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Abstract— Interconnected systems such as power systems
and chemical processes are often required to satisfy safety
properties in the presence of faults and attacks. Verifying safety
of these systems, however, is computationally challenging due
to nonlinear dynamics, high dimensionality, and combinatorial
number of possible faults and attacks that can be incurred
by the subsystems interconnected within the network. In this
paper, we develop a compositional resilience index to verify
safety properties of interconnected systems under faults and
attacks. The resilience index is a tuple serving the following
two purposes. First, it quantifies how a safety property is
impacted when a subsystem is compromised by faults and
attacks. Second, the resilience index characterizes the needed
behavior of a subsystem during normal operations to ensure
safety violations will not occur when future adverse events
occur. We develop a set of sufficient conditions on the dynamics
of each subsystem to satisfy its safety constraint, and leverage
these conditions to formulate an optimization program to
compute the resilience index. When multiple subsystems are
interconnected and their resilience indices are given, we show
that the safety constraints of the interconnected system can be
efficiently verified by solving a system of linear inequalities. We
demonstrate our developed resilience index using a numerical
case study on chemical reactors connected in series.

I. INTRODUCTION

Safety-critical interconnected systems are widely seen
in real-world applications such as power systems [1] and
chemical processes [2]. Safety violations can lead to sig-
nificant economic losses and severe damage to the system
and/or human operators engaged with the system [1], [3]–
[6]. Therefore, it is of critical importance to verify safety
properties for such large-scale or even societal-scale systems.

One approach to verify safety is to use reachability
analysis. Computing reachable sets for nonlinear systems
is known to be undecidable [7]. Alternatively, solutions to
safety verification by ensuring forward invariance of safety
sets [8]–[11] or approximating reachable sets [12]–[14] have

1Luyao Niu and Radha Poovendran are with the Network Security
Lab, Department of Electrical and Computer Engineering, University of
Washington, Seattle, WA 98195-2500 {luyaoniu,rp3}@uw.edu

2Abdullah Al Maruf is with the Department of Electrical and Com-
puter Engineering, California State University, Los Angeles, CA 90032
amaruf@calstatela.edu

3Andrew Clark is with the Electrical and Systems Engineering Depart-
ment, McKelvey School of Engineering, Washington University in St. Louis,
St. Louis, MO 63130 andrewclark@wustl.edu

4J. Sukarno Mertoguno is with the School of Cybersecurity
and Privacy, Georgia Institute of Technology, Atlanta, GA 30332
karno@gatech.edu

This work was supported by the AFOSR grants FA9550-20-1-0074 and
FA9550-22-1-0054, by the Office of Naval Research grants N00014-20-1-
2636 and N00014-23-1-2386, by the National Science Foundation grant
CNS-1941670, and by the BIRD Foundation: Israel-US Energy Center,
Cyber Topic.

been developed. However, these approaches do not scale
to interconnected systems of high dimensions. Large-scale
systems such as power systems generally consist of multi-
ple interconnected subsystems, motivating the development
of compositional approaches [15]–[18]. These approaches
decompose the safety verification problem into a set of
problems of smaller scales formulated on the subsystems,
and thus are more tractable.

The approaches in [15]–[18] assume that the systems are
operated under benign environments, making the verified
safety properties invalid for systems under faults and attacks.
For interconnected systems, an error from one faulty or com-
promised subsystem could propagate and accumulate through
interconnections and impact the safety of other subsystems.
A naı̈ve approach to safety verification for interconnected
systems operated under adversarial environments is to enu-
merate all possible faulty or compromised subsystems, and
perform safety analysis. However, the number of possible
faults or attacks that can be incurred by the interconnected
system is combinatorial. At present, scalable safety verifica-
tion of large-scale interconnected systems under faults and
attacks has been less studied.

In this paper, we develop a compositional safety verifica-
tion approach for large-scale interconnected systems whose
subsystems can be faulty or compromised by attacks. Each
subsystem is subject to a safety constraint. We derive a set
of conditions on the dynamics of a subsystem to guarantee
its safety. We parameterize these conditions using a tuple of
real numbers, termed resilience index. Our resilience index
defines the amount of time that the system can safely remain
in a faulty state, the amount of time required to recover from
faults, and constraints on the system dynamics that must
be satisfied during faulty as well as normal operation. The
resilience index allows us to convert the problem of safety
verification of large-scale interconnected systems to a set of
algebraic computations, and thus makes safety verification
feasible for large-scale systems. To summarize, this paper
makes the following contributions.

• We formulate a resilient index for a subsystem that
experiences faults or attacks. We prove safety guaran-
tees for a subsystem based on the resilience index. We
develop a sum-of-squares optimization to compute the
resilience index for a subsystem.

• We derive a system of linear inequalities to quantify
how the resilience index of a subsystem changes due to
interconnections. Using the derived linear inequalities,
we develop the conditions on the interconnections so
that all subsystems are safe under faults and attacks.



• We demonstrate the resilience indices and their usage
using a case study on chemical process.

The rest of this paper is organized as follows. Section II
presents related work. Section III describes the problem for-
mulation. Section IV develops the compositional resilience
index for each subsystem. In Section V, we derive the set of
inequalities to compute resilience indices after interconnec-
tion. Section VI demonstrates the proposed approach using a
numerical case study. We conclude the paper in Section VII.

