x) triggers DFA A to take the self-loop transition
at state ¢ € @ for all x € Q. State set Q;Z*ql C X is
interpreted as the set of states whose labels cause the DFA
to transition from state ¢ to ¢’ and remains at state ¢’. We
remark that when ¢, is not explicitly given in the DFA, we
can choose 2/ in the following way. We define X as X7 =
Ugen(glo : @ = 6(g,0)}. We then let Qf = [X\ X].
When X7 = X, then there must exist some state ¢’ # ¢ such
that the transition from state ¢ to ¢’ is automatically realized.
Throughout this paper, we make the following assumption.

Assumption 1. We assume that sets QI and Q%9 are
compact for each transition from state ¢ € @Q to ¢ € Q
in automaton A.

When Assumption 1 holds, we have that set a4’ C X is
also compact. In the following, we verify the feasibility of
transition from state ¢ to ¢’ under input symbol o using a
safety property. The feasibility is defined as follows.

Definition 3 (Feasibility of a transition). A transition from
q to ¢’ under input symbol o of a DFA is said to be feasible
if and only if there exists some state x € [Q]] and a time
T > 0 such that every control law y for system (1) satisfies
x(T;z, 1) € [Q27].

If a transition is feasible, then we say the transition can
be realized by system (1). Thus if there exists an accepting
run on the DFA of —¢ whose transitions can be realized by
system (1), then specification ¢ cannot be satisfied by the

Algorithm 1 Summary of the proposed solution approach
1: Input: Specification ¢, system dynamics (1)
2: Output: Control law p
3: Compute the automaton A corresponding to the negated
formula —¢
4: Verify the feasibility of each transition of A via Theorem
1
5: Label each transition from state ¢ to ¢’ using a tuple
(Yg.'» Ug.a’)
6: if the labels yield an accepting run then
for each labeled accepting run do )
Verify the separation of each set Q77 along the
accepting run via Proposition 1

9: if the conditions in Theorem 2 do not hold then
10: return failure

11: break

12: end if

13: return the control law p

14: end for

15: else

16: return the control law p

17: end if




system. We will verify the feasibility of each transition in .4
using a safety property defined as follows.

Definition 4 (Safety). Consider system (1). Let X C R”,
X, X C X be given sets. System (1) is safe under a control
law p if there exists no system trajectory with x(0) € X,
x(T;x(0), ) € X, for some T > 0 and x(t;2(0),u) € X
forall t € 0,T).

As shown in [25], the safety property given in Definition
4 can be verified using a control barrier certificate (CBC).
We have the following preliminary result.

Lemma 1 ( [25]). Consider system (1). Let Q4 c R"
Qf,Q,‘qu, C Q29 pe compact sets. Suppose there exists a
continuously differentiable function b such that %( flz) +
g(@)u(z)) < 0 holds for some control law p and for all
x € QU9 Then there exists a continuously differentiable
function B satisfying

B(z) <0, Vz € Qf, (4a)
B(z) >0, Vo € Q07 (4b)
9B ()f (@) + gopu()] <0, Vo e 0o (o)

dx
if and only if the safety property in Definition 4 holds under

some control law p : Q4" — U, where Qf Qg’q,, and Q49
correspond to X;, X,., and X in Definition 4, respectively.

Function B satisfying Eqn. (4) is a CBC. Leveraging
Lemma 1, we verify the feasibility of the transition from
state ¢ to ¢’ under input symbol o as follows.

Theorem 1. Consider system (1) and a transition from state
q to ¢’ under input symbol o. Let 1, Qﬁ’q,, and Qv9
be defined as in Eqn. (3) satisfying Assumption 1. Suppose
there exists a continuously differentiable function b such that
20 (f(x)+g(x)u) < 0 holds for all u and for all x € Qd’,
Then the transition from state q to q' under input symbol o
cannot be realized by system (1) if and only if there exists a
CBC B(z) satisfying Eqn. (4) under a control policy p.

Proof. By Lemma 1, we have that the safety property holds
if and only if there exists a CBC B(x) satisfying Eqn. (4).
Then the proof reduces to show the equivalence between the
infeasibility of the transition on automaton A and the safety
property as given in Definition 4.

We first show that if the safety property holds, then the
transition from state ¢ to ¢’ under input symbol o cannot
be realized by system (1), i.e., the transition is infeasible.
We prove by contradiction. Suppose that the safety property
holds while transition from state ¢ to ¢’ under input symbol
o is feasible. Using Definition 4, we have that the system
trajectory cannot reach Q‘TI”/ for some 7" > 0 while ensuring
xy € Q09 forall t € [0, T']. To this end, the system trajectory
can only reach Qg’q' by leaving set Q44" which can only
be triggered via some other input symbol ¢’ # o, leading to
contradiction.

