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Abstract— Stroke is a leading cause of gait disability that
leads to a loss of independence and overall quality of life.
The field of clinical biomechanics aims to study how best
to provide rehabilitation given an individual’s impairments.
However, there remains a disconnect between assessment tools
used in biomechanical analysis and in clinics. In particular,
3-dimensional ground reaction forces (3D GRFs) are used
to quantify key gait characteristics, but require lab-based
equipment, such as force plates. Recent efforts have shown that
wearable sensors, such as pressure insoles, can estimate GRFs in
real-world environments. However, there is limited understand-
ing of how these methods perform in people post-stroke, where
gait is highly heterogeneous. Here, we evaluate three subject-
specific machine learning approaches to estimate 3D GRFs with
pressure insoles in people post-stroke across varying speeds.
We find that a Convolutional Neural Network-based approach
achieves the lowest estimation errors of 0.75 + 0.24, 1.13 + 0.54,
and 4.79 + 3.04 %bodyweight for the medio-lateral, antero-
posterior, and vertical GRF components, respectively. Estimated
force components were additionally strongly correlated with the
ground truth measurements (R*> > 0.85). Finally, we show high
estimation accuracy for three clinically relevant point metrics
on the paretic limb. These results suggest the potential for an
individualized machine learning approach to translate to real-
world clinical applications.

I. INTRODUCTION

Walking has numerous health and diagnostic benefits,
and has been termed the “sixth vital sign” [1]. Neuromotor
injuries such as stroke are leading causes of gait disability
globally, with over 80% of survivors of stroke left with
long-term locomotor impairments, a number that continues
to grow as our population ages [2]. Post-stroke gait is
characterized by hemiparesis, slow speeds, and asymmetry,
largely due to reduced force production on the paretic, or
more impaired, limb [3]. Thus, an overarching goal of gait
rehabilitation for people post-stroke is to improve paretic
limb force generation [4], [5].

Indeed, numerous clinical biomechanics studies have
shown that physical therapy can help improve muscle
strength and function in people post-stroke towards increas-
ing paretic force generation [6]. These forces are quantified
by the 3-dimensional ground reaction forces (3D GRFs) mea-
sured by specialized equipment such as force plates. Specif-
ically, the medio-lateral (ML) GRF component is linked to
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balance measures [7], the antero-posterior (AP) component
is associated with walking speeds and symmetry [8], and
the vertical GRF (VGRF) component is indicative of limb
loading [9]. GRFs are also a necessary precursor to compute
derivative biomechanical measures, such as joint torques and
powers, which provide additional insights into post-stroke
gait impairments [10]. However, while task-relevant gait
rehabilitation, such as community-based rehabilitation [11],
is important for long-term efficacy of an intervention [12],
there is currently no accepted method for obtaining GRFs
in the clinic or in real-world environments. Access to such
measures would enable clinicians to provide personalized
goals based on an individual’s rehabilitation progress.

Prior work has shown that wearable sensors may provide
one opportunity for estimating 3D GRFs in healthy individ-
uals, but is underexplored in clinical populations [13], [14].
A common approach for estimating GRFs is using pressure
insoles in conjunction with data-driven, or machine learning,
methods, given that they provide a direct measure of the foot-
environment interface and represent the distribution of load
across the foot [15]-[17]. While promising, these approaches
are often insufficient for translation to people post-stroke as
errors exceed the expected variability in this population [18].
One potential explanation for the lack of performance in prior
methods is that they rely primarily on linear machine learn-
ing models, but normal loading information from pressure
insoles may not be linearly related to GRF components. This
nonlinearity may be due to factors such as shear forces along
the ML and AP axes or shoe compliance characteristics.
Nonlinear machine learning approaches have been shown
to be effective in other areas of biomechanics and force
estimation [19]-[21], and thus there is an opportunity to
investigate their integration for 3D GRF estimation.