II. RELATED WORK

Safety verification [8], [11], [19] and safety-critical control
[4], [20], [21] haven been investigated for systems oper-
ated in benign environments. To mitigate faults and attacks
against safety-critical systems, various techniques have been
developed. Attack detection and secure state estimation under
attacks have been studied in [22], [23]. Fault-tolerant and
resilient control schemes [9], [24]–[26] have been proposed
to withstand the attacks and guarantee system safety. For
interconnected systems consisting of multiple subsystems,
the systems are of high dimensionality and the attack surface
grows as interconnected systems involving more subsystems,
making safety verification computationally expensive.

Compositional approaches have been adopted for safety
verification of interconnected systems deployed in the ab-
sence of faults or attacks [15]–[18]. These approaches have
utilized techniques including barrier certificates [15], [18],
small-gain theorem [16], and dissipativity property [17].
When the system is operated under faulty or adversarial
environments, these approaches become less effective.

The authors of [27], [28] re-configured the control laws
of each subsystem and interconnection topology to guarantee
safety. Such approach is computationally expensive when re-
configuring the network topology and control laws. Further-
more, in applications such as power systems, re-designing
interconnection topology is less desired or even impractical.
In this paper, we develop a compositional resilience index
and prove that the safety of each subsystem interconnected
within a network can be analyzed by solving a system of
linear inequalities derived using resilience index. Our devel-
oped approach does not require re-configuring the network
topology or control laws, and hence is more computationally
efficient. In [29], the authors decomposed the dynamics of
each subsystem into intrinsic and coupled terms, where the
former term is independent of the other subsystems and the
latter one depends on interconnections. A resilience index
was defined for each term of a compromised subsystem by
bounding how fast a subsystem approaches the boundary of
safety set. Such resilience indices were computed by sum-
of-squares optimization, and allowed the synthesis of safe
control law under fixed interconnections. When the inter-
connections change, the resilience indices and safe control
law in [29] could not always guarantee safety property. In
this paper, we propose a resilience index and derive a system
of linear inequalities that can applied to verify safety when
interconnections change. When the inequalities are feasible,
the interconnected system can satisfy the safety constraints.

III. PROBLEM FORMULATION

We first define the notations that will be used throughout
this paper. Let x ∈ Rn. We denote the k-th entry of x as
[x]k. A continuous function α : [−b, a) → (−∞,∞) belongs
to extended class K if it is strictly increasing and α(0) = 0
for some a, b > 0. Linear functions α(x) = zx defined over
[−b, a) are extended class K functions when z > 0.

We consider a collection of subsystems {Si}i∈N , where
N = {1, . . . , N}. Each subsystem Si individually follows
dynamics given as

Si : ẋi = fi(xi) + gi(xi)ui, (1)

where xi ∈ Xi ⊆ Rni is the state of subsystem i, and
ui ∈ Ui ⊆ Rpi is the external control input ui applied
to subsystem i. We consider that the external control input
ui will be chosen following a feedback control policy µi :
Rni → Ui. Given the control policy µi and an initial state
xi(0) at time t = 0, we denote the trajectory of subsystem
Si as xi(t;xi(0), µi). Functions fi : Rni → Rni and
gi : Rni → Rni×pi are locally Lipschitz continuous.

We consider that each subsystem Si is required to satisfy a
safety constraint defined over a set Ci = {xi : hi(xi) ≥ 0},
i.e., xi(t;xi(0), µi) ∈ Ci is required to hold for all t ≥
0. Function hi : Rni → R is continuously differentiable.
We assume that the subsystem is initially safe, i.e., x(0) ∈
Ci. For each subsystem Si, we assume that we are given a
control law µi such that xi(t;xi(0), µi) ∈ Ci holds for all
t ≥ 0. Such a safe control law µi can be synthesized by
using approaches such as control barrier functions [20].

We assume that each subsystem can be faulty or com-
promised by an adversary. When the subsystem is faulty or
under attack, the safe control law µi becomes offline, and
the control input received by subsystem Si can be arbitrarily
altered to some ũi ∈ Ui that is chosen by the adversary and
deviates from µi. To mitigate the persistence of faults and
attacks, we consider that the subsystem recovers control law
µi after the occurrence of faults and attacks leveraging fault/
attack detection and isolation techniques [30].

To capture the fact that faults and attacks cause the control
input to deviate from µi to arbitrary ũi, we represent each
subsystem Si under faults and attacks as a hybrid system
Hi = (Xi,Ui,L,Yi,Yinit

i , Invi,Fi,Σi,Gi), where
• Xi ⊆ Rni is the continuous state space of subsystem Si,

and Ui ⊆ Rpi is the set of admissible control inputs.
• L = {offline,online} is a set of discrete locations

capturing whether control law µi is available (online)
or not (offline).

• Yi = Xi×L is the state space of hybrid system H , and
Yinit
i ⊆ Yi is the set of initial states.

• Invi : L → 2Xi is the invariant that maps from the set
of locations to the power set of Xi. That is, Invi(l) ⊆
Xi specifies the set of possible continuous states when
the system is at location l ∈ L.

• Fi is the set of vector fields. For each Fi ∈ Fi in the
form of Eqn. (1), the continuous system state evolves
as ẋi = Fi(xi, ui, l), where Fi is jointly determined by



the system dynamics and the availability of control law
µi, and ẋi represents the time derivative of xi.

• Σi ⊆ Yi×Yi is the set of transitions between the states
of the hybrid system. A transition σi = ((xi, l), (x

′
i, l

′))
models the state transition from (xi, l) to (x′

i, l
′).