We next prove that if the transition from state ¢ to ¢’ under
input symbol o is infeasible, then the safety property holds.

Suppose that the transition is infeasible while the safety
property does not hold. Therefore, there exists some system
trajectory such that xy € Qf, T € QZ"I’ for some T > 0
and z; € Q®9 for all t € [0,T]. Using Eqn. (3), we have
that this trajectory realizes the transition from from state ¢

to ¢’ under input symbol o, leading to contradiction. O

Using Theorem 1, we can verify whether each transition in
DFA can be realized by system (1) or not. In the following,
we design a labeling procedure to label each transition from
state ¢ to ¢’ in DFA using one or multiple pairs (yq.4/, Uqg.q)
based on its feasibility, where y, o € {0,1} and U, » C U.
This corresponds to line 5 of Algorithm 1. For a transition
from state ¢ to ¢’ in DFA A, if we can find some CBC
B(x) and non-empty U, , # () such that any u € U, , C
U renders Eqn. (4) to be satisfied under control law g :
Qud — Uy,q» then we label transition from state ¢ to ¢’ as
(Yq,q'> Uq,q'), Where y, o = 0. In addition, if there exists a
self-loop transition at state g, we label the self-loop transition
as (Yq,q:Uq.q)» Where y, o = 1 and U, , = U, . If no CBC
B(z) can be found to satisfy Eqn. (4), we label y, o =1
and y, , = 0 when the self-loop transition at state g exists.

B. Composable Control Laws and Realizability of —p

Using Theorem 1, we have that the feasibility of each
transition in automaton A can be verified by computing a
CBC B(x). Given the feasibility of each transition, we then
label each transition of A using (yq,q, Ug,q). Using these
labels, we finally verify whether there exists an accepting
run on A starting from ¢o such that each transition along the
run is labeled as y,, = 1 (line 6 of Algorithm 1). If no
such run exists (line 15-17 of Algorithm 1), then system (1)
satisfies the specification ¢ under some control law p. We
formally state this result as follows.

Lemma 2. There exists a control law p for system (1) to
satisfy specification @ if there does not exist an accepting
run on A with all transitions being labeled as yq 4 = 1.

Proof. The lemma holds by the equivalence between violat-
ing —p and the absence of an accepting run. O

We next discuss the scenario where an accepting run on
A, denoted as 7, can be found with each transition along 7
being labeled as y,,, = 1. This scenario corresponds to line
6-14 in Algorithm 1. We observe that even if an accepting
run on A is found and labeled in Algorithm 1, system (1)
may not always be capable of realizing it. The reason is
that there exist dependencies between the transitions along
n [21], [22]. The dependencies, raised due to dynamics in
Eqn. (1), capture whether the control laws associated with the
transitions along 7 can be composed or not. In the following,
we derive the conditions for control laws to be composable
and thus system (1) can realize the accepting run 7.

We first discuss the dependencies between the transitions.
Consider an accepting run 7 that is labeled as yq, = 1
for each transition from ¢ to ¢’ along 7. For each state ¢
along the accepting run 7, we define the forward reachable



set when starting from Q7 as

Rpwa() =

T>0,20€0!

{JST LxT = X(T; Zo, M)

for some control law u}. (5)

We additionally define the backward reachable set as

Rier () ={z : 3T > 0 s.t. x(Tz, p) € Qf
for some control law u}. (6)

We observe that accepting run 7 cannot be realized by system
(1) when there exists at least one state ¢ on 1 such that

wad(QfTe(qm)) N Rbck(quC(qm)) =0,

where pre(q;m) and suc(g;n) are the predecessor and
successor of state g along run 7, respectively. In the re-
mainder of this subsection, we verify the emptiness of
wad(ﬂfre(qm)) N Rbck(ﬂfuc(qm)) via set separation which
is defined below.

Definition 5 (Set Separation). Let sets R1, Ro C Qg*ql be
closed. We say Ri and R are separable by system (1) if
there exists no time T > 0 such that x(T; x(0), u) € Ro and
x(t;x(0), ) € QO for all t € [0,T) when starting from
R1 by implementing some control law .

As shown in [26], set separation can be verified via a
certificate D(x).