In this work, we assess the use of three simple machine-
learning based algorithms, a convolutional neural network
(CNN), a fully connected network (FCN), and linear re-
gression (LR), to accurately estimate 3D GRFs in people
post-stroke. We use a commercial pressure insole to obtain
a high-resolution map of the pressure distribution across the
foot during walking at varying speeds. We evaluate GRF
estimation accuracy across the stance phase, while the foot
is on the ground, for the different methods. Finally, we
compare the performance of the algorithms for estimating
key clinically relevant point metrics.

Authorized licensed use limited to: Harvard Library. Downloaded on December 06,2023 at 14:42:48 UTC from IEEE Xplore. Restrictions apply.



= -
Instrumented [§Et=

Treadmill |} <5
ﬂ S

Pressure
Insole

150, Treadmill Schedule

80%
50 90%
s 100%
—110%

—120%

0 50 100 150 200 250 i
Trial Time (s)

Estimation Architecture

Train Machine
Learning Model

Post-process
pressure map
Left Foot

FC EC
(10) (84)

Predict Ground Reaction
Force Component

150 | == True
=== Estimated

-

AP GRF (N)

0 20 40 60 80 100
Stance Phase (%)

Fig. 1: (Left) Experimental setup and commanded treadmill speed throughout the 4-minute bouts. Treadmill speed increased
first for half of the participants, and decreased first for the remaining participants (dashed profile). (Right) Pressure data
from the insoles were reshaped into square heatmaps and used as input to train a simple machine learning algorithm to
predict the corresponding 3D force vector component at each frame.

II. METHODS
A. Farticipants

Nine chronic post-stroke participants (>6 months post-
stroke; 1F, 8M; age: 56 £ 13 yrs; height: 177 £ 6 cm; weight:
91 4+ 20kg) were recruited to participate in a single-session
study. Six participants were left paretic, two participants
wore a rigid ankle-foot-orthosis (AFO) on their paretic leg,
and one participant completed two data collection sessions.
The study was approved by the Harvard Longwood Medical
Area Institutional Review Board and all individuals provided
medical clearance and written informed consent.

B. Data Collection

Participants walked for a sequence of 3—6 4 min bouts on
an instrumented split-belt treadmill (Bertec, Columbus, OH,
USA; 2000 Hz), with the specific number of bouts depending
on individual impairment and endurance levels (Table 1).
Each bout was conducted at a different set of speeds defined
by the participant’s comfortable walking speed (cws) and
the order of bouts was randomized. Within each bout, the
treadmill was commanded to remain at a constant speed
for the first 2min, and then ramped up and down through
a range spanning 20 %cws for the final 2 min (Treadmill
Schedule in Figure 1). Half of the participants ramped up in
speed first, while the remaining participants ramped down in
speed first to account for any effects of acceleration versus

deceleration. We varied walking speeds to capture a wide
spectrum of possible walking patterns for each individual and
to diversify the dataset. A seated rest was provided between
bouts. Force plates embedded in the treadmill measured
3D GRFs throughout the walking bouts. Participants wore
commercial pressure insoles on both feet (XSensor, Calgary,
AB, Canada; 50 Hz), each of which contained 233 individual
pressure sensels. If the participant used an AFO, we placed
the insole between the shoe and the underside of the AFO
brace. Data obtained from the insole were time-synchronized
with the force plates using a 5V analog trigger signal sent
at the onset of force plate recording. Participants were asked
to step with each foot at the start and end of each walking
bout, and corresponding peaks in pressure and VGRF data
were used in post-processing to ensure data synchronization.