In applications such as power systems and vehicle pla-
toons, multiple subsystems are interconnected as a network.
The interconnections introduce couplings among subsystems,
leading to the following dynamics for each subsystem

ẋi = fi(xi) + gi(xi)µi(xi)

+
∑
j ̸=i

Wji(xj , xi)−
∑
j ̸=i

Wij(xi, xj), (2)

where Wij(xi, xj) captures the interconnection between
subsystems Si and Sj . Note that interconnections are not
necessarily symmetric, i.e., Wij(xi, xj) and Wji(xj , xi) may
not be identical.

We denote the state and joint control input of the in-
terconnected system as x = [x⊤

1 , . . . , x
⊤
N ]⊤ and u =

[u⊤
1 , . . . , u

⊤
N ]⊤, respectively. The interconnected system is

therefore of high dimension and nonlinear. Furthermore,
when each subsystem can possibly be compromised or faulty,
the number of faults or attacks incurred by the intercon-
nected system is combinatorial, making safety verification
computationally intractable. In this paper, we investigate the
following problem.

Problem 1. Suppose that we are given a collection of
subsystems {Si}Ni=1 and their safe control laws µi with
respect to their individual safety set Ci, where i ∈ N .
The subsystems, which are potentially subject to faults and
attacks, are interconnected within a network and each of
them follows dynamics given in Eqn. (2). The goal is to verify
whether the interconnected system satisfies the set of safety
constraints defined over Ci for all i = 1, . . . , N .

IV. PROPOSED RESILIENCE INDEX

In this section, we propose a compositional resilience
index for each subsystem to verify safety.

A. Definition of Resilience Index

We note that the discrete location set L is uniform to
all subsystems, allowing us to develop a unified index to
measure the resilience of any subsystem under faults and
attacks. Our insight is as follows. At location offline, the
safe control law µi is unavailable. To avoid violating the
safety constraint, we require the subsystem to stay within
a set Di ⊆ Ci so that xi ∈ Ci for all time when the
hybrid system is at location offline. When the hybrid
system transitions from offline to online, the control
law µi becomes available. Thereafter, the subsystem starts
to recover from faults and attacks. To recover the control
law and mitigate potential faults and attacks in the future,
we let the control law µi to remain available for at least
ϕi ≥ 0 amount of time. Furthermore, the system is required
to reach set Di within ϕi so that safety constraint will not
be violated when attacks or faults occur in the future. Such

insight allows us to define the following resilience index to
capture each subsystem’s resilience under faults and attacks.

Definition 1 (Resilience Index of a Subsystem). Consider a
subsystem Si that uses a feedback control law µi and is under
a safety constraint defined on set Ci = {xi : hi(xi) ≥ 0}.
Let subsystem Si be formulated as hybrid system Hi and
di, ηi ≥ 0, τi, ϕi > 0. We say subsystem Si is (di, τi, ϕi, ηi)-
resilient if the following conditions hold

• Set Di defined as Di = {xi : hi(xi) − di ≥ 0} is
forward invariant if control law µi is used and the
hybrid system Hi in at location online.

• After reaching location offline, hybrid system Hi

remains at location offline for at most τi amount
of time before transition from offline to online
occurs for any xi.

• Following the transition from offline to online,
hybrid system Hi remains at location online for at
least ϕi amount of time.

• When xi is at the boundary of Di and the hybrid system
Hi in at location online, the time derivative of xi

is lower bounded by ηi. Furthermore, given any state
x′
i ∈ Ci \Di, the continuous state xi reaches Di within

ϕi amount of time when Hi is at location online and
control law µi is used.

The quadruple (di, τi, ϕi, ηi) is the resilience index of Si.

In what follows, we derive a set of conditions to compute
the resilience index of a subsystem.

Proposition 1. Consider a subsystem in Eqn. (1) under
attack and a safety set Ci. Let hd

i (xi) = hi(xi) − di and
Di = {xi : h

d
i (xi) ≥ 0} ⊆ Ci. Suppose xi(0) ∈ Di. If there

exist constants di, ηi ≥ 0, τi, ϕi > 0, and an extended class
K function αi(·) such that

∂hd
i

∂xi
(xi)[fi(xi) + gi(xi)ui] ≥ −di

τi
, ∀(xi, ui) ∈ Ci × Ui

(3a)

∂hd
i

∂xi
(xi)[fi(xi) + gi(xi)µi(xi)] ≥

di
ϕi

, ∀xi ∈ Ci \ Di (3b)

∂hd
i

∂xi
(xi)[fi(xi) + gi(xi)µi(xi)] ≥ −αi(h

d
i (xi)) + ηi,

∀x ∈ Di (3c)

then subsystem Si is safe with respect to Ci.

Proof. Without loss of generality, we assume that the subsys-
tem is compromised by attack at some arbitrary time t0 ≥ 0.
For any t ∈ [t0, t0 + τi] and control input ui ∈ Ui, we have
hi(xi(t)) = hi(xi(t0)) +

∫ t

s=t0
ḣi ds ≥ di − di

τi
(t− t0) ≥ 0,

where ḣi represents the time derivative of function hi, the
equality holds by the definition of hi(xi(t)), the first inequal-
ity holds by Eqn. (3a) and the observation that ḣd

i = ḣi, and
the last inequality holds by t ∈ [t0, t0+τ ]. Therefore, hybrid
system Hi satisfies xi(t;xi(t0), ui) ∈ Ci for all ui ∈ Ui when
xi(t0) ∈ Di, Hi is at location l = offline for at most τi
amount of time, and Eqn. (3a) holds.