Lemma 3 ( [26]). Let sets Ry and Ro be closed subsets of
X. Then R and R4 are separable if and only if there exists
some function D(x) satisfying

D(Il) < D(l’g), Vo, € Rl,l’g € Ro (7a)
it (02 (@) 4 glayw)} <0, Ve e X (Tb)

Leveraging Lemma 3, we verify the the emptiness of
wad(ere(qm)) N Rbck(quc(qm)) as follows.

Theorem 2. Suppose that Assumption 1 holds. System (1)
cannot satisfy specification o if and only if there exists some
accepting run 1 on DFA A such that each transition from
state q to ¢' along n is labeled with y, . = 1 by line 5 of
Algorithm 1, and for any state q along accepting run n, sets
R1(q),R2(q) C QFf are not separable by system (1) under
any control law u, where

Ri(q) = Rpua (1) N QY
Ra(q) = Roer (") N QY.

K2

Proof. We first prove the ‘if” direction. If line 5 of Algorithm
1 yields an accepting run with y, . = 1 for each transition
from ¢ to ¢’ along n, and R4 (q) and R2(q) are not separable
by system (1) under any control law p, we have that system
(1) joins sets R1(g) and Ro(g) without leaving set 7. As
a consequence, the accepting run 7 is realized by system (1)
regardless of the choice of control law p. Since 7 is accepted
by the automaton corresponding to —p, we have that system
(1) cannot satisfy .

We next prove the ‘only if’ direction. When the sys-
tem cannot satisfy specification ¢, it implies that run 7
corresponding to —¢ can be realized by the system under
any control law. Therefore, Algorithm 1 must label some
accepting run, i.e., each transitions from state ¢ to ¢’ along
7 is feasible. The self-loop transition at each state g along
7 is feasible for all ¢, indicating that R;(q) and Ry(q) are
not separable under any control law. [

Theorem 1 and Theorem 2 together give the necessary and
sufficient conditions for a control law to satisfy specification
. That is, any control law that satisfies Theorem 1 and
Theorem 2 guarantees the satisfaction of ¢. If there exists
no control law g that can satisfy Theorem 1 and Theorem
2, then specification ¢ cannot be satisfied by system (1).

Computing the reachable sets for nonlinear system (1) is
difficult [27]. In what follows, we show that the conditions
given in Theorem 2 can be verified by synthesizing two
separable sets Wi, W, C Qf and checking the feasibility
of a set of inequalities.

Proposition 1. Suppose that Assumption 1 holds. Let q be
some state along an accepting run 7 given by line 5 of
Algorithm 1. Let o be defined as q = 6(pre(q;n), o). Sets
Ri(q) and Ra(q) are not separable if and only if there
exist sets Wy, Ws C Q? and no continuously differentiable
Sfunctions B1(x), Ba(x), and D(x) satisfying

By(z) <0, Vo € QPre@m), (8a)
Bi(z) > 0, Yz € Wy, (8b)
. 0B
it {224 0)[f(0) + glaul) <0,

Yz € (Qf’“e(‘m’q UWr N [[a]]) . (80)
Bs(z) <0, Yz € W, (8d)
By (z) > 0, Y € QIsuel@n) (8e)
. 0By
Inf {——=(2)[f(2) + g(z)u]} <0,

va € (W, upeeon ) (8)
D(x1) < D(x2), Vo1 € Wi, 22 € Wh, (82)
oD .
igg{g(f(x) +g(x)u)} <0, Yoz e Q. (8h)

Proof. We first prove the ‘if” direction. If line 5 of Algorithm
1 yields an accepting run with y, , = 1 for each transition
from ¢ to ¢’ along 7, and R1(q) and R2(q) are not separable
by system (1) under any control law p, we have that system
(1) joins sets R1(q) and Ro(g) without leaving set Q7. As
a consequence, the accepting run 7 is realized by system (1)
regardless of the choice of control law p. Since 7 is accepted
by the automaton corresponding to —¢, we have that system
(1) cannot satisfy .

We next prove the ‘only if’ direction. When the sys-
tem cannot satisfy specification ¢, it implies that run 7
corresponding to —¢ can be realized by the system under
any control law. Therefore, Algorithm 1 must label some
accepting run, i.e., each transitions from state ¢ to ¢’ along



7 is feasible. The self-loop transition at each state g along
7 is feasible for all ¢, indicating that R, (q) and R2(q) are
not separable under any control law. [

We finally discuss how we extract the control law p :
X X M — U. Note that here memory M is set as M = Q,
which is used to track the current state of automaton .A.
Given the current system state x and the current state ¢ € )
of automaton A, the control law is defined as p(z,q) = u
such that u € U, 4, where there exists no accepting run 7
starting from ¢’ whose transitions are labeled as yg o = 1.