C. Data Processing

We then had two synchronized data sources for each trial
of each participant, one from the insole and one from the
instrumented treadmill. We applied a 2nd order low-pass
Butterworth filter with a 10Hz cutoff frequency on both
sources of data to reduce noise artifacts. We also applied
a minimum force threshold on the treadmill VGRF data to
allow for robust gait event detection, such that all values
less than 5% of the maximum VGREF in the trial were set to
zero. We then normalized the insole data by subtracting the
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average signal captured during the swing phase of the first
stride in each trial, which we assumed should theoretically
be zero in the absence of noise. Finally, we downsampled
the treadmill data to 100 Hz and interpolated the insole data
to match the treadmill data samples. We resized the insole
sensel array from a 10 x 31 rectangular array, where elements
corresponding to points outside the insole area did not map
to a sensel, into a 28x28 square map using pixel area
interpolation in OpenCV [22]. Note that while this approach
distorts the aspect ratio of the pressure map, it does not alter
the data represented. We used the GRFs from the treadmill to
only include data from the stance phase. Then, the input data
for the estimation models were the processed pressure data
from each insole sensel during stance and the corresponding
GRFs from the treadmill force plates were used as the ground
truth to train and evaluate the models.

D. Model Development

Given the image form of the pressure maps, we used a
CNN for this work (Figure 1). The network started with two
convolutional layers with kernel sizes of 5 and 3. We used
average pooling layers between the convolutional layers as
we observed improved performance over max pooling. The
convolutional layers were followed by two fully connected
layers with 84 and 10 neurons. We added a final fully-
connected layer to map pressure data from each foot to
the GRF component at the corresponding frame. We used
Rectified Linear Unit (ReLU) activation functions for the
output of each layer prior to the final fully-connected layer
to capture nonlinearity in the data. The model was trained
using the Adam optimizer with a learning rate of 0.0005
and weight decay of 0.00001. These hyperparameters were
empirically selected through a grid search. We used the mean
squared error loss to train each model over 500 epochs. If
the model failed to converge, we continued training until
convergence or a maximum of 1000 epochs.

The model was trained individually for each foot of each
participant, using at least one walking bout for training, one
bout for validation, and one bout for testing. The slowest and
fastest speeds were used for training, while the middle two
speeds were used for validation and testing. Any remaining
walking bouts were used as training data. If there were
exactly three trials of usable data, then the slowest trial was
used for training, the fastest speed was used for validation
and the middle speed was used for testing. This train-test split
allowed for generalizing the model across different speeds by
accounting for the changes in gait biomechanics at varying
speeds. One participant had less than three trials of usable
data (due to too many strides with both feet on the same force
plate and inconsistent insole connectivity), and was excluded
from analysis. Table 1 lists the number of trials used for each
participant.

To assess the efficacy of this approach, we compared
the estimation accuracy of the CNN against an FCN and
linear regression. The FCN had two hidden layers of 1024
neurons each, and each layer was fed through a ReLU
activation function, making the model nonlinear. We used

the same training hyperparameters for the FCN models
as in the CNN models. The linear regression provided a
benchmark for conventional approaches in literature, while
the FCN provided a benchmark for a nonlinear method that
is not designed to capture spatial relationships. For the linear
regression and FCN methods, the original rectangular insole
data was reshaped into a 1D vector input. All CNN and FCN
code was written using Pytorch 1.13.1 [23] and the linear
regression code was written with Scikit-Learn 1.2.2 [24].

E. Model Evaluation

We evaluated the accuracy of the models by computing
the root-mean square error (RMSE) between the estimated
and true force at each frame in the test set for each individual
and foot. We computed this error scaled to each individual’s
bodyweight to enable across-subject evaluation of the model.
We also calculated the coefficient of determination, or R-
squared, between the estimated and true force for each
model. Finally, we assessed the RMSE for three key point
metrics for the paretic limb that quantify impairment level:
peak propulsion, propulsion impulse, and average VGRF in
stance. Point metrics were calculated after segmenting the
test set into stance cycles using VGRF data. Peak propul-
sion was quantified as the positive peak in AP GRF and
propulsion impulse was determined as the positive integral
of AP GREF for each stance cycle. Similarly, we computed the
average VGREF for each stance cycle. We chose these metrics
to enable comparison against documented minimal detectable
change (MDC) thresholds that represent the expected within-
day gait variability in this population [18]. If the estimation
error for a participant with a single method differed from
the other two methods by over two orders of magnitude, the
result was considered an outlier and removed from further
analysis. Finally, we used a linear mixed-effects model to
assess the effect of estimation method on accuracy in which
we defined subjects as the random-effects term, and the
algorithm-type as the fixed-effects term. An alpha level of
0.05 was used to indicate significance.