We next consider some arbitrary time t ∈ [t0+τi, t0+τi+
ϕi] when the hybrid system is at location online. We show
that xi(t;xi(t0+τi), µi) ∈ Ci for all t ∈ [t0+τi, t0+τi+ϕi]
when the hybrid system remains at location online and
control law µi is used. We further show that there exists
t′ ∈ [t0+τi, t0+τi+ϕi] such that xi(t

′′;xi(t0+τi), µi) ∈ Di

for all t′′ ∈ [t′, t0+ τi+ϕi] when the hybrid system remains
at location online and control law µi is used.

We prove xi(t;xi(t0+τi), µi) ∈ Ci for all t ∈ [t0+τi, t0+
τi+ϕi] when the hybrid system remains at location online
and µi is used by contradiction. Suppose that the subsystem
leaves the safety set. Since the trajectory of Si is continuous,
then there exists time t ∈ [t0 + τi, t0 + τi + ϕi] such that
h(x(t)) = 0 and ḣ(x(t)) < 0. If such x(t) ∈ Ci \ Di, we
then have contradiction to Eqn. (3b) since di

ϕi
> 0 and thus

ḣ(x(t)) > 0. If such x(t) ∈ Di, we also have contradiction
since Eqn. (3c) implies that ḣ(x(t)) > ηi ≥ 0. Therefore,
we can claim that xi(t;xi(t0 + τi), µi) ∈ Ci for all t ∈
[t0 + τi, t0 + τi + ϕi] when the hybrid system remains at
location online and µi is used.

We now prove that there exists t′ ∈ [t0 + τi, t0 + τi + ϕi]
such that xi(t

′′;xi(t0+τi), µi) ∈ Di for all t′′ ∈ [t′, t0+τi+
ϕi] when the hybrid system remains at location online and
control law µi is used. Suppose no such t′ ∈ [t0 + τi, t0 +
τi + ϕi] exists. We then have that xi(t0 + τi + ϕi) ∈ Ci \Di

and hence hi(xi(t0 + τi +ϕi)) < di. By Eqn. (3b), we have
hi(xi(t0 + τi + ϕi)) = hi(xi(t0 + τi)) +

∫ t

s=t0+τi
ḣi ds ≥

di

ϕi
(t−t0−τi) ≥ di, leading to contradiction. Therefore, such

t′ must exist. Finally, by Eqn. (3c) and [20], we have that if
xi(t

′;xi(t0 + τi), µi) ∈ Di, then set Di if forward invariant
when the hybrid system remains at location online and
control law µi is used, indicating that xi(t

′′;xi(t0+τi), µi) ∈
Di for all t′′ ∈ [t′, t0 + τi + ϕi].

We remark that the tuple (di, τi, ϕi, ηi) is unordered.
When employing it to evaluate and compare the resilience
of multiple subsystems, one may adopt the weighted average
of di, τi, ϕi, and ηi. Alternatively, di, τi, ϕi, and ηi can be
ordered based on their importance, allowing comparison of
resilience indices in lexicographical order.

B. Computation of Resilience Index

In the following, we formulate a sum-of-squares (SOS)
optimization program to compute the resilience index for any
subsystem Si. Under certain assumptions on the dynamics
(1), function hi(x), and control input set Ui, we formulate
the SOS program by converting the conditions in Eqn. (3)
into SOS constraints. We make the following assumption.

Assumption 1. For any subsystem Si, we assume that
functions fi(xi), gi(xi), and hi(xi) are polynomial in xi. In
addition, we assume that Ui =

∏pi

k=1[uk,min, uk,max] with
uk,min < uk,max.

In the following, we present the set of SOS constraints.
We show that any di, ηi ≥ 0 and τi, ϕi > 0 satisfying the
SOS constraints constitute the resilience index of Si.

Proposition 2. Assume that control law µi is polynomial in
xi. Suppose there exist di, ηi ≥ 0, and τi, ϕi > 0 such that
the following expressions are SOS:

∂hd
i

∂xi
(xi)[fi(xi) + gi(xi)ui] + diθi − q(xi, ui)h

d
i (xi)

−
pi∑

k=1

(wk(xi, ui)([u]k − [u]k,min)

+ vk(xi, ui)([u]k,max − [u]k)), (4a)

∂hd
i

∂xi
(xi)[fi(xi) + gi(xi)µi(xi)]− diβi

− l(xi)h
d
i (x) +m(xi)hi(xi), (4b)

∂hd
i

∂xi
(xi)[fi(xi) + gi(xi)µi(xi)]

+ α(hd
i (x))− r(xi)hi(xi)− ηi, (4c)

where l(xi),m(xi), q(xi, ui), r(xi) are SOS, and wk(xi, ui)
as well as vk(xi, ui) are SOS for each k = 1, . . . , pi. Then
di, τi = 1

θi
, ϕi =

1
βi

, and ηi satisfy Eqn. (3).

Proof. We prove that Eqn. (4a) implies Eqn. (3a). The other
SOS constraints can be proved in a similar manner. Consider
xi ∈ Ci and [u]k,min ≤ [u]k ≤ [u]k,max for all k = 1, . . . , pi.
We thus have that hd

i (xi) ≥ 0 since Di ⊆ Ci. In addition, we
have that [u]k−[u]k,min ≥ 0, and [u]k,max−[u]k ≥ 0. When
expression (4a) is SOS, q(xi, ui), wk(xi, ui), and vk(xi, ui)
are SOS for all k = 1, . . . , pi, we have that the expression
in Eqn. (4a) is non-negative. Therefore, if expression (4a) is
SOS and τi is chosen as τi = 1/θi, then Eqn. (3a) holds.