V. CASE STUDY

In this section, we evaluate the proposed approach using
an example on multi-agent motion planning. There are two
agents i € {1,2} navigating in a bounded 2-dimensional
domain. The dynamics of the system are given as

R T

[$17y1,$2,y2] = [ux,17uy,1au1,27uy,2]
where x; represents the position along X-coordinate and
y; represents the position along Y-coordinate of agent
i € {1,2}. We use u,; and u,; to denote the horizontal
and vertical velocity given to the agent. We denote =z =
[z1,Y1,T2,y2] . The initial positions of agents 1 and 2 are
set as z = [0,0,1,0]". We assume that x; € [-10,10] and
y; € [—10,10] for all ¢ € {1,2}.

We let the atomic proposition set be defined as II =
{Dest 1, Dest 2, Dest 3,0bs}. Here Obs represents the
set of states belonging to a static obstacle, whose geometric
information is given as

[Obs] = [ {o:(@i— 1)+ (i —2)° <1}

ie{1,2}

Atomic propositions Dest 1, Dest 2, and Dest 3 label the
set of states that belong to static destinations. The geometric
information for each destination is given as

[Dest 1] = {x : (z1 +4)* +y? < 1},
[Dest 2] = {x : (x2 — 6)2 + (y2 — 4)* < 1}.
[Dest 3] = {x: (x1 — 2)® +y? < 1}.

The specification ¢ given to the agents is formulated as

p = <O(Dest 1 A<ODest 2) A O=0ObsA
(ODest 2 = ODest 3).

Specification ¢ requires that (i) destinations [Dest 1] and
[Dest 2] are reached in order, (ii) both agents always avoid
the obstacle Obs, and (iii) once [Dest 2] is reached, then
[Dest 3] needs to be reached. Specification ¢ introduces
coupling between agents 1 and 2.

Using our proposed approach, we first generate the DFA
A corresponding to —. There are 7 states, denoted as
Q@ = {0,1,...,6}, and 25 transitions in the DFA. We
adopt the sum-of-squares optimization-based approach [15],
[16] to search for CBCs. Using Theorem 1, we can label
the transitions ending at state 0 with y,o = 1, where
q € {0,2,3,4,5}, which also renders the self-loop transitions

Y-Coordinate

L e
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/ A —Agent 1
I
{ Dest3 )
1‘\ ; Agent 2
’

1 . . \~‘ - i . . . .
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Fig. 1: This figure presents the trajectories of agents 1 and 2
for specification ¢. The obstacle and destinations are plotted
using dotted red and black lines, respectively. The trajectories
of agent 1 and 2 obtained using our proposed approach are
plotted using solid blue and green lines, respectively.

at states {2,3,4,5,6} to be infeasible. In addition, we
label the transitions ending at state 1 as y,1 = 0, where
g € {0,2,3,4,5,6}. In this case, there is always a feasible
control input at state ¢ = 6 since there exists no accepting
run labeled to be feasible as long as there exists some ¢’
such that yg ,» = 1, where ¢’ € {2,3,4,5}.

Our control law realizes the infinite non-accepting run
6,5,2,0,0,..., indicating that [Dest 1], [Dest 2], and
[Dest 3] need to be reached in this order. We illustrate the
corresponding trajectories for agents 1 and 2 in Fig. 1. We
depict the trajectories for agent 1 and 2 using blue and green
lines, respectively. We observe that agent 1 reaches [Dest 1]
and agent 2 reaches [Dest 2]. After that, agent 1 reaches
[Dest 3]. In the meantime, both agents avoid the obstacle
region [Obs] to guarantee the safety property. Therefore, the
trajectories of the agents satisfy the given specification ¢.

VI. CONCLUSION

In this paper, we considered continuous-time control-affine
systems under linear temporal logic constraints defined over
finite traces. We developed the necessary and sufficient
conditions for a control law of the system to satisfy the
given specification. We first negated the given specification
and generated the deterministic finite automaton to represent
the negated specification. We then constructed a safety
verification problem for each transition in the automaton. We
derived the necessary and sufficient conditions for a control
law to solve the decomposed safety verification problem via
CBC. We formulated the dependencies among the transitions
by considering the composability of control laws. We derived
the necessary and sufficient conditions for the composability,
and thus realizability of the specification. We illustrated the
proposed approach using a numerical case study.
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