I1I. RESULTS
A. Overall Estimation Accuracy

We observed that across all participants and across both
feet, all three models were able to estimate 3D GRFs
and were not statistically different from each other. After
removing outliers, we found an RMSE of 0.88 + 0.26
(mean = s.e.m.), 0.85 &+ 0.27, and 0.84 £ 0.25 %bodyweight
(%bw) on the test datasets using the LR, FCN, and
CNN-based methods respectively for paretic ML GRF, and
0.73 £ 0.19, 0.71 £ 0.23, and 0.66 + 0.21 %bw on the
non-paretic limb. For paretic AP GRF, we found an RMSE
of 1.30 £ 0.66, 1.28 £+ 0.68, and 1.21 £ 0.68 %bw, and for
VGRE, 5.39 £ 4.34,5.98 4+ 4.02, and 5.63 + 4.15 %bw using
the LR, FCN, and CNN, respectively. On the non-paretic
limb, we found errors in AP GRF estimates of 1.18 + 0.44,
1.07 & 0.54, and 1.05 £ 0.48 %bw, and in VGRF estimates
of 4.02 £+ 2.72, 438 £ 2.89, and 3.94 £+ 2.78 %bw with
the LR, FCN, and CNN, respectively. Figure 2 presents an
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example of the true versus estimated GRF across a single
stance cycle of a single participant with the median RMSE
from the CNN approach. Table 1 presents the average per-
formance across both limbs for each individual and method.

B. Correlation of Estimator versus Ground truth

In addition to estimation accuracy across stance, we eval-
uated the correlation between the estimated and true GRFs.
After removal of outliers, we observed strong and statistically
significant correlations (B2 > 0.85, p < 0.001) for all
three estimation approaches and all participants. Specifically,
averaged across participants and both legs, we found an R?
for ML GRF of 0.87 + 0.11, 0.86 &+ 0.15, and 0.87 + 0.13
with the LR, FCN, and CNN, respectively. Similarly, we
found R? values for AP GRF of 0.92 + 0.08, 0.91 + 0.11,
and 0.91 =+ 0.12, and for VGRF of 0.95 +£ 0.06, 0.94 £+ 0.07,
and 0.95 £ 0.06 using the LR, FCN, and CNN, respectively.
A subset of the true versus estimated GRFs in the test dataset
obtained with the CNN-based approach for all participants
is shown in the bottom panel of Figure 2 and depicts the
variance in estimator performance across the stride and
across individuals. We observe that for most participants,
there is close alignment between the true and estimated GRF
across all points.

C. Point Metric Estimation Accuracy

Finally, we evaluated the performance of these approaches
when estimating clinically relevant point metrics for the
paretic limb. Similar to the estimator performance across
the time series data, we found that the FCN and CNN-
based approaches best estimated paretic propulsion metrics,
but not statistically significantly. The average RMSE of peak
paretic propulsion was 0.78 + 0.39 %bw with the FCN and
0.82 £+ 0.35%bw with the CNN, close to the MDC of
0.8 %bw, versus 1.21 + 0.55 %bw with the LR approach
(Table 1). Average VGRF was best estimated by LR, with
an error of 1.12 4 0.50 %bw (MDC: 1.7 %bw), compared to
1.52 £+ 1.32 %bw with the FCN and 1.34 + 1.04 %bw with
the CNN.

IV. DISCUSSION AND CONCLUSION

This work investigated the efficacy of three simple ma-
chine learning-based models to estimate 3D GRFs in people
post-stroke using pressure insoles. We found that overall,
a CNN was most effective, followed closely by the FCN,
and lastly by linear regression. We further showed high
estimation accuracy of key clinically-relevant point metrics,
suggesting the potential for translation.