We observe that the SOS constraints derived in Proposition
2 are bilinear (see the terms diθi and diβi). Hence the
resilience index cannot be readily computed by implement-
ing these SOS constraints. We overcome this challenge by
developing an alternating optimization procedure, as shown
in Algorithm 1. In Algorithm 1, parameters τmax and ϕmin

are the upper and lower bounds for τi and ϕi, respectively.
If there exist no bound for τi and ϕi, then parameters τmax

and ϕmin can be set as infinity and zero, respectively.

Algorithm 1 Algorithm for computing resilience index
1: Input: Si, τmax, ϕmin, and ϵ > 0
2: Output: di, τi, ϕi, ηi
3: Initialization: di = 0
4: while di ≤ supxi

{hi(xi)} do
5: Solve for θi, βi, ηi such that (4) is feasible with di

fixed.
6: if Eqn. (4) is feasible, 1

θi
≤ τmax, 1

βi
≥ ϕmin then

7: return di, τi = 1
θi

, ϕi =
1
βi

, and ηi
8: else
9: di = di + ϵ

10: end if
11: end while



V. RESILIENCE INDEX AFTER INTERCONNECTION

In this section, we consider a setting where multiple
subsystems, with each being formulated by a hybrid system
Hi, are interconnected within a network. Suppose that a
collection of subsystems {Si}Ni=1 are interconnected within
a network. In the network, each subsystem Si follows the
dynamics as given by Eqn. (2).

We note that the interconnected system can be formulated
as a hybrid system H as defined in Section IV-A. In this case,
the continuous state space is X =

∏N
i=1 Xi, and the discrete

location is L = {offline,online}N . We observe that
the continuous state is of dimension n =

∑N
i=1 ni. Further-

more, the transitions among the discrete locations are the
Cartesian product of discrete transitions of all subsystems,
which is combinatorial in nature to capture all possible faults
and attacks that can be incurred by the subsystems. There-
fore, safety verification on H is computationally intractable
for large-scale interconnected systems. In what follows, we
derive how the resilience index of each subsystem changes
due to interconnections. We further show how our proposed
resilience index can be applied to efficiently verify safety
constraints of the interconnected system.

A. Computation of Resilience Index After Interconnection

In the following, we first characterize the behaviors of any
subsystem Sj when being interconnected. We define

δj = inf
x

{∂hd
j

∂xj

[∑
i̸=j

Wij(xi, xj)−
∑
i̸=j

Wji(xj , xi)
]}

. (5)

We will show that the resilience index of a subsystem Sj

after being interconnected can be bounded using one of the
following two sets of inequalities

R1 :



0 ≤ d′j ≤ dj ≤ supxj
{hj(xj)}

−d′
j

τ ′
j
≤ −dj

τj
+ δj

ϕj

dj+ϕjδj
d′j − ϕ′

j ≤ 0

η′j ≤ δj +min{ dj

ϕj
, ηj + infxj∈Dj

{αj(hj(xj)− d′j)

−αj(hj(xj)− dj)}}
(6)

R2 :



0 ≤ dj ≤ d′j ≤ supxj
{hj(xj)}

−d′
j

τ ′
j
≤ −dj

τj
+ δj

d′
j

ϕ′
j
≤ δj +min{ dj

ϕj
, infxj∈Dj

{−αj(h
d
j (xj))}+ ηj}

η′j ≤ δj + ηj − supxj∈Dj
{αj(hj(xj)− d′j)

−αj(hj(xj)− dj)}}
(7)

We define D′
j = {xj : hj(xj)− d′j ≥ 0}. The inequalities

in R1 and R2 specify sets D′
j differently. The inequalities

in R1 specify that D′
j ⊇ Dj , whereas R2 defines D′

j ⊆ Dj ,
which further leads to distinct behaviors when xj ∈ Cj \D′

j .
In what follows, we show how the behavior of each subsys-
tem following dynamics in Eqn. (2) can be characterized by
the solutions to R1 or R2. This allows us to further verify
the safety constraints for the interconnected system.

Theorem 1. Consider that a collection of subsystems
{Sj}Nj=1 are interconnected, and each Sj follows dynam-
ics as given in Eqn. (2) for all j = 1, . . . , N . We de-
note their resilience indices before being interconnected as
(dk, τk, ϕk, ηk), where k = 1, . . . , N . Define D′

j = {xj :
hj(xj) − d′j ≥ 0}. If parameters d′j , τ

′
j , ϕ

′
j , and η′j render

either R1 or R2 to be feasible, then the following conditions
hold for Sj after being interconnected:

∂hd
j

∂xj
(xj)[fj(xj) + gj(xj)uj +

∑
i̸=j

Wij(xi, xj) (8a)

−
∑
i̸=j

Wji(xj , xi)] ≥ −
d′j
τ ′j

, ∀(xj , uj) ∈ Cj × Uj

∂hd
j

∂xj
(xj)[fj(xj) + gj(xj)µj(xj) +

∑
i̸=j

Wij(xi, xj) (8b)

−
∑
i̸=j

Wji(xj , xi)] ≥
d′j
ϕ′
j

, ∀xj ∈ Cj \ D′
j

∂hd
j

∂xj
(xj)[fj(xj) + gj(xj)µj(xj) +

∑
i̸=j

Wij(xi, xj) (8c)

−
∑
i̸=j

Wji(xj , xi)] ≥ −αj(hj(xj)− d′j) + η′j , ∀x ∈ D′
j

Proof. We first verify that if d′j , τ
′
j , ϕ

′
j , and η′j satisfy R1,

then Eqn. (8) holds. We denote ḣd
j as

ḣd
j =

∂hd
j

∂xj
(xj)[fj(xj) + gj(xj)µj(xj)

+
∑
i̸=j

Wij(xi, xj)−
∑
i̸=j

Wji(xj , xi)].

Suppose that d′j , τ
′
j , ϕ

′
j , and η′j yield R1 to be feasible. In

this case, we have that Dj = {xj : hj(xj) − dj ≥ 0} ⊆
D′

j = {xj : hj(xj) − d′j ≥ 0} due to d′j ≤ dj . When Hj is
at location offline, we have

ḣd
j ≥

∂hd
j

∂xj
(xj)[fj(xj) + gj(xj)uj ] + δj (9)

≥− dj
τj

+ δj ≥ −
d′j
τ ′j

, ∀(xj , uj) ∈ Cj × Uj (10)

where inequality (9) holds Eqn. (5), the second inequality
holds by Eqn. (3a), and the last inequality holds by the
assumption that R1 is feasible under (d′j , τ

′
j , ϕ

′
j , η

′
j).

Consider the case where hybrid system Hj is at location
online and control law µj(xj) is available. We have

ḣd
j ≥ dj

ϕj
+ δj ≥

d′j
ϕ′
j

(11)

holds for all xj ∈ Cj \ D′
j , where the first inequality holds

by Eqn. (3b) and (5), and the second inequality holds by
(Cj \ D′

j) ⊆ (Cj \ Dj) given the feasibility of R1.
We finally consider the case where xj ∈ D′

j by dividing
our discussion into two scenarios. When xj ∈ D′

j \Dj , Eqn.
(11) yields ḣd

j ≥ dj

ϕj
+ δj ≥ η′j , where the last inequality



holds by the feasibility of R1. When xj ∈ Dj ⊆ D′
j , we have

that ḣd
j ≥ −α(hd

j (xj)) + ηj + δj ≥ −α(hj(xj) − d′j) + η′j
holds for all xj ∈ Dj , where the last inequality holds by the
feasibility of R1, i.e., η′j ≤ δj + ηj + infxj∈Dj{α(hj(xj)−
d′j)− α(hj(xj)− dj)}.

We next verify that if d′j , τ
′
j , ϕ

′
j , and η′j satisfy R2, then

Eqn. (8) holds. Note that in this case, D′
j = {xj : hj(xj)−

d′j ≥ 0} ⊆ Dj = {xj : hj(xj) − dj ≥ 0}. When hybrid
system Hj is at location offline, Eqn. (8a) can be derived
using Eqn. (9) and (10) given that d′j , τ

′
j , ϕ

′
j , and η′j satisfy

R2. We next consider that hybrid system Hj is at location
online. We discuss two possible scenarios that can occur
when xj ∈ Cj \ D′

j . If xj ∈ Cj \ Dj , we have

ḣd
j ≥ dj

ϕj
+ δj ≥

d′j
ϕ′
j

, ∀xj ∈ Cj \ Dj (12)

where the first inequality holds by Eqn. (3b) and the defini-
tion of δj , and the second inequality holds by the feasibility
of R2. If xj ∈ Dj \ D′

j , we have that

ḣd
j ≥ −α(hd

j (xj)) + δj + ηj ≥
d′j
ϕ′
j

, ∀xj ∈ Dj \ D′
j , (13)

where the first inequality holds by Eqn. (3c) and the defini-
tion of δj , and the second inequality holds by the feasibility
of R2. Combining Eqn. (12) and (13) yields Eqn. (8b).

We finally consider that xj ∈ D′
j . We have that ḣd

j ≥
−α(hd

j (xj)) + ηj + δj ≥ −α(hj(xj) − d′j) + η′j holds for
all xj ∈ D′

j , where the first inequality holds by Eqn. (3c)
and the definition of δj , and the second inequality holds by
D′

j ⊆ Dj along with the feasibility of R2.
Combining the discussion above completes the proof.

We observe that when function αj is linear, computing
the resilience indices after interconnection reduces to solving
a linear system. In the following, we show that given the
resilience indices of Sj before it is interconnected along
with its control law µi, we can efficiently quantify how its
resilience index changes due to interconnections by solving
a set of inequalities given in Eqn. (6) and (7).

Theorem 2. Consider that a collection of subsystems
{Sj}Nj=1 are interconnected, and each Sj follows dynam-
ics as given in Eqn. (2) for all j = 1, . . . , N . We de-
note their resilience indices before being interconnected as
(dk, τk, ϕk, ηk), where k = 1, . . . , N . If parameters d′j , η

′
j ≥

0 and τ ′j , ϕ
′
j > 0 satisfy either R1 in Eqn. (6) or R2 in

Eqn. (7), then Sj is (d′j , τ
′
j , ϕ

′
j , η

′
j)-resilient under dynamics

(2). Furthermore, Sj is safe with respect to Cj after being
interconnected within the network.

Proof. When parameters d′j , τ
′
j , ϕ

′
j , and η′j render either R1

or R2 to be feasible, we have that Eqn. (8) holds by using
Theorem 1. By using Proposition 1 and Definition 1, we
have that when d′j , η

′
j ≥ 0 and τ ′j , ϕ

′
j > 0, subsystem Sj is

(d′j , τ
′
j , ϕ

′
j , η

′
j)-resilient and safe with respect to Cj .