Similar to prior work in GRF estimation, we found a dif-
ference in performance across the different force components
[16], [17]. VGREF estimates had the highest RMS errors, but
the highest correlations. Conversely, AP GRF and ML GRF
estimation errors were smaller, but correlations were less
strong. The differences in estimation error reflect the varying
magnitudes of the different GRF components. For example,
the maximum amplitude of VGRF in our participants was
approximately 10 times higher than that of AP GRF. The

differences in correlation measures reflect the hypothesized
relationship between the sensor and estimated variable. The
insoles measure pressure from normal loading distributed
across the foot, and thus is most correlated with VGRFE
We found that on average, performance as measured by
error and correlation metrics was similar between the two
nonlinear approaches, the CNN and FCN, both of which
were consistently better than linear regression, although not
statistically significantly. Anecdotally, we observed that the
CNN converged faster during training than the FCN, which
may be due to the ability of a CNN to better account for the
spatial information contained in the input data [25]. Overall,
these results suggest that when the input-output relationship
is closer to linear, such as between the input pressure data
and VGREF, performance is less sensitive to the choice of
model. However, when there is strong nonlinear influence
from factors such as shear forces and shoe compliance, as in
the case of ML GRF and AP GRF, model selection becomes
critical for estimation performance.

Interestingly, while on average, all three methods per-
formed similarly on the time series data, the nonlinear
methods provided an additional advantage over linear regres-
sion when computing key paretic propulsion metrics. Paretic
propulsion metrics are often used to characterize the impair-
ment level of an individual post-stroke [8] given its well-
documented relationship with walking speed [4]. We find
that with a CNN or FCN approach and the pressure insole,
we obtain an average RMSE of 0.8 %bw in peak paretic
propulsion compared to 1.2 %bw using linear regression.
Furthermore, this improved performance of the nonlinear
approaches over linear regression is observed consistently
for nine out of ten datasets. Given that the MDC threshold
for peak propulsion during single-session treadmill walking
is 0.8 %bw, these methods may be able to differentiate
between true changes in propulsion in this population and in
turn, inform clinical assessments. Similarly, these estimation
approaches achieve errors below the MDC for average paretic
VGREF in stance, and thus may also be suitable for assessing
limb loading characteristics during gait.

While these results are presented after removing outliers,
we note that there is an additional risk of the standard
linear regression used as a benchmark in this work. For
one subject, the coefficients obtained through the linear
regression least-squares cost minimization led to a coefficient
on the order of 107 corresponding to a sensel that measured
no pressure in the training dataset. However, a non-zero
measurement by that sensel in the test dataset resulted in
large errors for this individual and foot. Future work could
investigate mitigating this issue by adding a regularization
term to minimize the number of non-zero coefficients [26],
albeit at the cost of losing some information from the input.
Conversely, given the architecture of a CNN, which applies
spatial filtering across groups of sensels, the risk of errors
due to differences in the training versus testing distribution
for a single sensel may be reduced, suggesting its potential
for improved robustness.

There are a few limitations to note in this work that should
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Fig. 2: (Top) CNN-estimated and force plate-based GRF time series data from a paretic stride in the test set of a single
participant. Each plot represents the performance of the estimator with 50" percentile RMSE. (Bottom) CNN-estimated
versus true force data from all participants’ paretic limb test sets. The black dotted line represents perfect estimation.

| Worst%RMSE;Best | Test RMSE! (%bw) Paretic Point Metrics RMSE
Peak Propulsion |Propulsion Impulse| Average V GRF
Subj CWS No. of ML GRF AP GRF V GRF (%bw) (%bw %stance) (%bw)