Computing δj for each subsystem Sj requires to solve
an optimization problem over joint system state x ∈ Rn,

where n =
∑N

i=1 ni. To alleviate the computations in high
dimensional state space, we approximate parameter δj as

δj ≥
∑
i̸=j

inf
(xi,xj)∈Ci×Cj

{
∂hd

j

∂xj
[Wij(xi, xj)−Wji(xj , xi)]}

:= δ̃j .

By replacing δj with δ̃j in Eqn. (8), we can apply similar
approach to show that Theorem 1 and 2 still hold.

B. Feasibility of Resilience Index for Interconnected System

Consider an interconnected system consisting of N sub-
systems. We need to determine whether the inequalities in R1

or R2 need to be solved to apply Theorem 1 and 2 for safety
verification of the interconnected system. One approach is
to combine the inequalities in R1 and R2 by using a set
of mixed integer constraints and big M-method [31], where
the integer variable y ∈ {0, 1} models whether R1 or R2 is
solved. In this subsection, we show that we can determine
whether R1 or R2 is feasible given the value of δj , and hence
avoid solving the mixed integer program.

Theorem 3. Consider a subsystem Sj whose resilience
index is given as (dj , τj , ϕj , ηj) before being interconnected.
Assume that αj(hj(xj)) = zhj(xj) for some coefficient
z > 0. If δj satisfies

δj ≥ max{− dj
ϕj

,−ηj − zdj}, (14)

then there exist d′j , η
′
j ≥ 0 and τ ′j , ϕ

′
j > 0 such that the

inequalities in R1 are satisfied. If δj satisfies

δj ≥ max{− dj
ϕj

,−ηj + z(sup
xj

{hj(xj)} − dj)}, (15)

then there exist d′j , η
′
j ≥ 0 and τ ′j , ϕ

′
j > 0 such that the

inequalities in R2 are satisfied.

Proof. Suppose that Eqn. (14) holds. We rewrite R1 in
the matrix form Ajvj ≤ bj , where vj = [d′j , τ

′
j , ϕ

′
j , η

′
j ]
⊤,

d′j , η
′
j ≥ 0, τ ′j , ϕ

′
j > 0,

A =


1 0 0 0

1 0 − dj

ϕj
+ δj 0

z 0 0 1

−1
dj

τj
− δj 0 0

0 0 0 1

 , b =


dj
0

δj + ηj + zdj
0

δj +
dj

ϕj


When Eqn. (14) holds, we have that there exists no rj ≥ 0
such that b⊤j rj < 0. Using Farkas’ Lemma [32], there must
exist some vj ≥ 0 such that Ajvj ≤ bj , and thus satisfies R1.
Similar proof technique can be applied to show that when
Eqn. (15) holds, there must exist non-negative (d′j , τ

′
j , ϕ

′
j , η

′
j)

such that R2 is satisfied. Noticing that ϕ′
j , η

′
j = 0 will make

Aj and bj ill-defined completes our proof.

Using Theorem 3, we can decide whether we need to solve
the inequalities given by R1 or R2 according to the value of
δj . Therefore, we mitigate the computational complexity by
solving N sets of inequalities. By observing that −ηj−zdj ≤



−ηj + z(supxj
{hj(xj)−dj)}), we further have that if there

exist non-negative (d′j , τ
′
j , ϕ

′
j , η

′
j) such that R2 is satisfied,

then there must also exist some non-negative solution to the
inequalities in R1. Finally, the sign of δj can be used to
reason whether interconnections improve the resilience.

Proposition 3. Consider a subsystem Sj whose resilience
index is given as (dj , τj , ϕj , ηj) before being interconnected.
If δj ≥ 0, then there exists a resilience index (d′j , τ

′
j , ϕ

′
j , η

′
j)

such that the set of inequalities given by R1 is feasible.
Furthermore, the interconnections improve the resilience of
Sj in the sense that η′j ≥ ηj holds when xj ∈ Dj and

d′j ≤ dj , τ ′j = τj , ϕ′
j ≤ ϕj .

Proof. We prove the proposition by giving a choice of non-
negative (d′j , τ

′
j , ϕ

′
j , η

′
j) that satisfies R1. We first note that

τ ′j = τj ≥ 0 is a valid choice for parameter τ ′j . In this case,
if δj ≥ 0, we have that d′j can be chosen as d′j = dj −
δjτj ≤ dj . Given this choice of d′j , we have that 0 ≤ ϕ′

j =
d′
j

dj+ϕjδj
ϕj ≤ ϕj . Since α is an extended class K function,

we have that α(hj(xj) − d′j) ≥ α(hj(xj) − dj) for all xj .
Therefore, infxj∈Dj

{α(hj(xj)− d′j)−α(hj(xj)− dj)} ≥ 0
and infxj∈Dj

{α(hj(xj)− d′j)− α(hj(xj)− dj) + ηj ≥ ηj .
Thus η′j = infxj∈Dj

{α(hj(xj)− d′j)− α(hj(xj)− dj)}}+
δj + ηj ≥ 0. Let η′′j = min{ dj

ϕj
, infxj∈Dj{α(hj(xj)− d′j)−

α(hj(xj)− dj) + ηj}}+ δj > 0. We have (d′j , τ
′
j , ϕ

′
j , η

′
j) is

a valid resilience index for Sj after interconnection.

VI. CASE STUDY

In this section, we demonstrate how the proposed re-
silience index can be used to analyze safety constraints of
interconnected systems.