ID (m/s) trials LR FCN  CNN LR FCN CNN LR FCN  CNN LR FCN  CNN LR FCN  CNN LR FCN CNN
1 08 5 0.799 0.666 0.666 | 1.142 0.887 0.829 | 2.295 2.030 1.884 | 1.108 0.604 0.559 | 0.494 0.273 0.251 | 0.721 0.389 0.368
2 0.55 6 0.554 0.568 0.537 | 0.930 0.628 0.642 | 2.305 2.738 2.306 | 1.966 0.671 0.784 | 0.923 0.261 0.264 | 1.357 1.215 1.165
22 0.55 5 0.553 0.505 0.545 | 0.748 0.752 0.708 | 3.032 2.875 2.834|0.541 0.622 0.468 | 0.282 0.339 0.252 | 0.510 0.492 0.551
3 09 6 1.058 0.987 1.020 | 1.719 1.694 1.230 | 4.533 6.029 4.763 [ 1.389 1.718 1.187 | 0.835 0.644 0.604 | 1.237 4.443 1.032
4 05 6 0.647 0.387 0.362 | 0.513 0.434 0.473|1.079 1.090 1.332|0.447 0.440 0.571|0.238 0.247 0.277 [ 0.522 0.522 0.649
5¢ 04 6 0.912 1.021 1.030 | 1.544 1.679 1.733|9.446 8.934 8.469 - 1.010 1.056 - 0.541 0.531 - 2.210 2.645
6 0.7 5 0.941 1.031 0.963 | 1.823 1.921 1.773 |9.320 9.675 9.479 | 0.987 0.727 0.912 | 0.537 0.343 0.403 | 1.975 1.544 1.893
7 10 6 0.931 0.982 0.863 | 1.957 1.757 1.852|7.942 8.873 7.584|1.425 0.721 1.404 |0.700 0.513 0.676 | 1.289 2.261 3.265

8 038 2 - - - - - - - - - - - - - - - - - -
93 05 3 0.897 0.869 0.776 | 0.928 0.847 0.928 | 4.393 4.367 4.416 | 1.837 0.460 0.427 | 0.569 0.335 0.309 | 1.370 0.560 0.511
Average:| 0.810 0.780 0.751 | 1.256 1.178 1.130|4.927 5.179 4.785|1.212 0.775 0.819|0.572 0.388 0.396 | 1.123 1.515 1.342
Std Dev: | 0.184 0.250 0.238 [ 0.518 0.574 0.539 |3.191 3.302 3.039 | 0.552 0.391 0.345|0.242 0.142 0.166 | 0.504 1.319 1.035

Table
limbs

be considered for future investigation. First, this study did not
assess the ability of the model to predict performance across
days. Given the known variability across days [18], more
data may be needed to achieve similar prediction accuracy.

1. Individual-level estimator performance across models and metrics. ! Averaged across both paretic and non-paretic
. 2Second visit for S2. *Wore an ankle-foot-orthosis (AFO) on the paretic limb during the experiment. *Paretic side
excluded from LR analysis due to large outlier. °Excluded due to lack of usable data.

Another consequence of the single-session study design is
that the insole placement was not adjusted between trials
and thus, further investigation is needed to evaluate model
performance with varying sensor placement. Second, while
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this work was motivated by real-world applications, the use
of this approach has yet to be tested in overground envi-
ronments. As treadmill and overground walking are biome-
chanically different, further training may be required in order
to accurately estimate forces in non-treadmill environments.
Future work may investigate how to leverage data across
individuals or across feet to increase the training dataset size
and improve estimation accuracy. An additional approach
may be to leverage temporal information rather than only
spatial information, i.e., a time series of input frames rather
than a single input frame [27]. Moreover, recent work has
shown promising results using inertial measurement units,
which capture kinematic information, to estimate AP GRF
in people post-stroke during overground walking [11], [28].
Thus, future efforts may aim to develop methods that in-
tegrate kinematic and kinetic information from wearable
sensors to better estimate 3D GRFs in varying environments.
In summary, this work demonstrates an approach for using
pressure insoles to estimate 3D ground reaction forces in
people post-stroke using machine learning-based nonlinear
methods. While only with a few participants, this work
presents initial work towards bridging the gap between clini-
cal biomechanics and clinical rehabilitation through accurate
estimation of kinetics in real-world environments.
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