We consider two well-mixed, nonisothermal continuous
stirred-tank reactors (CSTRs), denoted as S1 and S2. We
assume that three parallel elementary irreversible exothermic
reactions of the form A

r1−→ B, B
r2−→ E, and A

r3−→ Q
occurs, where A is the reactant species, B is the desired
product, and E as well as Q are undesired byproducts.
The states of S1 and S2 are denoted as x1 = [T1, c1]

⊤

and x2 = [T2, c2]
⊤, where Ti and ci respectively represent

temperature of the reactor and concentration of Si with
i ∈ {1, 2}. Each CSTR utilizes a jacket to remove or provide
heat to the reactor to control the chemical reaction.

When the CSTRs are interconnected in series, their dy-
namics are given as

ẋ1 =

[
Fe,1

V1
(T0,1 − T1)−

∑3
r=1

Hr

ρp Rr(c1, T1)
Fe,1

Vi
(c0,1 − c1)−

∑3
r=1 Rr(c1, T1)

]
+

[ u1

ρpV1

0

]
(16)

ẋ2 =

[
Fe,2

V2
(T0,2 − T2)−

∑3
r=1

Hr

ρp Rr(c2, T2)
Fe,2

V2
(c0,2 − c2)−

∑3
r=1 Rr(c2, T2)

]
+

[ u1

ρpV1

0

]
+

F1

V2

[
T1 − T2

c1 − c2

]
(17)

where Fe,i is the flow rate, Rr(ci, Ti) = ki exp(−Ei/lTi)ci,
Vi is the volume, ui is the rate of heat input/ removal. We
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Fig. 1: This figure presents the temperature in CSTRs S1 and
S2 after they are interconnected in series. The temperature
of S1 and S2 are represented in solid and dashed lines. The
portion plotted in red represents that the CSTR is faulty or
compromised, whereas the portion plotted in green denotes
that the desired rate of heat input is available.

follow the choices of process parameters given in [2] and
summarize them in Table I. The set of admissible inputs is
set as |u1| ≤ 2.7× 106 KJ/hr and |u2| ≤ 2.8× 106 KJ/hr. In

Eqn. (17), we have that W12(x1, x2) =
F1

V2

[
T1 − T2

c1 − c2

]
.

We assume that the safety constraints defined for CSTRs
S1 and S2 are C1 = {T1 : h1(T1) ≥ 0} and C2 = {T2 :
h2(T2) ≥ 0}, where hi(Ti) = (Ti − 300)(400 − Ti) for all
i ∈ {1, 2}. That is, the temperature in both CSTR needs to
be within range [300, 400]K. Both CSTRs can be faulty or
compromised, leading to manipulated rate of heat input ũi,
where i ∈ {1, 2}.

TABLE I: Values of parameters used in Eqn. (16) and (17).

Parameter Value Unit
Fe,1 = 4.998, Fe,2 = 30.0, F1 = 4.998 m3/hr

V1 = 1.0, V2 = 3.0 m3

T0,1 = 300.0, T0,2 = 300.0 K
E1 = 5.0, E2 = 7.53, E3 = 7.53 ×104 KJ/kmol

H1 = −5.0, H2 = −5.2, H3 = −5.4 ×104 KJ/kmol
ρ = 1000.0 kg/m3

k1 = 3.0× 106, k2 = 3.0× 105, k3 = 3.0× 105 hr−1

l = 8.314 KJ/kmol·K
p = 0.231 KJ/kg· K

c0,1 = 4.0, c0,2 = 2.0 kmol/m3

We first compute the resilience indices of CSTRs S1 and
S2 when they are not interconnected. Their resilience in-
dices are given as (d1, τ1, ϕ1, η1) = (2100, 0.0146, 0.308, 0)
and (d2, τ2, ϕ2, η2) = (500, 0.0292, 0.0222, 0). Following
dynamics Eqn. (16) and (17), we have that the δ2 defined in
Eqn. (5) is negative, and hence we aim to solve R2 to com-
pute the resilience index of CSTR S2 after interconnection.
We have that (d′2, τ

′
2, ϕ

′
2, η

′
2) = (800, 0.0237, 0.1368, 0). We

simulate the temperature in both CSTRs in Fig. 1. We plot
the time period when the control input is compromised in



red color, and the time period when the desired control
law is online in green color. We observe that the fault or
attack could manipulate the temperature in both CSTRs by
changing the rate of heat input ui. We further demonstrate
that safety constraints defined on the temperature of S1 and
S2 are met. We plot the boundaries of the safety set C1
and C2 using dash-dotted blue lines. We observe that T1

and T2 remain within [300, 400]K for all time t ≥ 0, and
hence safety constraint is satisfied if we can find a feasible
resilience index, which demonstrates Theorem 2.

VII. CONCLUSION

In this paper, we investigated the problem of efficient
safety verification for large-scale interconnected systems
under faults and attacks. We developed a compositional
resilience index for each subsystem to characterize its ca-
pability on tolerating faults and attacks without violating
safety constraints. We showed that if a subsystem possessed
a resilience index, then it satisfies the given safety constraint
regardless of the faults and attacks. We formulated a sum-
of-squares optimization program to compute the resilience
index. When the resilience index and a safe control law of
a subsystem were given, we proved that the resilience index
of the subsystem after being interconnected could be com-
puted by solving a system of linear inequalities. We further
developed the sufficient conditions over the interconnections
to guarantee the derived linear inequalities to be feasible. We
demonstrated the proposed approach using a case study on
interconnected chemical reactors.
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